
Embedded Coder®

User's Guide

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® User's Guide
© COPYRIGHT 2011–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only Revised for Version 6.1 (Release 2011b)
March 2012 Online only Revised for Version 6.2 (Release 2012a)
September 2012 Online only Revised for Version 6.3 (Release 2012b)
March 2013 Online only Revised for Version 6.4 (Release 2013a)
September 2013 Online only Revised for Version 6.5 (Release 2013b)
March 2014 Online only Revised for Version 6.6 (Release 2014a)
October 2014 Online only Revised for Version 6.7 (Release 2014b)
March 2015 Online only Revised for Version 6.8 (Release 2015a)
September 2015 Online only Revised for Version 6.9 (Release 2015b)
October 2015 Online only Rereleased for Version 6.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 6.10 (Release 2016a)
September 2016 Online only Revised for Version 6.11 (Release 2016b)
March 2017 Online only Revised for Version 6.12 (Release 2017a)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Model Architecture and Design

Modeling Environment for Embedded Coder
1

Design Models for Generated Embedded Code
Deployment . 1-2

Application Algorithms and Run-Time Environments . . 1-2
Software Execution Framework for Generated Code . . . 1-3
Map Embedded System Architecture to Simulink

Modeling Environment . 1-5
Model Templates for Code Generation 1-13

Model Single-Core, Single-Tasking Platform
Execution . 1-15

Model Single-Core, Multitasking Platform Execution . 1-20

Model Concurrent Execution for Symmetric Multicore
CPU Platforms . 1-25

Model Explicit Function Invocation with Atomic
Subsystems . 1-33

Model Explicit Function Invocation with Function-Call
Subsystems . 1-38

Model for AUTOSAR Platform . 1-42

vii

Modeling in Simulink Coder
2

Configure a Model for Code Generation 2-2

Supported Products and Block Usage 2-4
Related Products . 2-4
Simulink Built-In Blocks That Support Code

Generation . 2-6
Simulink Block Data Type Support Table 2-26
Block Set Support for Code Generation 2-26

Modeling Semantic Considerations 2-27
Data Propagation . 2-27
Sample Time Propagation . 2-29
Latches for Subsystem Blocks 2-30
Block Execution Order . 2-30
Algebraic Loops . 2-32

Modeling Guidelines for Blocks 2-35

Modeling Guidelines for Subsystems 2-36

Modeling Guidelines for Charts 2-38

Modeling Guidelines for MATLAB Functions 2-40

Modeling Guidelines for Model Configuration 2-41

Subsystems in Simulink Coder
3

Code Generation of Subsystems 3-2
Subsystem Code Dependence . 3-3

Generate Code and Executables for Individual
Subsystem . 3-4

Subsystem Build Limitations . 3-6

viii Contents

Inline Subsystem Code . 3-7
Configure Subsystem to Inline Code 3-7
Exceptions to Inlining . 3-8

Generate Subsystem Code as Separate Function and
Files . 3-10

Generate Reusable Function for Identical Subsystems
Within a Model . 3-11

Considerations for Function Packaging Options Auto and
Reusable function . 3-13

Code Reuse for Subsystems with Mask Parameters . . . 3-13

Optimize Code for Identical Nested Subsystems 3-14

Generate Reusable Code for Subsystems Containing S-
Function Blocks . 3-15

Generate Reusable Code from Stateflow Charts 3-16

Code Reuse Limitations for Subsystems 3-17
Blocks That Prevent Code Reuse 3-18
Code Reuse Limitations for Subsystems Shared Across

Referenced Models . 3-18

Code Reuse For Subsystems Shared Across Models . . 3-20

Reusable Library Subsystem . 3-21
Code Generation of a Reusable Library Subsystem . . . 3-21
Reusable Library Subsystem Code Placement and

Naming . 3-22
Reusable Library Subsystem in the Top Model 3-22
Reusable Library Subsystem Connected to Root

Outport . 3-22

Code Generation of Constant Parameters 3-23

Shared Constant Parameters for Code Reuse 3-24
Suppress Shared Constants in the Generated Code . . . 3-25
Shared Constant Parameters Limitations 3-27

ix

Generate Reusable Code for Subsystems Shared Across
Models . 3-28

Create a reusable library subsystem. 3-28
Create the example model. 3-31
Set configuration parameters of the top model. 3-33
Create and propagate a configuration reference. 3-33
Generate and view the code. 3-34

Determine Why Subsystem Code Is Not Reused 3-36
Review Subsystems Section of HTML Code Generation

Report . 3-36
Compare Subsystem Checksum Data 3-36

Code Generation of Functions and Function
Callers in Simulink Coder

4
Modeling Functions and Callers for Code Generation . 4-2

Functions and Callers . 4-2
Input and Output Arguments . 4-2
Function and Function Caller Definitions Across

Models . 4-3
Code Generation Files . 4-3

Generate Code for Functions and Callers 4-6
Generate Code for the Function Definition 4-6
Generate Code for the Caller Definition 4-8

Referenced Models in Simulink Coder
5

Code Generation of Referenced Models 5-2

Generate Code for Referenced Models 5-4
About Generating Code for Referenced Models 5-4
Create and Configure the Subsystem 5-4
Convert Model to Use Model Referencing 5-7

x Contents

Generate Model Reference Code for a GRT Target 5-10
Work with Code Generation Folders 5-12

Configure Referenced Models . 5-14

Build Model Reference Targets 5-15
Reduce Change Checking Time 5-15

Simulink Coder Model Referencing Requirements . . . 5-16
Configuration Parameter Requirements 5-16
Naming Requirements . 5-19
Custom Target Requirements 5-19

Storage Classes for Signals Used with Model Blocks . . 5-20
Storage Classes for Parameters Used with Model

Blocks . 5-20
Signal Name Mismatches Across Model Reference

Boundary . 5-21

Inherited Sample Time for Referenced Models 5-23

Customize Library File Suffix and File Type 5-25

Reusable Code and Referenced Models 5-26
General Considerations . 5-26
Code Reuse and Model Blocks with Root Inport or Outport

Blocks . 5-26

Simulink Coder Model Referencing Limitations 5-30
Customization Limitations . 5-30
Data Logging Limitations . 5-30
State Initialization Limitation 5-31
Reusability Limitations . 5-31
S-Function Limitations . 5-32
Simulink Tool Limitations . 5-32
Subsystem Limitations . 5-32
Target Limitations . 5-32
Other Limitations . 5-32

xi

Combined Models in Simulink Coder
6

Combine Code Generated for Multiple Models 6-2
Techniques . 6-2
Control Ownership of Data . 6-3
Combine Code Generated for Multiple Models or Multiple

Instances of a Model . 6-3

Configure Model Parameters for Simulink Coder
7

Configure Run-Time Environment Options 7-2
Configure Production and Test Hardware 7-3
Production Hardware Considerations 7-12
Test Hardware Considerations 7-13
Example Production Hardware Setting That Affects

Normal Mode Simulation . 7-13

Model Protection in Simulink Coder
8

Protect a Referenced Model . 8-2
Requirements for Protecting a Model 8-3

Harness Model . 8-4

Protected Model Report . 8-5

Code Generation Support in a Protected Model 8-6
Protected Model Requirements to Support Code

Generation . 8-6

Protected Model File . 8-8

Create a Protected Model . 8-10

xii Contents

Protected Model Creation Settings 8-15
Open Read-Only View of Model 8-16
Simulate . 8-16
Use Generated Code . 8-16

Create a Protected Model with Multiple Targets 8-18

Use a Protected Model with Multiple Targets 8-19

Test the Protected Model . 8-20

Save Base Workspace Definitions 8-22

Package a Protected Model . 8-23

Specify Custom Obfuscator for Protected Model 8-24

Define Callbacks for Protected Model 8-26
Creating Callbacks . 8-26
Defining Callback Code . 8-27
Create a Protected Model with Callbacks 8-27

Component Initialization, Reset, and
Termination in Simulink Coder

9
Generate Code That Responds to Initialize, Reset, and

Terminate Events . 9-2
Generate Code for Initialize and Terminate Events 9-2
Generate Code for Reset Events 9-7
Event Names and Code Aggregation 9-9
Limitations . 9-12

xiii

Stateflow Blocks in Simulink Coder
10

Code Generation of Stateflow Blocks 10-2
Comparison of Code Generation Methods 10-2

Generate Reusable Code for Atomic Subcharts 10-6
How to Generate Reusable Code for Linked Atomic

Subcharts . 10-6
How to Generate Reusable Code for Unlinked Atomic

Subcharts . 10-7

Generate Reusable Code for Unit Testing 10-8
Goal of the Tutorial . 10-8
Convert a State to an Atomic Subchart 10-9
Specify Code Generation Parameters 10-10
Generate Code for Only the Atomic Subchart 10-11

Inline State Functions in Generated Code 10-14
Inlined Generated Code for State Functions 10-14
How to Set the State Function Inline Option 10-16
Best Practices for Controlling State Function Inlining 10-16

Air-Fuel Ratio Control System with Stateflow Charts 10-17

Block Authoring and Code Generation for
Simulink Coder

11
S-Functions and Code Generation 11-2

Types of S-Functions . 11-3
Files Required for Implementing Noninlined and Inlined

S-Functions . 11-5
Guidelines for Writing S-Functions that Support Code

Generation . 11-5

Import Calls to External Code into Generated Code with
Legacy Code Tool . 11-7

Legacy Code Tool and Code Generation 11-7

xiv Contents

Generate Inlined S-Function Files for Code
Generation . 11-8

Apply Code Style Settings to Legacy Functions 11-9
Address Dependencies on Files in Different Locations . 11-9
Deploy S-Functions for Simulation and Code

Generation . 11-10
Integrate External C++ Object Methods 11-11
Integrate External C++ Objects 11-14
Legacy Code Tool Examples 11-16

External Code Integration Examples 11-50
Insert External C and C++ Code Into Stateflow Charts for

Code Generation . 11-50
Integrate External C Code Into Generated Code By

Using Custom Code Blocks and Model Configuration
Parameters . 11-52

Integrate External C Code Into Generated Code By
Using Custom Code Blocks and Model Configuration
Parameters . 11-55

Insert External C and C++ Code Into Stateflow Charts for
Code Generation . 11-58

Automate S-Function Generation with S-Function
Builder . 11-61

Macro Parameters . 11-64

Write S-Function and TLC Files By Hand 11-66
Write Noninlined S-Function and TLC Files 11-66
Write Wrapper S-Function and TLC Files 11-68
Write Fully Inlined S-Functions 11-77
Write Fully Inlined S-Functions with mdlRTW

Routine . 11-78
Guidelines for Writing Inlined S-Functions 11-97
S-Functions That Support Expression Folding 11-97
S-Functions That Specify Port Scope and Reusability 11-108
S-Functions That Specify Sample Time Inheritance

Rules . 11-112
S-Functions That Support Code Reuse 11-114
S-Functions for Multirate Multitasking Environments 11-115

xv

Guidelines and Standards for Embedded Coder
12

Support for Standards and Guidelines 12-2

MAAB Guidelines . 12-4

MISRA C Guidelines . 12-5

IEC 61508 Standard . 12-7
Apply Simulink and Embedded Coder to the IEC 61508

Standard . 12-7
Check for IEC 61508 Standard Compliance Using the

Model Advisor . 12-7
Validate Traceability . 12-7

Develop a Model that Complies with the IEC 61508
Standard . 12-9

IEC 62304 Standard . 12-12
Apply Simulink and Embedded Coder to the IEC 62304

Standard . 12-12
Check for IEC 62304 Standard Compliance Using the

Model Advisor . 12-12

ISO 26262 Standard . 12-13
Apply Simulink and Embedded Coder to the ISO 26262

Standard . 12-13
Check for ISO 26262 Standard Compliance Using the

Model Advisor . 12-13
Validate Traceability . 12-7

EN 50128 Standard . 12-15
Apply Simulink and Embedded Coder to the EN 50128

Standard . 12-15
Check for EN 50128 Standard Compliance Using the

Model Advisor . 12-15
Validate Traceability . 12-7

DO-178C Standard . 12-17
Apply Simulink and Embedded Coder to the DO-178C

Standard . 12-17

xvi Contents

Check for Standard Compliance Using the Model
Advisor . 12-17

Validate Traceability . 12-7

Patterns for C Code in Embedded Coder
13

Prepare a Model for Code Generation 13-3
Configure a Signal . 13-3
Configure Input and Output Ports 13-4
Initialize States . 13-4
Set Up Configuration Parameters for Code Generation 13-5
Set Up an Example Model With a Stateflow Chart . . . 13-5
Set Up an Example Model With a MATLAB Function

Block . 13-6

Definition, Initialization, and Declaration of Parameter
Data . 13-8

C Construct . 13-8
Procedure . 13-8
Results . 13-8

Definition and Declaration of Signal Data 13-10
C Construct . 13-10
Procedure . 13-10
Results . 13-10

Data Type Conversion . 13-12
C Construct . 13-12
Modeling Patterns . 13-12
Modeling Pattern for Data Type Conversion — Simulink

Block . 13-12
Modeling Pattern for Data Type Conversion — Stateflow

Chart . 13-13
Modeling Pattern for Data Type Conversion — MATLAB

Function Block . 13-14
Other Type Conversions in Modeling 13-14

Type Qualifiers . 13-15
C Construct . 13-15

xvii

Procedure . 13-15
Results . 13-15

Relational and Logical Operators 13-17
Modeling Patterns for Relational and Logical

Operators . 13-17
Modeling Pattern for Relational or Logical Operators —

Simulink Blocks . 13-17
Modeling Pattern for Relational and Logical Operators –

Stateflow Chart . 13-18
Modeling Pattern for Relational and Logical Operators —

MATLAB Function Block 13-19

Bitwise Operations . 13-21
Simulink Bitwise-Operator Block 13-21
Stateflow Chart . 13-22
MATLAB Function Block . 13-23

Enumeration . 13-24

If-Else . 13-28
C Construct . 13-28
Modeling Patterns . 13-28
Modeling Pattern for If-Else: Switch block 13-29
Modeling Pattern for If-Else: Stateflow Chart 13-31
Modeling Pattern for If-Else: MATLAB Function

Block . 13-33

Switch . 13-34
C Construct . 13-34
Modeling Patterns . 13-34
Modeling Pattern for Switch: Switch Case block 13-35
Modeling Pattern for Switch: MATLAB Function block 13-38
Convert If-Elseif-Else to Switch statement 13-39

For Loop . 13-40
C Construct . 13-40
Modeling Patterns: . 13-40
Modeling Pattern for For Loop: For-Iterator Subsystem

block . 13-41
Modeling Pattern for For Loop: Stateflow Chart 13-44
Modeling Pattern for For Loop: MATLAB Function

block . 13-46

xviii Contents

While Loop . 13-48
C Construct . 13-48
Modeling Patterns . 13-48
Modeling Pattern for While Loop: While Iterator

Subsystem block . 13-49
Modeling Pattern for While Loop: Stateflow Chart . . . 13-52
Modeling Pattern for While Loop: MATLAB Function

Block . 13-55

Do While Loop . 13-58
C Construct . 13-58
Modeling Patterns . 13-58
Modeling Pattern for Do While Loop: While Iterator

Subsystem block . 13-59
Modeling Pattern for Do While Loop: Stateflow Chart 13-62

Function Call . 13-65
C Construct . 13-65
Procedure . 13-65
Results . 13-66

Function Prototyping . 13-67
C Construct . 13-67
Modeling Patterns . 13-67
Function Call Using Graphical Functions 13-67
Control Function Prototype of the model_step

Function . 13-69

External C Functions . 13-71
C Construct . 13-71
Modeling Patterns . 13-71
Use the Legacy Code Tool to Create S-functions 13-71
Use a Stateflow Chart to Make Calls to C Functions . 13-73
Using a MATLAB Function Block to Make Calls to C

Functions . 13-75

Macro Definitions (#define) . 13-77
C Construct . 13-77
Export Generated Macro Definition 13-77
Reuse Macro from Handwritten Code 13-77

Conditional Inclusions (#if / #endif) 13-80

xix

Typedef . 13-81
C Construct . 13-81
Procedure . 13-81
Results . 13-82

Structures of Parameters . 13-83

Structures of Signals . 13-87
C Construct . 13-87
Procedure . 13-87
Results . 13-88

Nested Structures of Signals . 13-90
C Construct . 13-90
Procedure . 13-90
Results . 13-93

Bitfields . 13-95
C Construct . 13-95
Procedure . 13-95
Results . 13-96

Arrays for Parameters . 13-98
C Construct . 13-98
Procedure . 13-98
Results . 13-98

Arrays for Signals . 13-100
C Construct . 13-100
Procedure . 13-100
Results . 13-100

Pointers . 13-102
C Construct . 13-102
Procedure . 13-102
Results . 13-102

xx Contents

Variant Systems in Embedded Coder
14

Implement Dimension Variants for Array Sizes in
Generated Code . 14-2

Dimension Variants . 14-2
Code Generation Optimization Considerations 14-10
Backward Compatibility . 14-10
Supported Blocks . 14-11
Limitations . 14-12

Code Generation for Variant Blocks 14-16
Restrictions on Variant Subsystem Code Generation . 14-16
Generated Code Components Not Compiled

Conditionally . 14-18
Code Generation for Variant Blocks with One Variant

Choice . 14-18

Represent Subsystem and Model Variants in Generated
Code . 14-21

Step 1: Represent Variant Choices in Simulink 14-21
Step 2: Specify Conditions That Control Variant Choice

Selection . 14-25
Step 3: Configure Model for Generating Preprocessor

Conditionals . 14-27
Step 4: Review Generated Code 14-28
Limitations . 14-31

Generate Preprocessor Conditionals for Variant
Systems . 14-33

Define Variant Controls . 14-33
Configure Model for Generating Preprocessor Conditional

Directives . 14-34
Special Considerations for Generating Preprocessor

Conditionals . 14-35

Represent Variant Source and Sink Blocks in Generated
Code . 14-37

Represent Variant Source and Variant Sink blocks in
Simulink . 14-37

Specify Conditions That Control Variant Choice
Selection . 14-42

Review the Generated Code 14-42

xxi

Generate Code with Zero Active Variant Controls . . . 14-44
Global Data Guarding Limitation 14-45
State Logging Limitation . 14-45

Configure Dimension Variants for S-Function Blocks 14-47
S-Function That Supports Forward Propagation of

Symbolic Dimensions . 14-49
S-Function That Supports Forward and Backward

Propagation of Symbolic Dimensions 14-50

Generate Code for Variant Subsystem with Child
Subsystems of Different Output Signal Dimensions 14-52

Example Model . 14-52
Simulate Model . 14-53
Generate Code . 14-54

Timers in Simulink Coder
15

Absolute and Elapsed Time Computation 15-2
About Timers . 15-2
Timers for Periodic and Asynchronous Tasks 15-3
Allocation of Timers . 15-3
Integer Timers in Generated Code 15-3
Elapsed Time Counters in Triggered Subsystems 15-4

Access Timers Programmatically 15-5
About Timer APIs . 15-5
C API for S-Functions . 15-5
TLC API for Code Generation 15-7

Generate Code for an Elapsed Time Counter 15-9

Absolute Time Limitations . 15-12

xxii Contents

Time-Based Scheduling in Simulink Coder
16

Time-Based Scheduling and Code Generation 16-2
Sample Time Considerations . 16-2
Tasking Modes . 16-2
Model Execution and Rate Transitions 16-4
Execution During Simulink Model Simulation 16-5
Model Execution in Real Time 16-5
Single-Tasking Versus Multitasking Operation 16-6

Modeling for Single-Tasking Execution 16-8
Single-Tasking Mode . 16-8
Build a Program for Single-Tasking Execution 16-8
Single-Tasking Execution . 16-8

Modeling for Multitasking Execution 16-12
Multitasking and Pseudomultitasking Modes 16-12
Build a Program for Multitasking Execution 16-14
Execute Multitasking Models 16-14
Multitasking Execution . 16-16

Handle Rate Transitions . 16-20
Rate Transitions . 16-20
Data Transfer Problems . 16-21
Data Transfer Assumptions . 16-22
Rate Transition Block Options 16-22
Automatic Rate Transition . 16-25
Visualize Inserted Rate Transition Blocks 16-26
Periodic Sample Rate Transitions 16-28

Configure Time-Based Scheduling 16-34
Configure Start and Stop Times 16-34
Configure the Solver Type . 16-34
Configure the Tasking Mode 16-35

Time-Based Scheduling Example Models 16-36
Optimize Memory Usage for Time Counters 16-36
Single-Rate Modeling (Bare Board, No OS) 16-40
Multirate Modeling in Single-Tasking Mode (Bare Board,

no OS) . 16-42
Multirate Modeling in Multitasking Mode (Bare Board, no

OS) . 16-44

xxiii

Trade Determinism and Data Integrity to Improve System
Performance . 16-46

Event-Based Scheduling in Simulink Coder
17

Asynchronous Events . 17-2
Asynchronous Support . 17-2
Block Library for Calls to an Example Real-Time

Operating System . 17-2
Access the Block Library for RTOS Integration 17-3
Generate Code Using Library Blocks for RTOS

Integration . 17-3
Examples and Additional Information 17-4

Generate Interrupt Service Routines 17-6
Connecting the Async Interrupt Block 17-6
Requirements and Restrictions 17-7
Performance Considerations . 17-7
Using the Async Interrupt Block in Simulation and Code

Generation . 17-8
Dual-Model Approach: Simulation 17-9
Dual-Model Approach: Code Generation 17-9

Spawn and Synchronize Execution of RTOS Task . . . 17-15

Pass Asynchronous Events in RTOS as Input To a
Referenced Model . 17-32

Rate Transitions and Asynchronous Blocks 17-39
About Rate Transitions and Asynchronous Blocks . . . 17-39
Handle Rate Transitions for Asynchronous Tasks . . . 17-41
Handle Multiple Asynchronous Interrupts 17-41

Timers in Asynchronous Tasks 17-44

Create a Customized Asynchronous Library 17-47
About Implementing Asynchronous Blocks 17-47
Async Interrupt Block Implementation 17-48
Task Sync Block Implementation 17-52

xxiv Contents

asynclib.tlc Support Library 17-53

Import Asynchronous Event Data for Simulation . . . 17-56
Capabilities . 17-56
Input Data Format . 17-56
Example . 17-56

Asynchronous Support Limitations 17-60
Asynchronous Task Priority 17-60
Convert an Asynchronous Subsystem into a Model

Reference . 17-60

Scheduling Considerations in Embedded Coder
18

Use Discrete and Continuous Time 18-2
Support for Discrete and Continuous Time Blocks 18-2
Support for Continuous Solvers 18-2
Support for Stop Time . 18-2

Optimize Multirate Multitasking Execution for RTOS
Run-Time Environments . 18-4

Use rtmStepTask . 18-4
Schedule Code for Real-time Model without an RTOS . 18-4
Schedule Code for Multirate Multitasking on an

RTOS . 18-5
Suppress Redundant Scheduling Calls 18-5

Data, Function, and File Definition

Data Representation in Simulink Coder
19

Access Signal, State, and Parameter Data During
Execution . 19-3

xxv

Default Data Structures in the Generated Code 19-16

Use the Real-Time Model Data Structure 19-19

Use Enumerated Data in Generated Code 19-22
Enumerated Data Types . 19-22
Specify Integer Data Type for Enumeration 19-22
Customize Enumerated Data Type 19-24
Control Enumerated Type Implementation in Generated

Code . 19-28
Type Casting for Enumerations 19-29
Enumerated Type Limitations 19-30

Data Stores in Generated Code 19-32
About Data Stores . 19-32
Generate Code for Data Store Memory Blocks 19-32
Storage Classes for Data Store Memory Blocks 19-33
Data Store Buffering in Generated Code 19-35

Structures in Generated Code Using Data Stores . . . 19-39
Explore Example Model . 19-39
Configure Data Store . 19-39
Write to Data Store Elements 19-40
Generate Code with Data Store Structure 19-42

Specify Single-Precision Data Type for Embedded
Application . 19-43

Use single Data Type as Default for Underspecified
Types . 19-43

Block Parameter Representation in the Generated
Code . 19-47

Default Parameter Representation 19-47
Override Default Parameter Behavior by Creating Global

Variables in the Generated Code 19-49
Parameter Object Configuration Quick Reference

Diagram . 19-51
Preservation of Expressions 19-51
Loss of Parameter Tunability 19-52

Configure Block Parameter Tunability for Rapid
Prototyping . 19-56

xxvi Contents

Tune Phase Parameter of Sine Wave Block During Code
Execution . 19-58

Create Tunable Calibration Parameter in the Generated
Code . 19-60

Represent Block Parameter as Tunable Global
Variable . 19-60

Configure Accessibility of Signal Data 19-62
Programmatic Interfaces for Tuning Parameters 19-63
Set Tunable Parameter Minimum and Maximum

Values . 19-63
Considerations for Other Modeling Goals 19-63

Specify Instance-Specific Parameter Values for Reusable
Referenced Model . 19-65

Pass Parameter Data to Referenced Model Entry-Point
Functions as Arguments . 19-65

Control Data Types of Model Arguments and Argument
Values . 19-77

Parameter Data Types in the Generated Code 19-79
Significance of Parameter Data Types 19-79
Parameter Data Type Mismatch 19-80
Considerations for Other Modeling Patterns 19-81

Generate Efficient Code by Specifying Data Types for
Block Parameters . 19-84

Eliminate Unnecessary Typecasts and Shifts by Matching
Data Types . 19-84

Reduce Memory Consumption by Storing Parameter Value
in Small Data Type . 19-87

Reuse Parameter Data in Different Data Type
Contexts . 19-93

Organize Block Parameter Values into Structures in the
Generated Code . 19-97

Creating Tunable Parameter Structures 19-97
Structures of Parameters . 19-98
Structure Padding . 19-102

Switch Between Sets of Parameter Values During
Simulation and Code Execution 19-103

xxvii

Signal Representation in Generated Code 19-112
Signal Storage Concepts . 19-113
Signals with Auto Storage Class 19-115
Signals with Test Points . 19-117
Symbolic Naming Conventions for Signals 19-118
Summary of Signal Storage Class Options 19-119
Interfaces for Monitoring Signals 19-120
Share Data Between Code Generated from Simulink,

Stateflow, and MATLAB 19-120

Control Signals and States in Code by Applying Storage
Classes . 19-123

Storage Classes for Signals and States 19-124
Use Model Data Editor to Configure Data Interface . 19-127
Signal Objects for Code Generation 19-128
Create and Configure Signal Object for Code

Generation . 19-128
Programmatically Create and Configure Signal Object for

Code Generation . 19-129
Apply Storage Classes Directly to Signal Lines, Block

States, and Outport Blocks 19-129
Programmatically Apply Storage Classes Directly to

Signals, States, and Outport Blocks 19-130
Resolve Conflicts in Configuration of Signal Objects 19-131

Design Data Interface by Configuring Inport and
Outport Blocks . 19-134

Group Signals into Structures in the Generated Code
Using Buses . 19-139

Import or Export Structure Variable and Definition . 19-139
Generate Code That Reuses struct Types from Existing

C Code . 19-141
Arrays of Structures . 19-141
Structure Padding . 19-141

Generate Efficient Code for Bus Signals 19-142
Code Efficiency for Bus Signals 19-142
Set Bus Diagnostics . 19-143
Optimize Virtual and Nonvirtual Buses 19-143

Maximize Signal Storage Optimization 19-146

xxviii Contents

Control Signal and State Initialization in the Generated
Code . 19-147

Signal and State Initialization in the Generated Code 19-147
Generate Tunable Initial Conditions 19-149
Generate Tunable Initial Condition Structure for Bus

Signal . 19-152

Continuous Block State Naming in Generated Code 19-158
Default Block State Naming Convention 19-158
Define User Block State Names 19-159

Discrete Block State Naming in Generated Code . . . 19-160
Default Block State Naming Convention 19-161
Define User Block State Names 19-162

Initialization of Signal, State, and Parameter Data in the
Generated Code . 19-165

Static Initialization and Dynamic Initialization 19-165
Real-World Ground Initialization Requiring Nonzero Bit

Pattern . 19-166
Initialization of Signal and State Data 19-166
Initialization of Parameter Data 19-168
Data Initialization in the Generated Code 19-168
Modeling Goals . 19-173

Signal Processing with Fixed-Point Data 19-175

Optimize Generated Code Using Fixed-Point Data with
Simulink®, Stateflow®, and MATLAB® 19-177

Declare Workspace Variables as Tunable Parameters
Using the Model Parameter Configuration Dialog
Box . 19-178

Declare Existing Workspace Variables as Tunable
Parameters . 19-178

Declare New Tunable Parameters 19-179
Set Tunable Parameter Code Generation Options . . 19-179
Programmatically Declare Workspace Variables as

Tunable Parameters . 19-180

xxix

Data Definition and Declaration Management in
Embedded Coder

20
Overview of Data Objects . 20-2

Place Global Data Declarations and Definitions in
Separate Files . 20-3

Data Types in Embedded Coder
21

What Are User-Defined Data Types? 21-2
Define Abstract Numeric Types and Rename Types . . . 21-3
Rename Data Type Object . 21-4
Enumerations and Structures 21-4

Control File Placement of User-Defined Types 21-6
Data Scope and Header File . 21-6
Macro Guards . 21-7

Create and Apply User-Defined Data Types 21-9

Create Data Type Alias in the Generated Code 21-12

Create a Named Fixed-Point Data Type in the Generated
Code . 21-18

Conform to Coding Standards by Replacing and
Renaming Data Types . 21-22

Inspect Custom C Code . 21-22
Explore Example Model and Default Generated Code 21-22
Reuse Custom Data Type Definitions 21-23
Create Meaningful Data Type Aliases for Individual Data

Items . 21-24
Create Single Point of Definition for Primitive Types . 21-26
Permanently Store Data Type Objects 21-27
Create and Maintain Objects Corresponding to Multiple C
typedef Statements . 21-27

xxx Contents

Exchange Structured and Enumerated Data Between
Generated and External Code 21-28

Inspect External Code . 21-28
Create Simulink Model . 21-30
Configure Generated Code to Write Outputs to Existing

Structure Variable . 21-32
Configure Model to Generate Parameter Data 21-33
Generate, Compile, and Inspect Code 21-34
Replace Data Type Names Throughout Model 21-35

Data Type Replacement . 21-36
Replace Built-In Data Types 21-36
Programmatically Replace Built-In Data Types 21-40
Data Type Replacement Limitations 21-41

Specify Boolean and Data Type Limit Identifiers . . . 21-43
Data Type Limit Identifiers . 21-43
Boolean Identifiers . 21-44
Boolean and Data Type Limit Identifier Header Files 21-44

Module Packaging Tool (MPT) Data Objects in
Embedded Coder

22
MPT Data Object Properties . 22-2

Specify Persistence Level for Signals and Parameters 22-14
Register mpt User Object Types 22-16

Custom Storage Classes in Embedded Coder
23

Introduction to Custom Storage Classes 23-2
Custom Storage Class Memory Sections 23-3
Custom Storage Classes and Data Class Packages . . . 23-3
Custom Storage Class Examples 23-3

xxxi

Simulink Package Custom Storage Classes 23-5
Organize Parameter Data into a Structure by Using the
Struct Custom Storage Class 23-8

Exchange and Reuse Parameter Data Between
Generated Code and Existing Code 23-11

Control Data Scope . 23-12
Customize and Control Parameter Data Types 23-13
Pass Imported Parameter Data to Generated Algorithm as

Arguments . 23-14
Considerations for Other Modeling Goals 23-15

Reuse Parameter Data from Custom Code in the
Generated Code . 23-17

Import Parameter Data with Conditionally Compiled
Dimension Length . 23-22

Access Structured Data Through a Pointer That
External Code Defines . 23-27

Design Custom Storage Classes and Memory
Sections . 23-34

Resources for Defining Custom Storage Classes 23-34
Create Packages for Custom Storage Class Definitions 23-34
Use Custom Storage Class Designer 23-35
Edit Custom Storage Class Properties 23-41
Use Custom Storage Class References 23-47
Protect Custom Storage Class Definitions 23-51
Create and Edit Memory Section Definitions 23-52
Use Memory Section References 23-55

Control Data Representation by Applying Custom
Storage Classes . 23-58

Apply a Custom Storage Class from the Simulink
Package Using Data Objects 23-59

Create and Apply Your Own Custom Storage Class Using
Data Objects . 23-60

Apply Custom Storage Classes Directly to Signal Lines,
Block States, and Outport Blocks 23-61

Programmatically Apply Custom Storage Classes Directly
to Signals, States, and Outport Blocks Using Embedded
Signal Objects . 23-63

xxxii Contents

Specify Instance-Specific Attributes 23-65
Generate Code with Custom Storage Classes 23-67
Configure Data Interface by Using Model Data Editor 23-69
Declare and Interface with Data Using Custom Storage

Classes . 23-70
Specify Default #include Syntax for Data Header

Files . 23-71
Custom Storage Class Limitations 23-71

Control Data Code by Creating Custom Storage Class 23-73
Explore Example Model . 23-73
Create Data Class Package . 23-73
Create Custom Storage Class 23-74
Apply Custom Storage Class 23-75
Generate Code . 23-76

Define Advanced Custom Storage Classes Types 23-78
Introduction . 23-78
Create Your Own Parameter and Signal Classes 23-78
Create Custom Attributes Classes for Custom Storage

Classes . 23-78
Write TLC Code for Custom Storage Classes 23-79
Register Custom Storage Class Definitions 23-79
Custom Storage Class Implementation 23-81

Generate Code That Dereferences Data from a Literal
Memory Address . 23-83

Access Data Through Functions with Custom Storage
Class GetSet . 23-92

Access Legacy Data Using Get and Set Functions . . 23-92
Use GetSet with Vector Data 23-96
Use GetSet with Structured Data 23-99
Use GetSet with Matrix Data 23-104
Specify Header File or Function Naming Scheme for All

Data Items . 23-109
GetSet Custom Storage Class Restrictions 23-110

Configure Generated Code According to Interface
Control Document . 23-112

xxxiii

Data Object Wizard in Embedded Coder
24

Create Data Objects for Code Generation with Data
Object Wizard . 24-2

Entry-Point Functions and Scheduling in
Simulink Coder

25
Entry-Point Functions and Scheduling 25-2

Generate Reentrant Code from Top-Level Models 25-4

Generate C++ Class Interface to Model or Subsystem
Code . 25-6

Generate C++ Class Interface to Model Code 25-6
Generate C++ Class Interface to Nonvirtual Subsystem

Code . 25-7
C++ Class Interface Limitations 25-8

Execution of Code Generated from a Model 25-9
Program Execution . 25-10
Program Timing . 25-10
External Mode Communication 25-11
Data Logging in Single-Tasking and Multitasking Model

Execution . 25-12
Non-Real-Time Single-Tasking Systems 25-13
Non-Real-Time Multitasking Systems 25-13
Real-Time Single-Tasking Systems 25-15
Real-Time Multitasking Systems 25-16
Multitasking Systems Using Real-Time Tasking

Primitives . 25-18
Rapid Prototyping and Embedded Model Execution

Differences . 25-19

Rapid Prototyping Model Functions 25-21

xxxiv Contents

Function and Class Interfaces in Embedded
Coder

26
Control Generation of Function Prototypes 26-2

About Function Prototype Control 26-2
Configure Function Prototypes Using Graphical

Interfaces . 26-3
Sample Procedure for Configuring Function

Prototypes . 26-11
Configure Function Prototypes Programmatically . . . 26-16
Sample Script for Configuring Function Prototypes . . 26-20
Verify Generated Code for Customized Functions . . . 26-21
Function Prototype Control Limitations 26-21

Control Generation of C++ Class Interfaces 26-23
Simple Use of C++ Class Control 26-24
Customize C++ Class Interfaces Using Graphical

Interfaces . 26-31
Customize C++ Class Interfaces Programmatically . . 26-45
Configure Step Method for Model Class 26-47
Specify Custom Storage Class for C++ Class Code

Generation . 26-48
Model Class Copy Constructor and Assignment

Operator . 26-49
C++ Class Interface Control Limitations 26-50

Combine I/O Arguments in Model Step Interface . . . 26-53

Generate Modular Function Code 26-55
About Nonvirtual Subsystem Code Generation 26-55
Configure Subsystem for Generating Modular Function

Code . 26-56
Modular Function Code for Nonvirtual Subsystems . . 26-60
Nonvirtual Subsystem Modular Function Code

Limitations . 26-66

Configure Simulink Function Code Interface 26-67
Customize Generated C/C++ Function Interface for

Simulink Function Block . 26-67
Simulink Function Code Interface Limitations 26-70

xxxv

Memory Sections in Embedded Coder
27

Control Data and Function Placement in Memory by
Inserting Pragmas . 27-2

Define Memory Sections . 27-3
Apply Memory Sections . 27-6
Generated Code with Memory Sections 27-13
Insert Pragmas for Functions and Data in Generated

Code . 27-16
Documenting Use of Pragmas with Simulink Report

Generator . 27-17

Declare Constant Data as Volatile Using Memory
Sections . 27-19

Code Generation

Configuration for Simulink Coder
28

Code Generation Configuration 28-2
Open the Model Configuration for Code Generation . . . 28-2
Configuration Tools . 28-3

Configure Code Generation Parameters for Model
Programmatically . 28-5

Modify Parameters to Support Execution
efficiency . 28-5

Check Model and Configuration for Code Generation 28-7
Check Mode for Code Efficiency with Model Advisor . . 28-7
Check Model During Code Generation with Code

Generation Advisor . 28-7

xxxvi Contents

Application Objectives Using Code Generation
Advisor . 28-9

High-Level Code Generation Objectives 28-10
Configure Model for Code Generation Objectives Using

Code Generation Advisor . 28-10
Configure Model for Code Generation Objectives by Using

Configuration Parameters Dialog Box 28-12

Simulink Coder Model Advisor Checks for Standards
and Code Efficiency . 28-13

Configure Code Comments . 28-14

Construction of Generated Identifiers 28-15

Identifier Name Collisions and Mangling 28-16
Identifier Name Collisions with Referenced Models . . 28-16

Specify Identifier Length to Avoid Naming Collisions 28-17

Specify Reserved Names for Generated Identifiers . . 28-18

Reserved Keywords . 28-19
C Reserved Keywords . 28-19
C++ Reserved Keywords . 28-20
Reserved Keywords for Code Generation 28-20
Code Generation Code Replacement Library

Keywords . 28-21

Debug . 28-23

Configuration in Embedded Coder
29

Configure Model for Code Generation Objectives by
Using Code Generation Advisor 29-2

High-Level Code Generation Objectives 29-3
Specify Objectives in Referenced Models 29-3
Configure Model Using Code Generation Advisor 29-4

xxxvii

Configure Model for Code Generation Objectives by Using
Configuration Parameters Dialog Box 29-6

Configure Code Generation Objectives
Programmatically . 29-9

Check Model and Configuration for Code Generation 29-10
Check Model During Code Generation 29-7

Embedded Coder Model Advisor Checks for Standards,
Guidelines, and Code Efficiency 29-12

Create Custom Code Generation Objectives 29-14
Specify Parameters in Custom Objectives 29-14
Specify Checks in Custom Objectives 29-15
Determine Checks and Parameters in Existing

Objectives . 29-15
Steps to Create Custom Objectives 29-16

Configuration Variations . 29-20

Configure and Optimize Model with Configuration
Wizard Blocks . 29-21

Configuration Wizard Block Library 29-21
Add a Configuration Wizard Block 29-22
Use Configuration Wizard Blocks to Configure Your

Model . 29-23
Create a Custom Configuration Wizard Block 29-24

Create a Model Configured for Code Generation Using
Model Templates . 29-30

System Target File Configuration
30

Select a System Target File . 30-2
Select a Solver That Supports Code Generation 30-2
Select a System Target File from STF Browser 30-3
Select a System Target File Programmatically 30-4
Develop Custom System Target Files 30-5

xxxviii Contents

Configure STF-Related Code Generation Parameters . 30-7
Specify Generated Code Interfaces 30-7
Configure Numeric Data Support 30-12
Configure Time Value Support 30-12
Configure Noninlined S-Function Support 30-13
Configure Model Function Generation and Argument

Passing . 30-13
Configure Code Reuse Support 30-15

Configure a Code Replacement Library 30-17

Configure Standard Math Library for Target System 30-18

Compare System Target File Support 30-21
Evaluate Product System Target Files 30-22
Compare Code Styles and STF Support 30-25
Compare Generated Code Features by Product 30-26
Compare Generated Code Features by STF 30-29

Internationalization Support in Simulink Coder
31

Internationalization and Code Generation 31-2
Locale Settings . 31-2
Prepare to Generate Code for Mixed Languages and

Locales . 31-2
Character Set Limitations . 31-3
XML Escape Sequence Replacements 31-3
Generate and Review Code with Mixed Languages and

Mixed Locales . 31-3

Internationalization Support in Embedded
Coder

32
Internationalization and Code Generation 32-2

Locale Settings . 32-2

xxxix

Prepare to Generate Code for Mixed Languages and
Locales . 32-2

Character Set Limitations . 32-3
XML Escape Sequence Replacements 32-3
CGT Files and XML Escape Sequence Replacements . . 32-3
Generate and Review Code with Mixed Languages and

Mixed Locales . 32-4

Source Code Generation in Simulink Coder
33

Configure Model, Generate Code, and Simulate 33-2
About This Example . 33-2
Functional Design of the Model 33-3
View the Top Model . 33-3
View the Subsystems . 33-4
Simulation Test Environment 33-5
Run Simulation Tests . 33-10
Key Points . 33-11
Learn More . 33-12

Configure Model and Generate Code 33-13
About This Example . 33-13
Configure the Model for Code Generation 33-14
Save Your Model Configuration as a MATLAB

Function . 33-15
Check Model Conditions and Configuration Settings . 33-16
Generate Code for the Model 33-16
Review the Generated Code 33-17
Generate an Executable . 33-18
Key Points . 33-19

Configure Data Interface . 33-20
About This Example . 33-20
Declare Data . 33-20
Use Data Objects . 33-21
Add New Data Objects . 33-24
Enable Data Objects for Generated Code 33-25
Effects of Simulation on Data Typing 33-25
Manage Data . 33-27

xl Contents

Key Points . 33-28

Call External C Functions . 33-29
About This Example . 33-29
Include External C Functions in a Model 33-30
Create a Block That Calls a C Function 33-30
Validate External Code in the Simulink Environment 33-32
Validate C Code as Part of a Model 33-33
Call a C Function from Generated Code 33-35
Key Points . 33-35

Reload Generated Code . 33-36

Manage Build Process Folders 33-37
Select Simulation Cache Folder 33-40
Select Code Generation Folder 33-40
Override Build Folder Settings for Current Session . . 33-41

Manage Build Process Files . 33-42
model.bat . 33-48
model.h . 33-48
rtwtypes.h . 33-49

Manage Build Process File Dependencies 33-52
System Header Files . 33-53
Code Generator Header Files 33-56

Add Build Process Dependencies 33-62
File Dependency Information for the Build Process . . 33-63
Folder Dependency Information for the Build Process 33-66

Enable Build Process for Folder Names with Spaces 33-69
Build Process Folder Support on Windows 33-70
Troubleshooting Errors When Folder Names Have

Spaces . 33-72

Code Generation of Matrices and Arrays 33-76
Code Generator Matrix Parameters 33-78
Internal Data Storage for Complex Number Arrays . . 33-79

Generate Shared Utility Code 33-80
Control Placement of Shared Utility Code 33-80

xli

Control Placement of rtwtypes.h for Shared Utility
Code . 33-81

Avoid Duplicate Header Files for Exported Data 33-82
Reduce Shared Utility Code Generation with Incremental

Builds . 33-82

Manage the Shared Utility Code Checksum 33-84
View the Shared Utility Checksum Hash Table 33-84
Relate the Shared Utility Checksum to Configuration

Parameters . 33-86

Generate Shared Utility Code for Fixed-Point
Functions . 33-89

Generate Shared Utility Code for Custom Data Types 33-91

Cross-Release Shared Utility Code Reuse 33-93
Workflow to Reuse Shared Utility Code 33-93
Required Edits to Reuse Shared Utility Code 33-94

Cross-Release Code Integration 33-96
Workflow . 33-96
Limitations . 33-99
Incorporate Model Reference Code 33-100
Simulink.Bus Support . 33-100
Parameter Tuning . 33-102
Compare Simulation Behavior of Model Component in

Current Release and Generated Code from Previous
Release . 33-103

Generate Code Using Simulink® Coder™ 33-105

Source Code Generation in Embedded Coder
34

Generate Code Using Embedded Coder® 34-2

Generate Code with the Quick Start Tool 34-10
Quick Start Model Analysis . 34-10

xlii Contents

Configuration Parameter Changes for Models with a
Configuration Reference . 34-12

Next Steps . 34-12

Manage File Packaging of Generated Code Modules . 34-14
Generated Code Modules . 34-14
User-Written Code Modules 34-17
Customize Generated Code Modules 34-17

Generate Reentrant Code from Top-Level Models . . . 34-20

Report Generation in Embedded Coder
35

Reports for Code Generation . 35-2
HTML Code Generation Report Location 35-2
HTML Code Generation Report for Referenced Models 35-3
HTML Code Generation Report Extensions 35-3

Generate a Code Generation Report 35-5

Generate Code Generation Report After Build
Process . 35-6

Open Code Generation Report . 35-8
Limitation . 35-8

Generate Code Generation Report Programmatically 35-10

View Code Generation Report in Model Explorer . . . 35-11

Package and Share the Code Generation Report 35-13
Package the Code Generation Report 35-13
View the Code Generation Report 35-14

Traceability in Code Generation Report 35-15

Web View of Model in Code Generation Report 35-17
About Model Web View . 35-17

xliii

Generate HTML Code Generation Report with Model Web
View . 35-17

Model Web View Limitations 35-20

Analyze the Generated Code Interface 35-21
Code Interface Report Overview 35-21
Generating a Code Interface Report 35-22
Navigating Code Interface Report Subsections 35-24
Interpreting the Entry Point Functions Subsection . . 35-25
Interpreting the Inports and Outports Subsections . . 35-28
Interpreting the Interface Parameters Subsection . . . 35-30
Interpreting the Data Stores Subsection 35-31
Code Interface Report Limitations 35-32

Static Code Metrics . 35-34
About Static Code Metrics . 35-34
Static Code Metrics Analysis 35-35
View Static Code Metrics and Definitions Within the

Generated Code . 35-36

Generate Static Code Metrics Report for Simulink
Model . 35-38

Generate a Static Code Metrics Report for MATLAB
Code . 35-43

Generate a Static Code Metrics Report Using the
MATLAB Coder App . 35-43

Enable a Static Code Metrics Report at the Command
Line . 35-48

Analyze Code Replacements in Generated Code 35-50

Document Generated Code with Simulink Report
Generator . 35-52

Generate Code for the Model 35-53
Open the Report Generator . 35-53
Set Report Name, Location, and Format 35-55
Include Models and Subsystems in a Report 35-56
Customize the Report . 35-57
Generate the Report . 35-58

xliv Contents

Code Appearance in Embedded Coder
36

Add Custom Comments to Generated Code 36-3

Add Custom Comments for Variables in the Generated
Code . 36-5

Embed Handwritten Comments for Signals or
Parameters . 36-5

Generate Dynamic Comments Based on Data
Properties . 36-6

Add Global Comments . 36-8
Use a Simulink DocBlock to Add a Comment 36-8
Use a Simulink Annotation to Add a Comment 36-11
Use a Stateflow Note to Add a Comment 36-11
Use Sorted Notes to Add Comments 36-12

Specify Comment Style . 36-14

Customize Generated Identifier Naming Rules 36-15
Apply Naming Rules to Identifiers Globally 36-15
Apply Naming Rules to Simulink Data Objects 36-16

Identifier Format Control . 36-22
Control Case with Token Decorators 36-25
Control Formatting of Identifiers 36-26

Control Name Mangling in Generated Identifiers . . . 36-28
Minimize Name Mangling . 36-28

Avoid Identifier Name Collisions with Referenced
Models . 36-30

Use Model Advisor to Detect Identifier Names Changed
During Code Generation . 36-30

Maintain Traceability for Generated Identifiers 36-32

Exceptions to Identifier Formatting Conventions . . . 36-33

Identifier Format Control Parameters Limitations . . 36-34

xlv

Control Code Style . 36-36
Control Parentheses in Generated Code 36-37
Optimize Code by Reordering Commutable Operands 36-39
Suppress Generation of Default Cases for Unreachable

Stateflow Switch Statements 36-40
Replace Multiplication by Powers of Two with Signed

Bitwise Shifts . 36-43
Generate Code with Right Shifts on Signed Integers . 36-45
Control Indentation Style in Generated Code 36-46
Control Cast Expressions in Generated Code 36-48

Customize Code Organization and Format 36-54
Custom File Processing Components 36-54
Custom File Processing Configuration 36-55

Specify Templates For Code Generation 36-56

Code Generation Template (CGT) Files 36-57
Default CGT file . 36-57
CGT File Structure . 36-57
Built-In Tokens and Sections 36-58
Subsections . 36-60
Format Generated Code Files Using Templates 36-61

Custom File Processing (CFP) Templates 36-63
Custom File Processing (CFP) Template Structure . . 36-63

Change the Organization of a Generated File 36-65

Generate Source and Header Files with a Custom File
Processing (CFP) Template 36-67

Generate Code with a CFP Template 36-67
Analysis of the Example CFP Template and Generated

Code . 36-69
Generate a Custom Section . 36-72
Custom Tokens . 36-74

Comparison of a Template and Its Generated File . . 36-75
Template and Generated File 36-76

Code Template API Summary 36-79

xlvi Contents

Generate Custom File and Function Banners 36-82
Create a Custom File and Function Banner Template 36-83
Customize a Code Generation Template (CGT) File for File

and Function Banner Generation 36-84

Template Symbols and Rules . 36-90
Introduction . 36-90
Template Symbol Groups . 36-90
Template Symbols . 36-93
Rules for Modifying or Creating a Template 36-96

Annotate Code for Justifying Polyspace Checks 36-98

Manage Placement of Data Definitions and
Declarations . 36-100

Overview of Data Placement 36-100
Priority and Usage . 36-101
Ownership Settings . 36-106
Memory Section Settings . 36-107
Data Placement Rules . 36-107
Settings for a Data Object . 36-107
Data Placement Rules and Results 36-115
Specify Default #include Syntax for Data Header

Files . 36-125

Enhance Readability of Code for Flow Charts 36-127
Appearance of Generated Code for Flow Charts 36-127
Convert If-Elseif-Else Code to Switch-Case

Statements . 36-130
Example of Converting Code to Switch-Case

Statements . 36-132

Generate Inlined Subsystem Code 36-140
Configure Subsystem to Inline Code 36-7
Exceptions to Inlining . 36-8
See Also . 36-141

xlvii

Code Replacement in Simulink Coder
37

What Is Code Replacement? . 37-2
Code Replacement Libraries . 37-3
Code Replacement Terminology 37-5
Code Replacement Limitations 37-7

Choose a Code Replacement Library 37-9
About Choosing a Code Replacement Library 37-9
Explore Available Code Replacement Libraries 37-9
Explore Code Replacement Library Contents 37-9

Replace Code Generated from Simulink Models 37-11

Code Replacement for Simulink Models in
Embedded Coder

38
What Is Code Replacement? . 38-2

Code Replacement Libraries . 38-3
Code Replacement Terminology 38-5
Code Replacement Limitations 38-7

Choose a Code Replacement Library 38-9
About Choosing a Code Replacement Library 38-9
Explore Available Code Replacement Libraries 38-9
Explore Code Replacement Library Contents 38-9

Replace Code Generated from Simulink Models 38-11

xlviii Contents

Deployment

External Code Integration in Simulink Coder
39

What Is External Code Integration? 39-3

Choose an External Code Integration Workflow 39-4
Choose a Software Execution Framework 39-4
Evaluate Characteristics of External Code 39-7
Identify Integration Requirements 39-8
Choose a Workflow . 39-10

Call Reusable External Algorithm Code for Simulation
and Code Generation . 39-13

Workflow . 39-13
Choose an Integration Approach 39-14
Insert External Code into Stateflow Charts 39-24

Place External C/C++ Code in Generated Code 39-27
Workflow . 39-27
Choose an Integration Approach 39-28
Integrate External Code by Using Custom Code

Blocks . 39-29
Integrate External Code by Using Model Configuration

Parameters . 39-32
Integrate External C Code Into Generated Code By

Using Custom Code Blocks and Model Configuration
Parameters . 39-34

Call External Device Drivers . 39-38

Apply Function and Operator Code Replacements . . 39-40

Build Integrated Code Within the Simulink
Environment . 39-41

Workflow . 39-41
Configure Parameters for Integrated Code Build

Process . 39-42
Preserve External Code Files in Build Folder 39-43

xlix

Build Support for S-Functions 39-44

Generate Component Source Code for Export to
External Code Base . 39-51

Modeling Options . 39-51
Requirements . 39-52
Limitations for Export-Function Subsystems 39-53
Workflow . 39-54
Choose an Integration Approach 39-55
Generate C Function Code for Export-Function Model 39-57
Generate C++ Function and Class Code for Export-

Function Model . 39-63
Generate Code for Export-Function Subsystems 39-68

Generate Shared Library for Export to External Code
Base . 39-71

About Generated Shared Libraries 39-71
Workflow . 39-71
Generate Shared Libraries . 39-73
Create Application Code That Uses Generated Shared

Libraries . 39-73
Limitations . 39-76
Interface to a Development Computer Simulator By Using

a Shared Library . 39-76

Build Integrated Code Outside the Simulink
Environment . 39-79

Exchange Data Between External C/C++ Code and
Simulink Model or Generated Code 39-86

Import External Code into Model 39-86
Export Generated Code to External Environment . . . 39-88
Simulink Representations of C Data Types and

Constructs . 39-89

Generate Code That Matches Appearance of External
Code . 39-95

l Contents

Program Building, Interaction, and Debugging in
Simulink Coder

40
Select C or C++ Programming Language 40-2

Select and Configure C or C++ Compiler or IDE 40-3
Language Standards Compliance 40-3
Programming Language Considerations 40-4
C++ Language Support Limitations 40-5
Code Generator Assumes Wrap on Signed Integer

Overflows . 40-6
Choose and Configure Compiler 40-6
Include S-Function Source Code 40-7

Troubleshoot Compiler Issues . 40-9
Compiler Version Mismatch Errors 40-9
Results for Model Simulation and Program Execution

Differ . 40-9
Generates Expected Code and Produces Unexpected

Results . 40-10
Compile-Time Issues . 40-11
LCC Compiler Does Not Support Ampersands in Source

Folder Paths . 40-12
LCC Compiler Might Not Support Line Lengths of Rapid

Accelerator Code . 40-12

Choose and Configure Build Process 40-14
Toolchain Approach . 40-14
Upgrade Model to Use Toolchain Approach 40-16
Template Makefile Approach 40-20
Specify TLC for Code Generation 40-23

Template Makefiles and Make Options 40-24
Types of Template Makefiles 40-24
Specify Template Makefile Options 40-25
Template Makefiles for UNIX Platforms 40-25
Template Makefiles for the Microsoft Visual C++

Compiler . 40-26
Template Makefiles for the LCC Compiler 40-28

li

Build Process Workflow for a Real-Time STF 40-30
Working Folder . 40-30
Build Folder and Code Generation Folders 40-31
Set Simulation Parameters . 40-31
Configure Build Process . 40-33
Set Code Generation Parameters 40-34
Build and Run a Program . 40-39
Contents of the Build Folder 40-40
Customized Makefile Generation 40-41

Build and Run a Program . 40-43

Rebuild a Model . 40-46

Control Regeneration of Top Model Code 40-48
Regeneration of Top Model Code 40-48
Force Regeneration of Top Model Code 40-49

Reduce Build Time for Referenced Models 40-50
Parallel Building for Large Model Reference

Hierarchies . 40-50
Parallel Building Configuration Requirements 40-51
Build Models in a Parallel Computing Environment . 40-51
Locate Parallel Build Logs . 40-53

Relocate Code to Another Development Environment 40-56
Code Relocation . 40-56
Package Code Using the User Interface 40-56
Package Code Using the Command-Line Interface . . . 40-58
Build Integrated Code Outside the Simulink

Environment . 40-61
packNGo Function Limitations 40-67

Executable Program Generation 40-68

Profile Code Performance . 40-71
Use the Profile Hook Function Interface 40-71
Profile Hook Function Interface Limitation 40-73

lii Contents

Host/Target Communication in Simulink Coder
41

Set Up and Use Host/Target Communication Channel 41-2
What You Can Do with a Host/Target Communication

Channel . 41-2
Set Up an External Mode Communication Channel . . . 41-3
Configure and Use External Mode 41-14
External Mode Compatible Blocks and Subsystems . . 41-34
External Mode Communication 41-37
Choose Communication Protocol for Client and Server 41-40
Use External Mode Programmatically 41-49
Animate Stateflow Charts in External Mode 41-53
External Mode Limitations . 41-55

Logging in Simulink Coder
42

Log Program Execution Results 42-2
Log Data for Analysis . 42-2
Configure State, Time, and Output Logging 42-9
Log Data with Scope and To Workspace Blocks 42-11
Log Data with To File Blocks 42-11
Data Logging Differences Between Single- and

Multitasking . 42-12

Data Interchange Using the C API in Simulink
Coder

43
Exchange Data Between Generated and External Code

Using C API . 43-2
Generated C API Files . 43-2
Generate C API Files . 43-3
Description of C API Files . 43-5

liii

Generate C API Data Definition File for Exchanging Data
with a Target System . 43-20

C API Limitations . 43-22

Use C API to Access Model Signals and States 43-24

Use C API to Access Model Parameters 43-30

ASAP2 Data Measurement and Calibration in
Simulink Coder

44
Export ASAP2 File for Data Measurement and

Calibration . 44-2
What You Should Know . 44-2
Targets Supporting ASAP2 . 44-3
Define ASAP2 Information . 44-3
Generate an ASAP2 File . 44-9
Structure of the ASAP2 File 44-12
Create a Host-Based ASAM-ASAP2 Data Definition File

for Data Measurement and Calibration 44-13

Direct Memory Access to Generated Code for
Simulink Coder

45
Access Memory in Generated Code Using Global Data

Map . 45-2

liv Contents

Desktops in Simulink Coder
46

Accelerate, Refine, and Test Hybrid Dynamic System on
Host Computer by Using RSim System Target File . 46-2

About Rapid Simulation . 46-2
Rapid Simulation Advantage . 46-2
General Rapid Simulation Workflow 46-3
Identify Rapid Simulation Requirements 46-4
Configure Inports to Provide Simulation Source Data . 46-6
Configure and Build Model for Rapid Simulation 46-6
Set Up Rapid Simulation Input Data 46-8
Scripts for Batch and Monte Carlo Simulations 46-18
Run Rapid Simulations . 46-18
Tune Parameters Interactively During Rapid

Simulation . 46-30
Rapid Simulation Target Limitations 46-33

Accelerate Simulation, Reuse Code, or Protect
Intellectual Property by Using S-Function Target . 46-34

About the S-Function Target 46-34
Create S-Function Blocks from a Subsystem 46-37
Tunable Parameters in Generated S-Functions 46-41
System Target File . 46-43
Checksums and the S-Function Target 46-43
Generated S-Function Compatibility 46-44
S-Function Target Limitations 46-44

Desktops in Embedded Coder
47

Package Generated Code as Shared Libraries 47-2
About Generated Shared Libraries 47-2
Generate Shared Library Version of Model Code 47-2
Create Application Code to Use Shared Library 47-3
Shared Library Limitations . 47-7

lv

Real-Time Systems in Simulink Coder
48

Deploy Algorithm Model for Real-Time Rapid
Prototyping . 48-2

About Real-Time Rapid Prototyping 48-2
Goals of Real-Time Rapid Prototyping 48-2
Refine Code With Real-Time Rapid Prototyping 48-3

Deploy Environment Model for Real-Time Hardware-In-
the-Loop (HIL) Simulation . 48-5

About Hardware-In-the-Loop Simulation 48-5
Set Up and Run HIL Simulations 48-6

Real-Time and Embedded Systems in Embedded
Coder

49
Deploy Generated Standalone Executable Programs To

Target Hardware . 49-2
Generate a Standalone Program 49-2
Standalone Program Components 49-3
Main Program . 49-3
rt_OneStep and Scheduling Considerations 49-4
Static Main Program Module 49-10
Rate Grouping Compliance and Compatibility Issues . 49-17

Deploy Generated Component Software to Application
Target Platforms . 49-22

Interface to an Example Real-Time Operating System
(VxWorks®) . 49-22

Multirate Modeling in Multitasking Mode (VxWorks®
OS) . 49-24

lvi Contents

Export Code Generated from Model to External
Application in Embedded Coder

50
Control Generation of Function Prototypes 50-2

Control Generation of C++ Class Interfaces 50-4

Code Replacement Customization for Simulink
Models in Embedded Coder

51
What Is Code Replacement Customization? 51-3

Code Replacement Match and Replacement Process . . 51-3
Code Replacement Customization Limitations 51-4

Code You Can Replace From Simulink Models 51-7
Math Functions – Simulink Support 51-7
Math Functions – Stateflow Support 51-13
Memory Functions . 51-18
Nonfinite Functions . 51-19
Mutex and Semaphore Functions 51-20
Operators . 51-21

Develop a Code Replacement Library 51-27

Quick Start Library Development 51-28

Identify Code Replacement Requirements 51-38
Mapping Information Requirements 51-38
Build Information Requirements 51-39
Registration Information Requirements 51-39

Prepare for Code Replacement Library Development 51-41

Define Code Replacement Mappings 51-42
Choose an Approach for Defining Code Replacement

Mappings . 51-42

lvii

Define Mappings Interactively with the Code Replacement
Tool . 51-43

Define Mappings Programmatically 51-46

Specify Build Information for Replacement Code . . . 51-59
Build Information . 51-59
Choose an Approach for Specifying Build Information 51-59
Specify Build Information Interactively with the Code

Replacement Tool . 51-60
Specify Build Information Programmatically 51-62

Register Code Replacement Mappings 51-68
Choose an Approach for Creating the Registration File 51-68
Create Registration File Interactively with the Code

Replacement Tool . 51-69
Create Registration File Programmatically 51-70
Register a Code Replacement Library 51-73
Register a Library that Includes Multiple Code

Replacement Tables . 51-73
Registration Files That Define Code Replacement Library

Hierarchies . 51-73

Troubleshoot Code Replacement Library
Registration . 51-75

Verify Code Replacements . 51-76
Code Replacement Hits and Misses 51-76
Validate Table Definition File 51-76
Review Library Content . 51-77
Review Table Content . 51-79
Review Code Replacements . 51-82

Troubleshoot Code Replacement Misses 51-86
Miss Reason Messages . 51-86
Analyze and Correct Code Replacement Misses 51-87

Deploy Code Replacement Library 51-93

Math Function Code Replacement 51-94

Memory Function Code Replacement 51-96

Nonfinite Function Code Replacement 51-99

lviii Contents

Semaphore and Mutex Function Replacement 51-102

Algorithm-Based Code Replacement 51-109

Lookup Table Function Code Replacement 51-112
Lookup Table Algorithm Replacement 51-112
Lookup Table Function Signatures 51-112
Interactive Mapping with Code Replacement Tool . . 51-118
Programmatic Specification 51-123
Sample Code Replacement Definition for the lookup2D

Function . 51-130

Data Alignment for Code Replacement 51-133
Code Replacement Data Alignment 51-133
Specify Data Alignment Requirements for Function

Arguments . 51-133
Provide Data Alignment Specifications for Compilers 51-135
Basic Example of Code Replacement Data Alignment 51-139

Replace MATLAB Functions with Custom Code Using
coder.replace . 51-142

Replace coder.ceval Calls to External Functions . . 51-143
Example Files . 51-143
Interactive External Function Call Replacement

Specification with Code Replacement Tool 51-144
Programmatic External Function Call Replacement

Specification . 51-145

Replace MATLAB Functions Specified in MATLAB
Function Blocks . 51-148

Reserved Identifiers and Code Replacement 51-152

Customize Match and Replacement Process 51-153
Customize Code Match and Replacement for

Functions . 51-154
Customize Code Match and Replacement for Nonscalar

Operations . 51-157
Customize Code Match and Replacement for Scalar

Operations . 51-161

Scalar Operator Code Replacement 51-168

lix

Addition and Subtraction Operator Code
Replacement . 51-170

Algorithm Options . 51-170
Interactive Specification with Code Replacement Tool 51-170
Programmatic Specification 51-171
Algorithm Classification . 51-171
Limitations . 51-173

Small Matrix Operation to Processor Code
Replacement . 51-174

Matrix Multiplication Operation to MathWorks BLAS
Code Replacement . 51-178

Matrix Multiplication Operation to ANSI/ISO C BLAS
Code Replacement . 51-186

Remap Operator Output to Function Input 51-192

Fixed-Point Operator Code Replacement 51-195
Common Ways to Match Fixed-Point Operator Entries 51-195
Fixed-Point Numbers and Arithmetic 51-198
Addition . 51-198
Subtraction . 51-199
Multiplication . 51-199
Division . 51-200
Data Type Conversion (Cast) 51-201
Shift . 51-201

Binary-Point-Only Scaling Code Replacement 51-203

Slope Bias Scaling Code Replacement 51-207

Net Slope Scaling Code Replacement 51-211
Multiplication and Division with Saturation 51-211
Multiplication and Division with Rounding Mode and

Additional Implementation Arguments 51-214

Equal Slope and Zero Net Bias Code Replacement . 51-218

Data Type Conversions (Casts) and Operator Code
Replacement . 51-222

Casts from int32 To int16 51-222

lx Contents

Casts Using Net Slope . 51-223

Shift Left Operations and Code Replacement 51-226
Shift Lefts for int16 Data 51-226
Shift Lefts Using Net Slope 51-227

Code Replacement Customization for MATLAB
Code

52
What Is Code Replacement Customization? 52-3

Code Replacement Match and Replacement Process . . 52-3
Code Replacement Customization Limitations 52-4

Code You Can Replace from MATLAB Code 52-5
Math Functions . 52-5
Memory Functions . 52-10
Operators . 52-10

Develop a Code Replacement Library 52-15

Quick Start Library Development 52-16

Identify Code Replacement Requirements 52-26
Mapping Information Requirements 52-38
Build Information Requirements 52-39
Registration Information Requirements 52-39

Prepare for Code Replacement Library Development 52-29

Define Code Replacement Mappings 52-30
Choose an Approach for Defining Code Replacement

Mappings . 52-42
Define Mappings Interactively with the Code Replacement

Tool . 52-43
Define Mappings Programmatically 52-46

Specify Build Information for Replacement Code . . . 52-47
Build Information . 52-59
Choose an Approach for Specifying Build Information 52-59

lxi

Specify Build Information Interactively with the Code
Replacement Tool . 52-60

Specify Build Information Programmatically 52-62

Register Code Replacement Mappings 52-56
Choose an Approach for Creating the Registration File 52-56
Create Registration File Interactively with the Code

Replacement Tool . 52-57
Create Registration File Programmatically 52-58
Register a Code Replacement Library 52-61
Registration Files That Define Multiple Code Replacement

Libraries . 52-61
Registration Files That Define Code Replacement Library

Hierarchies . 52-61

Troubleshoot Code Replacement Library
Registration . 52-63

Verify Code Replacements . 52-64
Code Replacement Hits and Misses 52-64
Validate a Table Definition File 52-64
Review Library Content . 52-65
Review Table Content . 52-67
Review Code Replacements . 52-70

Troubleshoot Code Replacement Misses 52-74
Miss Reason Messages . 52-74
Analyze and Correct Code Replacement Misses 52-75

Deploy Code Replacement Library 52-81

Math Function Code Replacement 52-82

Memory Function Code Replacement 52-84

Specify In-Place Code Replacement 52-86
Argument Specification Requirements 52-86
Interactive Argument Replacement Specification with

Code Replacement Tool . 52-86
Programmatic Argument Replacement Specification . 52-89

Data Alignment for Code Replacement 52-91
Code Replacement Data Alignment 52-91

lxii Contents

Specify Data Alignment Requirements for Function
Arguments . 52-91

Provide Data Alignment Specifications for Compilers 52-93
Specify Data Alignment in MATLAB Code for Imported

Data . 52-98
Replacing Math Functions and Operators with

Implementations that require Data Alignment -
MATLAB® . 52-99

Replace MATLAB Functions with Custom Code Using
coder.replace . 52-105

Replace coder.ceval Calls to External Functions . . . 52-106
Example Files . 52-106
Interactive External Function Call Replacement

Specification with Code Replacement Tool 52-107
Programmatic External Function Call Replacement

Specification . 52-108

Reserved Identifiers and Code Replacement 52-111

Customize Match and Replacement Process 52-112
Customize Match and Replacement Process for

Operators . 52-113

Scalar Operator Code Replacement 52-120

Addition and Subtraction Operator Code
Replacement . 52-122

Algorithm Options . 52-122
Interactive Specification with Code Replacement Tool 52-122
Programmatic Specification 52-123
Algorithm Classification . 52-123
Limitations . 52-125

Small Matrix Operation to Processor Code
Replacement . 52-126

Matrix Multiplication Operation to MathWorks BLAS
Code Replacement . 52-130

Matrix Multiplication Operation to ANSI/ISO C BLAS
Code Replacement . 52-137

lxiii

Remap Operator Output to Function Input 52-143

Fixed-Point Operator Code Replacement 52-146
Common Ways to Match Fixed-Point Operator Entries 52-146
Fixed-Point Numbers and Arithmetic 52-149
Addition . 52-149
Subtraction . 52-150
Multiplication . 52-150
Division . 52-151
Data Type Conversion (Cast) 52-152
Shift . 52-152

Binary-Point-Only Scaling Code Replacement 52-154

Slope Bias Scaling Code Replacement 52-157

Net Slope Scaling Code Replacement 52-160
Multiplication and Division with Saturation 52-160
Multiplication and Division with Rounding Mode and

Additional Implementation Arguments 52-163

Equal Slope and Zero Net Bias Code Replacement . 52-166

Data Type Conversions (Casts) and Operator Code
Replacement . 52-169

Shift Left Operations and Code Replacement 52-173

Performance

Optimizations for Generated Code in Simulink
Coder

53
Increase Code Generation Speed 53-3

Build a Model in Increments . 53-3
Build Large Model Reference Hierarchies in Parallel . . 53-3

lxiv Contents

Minimize Memory Requirements During Code
Generation . 53-4

Generate Only Code . 53-5
No Creation of a Code Generation Report 53-5

Control Compiler Optimizations 53-6

Optimization Tools and Techniques 53-7
Use the Model Advisor to Optimize a Model for Code

Generation . 53-7
Design Tips for Optimizing Generated Code for Stateflow

Objects . 53-7
Additional Optimization Techniques 53-8

Control Memory Allocation for Time Counters 53-11

Execution Profiling for Generated Code 53-12

Optimize Generated Code by Combining Multiple for
Constructs . 53-15

Subnormal Number Performance 53-18
Simulation Time With and Without Subnormal

Numbers . 53-19
Flush Subnormal Numbers to Zero 53-20

Remove Code From Floating-Point to Integer
Conversions That Wraps Out-of-Range Values 53-23

Example Model . 53-23
Generate Code Without Optimization 53-24
Generate Code with Optimization 53-25

Remove Code That Maps NaN to Integer Zero 53-26
Example Model . 53-26
Generate Code . 53-27
Generate Code with Optimization 53-28

Disable Nonfinite Checks or Inlining for Math
Functions . 53-30

Minimize Computations and Storage for Intermediate
Results at Block Outputs . 53-36

Expression Folding . 53-36

lxv

Example Model . 53-36
Generate Code . 53-37
Enable Optimization . 53-37
Generate Code with Optimization 53-38

Inline Invariant Signals . 53-39
Optimize Generated Code Using Inline Invariant

Signals . 53-39

Inline Numeric Values of Block Parameters 53-43

Configure Loop Unrolling Threshold 53-49

Use memcpy Function to Optimize Generated Code for
Vector Assignments . 53-52

Example Model . 53-53
Generate Code . 53-54
Generate Code with Optimization 53-54

Generate Target Optimizations Within Algorithm
Code . 53-56

Remove Code for Blocks That Have No Effect on
Computational Results . 53-58

Eliminate Dead Code Paths in Generated Code 53-61

Floating-Point Multiplication to Handle a Net Slope
Correction . 53-64

Use Conditional Input Branch Execution 53-67

Optimize Generated Code for Complex Signals 53-73

Speed Up Linear Algebra in Code Generated from a
MATLAB Function Block . 53-75

Specify LAPACK Library . 53-75
Write LAPACK Callback Class 53-75
Generate LAPACK Calls by Specifying a LAPACK

Callback Class . 53-76
Locate LAPACK Library in Execution Environment . 53-77

lxvi Contents

Control Memory Allocation for Variable-Size Arrays in a
MATLAB Function Block . 53-79

Provide Upper Bounds for Variable-Size Arrays 53-79
Disable Dynamic Memory Allocation for MATLAB

Function Blocks . 53-80
Modify the Dynamic Memory Allocation Threshold . . 53-80

Optimize Memory Usage for Time Counters 53-81

Minimize Memory Requirements During Code
Generation . 53-86

Optimize Generated Code Using Boolean Data for
Logical Signals . 53-87

Reduce Memory Usage for Boolean and State
Configuration Variables . 53-90

Customize Stack Space Allocation 53-91

Optimize Generated Code Using memset Function . . 53-93

Vector Operation Optimization 53-97

Enable and Reuse Local Block Outputs in Generated
Code . 53-100

Example Model . 53-100
Generate Code Without Optimization 53-101
Enable Local Block Outputs and Generate Code . . . 53-101
Reuse Local Block Outputs and Generate Code 53-102

Configuration in Embedded Coder
54

Specify Global Variable Localization 54-2

Set Hardware Implementation Parameters 54-4

Use External Mode with the ERT Target 54-5
Memory Management . 54-5

lxvii

Generation of Pure Integer Code with External Mode . 54-6

Data Copy Reduction in Embedded Coder
55

Optimize Global Variable Usage 55-2
Use Global to Hold Temporary Results 55-2
Minimize Global Data Access 55-7

Reuse Global Block Outputs in the Generated Code . 55-14

Virtualized Output Ports Optimization 55-17

Specify Buffer Reuse for Multiple Signals in a Path . 55-19

Specify Buffer Reuse for MATLAB Function Blocks in a
Path . 55-24

Example Model . 55-24
Generate Code with Optimization 55-24

Remove Data Copies by Reordering Block Operations in
the Generated Code . 55-26

Execution Speed in Embedded Coder
56

Reduce Memory Requirements for Signals 56-2

Remove Initialization Code . 56-3

Eliminate Zero Initialization Code for Internal Data . 56-5

Generate Pure Integer Code If Possible 56-8

Disable MAT-File Logging . 56-9

lxviii Contents

Simplify Multiply Operations in Array Indexing 56-10
Example Model . 56-10
Generate Code . 56-11
Generate Code with Optimization 56-11

Replace boolean with Specific Integer Data Type . . . 56-14

Remove Code That Guards Against Division Exceptions
for Integers and Fixed-Point Data 56-17

Division Arithmetic Exceptions in Generated Code . 56-21
Division by Zero . 56-21
INT_MIN/-1 . 56-21
Other Factors Affecting Generated Code of Division

Operations . 56-22

Optimize Generated Code by Consolidating Redundant
If-Else Statements . 56-23

Remove Initialization Code for Root-Level Inports and
Outports Set to Zero . 56-28

Optimize Generated Code for Fixed-Point Data
Operations . 56-32

Memory Usage in Embedded Coder
57

Optimize Generated Code Using Minimum and
Maximum Values . 57-2

Configure Your Model . 57-2
Optimize Generated Code Using Specified Minimum and

Maximum Values . 57-3
Limitations . 57-7

Flat Structures for Reusable Subsystem Parameters . 57-9

Reduce Global Variables in Nonreusable Subsystem
Functions . 57-11

Generate void-void Function 57-11

lxix

Generate Function with Arguments 57-12

Optimize Generated Code By Packing Boolean Data Into
Bitfields . 57-14

Optimize Generated Code By Passing Reusable
Subsystem Outputs as Individual Arguments 57-18

Convert Data Copies to Pointer Assignments 57-23

Remove Reset and Disable Functions from the
Generated Code . 57-28

Example Model . 57-28
Generate Code . 57-29
Enable Optimization . 57-30

Code Execution Profiling in Embedded Coder
58

Code Execution Profiling with SIL and PIL 58-2
Configure Code Execution Profiling 58-3
Profiling for Atomic Subsystems and Model Reference

Hierarchies . 58-4

View and Compare Code Execution Times 58-7
Code Execution Profiling Report 58-11

Analyze Code Execution Data 58-18

Tips and Limitations . 58-21
Triggered Model Block . 58-21
Outliers in Execution-Time Profiles 58-21
Hardware-Specific Timer . 58-23
Task Context Switching Due to Preemption 58-23
Data Type Replacement Support 58-23
Subsystem Code Reuse . 58-24
Cannot Load Execution-Time Measurements from

Previous Release . 58-24

lxx Contents

Code Execution Profiling for MATLAB Coder
59

Execution Time Profiling for SIL and PIL 59-2

Generate Execution Time Profile 59-3

View Execution Times . 59-4

Analyze Execution Time Data . 59-7
Extract Execution Time Data for Kalman Estimator

Code . 59-7

Verification

Simulation and Code Comparison in Simulink
Coder

60
Simulation and Code Comparison 60-2

Configure Signal Data for Logging 60-2
Log Simulation Data . 60-3
Run Executable and Load Data 60-5
Visualize and Compare Results 60-6
Compare States for Simulation and Code Generation . . 60-8

Code Tracing in Embedded Coder
61

What Is Code Tracing? . 61-2
Traceable Objects . 61-2
Workflow Traceability . 61-3

lxxi

Traceability Tags . 61-5

Trace Code to Model Objects by Using Hyperlinks . . . 61-6

Trace Model Objects to Generated Code 61-8

Trace Stateflow Objects in Generated Code 61-10
Bidirectional Traceability for States and Transitions . 61-10
Bidirectional Traceability for State Transition Tables 61-12
Bidirectional Traceability for Truth Table Blocks . . . 61-15
Bidirectional Traceability for Graphical Functions . . . 61-17
Code-to-Model Traceability for Events 61-18
Model-to-Code Traceability for Junctions 61-19
Format of Traceability Comments for Stateflow

Objects . 61-20

Link Generated Code to Requirements 61-23

Reload Existing Traceability Information 61-28

Customize Traceability Reports 61-29

Generate a Traceability Matrix 61-31

Traceability Limitations . 61-32

Component Verification in Embedded Coder
62

Component Verification in the Target Environment . . 62-2

Goals of Component Verification 62-3

Maximizing Code Portability and Configurability . . . 62-4

Simplifying Code Integration and Maximizing Code
Efficiency . 62-5

Running Component Tests . 62-6

lxxii Contents

Component Verification With a Real-Time Target
Environment in Embedded Coder

63
About Real-Time Software Component Verification . . 63-2

Real-Time Software Component Testing 63-4

Numerical Equivalence Checking in Embedded
Coder

64
SIL and PIL Simulations . 64-2

What Are SIL and PIL Simulations? 64-2
Why Use SIL and PIL . 64-2
How SIL and PIL Simulations Work 64-4
Comparison of SIL and PIL Simulations 64-5
Code Interfaces for SIL and PIL 64-6
Scheduling Considerations . 64-7
Imported Data and Function Definitions 64-9

Choose a SIL or PIL Approach 64-11
Test Top-Model Code . 64-12
Test Referenced Model Code 64-13
Test Subsystem Code . 64-13
Summary . 64-13

Configure and Run SIL Simulation 64-15
Simulation with Top Model . 64-15
Simulation with Model Blocks 64-17
Simulation with Blocks From Subsystems 64-18
Configure Hardware Implementation Settings 64-19
Log Internal Signals of a Component 64-22
Prevent Code Changes in Multiple Simulations 64-23
Speed Up Testing . 64-24
Simulation with Function Calls 64-25

Configure and Run PIL Simulation 64-26
Simulation with Top Model . 64-15

lxxiii

Simulation with Model Blocks 64-17
Simulation with Blocks From Subsystems 64-18
Log Internal Signals of a Component 64-22
Prevent Code Changes in Multiple Simulations 64-23
Speed Up Testing . 64-24
Simulation with Function Calls 64-25

Simulation Mode Override Behavior in Model Reference
Hierarchy . 64-35

Debug Generated Code During SIL Simulation 64-37

Create PIL Target Connectivity Configuration 64-40
Target Connectivity Configurations for PIL 64-40
Create a Target Connectivity API Implementation . . 64-41
Register a Connectivity API Implementation 64-43
Verify Target Connectivity Configuration 64-43
Target Connectivity API Examples 64-43

Host-Target Communication for PIL 64-46
Communications rtiostream API 64-46
Synchronize Host and Target 64-47
Test an rtiostream Driver 64-48

Specify Hardware Timer . 64-52

PIL Simulation Sequence . 64-55

Verification of Code Generation Assumptions 64-58

View SIL and PIL Files in Code Generation Report . 64-59

SIL and PIL Limitations . 64-61
About SIL and PIL Limitations 64-62
General SIL and PIL Limitations 64-63
Top-Model SIL/PIL Limitations 64-71
Model Block SIL/PIL Limitations 64-73
SIL/PIL Block Limitations . 64-74

Check Configuration . 64-76

Verify Numerical Equivalence with CGV 64-78

lxxiv Contents

Verify Numerical Equivalence Between Two Modes of
Execution of a Model . 64-79

Configure the Model . 64-79
Execute the Model . 64-80
Compare All Output Signals 64-81
Compare Individual Output Signals 64-83
Plot Output Signals . 64-84

Using Code Generation Verification API 64-86

Numerical Consistency between Model and
Generated Code

65
Numerical Consistency of Model and Generated Code

Simulation Results . 65-2
Numerical Consistency . 65-2
Numerical Consistency in Complex Systems 65-3
Reasons for Block-Level Numerical Differences 65-5

Software-in-the-Loop Execution for MATLAB
Coder

66
Code Verification Through Software-in-the-Loop and

Processor-in-the-Loop Execution 66-2

Software-in-the-Loop Execution with the MATLAB Coder
App . 66-4

Software-in-the-Loop Execution From Command
Line . 66-6

SIL Execution of Code Generated for a Kalman
Estimator . 66-6

Debug Generated Code During SIL Execution 66-9

lxxv

Create PIL Target Connectivity Configuration 66-12
Target Connectivity Configurations for PIL 66-12
Create a Target Connectivity API Implementation . . 66-13
Register Target Connectivity Configuration 66-14
Verify Target Connectivity Configuration 66-15

Host-Target Communication for PIL 66-16
Communications rtiostream API 66-16
Synchronize Host and Target 66-17
Test an rtiostream Driver 66-18

Specify Hardware Timer . 66-22

Processor-in-the-Loop Execution with the MATLAB
Coder App . 66-25

Processor-in-the-Loop Execution From Command
Line . 66-27

PIL Execution of Code Generated for a Kalman
Estimator . 66-27

Verification of Code Generation Assumptions 66-33

SIL/PIL Execution Support and Limitations 66-34

Code Coverage in Embedded Coder
67

Simulink Code Coverage Metrics 67-2
Statement Coverage for Code Coverage 67-2
Condition Coverage for Code Coverage 67-3
Decision Coverage for Code Coverage 67-3
Modified Condition/Decision Coverage (MCDC) for Code

Coverage . 67-4
Cyclomatic Complexity for Code Coverage 67-5
Relational Boundary for Code Coverage 67-5

lxxvi Contents

Code Coverage for Models in Software-in-the-Loop (SIL)
Mode and Processor-in-the-Loop (PIL) Mode 67-6

Requirements to Enable SIL or PIL Code Coverage for a
Model . 67-6

Conditions for Simulink Verification and Validation Code
Coverage Measurement . 67-7

Reviewing the Coverage Results for Models in SIL or PIL
Mode . 67-7

Limitations . 67-9

Configure Code Coverage with Third-Party Tools . . . 67-10

View Code Coverage Information at the End of SIL or
PIL Simulations . 67-13

View LDRA Testbed Results 67-13
View BullseyeCoverage Results 67-15

Configure Code Coverage Programmatically 67-16

Code Coverage Summary and Annotations 67-18
LDRA Testbed Coverage . 67-18
BullseyeCoverage Information 67-20

Code Coverage Tool Support . 67-23

Tips and Limitations . 67-24
Right-Click Subsystem Build Unsupported for Code

Coverage . 67-24
BullseyeCoverage License Wait 67-24
Current Working Folder Cannot be UNC Path 67-24
Characters in matlabroot and File Path 67-24
Header Files with Identical Names 67-24
Code Coverage for Source Files in Shared Utility

Folders . 67-24
BullseyeCoverage Behavior with Inline Macros 67-25
SIL and PIL Simulations with Open LDRA Testbed . 67-25
Minor SIL and PIL Differences for LDRA Testbed . . . 67-26
PIL Zero Coverage LDRA Testbed Annotations 67-26
PIL Support for BullseyeCoverage 67-27
Modify Legacy Code . 67-27
IDE Link Does Not Support LDRA Testbed 67-27

lxxvii

Embedded IDEs and Embedded Targets

Getting Started with Embedded Targets in
Embedded Coder

68
Embedded Coder Supported Hardware 68-2

Run-Time Data Interface Extensions in Simulink
Coder

69
Customize Generated ASAP2 File 69-2

About ASAP2 File Customization 69-2
ASAP2 File Structure on the MATLAB Path 69-2
Customize the Contents of the ASAP2 File 69-3
ASAP2 Templates . 69-4
Customize Computation Method Names 69-6
Suppress Computation Methods for FIX_AXIS 69-7

Create a Transport Layer for External
Communication . 69-8

About Creating a Transport Layer for External
Communication . 69-8

Design of External Mode . 69-8
External Mode Communications Overview 69-11
External Mode Source Files . 69-12
Implement a Custom Transport Layer 69-16

Build Process Integration in Simulink Coder
70

Control Build Process Compiling and Linking 70-2

lxxviii Contents

Cross-Compile Code Generated on Microsoft
Windows . 70-4

Control Library Location and Naming During Build . 70-7
Library Control Parameters . 70-7
Specify the Location of Precompiled Libraries 70-9
Control the Location of Model Reference Libraries . . . 70-10
Control the Suffix Applied to Library File Names . . . 70-11

Recompile Precompiled Libraries 70-13

Customize Post-Code-Generation Build Processing . 70-14
Workflow for Setting Up Customizations 70-14
Build Information Object . 70-15
Program a Post Code Generation Command 70-16
Define a Post Code Generation Command 70-17
Customize Build Process with PostCodeGenCommand

and Relocate Generated Code to an External
Environment . 70-18

Suppress Makefile Generation 70-20

Configure Generated Code with TLC 70-22
About Configuring Generated Code with TLC 70-22
Assigning Target Language Compiler Variables 70-22
Set Target Language Compiler Options 70-23

Use makecfg to Customize Generated Makefiles for S-
Functions . 70-24

Use rtwmakecfg.m API to Customize Generated
Makefiles . 70-26

About the rtwmakecfg Function 70-26
Create the rtwmakecfg Function 70-26
Modify the Template Makefile for rtwmakecfg 70-29

Customize Build Process with STF_make_rtw_hook
File . 70-31

The STF_make_rtw_hook File 70-31
Conventions for Using the STF_make_rtw_hook File . 70-31
STF_make_rtw_hook.m Function Prototype and

Arguments . 70-32
Applications for STF_make_rtw_hook.m 70-35

lxxix

Control Code Regeneration Using
STF_make_rtw_hook.m . 70-36

Use STF_make_rtw_hook.m for Your Build Procedure 70-37

Customize Build Process with sl_customization.m . . 70-38
The sl_customization.m File 70-38
Register Build Process Hook Functions Using

sl_customization.m . 70-40
Variables Available for sl_customization.m Hook

Functions . 70-40
Example Build Process Customization Using

sl_customization.m . 70-41

Replace STF_rtw_info_hook Supplied Target Data . . 70-43

Customize Build to Use Shared Utility Code 70-44
Modify Template Makefiles to Support Shared

Utilities . 70-44

Custom Target Development in Simulink Coder
71

About Embedded Target Development 71-2
Custom Targets . 71-2
Types of Targets . 71-2
Recommended Features for Embedded Targets 71-4

Sample Custom Targets . 71-9

Target Development Folders, Files, and Builds 71-11
Folder and File Naming Conventions 71-11
Components of a Custom Target 71-12
Key Folders Under Target Root (mytarget) 71-17
Key Files in Target Folder (mytarget/mytarget) 71-19
Additional Files for Externally Developed Targets . . . 71-22
Target Development and the Build Process 71-23

Customize System Target Files 71-29
Control Code Generation With the System Target File 71-29
System Target File Naming and Location Conventions 71-30

lxxx Contents

System Target File Structure 71-30
Define and Display Custom Target Options 71-38
Tips and Techniques for Customizing Your STF 71-45
Create a Custom Target Configuration 71-48

Customize Template Makefiles 71-62
Template Makefiles and Tokens 71-62
Invoke the make Utility . 71-68
Structure of the Template Makefile 71-69
Customize and Create Template Makefiles 71-73

Custom Target Optional Features 71-79

Support Toolchain Approach with Custom Target . . 71-81

Support Model Referencing . 71-83
About Model Referencing with a Custom Target 71-83
Declaring Model Referencing Compliance 71-84
Providing Model Referencing Support in the TMF . . . 71-85
Controlling Configuration Option Value Agreement . . 71-88
Supporting the Shared Utilities Folder 71-88
Verifying Worker Configuration for Parallel Builds of

Model Reference Hierarchies (Optional) 71-92
Preventing Resource Conflicts (Optional) 71-94

Support Compiler Optimization Level Control 71-95
About Compiler Optimization Level Control and Custom

Targets . 71-95
Declaring Compiler Optimization Level Control

Compliance . 71-95
Providing Compiler Optimization Level Control Support in

the Target Makefile . 71-96

Support C Function Prototype Control 71-97
About C Function Prototype Control and Custom

Targets . 71-97
Declaring C Function Prototype Control Compliance . 71-97
Providing C Function Prototype Control Support in the

Custom Static Main Program 71-98

Support C++ Class Interface Control 71-100
About C++ Class Interface Control and Custom

Targets . 71-100

lxxxi

Declaring C++ Class Interface Control Compliance . 71-100
Providing C++ Class Interface Control Support in the

Custom Static Main Program 71-101

Support Concurrent Execution of Multiple Tasks . . 71-102

Interface to Development Tools 71-104
About Interfacing to Development Tools 71-104
Template Makefile Approach 71-105
Interface to an Integrated Development Environment 71-105

Device Drivers . 71-116

Project and Build Configurations for Embedded
Targets in Embedded Coder

72
Model Setup . 72-2

Block Selection . 72-2
Configure Target Hardware Resources 72-3
Configuration Parameters . 72-4
Model Reference . 72-11

XMakefiles for Software Build Tool Chains 72-12
What is the XMakefile Feature 72-12
Using Makefiles to Generate and Build Software 72-14
Making an XMakefile Configuration Operational 72-16
Creating a New XMakefile Configuration 72-16
XMakefile User Configuration dialog 72-22

Verification and Profiling Generated Code in
Embedded Coder

73
PIL Simulation for IDE and Toolchain Targets 73-2

Overview . 73-2

lxxxii Contents

PIL Approaches . 73-3
Communications . 73-7
Running Your PIL Application to Perform Simulation and

Verification . 73-10
Definitions . 73-10
PIL Issues and Limitations . 73-11

Code Execution Profiling for IDE and Toolchain
Targets . 73-13

Execution-Time Profiling . 73-13
Stack Profiling . 73-13

Perform Execution-Time Profiling for IDE and Toolchain
Targets . 73-16

Execution-Time Profiling During Standalone
Execution . 73-16

Execution-Time Profiling During PIL Simulation . . . 73-19

Perform Stack Profiling with IDE and Toolchain
Targets . 73-22

Processor-Specific Optimizations for Embedded
Targets in Embedded Coder

74
Replace Code for Embedded Targets 74-2

Using a Processor-Specific Code Replacement Library to
Optimize Code . 74-2

Process of Determining Optimization Effects Using Real-
Time Profiling Capability . 74-2

lxxxiii

Code Generation from MATLAB Code

Build Configuration for Code Generation from
MATLAB Code

75
Specify Comment Style for C/C++ Code 75-2

Specify Comment Style Using the MATLAB Coder
App . 75-2

Specify Comment Style Using the Command-Line
Interface . 75-3

Specify Indent Style for C/C++ Code 75-4
Specify Indent Style Using the MATLAB Coder App . . 75-5
Specify Indent Style Using the Command-Line

Interface . 75-5

Generate Custom File and Function Banners for C/C++
Code . 75-6

Code Generation Template Files for MATLAB Code . . 75-9
Default CGT File . 75-9
CGT File Structure . 75-9
Components of the CGT File Sections 75-11

Customize Generated Identifiers 75-20
Customize Identifiers by Using the MATLAB Coder

App . 75-20
Customize Generated Identifiers by Using the Command-

Line Interface . 75-21

Control Signed Left Shifts in Generated Code 75-23
Control Signed Left Shifts Using the MATLAB Coder

App . 75-23
Control Signed Left Shifts Using the Command-Line

Interface . 75-23

Control Data Type Casts in Generated Code 75-25
Specify Casting Mode Using the MATLAB Coder App 75-26

lxxxiv Contents

Specify Casting Mode Using the Command-Line
Interface . 75-27

Simplify Multiply Operations for Array Indexing in
Loops . 75-28

Code Replacement for MATLAB Code
76

What Is Code Replacement? . 76-2
Code Replacement Libraries . 76-3
Code Replacement Terminology 76-5
Code Replacement Limitations 76-7

Choose a Code Replacement Library 76-9
About Choosing a Code Replacement Library 76-9
Explore Available Code Replacement Libraries 76-9
Explore Code Replacement Library Contents 76-9

Replace Code Generated from MATLAB Code 76-11

Storage Classes for Code Generation from
MATLAB Code

77
Storage Classes for Code Generation from MATLAB

Code . 77-2

Control Declarations and Definitions of Global Variables
in Code Generated from MATLAB Code 77-5

lxxxv

Verification of Code Generated from MATLAB
Code

78
Highlight Potential Data Type Issues in a Report 78-2

Enable Highlight Option Using the MATLAB Coder
App . 78-3

Enable Highlight Option Using the Command Line
Interface . 78-4

Find Potential Data Type Issues in Generated Code . . 78-5
Data Type Issues Overview . 78-5
Enable Highlighting of Potential Data Type Issues . . . 78-5
Find and Address Cumbersome Operations 78-6
Find and Address Expensive Rounding 78-8
Find and Address Expensive Comparison Operations . 78-9
Find and Address Multiword Operations 78-11

PIL Execution with ARM Cortex-A at the Command
Line . 78-13

PIL Execution with ARM Cortex-A by Using the
MATLAB Coder App . 78-15

lxxxvi Contents

Model Architecture and Design

1

Modeling Environment for Embedded
Coder

• “Design Models for Generated Embedded Code Deployment” on page 1-2
• “Model Single-Core, Single-Tasking Platform Execution” on page 1-15
• “Model Single-Core, Multitasking Platform Execution” on page 1-20
• “Model Concurrent Execution for Symmetric Multicore CPU Platforms” on page

1-25
• “Model Explicit Function Invocation with Atomic Subsystems” on page 1-33
• “Model Explicit Function Invocation with Function-Call Subsystems” on page 1-38
• “Model for AUTOSAR Platform” on page 1-42

1 Modeling Environment for Embedded Coder

Design Models for Generated Embedded Code Deployment

When using Embedded Coder® to generate code for an embedded system architecture, it
is important to design your Simulink models with code generation in mind from the very
beginning of the design process. Think about relevant design factors and issues such as:

In this section...

“Application Algorithms and Run-Time Environments” on page 1-2
“Software Execution Framework for Generated Code” on page 1-3
“Map Embedded System Architecture to Simulink Modeling Environment” on page
1-5
“Model Templates for Code Generation” on page 1-13

Application Algorithms and Run-Time Environments

Use Simulink to design models that represent application algorithms and run-time
environments from which you intend to generate deployable code. Depending on your
application, you might deploy code to an execution environment that consists of a
combination of:

Execution Environment
Components

Choices

Hardware • Development computer
• Rapid-prototyping board
• Microprocessor
• Microcontroller
• FPGA
• ASIC

Cores • Single
• Multiple

Operating system • General-purpose
• Real-time
• None (bare metal)

Scheduling • Single-tasking

1-2

 Design Models for Generated Embedded Code Deployment

Execution Environment
Components

Choices

• Multitasking
• Interrupt driven
• Concurrency
• Provided by operating system
• Generated from model

Application algorithm code • Generated from model
• External code

As you design models to generate C or C++ code for rapid prototyping or production
deployment, keep in mind the execution environment. Generate code that meets
implementation requirements and avoids potential design rework. As the preceding table
reflects, the execution environment for code that you generate can range from relatively
simple to complex. For example, a simple case is code that you generate from a single,
single-tasking model that runs on a single-core microprocessor. A complex case is code
that generate from a model partitioned to run as a distributed system on a multicore
microprocessor and an FPGA.

Software Execution Framework for Generated Code

Part of an application execution environment is the software execution framework that is
responsible for scheduling and running the generated code. That software can preexist,
as in the case of an operating system and its scheduler, or you can code the software
manually. The level of complexity varies depending on which of the following modeling
and code generation scenarios applies:

• Generate code from a single top model, which represents the algorithms intended to
run in the execution environment.

• Generate code from a model, which represents part of an overall algorithm. You can
mix the generated code with code written manually and code generated from other
sources or releases of MathWorks® products.

Single Top Model

For a single top model, the software execution framework is responsible for running
generated code the same way that Simulink simulates the model. Functions in the
generated code are highly coordinated and optimized because Simulink is aware of

1-3

1 Modeling Environment for Embedded Coder

dependencies. The framework interfaces with code generated for the top model only. Code
generated for a top model handles interfacing with code for referenced Model blocks.

Consider the following example, where a single top model is mapped to tasks that run on
a single-core CPU.

For this system, you map model clock rates to tasks that run on the hardware. You can
choose for Simulink to map the rates implicitly or you can map them explicitly in your
model. You can model latency effects resulting from how you map rates in a model to
single-tasking or multitasking execution environments. Simulink schedules the tasks
properly based on rates in the model and data dependencies between tasks. The code
generator implements the same dependencies in the code that it generates. The software
execution framework invokes generated entry-point functions at rates based on system
timers and interrupts. The generated code executes in the same manner that Simulink
simulates the model, and contains code dedicated to communicating data between
functions running at different rates.

Multiple Top-Level Models

When you generate code from multiple top models separately and mix that code with
code acquired in other ways, the execution environment of the application takes on more
software execution framework responsibility. For this modeling scenario, you generate
code for standalone, atomic reusable components.

1-4

 Design Models for Generated Embedded Code Deployment

With this scenario, Simulink is not aware of model dependencies. Functions in code
generated from the different models are minimally coordinated and optimized. For
example, the models might share generated utility functions. Potential optimizations
that cross model boundaries are not possible. You must design the software execution
framework taking into account dependencies between units of code, including execution
order. For an application that requires concurrent execution across multiple cores, you
must consider data latency effects across the cores.

The code generator helps you address software execution framework challenges, such as
sharing global data and avoiding identifier conflicts. The code generated for a each model
handles the interfacing for referenced Model blocks.

Map Embedded System Architecture to Simulink Modeling Environment

When mapping an embedded system architecture to the Simulink modeling environment,
think about the model design.

“Modeling
Algorithms” on
page 1-6

Given initial state and input, a set of tasks or instructions that
efficiently produce the results that you want.

“Modeling
Interfaces” on
page 1-6

Mechanisms that enable algorithm components to communicate and
exchange information across component boundaries.

“Modeling
Systems” on page
1-8

Collection of algorithm components that achieve a higher-level,
domain-specific goal or result. Components often share resources.

“Modeling
Run-Time
Environments”
on page 1-11

Framework that handles scheduling of system algorithm resources
and execution.

Consider the following questions regarding an embedded system architecture with
corresponding modeling capabilities and links to related information. Use the
information as a guide for mapping your architecture details to the Simulink modeling
environment. Designing a model architecture with your specific embedded system
architecture in mind can help you avoid rework and future conversion and maintenance
costs.

1-5

1 Modeling Environment for Embedded Coder

Modeling Algorithms

Architecture Considerations Modeling Considerations Related Information

What is the system domain? Product prerequisites
(based on domains of
components)

• “Supported Products and Block
Usage” (Simulink Coder)

• “Simulink Control Design”
• “Model Signal Processing

Systems” (Simulink)
• “Signal Generation, Manipulation,

and Analysis” (DSP System
Toolbox)

Does the system involve physical
domains, such as mechanical,
electrical, or hydraulic domains?

Physical systems • “Model Physical Systems”
(Simulink)

• “Basic Principles of Modeling
Physical Networks” (Simscape)

• “Essential Physical Modeling
Techniques” (Simscape)

What aspects of your algorithm
can you represent with blocks
provided by MathWorks products?
What blocks do you need to create?

Block usage, creation,
and customization

• “Supported Products and Block
Usage” (Simulink Coder)

• “External Code Integration”
(Simulink Coder)

Does the architecture include state
machine components?

Event-driven system “Basic Approach for Modeling Event-
Driven Systems” (Stateflow)

Modeling Interfaces

Architecture Considerations Modeling Considerations Related Information

• What data must you represent
in the generated code?

• How do you need to represent
input and output—data type,
dimension, complexity?

• Do the algorithms use floating-
point or fixed-point arithmetic?

• How will the data change?

Data representation • “Interface Design” (Simulink)
• “Data Representation”
• “Modeling Patterns for C Code”
• “Fixed-Point Designer”

1-6

 Design Models for Generated Embedded Code Deployment

Architecture Considerations Modeling Considerations Related Information

Where and how is data pulled into
the system and pulled within the
system?

Input • “Comparison of Signal Loading
Techniques” (Simulink)

• “Modeling Patterns for C Code”
• Where and how is data pushed

within the system and out of
the system?

• What external triggers are
required?

Output • “Simulation Data Inspector in
Your Workflow” (Simulink)

• “Control Data Representation by
Applying Custom Storage Classes”
on page 23-58

• What functions do you need to
define for each component?

• What is the prototype for each
entry-point function?

Functions and function
calls

• “Function and Class Interfaces”
• “Function Prototyping” on page

13-67

Do you need to export functions
that are invoked by controlling
logic that is outside the model?

Function export • “Export-Function Models”
(Simulink)

• “Generate Component Source
Code for Export to External Code
Base” on page 39-51

Does the system monitor signals
or log data (for example, for
calibration)?

C API and ASAP2 data
exchange interfaces

• “Exchange Data Between
Generated and External Code
Using C API” (Simulink Coder)

• “Export ASAP2 File for Data
Measurement and Calibration”
(Simulink Coder)

Do you need to replace code
generated for functions or
operators, for example, to optimize
the code for specific hardware?

Code replacement • “What Is Code Replacement?”
(Simulink Coder)

• “What Is Code Replacement
Customization?” on page 51-3

1-7

1 Modeling Environment for Embedded Coder

Architecture Considerations Modeling Considerations Related Information

Do you need to control the
placement of data or functions in
memory?

Memory sections • “Introduction to Custom Storage
Classes” on page 23-2

• “Control Data and Function
Placement in Memory by
Inserting Pragmas” on page
27-2

• “Declare Constant Data as
Volatile Using Memory Sections”
on page 27-19

Is there a requirement
for elaboration and future
considerations?

Elaboration and future
considerations

• “Interface Design” (Simulink)

Modeling Systems

Architecture Considerations Modeling Considerations Related Information

• What is the scope of the
system? Controller? External
environment or plant? Test
harness?

• How is the system partitioned
into algorithm components
(chunks of logic)?

• Which components can you
represent in Simulink?

• Can you design components for
reuse? What is the motivation
for reuse (for example, division
of labor or plug-n-play)?

Componentization • “Interface Design” (Simulink)
• “Componentization Guidelines”

(Simulink)
• “Design Partitioning” (Simulink)
• “Custom Libraries and Linked

Blocks” (Simulink)
• “Export-Function Models”

(Simulink)
• “Custom MATLAB Algorithms”

(Simulink)
• “Code Generation of Subsystems”

(Simulink Coder)
• “Code Generation of Referenced

Models” (Simulink Coder)
• “Code Generation of Stateflow

Blocks” (Simulink Coder)
• Do aspects of the system

require unit testing?
Model referencing • “Overview of Model Referencing”

(Simulink)

1-8

 Design Models for Generated Embedded Code Deployment

Architecture Considerations Modeling Considerations Related Information

• Is a team of people
collaborating on the project?

• Do you need to protect
intellectual property?

• “Componentization Guidelines”
(Simulink)

• “Code Generation of Referenced
Models” (Simulink Coder)

• “Generate Reusable Code for Unit
Testing” (Simulink Coder)

Are you modeling a client-server
architecture?

Simulink Function and
Caller blocks

• “Diagnostics Using a Client-
Server Architecture” (Simulink)

• “Simulink Functions” (Simulink)
Is relevant legacy or custom code
available?

External code
integration

“External Code Integration”
(Simulink Coder)

Can you apply a reference
architecture or reference
components?

Model and project
templates

• “Create a Template from a Model”
(Simulink)

• “Create a New Project Using
Templates” (Simulink)

Do you need to export functions
that are invoked by controlling
logic that is outside a model?

Export-function models “Export-Function Models” (Simulink)

Is there a need to package the
source code for a component as a
shared object library to simplify
distribution or sharing?

Shared object libraries
(dynamic link libraries)

“Package Generated Code as Shared
Libraries” on page 47-2

1-9

1 Modeling Environment for Embedded Coder

Architecture Considerations Modeling Considerations Related Information

Can you reuse functions? Function reuse • “Code Reuse For Subsystems
Shared Across Models” (Simulink
Coder)

• “Reusable Library Subsystem”
(Simulink Coder)

• “Generate Reentrant Code from
Top-Level Models” (Simulink
Coder)

• “Reusable Code and Referenced
Models” (Simulink Coder)

• “Generate Reusable Code for
Atomic Subcharts” (Simulink
Coder)

• Do components need to share
access to global data?

• Within the system, do state
changes occur? In each case,
how does the result get
communicated?

• Are there identifier (naming)
issues to consider?

Shared data • “Local and Global Data Stores”
(Simulink)

• “Default Data Structures in the
Generated Code” (Simulink Coder)

• “Storage Classes for Signals Used
with Model Blocks” (Simulink
Coder)

• “Shared Constant Parameters for
Code Reuse” (Simulink Coder)

• “Data Stores in Generated Code”
(Simulink Coder)

• “Create Data Objects for Code
Generation with Data Object
Wizard” on page 24-2

• “Place Global Data Declarations
and Definitions in Separate Files”
on page 20-3

• “Customize Generated Identifier
Naming Rules” on page 36-15

1-10

 Design Models for Generated Embedded Code Deployment

Architecture Considerations Modeling Considerations Related Information

Do you need to control placement
of data or functions in memory?

Memory sections • “Introduction to Custom Storage
Classes” on page 23-2

• “Control Data and Function
Placement in Memory by
Inserting Pragmas” on page
27-2

• “Declare Constant Data as
Volatile Using Memory Sections”
on page 27-19

Are you required to apply the
AUTOSAR standard? If yes, what
aspects of the architecture involve
AUTOSAR?

AUTOSAR “AUTOSAR”

Does your system need to meet
other standards or guidelines?

Standards and
guidelines

“Support for Standards and
Guidelines” on page 12-2

Modeling Run-Time Environments

Architecture Considerations Modeling Considerations Related Information

• What level of control over run-
time interfacing does your
application require?

• How much of your system can
you represent in a model?

Runtime interfacing • “Execution of Code Generated
from a Model” (Simulink Coder)

• See Modeling Interfaces.

Is the system partitioned into
concurrent components to
maximize parallelism? Which
components?

Concurrency “Multicore Processor Targets”
(Simulink)

• Are components driven by an
external clock?

• What clock rates do system
components use?

• Do components use a single
rate or multiple rates?

Clocks and clock rates “Interface Design” (Simulink)

1-11

1 Modeling Environment for Embedded Coder

Architecture Considerations Modeling Considerations Related Information

• Are components in the system
driven by clocks?

• What clock rates do system
components use?

• Do components use a single
rate or multiple rates?

• What are the priorities of
system tasks and functions?

Time-based scheduling • “Absolute and Elapsed Time
Computation” (Simulink Coder)

• “Time-Based Scheduling”
(Simulink Coder)

• Are components in the system
driven by events (interrupts)?

• What are the priorities of
system tasks and functions?

Event-based scheduling • “Absolute and Elapsed Time
Computation” (Simulink Coder)

• “Event-Based Scheduling”
(Simulink Coder)

• “Basic Approach for Modeling
Event-Driven Systems”
(Stateflow)

Does the system need to handle
initialization, reset, or terminate
events?

Initialization, reset,
termination

• “Create Model to Initialize, Reset,
and Terminate State” (Simulink)

• “Generate Code That Responds to
Initialize, Reset, and Terminate
Events” (Simulink Coder)

• Is the system a single-tasking
or multitasking system?

• Are components required to
execute in real time?

• What are the execution order
dependencies (sequencing)
between components?

• What are the time constraints
for task and function
execution?

Task execution • “Execution of Code Generated
from a Model” (Simulink Coder)

• “Modeling for Single-Tasking
Execution” (Simulink Coder)

• “Modeling for Multitasking
Execution” (Simulink Coder)

1-12

 Design Models for Generated Embedded Code Deployment

Architecture Considerations Modeling Considerations Related Information

• If you know the processing
platform, what is it?

• Will the system run on a
single-core or multicore
processor?

• Is the system a distributed
system?

• Is the processing platform
hybrid or heterogeneous?

• Does the architecture
employ symmetric or
asymmetric multiprocessing?
If asymmetric, how is the
platform software partitioned
across CPUs?

Processing platforms “Multicore Processor Targets”
(Simulink)

• Do you want to generate and
run a standalone executable
that does not require an
external real-time kernel or
operating system?

• Is a real-time operation system
(RTOS) required? If yes, what
RTOS?

Kernel, operating
system

• “Deploy Generated Standalone
Executable Programs To Target
Hardware” on page 49-2

• “Deploy Generated Component
Software to Application Target
Platforms” on page 49-22

Model Templates for Code Generation

The code generator provides a set of built-in templates to use as a starting point to create
models for common application designs. Use the templates to create models that are
preconfigured to generate code for rapid-prototyping or embedded system applications.

Template Description

Code Generation
System

Basic model consisting of an Inport block and Output block.

Exported
functions

Model for generating code from function-call subsystems. You can
export each function-call subsystem separately by right-clicking a

1-13

1 Modeling Environment for Embedded Coder

Template Description

subsystem, selecting C/C++ Code > Export Functions, and clicking
Build.

Fixed-step,
multirate

Fixed-step model that uses multiple rates and consists of Inport
blocks, an Outport block, and a Sum block. The model is configured
to use a fixed-step discrete solver and to use two rates with Periodic
sample time constraint set to Unconstrained and the Treat
each discrete rate as a separate task option selected. Simulink
inserts a Rate Transition block to handle the two sample rates.

Fixed-step, single
rate

Fixed-step model that uses a single rate and consists of Inport blocks,
an Outport block, and a Sum block. The model is configured to use a
fixed-step discrete solver.

To create a model from a template:

1 On the MATLAB® home tab, click Simulink.
2 In the Simulink start page, expand Embedded Coder.
3 Select a template.
4 Click Create. A new model that uses the template contents and settings appears in

the Simulink Editor window.

For more information, for example to create and use a template as a reference design, see
“Create a Template from a Model” (Simulink).

More About
• “Model Single-Core, Single-Tasking Platform Execution” on page 1-15
• “Model Single-Core, Multitasking Platform Execution” on page 1-20
• “Model Concurrent Execution for Symmetric Multicore CPU Platforms” on page

1-25
• “Model Explicit Function Invocation with Atomic Subsystems” on page 1-33
• “Model Explicit Function Invocation with Function-Call Subsystems” on page

1-38
• “Model for AUTOSAR Platform” on page 1-42

1-14

 Model Single-Core, Single-Tasking Platform Execution

Model Single-Core, Single-Tasking Platform Execution

This example shows a model designed and configured for embedded system code
generation intended to execute on a single-core, single-tasking platform. The application
algorithm is captured in a single model hierarchy, making it possible to use Simulink®
time-based, single-task scheduling to simulate the model and execute the generated code.

Periodic Multirate Model Set Up for Single-Tasking Execution

Open the example model rtwdemo_multirate_singletasking. The model is
configured to display color-coded sample times with annotations. To see them, after
opening the model, update the diagram by pressing Ctrl+D. To display the legend, press
Ctrl+J.

1-15

1 Modeling Environment for Embedded Coder

• Sample times for Inport blocks In1_1s and In2_2s are set to 1 and 2 seconds,
respectively.

• To provide clean partitioning of rates, sample times for subsystems SS1 and SS2 are
set to 1.

1-16

 Model Single-Core, Single-Tasking Platform Execution

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Treat each discrete rate as a separate task cleared.

Scheduling

Simulink® simulates the model based on the model configuration. Code generated from
the model implements the same execution semantics. Simulink propagates and uses the
Inport block sample times to order block execution based on a single-core, single-tasking
execution platform.

For this model, the sample time legend shows an implicit rate grouping. Red represents
the fastest discrete rate. Green represents the second fastest discrete rate.

The generated code schedules subrates in the model. In this example, the rate for Inport
block In2_2s, the green rate, is a subrate. The generated code properly transfers data
between tasks running at the different rates.

Benefits of implicit rate grouping:

• Simulink does not impose architectural constraints on the model.
• Your execution framework does not require details about underlying function

scheduling and data transfers between rates. Therefore, the model interface
requirements are simplified. The execution framework uses generated interface code
to write input, call the model step function, and read output.

• The code generator optimizes code across rates based on single-tasking execution
semantics.

Your execution framework can communicate with external devices for reading and
writing model input. For example, model external devices by using Simulink S-Function
blocks. Generate code for those blocks with the rest of the algorithm.

Generate Code and Report

Generate code and a code generation report. The example model generates a report.

Review Generated Code

From the code generation report, review the generated code.

1-17

1 Modeling Environment for Embedded Coder

• ert_main.c is an example main program (execution framework) for the model.
This code controls model code execution by calling the entry-point function
rtwdemo_multirate_singletasking_step. Use this file as a starting point for
coding your execution framework.

• rtwdemo_multirate_singletasking.c contains entry points for the code that
implements the model algorithm. This file includes the rate scheduling code.

• rtwdemo_multirate_singletasking.h declares model data structures and a
public interface to the model entry points and data structures.

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

Code Interface

Open and review the Code Interface Report. Use the information in that report to write
the interface code for your execution framework:

1 Include the generated header file by adding directive #include
rtwdemo_multirate_singletasking.h.

2 Write input data to the generated code for model Inport blocks.
3 Call the generated entry-point functions.
4 Read data from the generated code for model Outport blocks.

Input ports:

• rtU.In1_1s of data type real_T with dimension of 1
• rtU.In2_2s of data type real_T with dimension of 1

Entry-point functions:

• Initialization entry-point function, void
rtwdemo_multirate_singletasking_initialize(void). At startup, call this
function once.

• Output and update entry-point (step) function, void
rtwdemo_multirate_singletasking_step(void). Call this function periodically
at the fastest rate in the model. For this model, call the function every second. To
achieve real-time execution, attach this function to a timer.

Output ports:

• rtY.Out1 of data type real_T with dimension of 1

1-18

 Model Single-Core, Single-Tasking Platform Execution

• rtY.Out2 of data type real_T with dimension of 1

More About

• “Modeling for Single-Tasking Execution” (Simulink Coder)
• “Deploy Generated Standalone Executable Programs To Target Hardware”
• “Customize Code Organization and Format”

1-19

1 Modeling Environment for Embedded Coder

Model Single-Core, Multitasking Platform Execution

Use Simulink® time-based, multitask scheduling to simulate and generate code for an
application algorithm captured in a single model hierarchy. The model is designed and
configured for an embedded system intended to execute on a single-core, multitasking
platform. The model simulates and the generated code executes based on the model
configuration and a rate monotonic scheduling algorithm.

Periodic Multirate Model Set Up for Multitasking Execution

Open the example model rtwdemo_multirate_multitasking. The model is configured
to display color-coded sample times with annotations. To see them, after opening the
model, update the diagram by pressing Ctrl+D. To display the legend, press Ctrl+J.

1-20

 Model Single-Core, Multitasking Platform Execution

• Sample times for Inport blocks In1_1s and In2_2s are set to 1 and 2 seconds,
respectively.

• To provide a clear partitioning of rates, sample times for subsystems SS1 and SS2 are
set to 1.

1-21

1 Modeling Environment for Embedded Coder

• The Rate Transition block models an explicit rate transition. Alternatively, instruct
Simulink to insert Rate Transition blocks for you by selecting model configuration
parameter Solver > Automatically handle rate transition for data transfer.

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Treat each discrete rate as a separate task selected.

Scheduling

Simulink® simulates the model based on the model configuration. Code that this model
generates implements the same execution semantics. Simulink propagates and uses the
Inport block sample times to order block execution based on a single-core, multitasking
execution platform.

For this model, the sample time legend shows an implicit rate grouping. Red represents
the fastest discrete rate. Green represents the second fastest discrete rate. Yellow
represents the mixture of the two rates.

The generated code schedules subrates in the model. In this example, the rate for Inport
block In2_2s, the green rate, is a subrate. The generated code properly transfers data
between tasks that run at the different rates.

Benefits of implicit rate grouping:

• Simulink does not impose architectural constraints on the model. Create a model
without imposing software architecture constraints within the model.

• Your execution framework does not require details about underlying function
scheduling and data transfers between rates. Therefore, the model interface
requirements are simplified. The execution framework uses generated interface code
to write input, call the model step function, and read output.

• The code generator optimizes code across rates based on multitasking execution
semantics.

Simulink enforces data transfer constraints to achieve rate monotonic scheduling:

• Data transfers occur between a single read task and a single write task.
• When data transfers between two tasks, only one task can preempt the other task.

1-22

 Model Single-Core, Multitasking Platform Execution

• For periodic tasks, a task with a faster rate has a higher priority than a task with a
slower rate. In addition, a task with the faster rate, preempts a task with a slower
rate.

• Tasks run on a single processor.
• Time slicing, use of a defined time period during which a task can run in a preemptive

multitasking system, is not allowed.
• Processes do not crash or restart, especially during data transfers between tasks.
• Read and write operations on byte-sized variables are atomic.

Your execution framework communicates with external devices for reading and writing
model input. For example, model external devices by using Simulink S-Function blocks.
Generate code for those blocks with the rest of the algorithm.

Generate Code and Report

Generate code and a code generation report. The example model generates a report.

Review Generated Code

From the code generation report, review the generated code.

• ert_main.c is an example main program (execution framework) for
the model. This code controls model code execution by calling the entry-
point functions rtwdemo_multirate_multitasking_step0 and
rtwdemo_multirate_multitasking_step1. Use this file as a starting point for
coding your execution framework.

• rtwdemo_multirate_multitasking.c contains entry points for the code that
implements the model algorithm. This file includes the rate scheduling code.

• rtwdemo_multirate_multitasking.h declares model data structures and a public
interface to the model entry points and data structures.

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

Code Interface

Open and review the Code Interface Report. Use the information in that report to write
the interface code for your execution framework:

1 Include the generated header file by adding directive #include
rtwdemo_multirate_singletasking.h.

1-23

1 Modeling Environment for Embedded Coder

2 Write input data to the generated code for model Inport blocks.
3 Call the generated entry-point functions.
4 Read data from the generated code for model Outport blocks.

Input ports:

• rtU.In1_1s of data type real_T with dimension of 1
• rtU.In2_2s of data type real_T with dimension of 1

Entry-point functions:

• Initialization entry-point function, void
rtwdemo_multirate_multitasking_initialize(void). At startup, call this
function once.

• Output and update entry-point (step) function, void
rtwdemo_multirate_multitasking_step0(void). Call this function periodically
at the fastest rate in the model. For this model, call the function every second. To
achieve real-time execution, attach this function to a timer.

• Output and update entry-point function, void
rtwdemo_multirate_multitasking_step1(void). Call this function periodically
at the second fastest rate in the model. For this model, call the function every two
seconds. To achieve real-time execution, attach this function to a timer.

Output ports:

• rtY.Out1 of data type real_T with dimension of 1
• rtY.Out2 of data type real_T with dimension of 1

More About

• “Modeling for Multitasking Execution” (Simulink Coder)
• “Deploy Generated Standalone Executable Programs To Target Hardware”
• “Customize Code Organization and Format”

1-24

 Model Concurrent Execution for Symmetric Multicore CPU Platforms

Model Concurrent Execution for Symmetric Multicore CPU
Platforms

Use Simulink® time-based, multitask scheduling to simulate and generate code for
an application algorithm captured in a single model hierarchy. The model is designed
and configured for an embedded system intended to execute on a symmetric multicore,
multitasking platform.

Periodic Multirate Model Set Up for Multitasking Concurrent Execution

Open the example model rtwdemo_concurrent_execution. The model is configured to
display color-coded sample times with annotations. To see them, after opening the model,
update the diagram by pressing Ctrl+D. To display the legend, press Ctrl+J.

1-25

1 Modeling Environment for Embedded Coder

Simulink supports simulating concurrent task execution by assigning partitions of a
model to tasks that you designate to run concurrently on multicore hardware. Use an
implicit or explicit approach to designating partitions.

Simulink implicit partitioning:

• Partitions the model based on sample times specified in the model.
• Assigns a task to each sample rate and designates that the tasks run concurrently.
• Controls the granularity of partitions. For example, you cannot split a sample rate

into multiple tasks.

1-26

 Model Concurrent Execution for Symmetric Multicore CPU Platforms

• Does not impose modeling constraints.
• Provides ready-to-use hardware solutions, such as solutions that the Simulink® Real-

Time™ product produces.
• Is not relevant to standalone production code generation due to the lack of control

over partition granularity.

Explicit partitioning:

• Use Model and Subsystem blocks to partition the model.
• Create an arbitrary number of tasks.
• Simulink assigns each partition to a task.
• Simulink imposes modeling constraints.
• Control the granularity of partitions.
• Split a sample rate into multiple tasks.
• Assign partitions to different processor cores.
• Is for standalone production code generation due to the level of control you have over

granularity of partitions.

This example shows explicit partitioning.

Consider the following periodic multirate model that is set up for multitasking execution.

• Sample times for Inport blocks In1_1s and In2_2s are set to 1 and 2 seconds,
respectively.

1-27

1 Modeling Environment for Embedded Coder

• To provide a clear partitioning of rates, sample times for models SS1 and SS2 are set
to 1.

• The Rate Transition block explicitly models a rate transition.

To support concurrent execution of tasks in a multicore run-time environment, the
preceding model was modified:

• The Integrator block is in a Model block configured with a fixed-step discrete solver
and a step size of two seconds.

• Subsystems SS1 and SS2 were converted to Model blocks configured with a fixed-step
discrete solver and a step size of one second.

• The Sum block is in a Model block configured with a fixed-step discrete solver and a
step size of one second. Another option for the Sum block is to place it in SS1 or SS2
and compute its value coincident with the Model block. For concurrent execution of
tasks, only connection blocks, Model blocks, and Subsystem blocks can be at the root
level of a model.

• The Rate Transition block was removed.

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Treat each discrete rate as a separate task selected.
• Solver > Automatically handle rate transition for data transfer selected.

Necessary because Rate Transition block was removed.
• Solver > Allow tasks to execute concurrently on target selected.

Concurrent Execution Parameter Settings

Open the Concurrent Execution dialog box by clicking Configure Tasks on
the Configuration Parameters Solver pane. Selecting Allow tasks to execute
concurrently on target enables the Configure Tasks button.

When selected, the Enable explicit model partitioning for concurrent behavior
parameter enables concurrent execution options for the top-level model.

Click Tasks and Mapping to review the tasks and mapping.

1-28

 Model Concurrent Execution for Symmetric Multicore CPU Platforms

Simulink creates a default mapping for each partition (Model block) by assigning
each partition to a separate task. Simulink designates that each partition executes
concurrently and simulates latency effects that data communication between processor
cores imposes. This dialog box displays a mapping consisting of partitions spread across
two independent periodic triggers: SS1, SS2, and Sum mapped to periodic trigger 1 and
Integrator mapped to periodic trigger 2.

Scheduling

Simulink® simulates the model based on the model configuration. Code generated from
the model implements the same execution semantics. Simulink propagates and uses the

1-29

1 Modeling Environment for Embedded Coder

Inport block sample times to order block execution based on a multicore, multitasking
execution platform.

For this model, the sample time legend shows an implicit rate grouping. Red represents
the fastest discrete rate. Green represents the second fastest discrete rate.

The generated code schedules subrates in the model. In this example, the rate for Inport
block In2_2s, the green rate, is a subrate. The generated code properly transfers data
between the rates.

Benefits of implicit Simulink rate grouping:

• Simulink does not impose architectural constraints on the model. Create a model
without imposing software architecture constraints within it.

• Your execution framework does not require details about underlying function
scheduling and data transfers between rates. Therefore, model interface requirements
are simplified. The execution framework uses generated interface code to write input,
call the model step function, and read output.

• The code generator optimizes code across rates, based on multitasking execution
semantics.

Simulink enforces data transfer constraints:

• Data transfers occur between a single read task and a single write task.
• Tasks run on a single processor.
• Processes do not stop or restart, especially during data transfers between tasks.
• Read and write operations on byte-sized variables are atomic.

Your execution framework can communicate with external devices for reading and
writing model input. For example, model external devices by using Simulink S-Function
blocks. Generate code for those blocks with the rest of the algorithm.

Generate Code and Report

Generate code and a code generation report. The example model generates a report.

Review Generated Code

From the code generation report, review the generated code.

• ert_main.c is an example main program (execution framework)
for the model. This code controls model code execution by indirectly

1-30

 Model Concurrent Execution for Symmetric Multicore CPU Platforms

calling entry-point functions PeriodicTrigger1_OneSecond_step,
PeriodicTrigger1_TwoSecond_step, and PeriodicTrigger2_OneSecond_step
with the function rtwdemo_concurrent_execution_step. Use this file as a
starting point for coding your execution framework.

• rtwdemo_concurrent_execution.c contains entry points for the code that
implements the model algorithm. This file includes the rate and task scheduling code.

• rtwdemo_concurrent_execution.h declares model data structures and a public
interface to the model entry points and data structures.

• model_reference_types.h contains type definitions for timing bridges. These type
definitions are generated for a model reference target or a model containing Model
blocks.

• rtw_windows.h declares mutex and semaphore function protoypes that the
generated code uses for concurrent execution on Microsoft® Windows® platforms.

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

Code Interface

Open and review the Code Interface Report. Use the information in that report to write
the interface code for your execution framework:

1 Include the generated header file by adding directive #include
rtwdemo_concurrent_execution.h.

2 Write input data to the generated code for model Inport blocks.
3 Call the generated entry-point functions.
4 Read data from the generated code for model Outport blocks.

Input ports:

• In1_1s of data type real_T with dimension of 1
• In2_2s of data type real_T with dimension of 1

Entry-point functions:

• Initialization entry-point function, void
rtwdemo_concurrent_execution_initialize(void). At startup, call this
function once.

• Output and update entry-point (step) function, void
PeriodicTrigger1_OneSecond_step(void). Call this function periodically for

1-31

1 Modeling Environment for Embedded Coder

one of two tasks that require scheduling at the fastest rate in the model. For this
model, call the function every second.

• Output and update entry-point function, void
PeriodicTrigger1_TwoSecond_step(void). Call this function periodically at the
second fastest rate in the model. For this model, call the function every two seconds.

• Output and update entry-point function, void
PeriodicTrigger2_OneSecond_step(void). Call this function periodically for the
second task that requires scheduling at the fastest rate in the model. For this model,
call the function every second.

To achieve real-time execution, define a task or thread for each entry-point step function.
Trigger execution of each function based on a timer that has the same rate as the given
function. The operating system schedules the tasks across cores dynamically or based on
your mapping of tasks to cores.

Output ports:

• Out1_1s of data type real_T with dimension 1
• Out2_1s of data type real_T with dimension 1

More About

• “Multicore Processor Targets” (Simulink)
• “Deploy Generated Standalone Executable Programs To Target Hardware”
• “Customize Code Organization and Format”

1-32

 Model Explicit Function Invocation with Atomic Subsystems

Model Explicit Function Invocation with Atomic Subsystems

Deploy embedded system code from Simulink® models by partitioning a model into
multiple atomic subsystems that you build separately.

Atomic Subsystem Model

Open the example model rtwdemo_explicitinvocation_atomicsubsys. The model
is configured to display color-coded sample times with annotations. To see them, after
opening the model, update the diagram by pressing Ctrl+D. To display the legend, press
Ctrl+J.

1-33

1 Modeling Environment for Embedded Coder

This model partitions an algorithm into two atomic subsystems: Rate1s and Rate2s.
Subsystem Rate1s is configured with a sample time of 1 second. Subsystem Rate2s is
configured with a sample time of 2 seconds.

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Treat each discrete rate as a separate task cleared.

1-34

 Model Explicit Function Invocation with Atomic Subsystems

Scheduling

Simulink® simulates the model based on the model configuration. Simulink propagates
and uses the Inport block sample times to order block execution based on a single-core,
single-tasking execution platform.

For this example, the sample time legend shows implicit rate grouping. Red represents
the fastest discrete rate. Green represents the second fastest discrete rate.

Based on ratemonotonic scheduling, your application code (execution framework) must
transfer data between subsystems Rate2s and Rate1s at a frequency of 2 seconds with
the priority of 1 second. That is, the generated function transfers data in the 1 second
task every other time prior to executing code for subsystem Rate1s.

Your execution framework must schedule the generated function code and handle
the data transfers between them. This is an advantage for multirate models because
the generated code assumes no scheduling or data transfer semantics. However, the
execution framework must handle data transfers explicitly.

Generate Code and Report

Generate a single callable function for each subsystem without connections between
them. Multiple ways are available to generate code for a subsystem, including from the
subsystem context menu. For example, right-click a subsystem block and click C/C++
Code > Build This Subsystem. In the Build code for Subsystem dialog box, click Build.

The example model generates a report.

Review Generated Code

From the code generation report, review the generated code.

• ert_main.c is an example main program (execution framework) for the subsystem.
This code controls model code execution by calling entry-point function Rate1s_step
or Rate2s_step. Use this file as a starting point for coding your execution
framework.

• Rate1s.c and Rate2s.c contain entry points for the code that implements
subsystem Rate1s and Rate2s, respectively. This file includes the rate and task
scheduling code.

• Rate1s.h and Rate2s.h declare model data structures and a public interface to
subsystem entry points and data structures.

1-35

1 Modeling Environment for Embedded Coder

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

Code Interface

Open and review the Code Interface Report. Use the information in that report to write
the interface code for your execution framework:

1 Include the generated header file by adding directive #include
rtwdemo_explicitinvocation_atomicsusys.h.

2 Write input data to the generated code for model Inport blocks.
3 Call the generated entry-point functions.
4 Read data from the generated code for model Outport blocks.

Input ports, Rate1s:

• rtU.In1 of type real_T with dimension of 1
• rtU.In2 of type real_T with dimension of 1

Entry-point functions, Rate1s:

• Initialize entry-point function, void Rate1s_initialize(void). At startup, call
this function once.

• Output and update entry-point (step) function, void Rate1s_step(void). Call this
function periodically, every second.

• Termination function, void Rate1s_terminate(void). Call this function once
from your shutdown code.

Output ports, Rate1s:

• rtY.Out1 of type real_T with dimension of 1
• rtY.Out2 of type real_T with dimension of 1

Input ports, Rate2s:

• rtU.In1 of type real_T with dimension of 1

Entry-point functions, Rate2s:

• Initialize entry-point function, void Rate2s_initialize(void). Call this function
once at startup.

1-36

 Model Explicit Function Invocation with Atomic Subsystems

• Output and update entry-point (step), void Rate2s_step(void). Call this function
periodically, every 2 seconds.

• Termination function, void Rate2s_terminate(void). Call this function once
from your shutdown code.

Output ports, Rate2s:

• rtY.Out1 of type real_T with dimension of 1

More About

• “Generate Modular Function Code”
• “Deploy Generated Standalone Executable Programs To Target Hardware”
• “Customize Code Organization and Format”

1-37

1 Modeling Environment for Embedded Coder

Model Explicit Function Invocation with Function-Call Subsystems

Deploy embedded system code from Simulink® models by partitioning a model into
function-call subsystems that you build separately.

Function-Call Subsystem Model

Open the example model rtwdemo_explicitinvocation_funccallsubsys. The
model is configured to display color-coded sample times with annotations. To see them,
after opening the model, update the diagram by pressing Ctrl+D. To display the legend,
press Ctrl+J.

1-38

 Model Explicit Function Invocation with Function-Call Subsystems

This model partitions an algorithm into three function-call subsystems: Rate1s, Rate2s,
and DataBuffer. Use function-call subsystems to model multirate systems explicitly.

Subsystems Rate1s and DataBuffer use a sample time of 1 second. Subsystem Rate2s
usea a sample time of 2 seconds.

This model design is referred to as export function modeling. Simulink constrains the
model to function-call subsystems at the root level. The driving Inport block specifies the
function name.

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Treat each discrete rate as a separate task selected. Simulink applies

multitasking execution because the model uses multiple sample rates.

Scheduling

Simulink® simulates the model based on the model configuration. Simulink propagates
and uses the Inport block sample times to order block execution based on a single-core,
multitasking execution platform.

In the sample time legend, red identifies the fastest discrete rate. Magenta identifies
rates inherited from exported functions, indicating their execution is outside the context
of Simulink scheduling.

Your execution framework must schedule the generated function code and transfer data
between functions.

Your execution framework needs to schedule the generated function code and handle
data transfers between functions. The generated code is simple and you control the order
of execution.

Generate Code and Report

Generate code and a code generation report. The example model generates a report.

Review Generated Code

From the code generation report, review the generated code.

1-39

1 Modeling Environment for Embedded Coder

• ert_main.c is an example main program (execution framework) for the model. This
code shows how to call the exported functions. The code also shows how to initialize,
execute, and terminate the generated code.

• rtwdemo_explicitinvocation_funccallsubsys.c calls the initialization
function and exported functions for subsystems Rate1s, Rate2s, and DataBuffer.

• rtwdemo_explicitinvocation_funccallsubsys.h declares model data
structures and a public interface to the exported entry point functions and data
structures.

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

Code Interface

Open and review the Code Interface Report. Use the information in that report to write
the interface code for your execution framework:

1 Include the generated header files by adding directives #include Rate1s.h,
#include DataBuffer.h, and #include Rate2s.h.

2 Write input data to the generated code for model Inport blocks.
3 Call the generated entry-point functions.
4 Read data from the generated code for model Outport blocks.

Input ports:

• rtU.In1_1s of type real_T with dimension of 1
• rtU.In2_2s of type real_T with dimension of 1

Entry-point functions:

• Initialize entry-point function, void
rtwdemo_explicitinvocation_funccallsubsys_initialize(void). At
startup, call this function once.

• Exported function, void CallEvery1s(void). Call this function as needed.
• Exported function, void CallEvery1s(void). Call this function as needed.
• Exported function, void CallEvery2sAt1sPriority(void). Call this function as

needed.

Output ports:

1-40

 Model Explicit Function Invocation with Function-Call Subsystems

• rtY.Out1 of type real_T with dimension of 1
• rtY.Out2 of type real_T with dimension of 1

More About

• “Generate Component Source Code for Export to External Code Base”
• “Deploy Generated Standalone Executable Programs To Target Hardware”
• “Customize Code Organization and Format”

1-41

1 Modeling Environment for Embedded Coder

Model for AUTOSAR Platform

Different ways are available for using Simulink® to model AUTOSAR atomic software
components.

Prerequisites

The Embedded Coder Support Package for AUTOSAR Standard is required for
generating C and ARXML code for AUTOSAR atomic software components.

Install the AUTOSAR Standard Support Package

“Support Package Installation” (MATLAB)

Multiple Periodic Runnables Configured for Multitasking

Open the example model rtwdemo_autosar_swc. The model shows the implementation
of an AUTOSAR atomic software component (ASWC). Two periodic runnables,
Runnable_1s and Runnable_2s, are modeled with multiple sample rates: 1 second
(In1_1s) and 2 seconds (In2_2s). To maximize execution efficiency, the model is
configured for multitasking.

The model includes an Initialize Function block, which initializes the integrator in
Runnable_2s to a value of 1.

To display color-coded sample rates with annotations and a legend, select Display >
Sample Time > Colors.

1-42

 Model for AUTOSAR Platform

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Fixed-step size (fundamental sample time) set to auto.
• Solver > Treat each discrete rate as a separate task selected.

Scheduling

In the model window, enable sample time color-coding by selecting Display > Sample
Time > Colors. The sample time legend shows the implicit rate grouping. Red

1-43

1 Modeling Environment for Embedded Coder

represents the fastest discrete rate. Green represents the second fastest discrete rate.
Yellow represents the mixture of the two rates.

Because the model has multiple rates and the Solver parameter Treat each discrete
rate as a separate task is selected, the model simulates in multitasking mode. The
model handles the rate transition for In2_2s explicitly with the Rate Transition block.

The Rate Transition block parameter Ensure deterministic data transfer is cleared to
facilitate integration into an AUTOSAR RTE.

The generated code for the model schedules subrates in the model. In this example, the
rate for Inport block In2_2s, the green rate, is a subrate. The generated code properly
transfers data between tasks that run at the different rates.

Generate Code and Report

Generate code and a code generation report. The example model generates a report.

Generated code complies with AUTOSAR so that you can schedule the code with the
AUTOSAR run-time environment (RTE).

Review Generated Code

In the code generation report, review the generated code.

• rtwdemo_autosar_swc.c contains entry points for the code that implements the
model algorithm. This file includes the rate scheduling code.

• rtwdemo_autosar_swc.h declares model data structures and a public interface to
the model entry points and data structures.

• rtwdemo_autosar_swc_private.h contains local define constants and local data
required by the model and subsystems.

• rtwdemo_autosar_swc_types.h provides forward declarations for the real-time
model data structure and the parameters data structure.

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

• rtwdemo_autosar_swc_component.arxml,
rtwdemo_autosar_swc_datatype.arxml,
rtwdemo_autosar_swc_implementation.arxml, and
rtwdemo_autosar_swc_interface.arxml contain elements and objects that
represent AUTOSAR software components, ports, interfaces, data types, and

1-44

 Model for AUTOSAR Platform

packages. You import these files into the Simulink environment by using the
AUTOSAR arxml importer tool.

• Compiler.h, Platform_Types.h, Rte_ASWC.h, Rte_Type.h, and Std_Types.h
contain stub implementations of AUTOSAR RTE functions. Use these files to test the
generated code in Simulink, for example, in software-in-the-loop (SIL) or processor-in-
the-loop (PIL) simulations of the component under test.

Code Interface

Open and review the Code Interface Report. This information is captured in the ARXML
files. The RTE generator uses the ARXML to interface the code into an AUTOSAR RTE.

Input ports:

• Require port, interface: sender-receiver of type real-T of 1 dimension
• Require port, interface: sender-receiver of type real-T of 1 dimension

Entry-point functions:

• Initialization entry-point function, void Runnable_Initialize(void). At startup,
call this function once.

• Output and update entry-point function, void Runnable_1s(void). Call this
function periodically at the fastest rate in the model. For this model, call the function
every second. To achieve real-time execution, attach this function to a timer.

• Output and update entry-point function, void Runnable_2s(void). Call this
function periodically at the second fastest rate in the model. For this model, call the
function every 2 seconds. To achieve real-time execution, attach this function to a
timer.

Output ports:

• Provide port, interface: sender-receiver of type real-T of 1 dimension
• Provide port, interface: sender-receiver of type real-T of 1 dimension

Multiple Runnables Configured as Periodic-Rate Runnable and Asynchronous Function-Call
Runnable

Open the example model rtwdemo_autosar_swc_fcncalls. The model shows the
implementation of an AUTOSAR atomic software component (ASWC). The model uses
an asynchronous function-call runnable, Runnable_Trigger, which is triggerd by an
external event. The model also includes a periodic rate-based runnable, Runnable_1s.
The Rate Transition blocks represent interrunnable variables.

1-45

1 Modeling Environment for Embedded Coder

Use this approach to model the JMAAB complex control model type beta architecture. In
JMAAB type beta modeling, at the top level of a control model, you place function layers
above scheduling layers.

The model includes an Initialize Function block, which initializes the unit delay in
Runnable_1s to a value of 0.

To display color-coded sample rates with annotations and a legend, select Display >
Sample Time > Colors.

1-46

 Model for AUTOSAR Platform

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Fixed-step size (fundamental sample time) set to 1.
• Solver > Treat each discrete rate as a separate task cleared.

Scheduling

In the model window, enable sample time color-coding by selecting Display > Sample
Time > Colors. The sample time legend shows the implicit rate grouping. Red
represents the discrete rate. Magenta represents the asynchronous function trigger.
Yellow represents the mixture of two rates.

The asynchronous trigger runnable runs at asynchronous rates (the Sample time type
parameter of the function-call subsystem Trigger block is set to |triggered]) while the
periodic rate runnable runs at the specified discrete rate. The generated code manages
the rates by using single-tasking assumptions. For models with one discrete rate, the
code generator does not produce scheduling code because there is only a single rate to
execute. Use this technique for a single-rate application when you have one periodic
runnable.

The model handles transitions between the asynchronous and discrete rates of the
interrunnables with the two Rate Transition blocks. The Rate Transition block
parameter Ensure deterministic data transfer is cleared to facilitate integration into
an AUTOSAR RTE.

Generate Code and Report

Generate code and a code generation report. The example model generates a report.

Generated code complies with AUTOSAR so that you can schedule the code with the
AUTOSAR run-time environment (RTE).

Review Generated Code

In the code generation report, review the generated code.

• rtwdemo_autosar_swc_fcncalls.c contains entry points for the code that
implements the model algorithm. This file includes the rate scheduling code.

1-47

1 Modeling Environment for Embedded Coder

• rtwdemo_autosar_swc_fcncalls.h declares model data structures and a public
interface to the model entry points and data structures.

• rtwdemo_autosar_swc_fcncalls_private.h contains local define constants
and local data required by the model and subsystems.

• rtwdemo_autosar_swc_fcncalls_types.h provides forward declarations for the
real-time model data structure and the parameters data structure.

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

• rtwdemo_autosar_swc_fcncalls_component.arxml,
rtwdemo_autosar_swc_fcncalls_datatype.arxml,
rtwdemo_autosar_swc_fcncalls_implementation.arxml, and
rtwdemo_autosar_swc_fcncalls_interface.arxml contain elements and
objects that represent AUTOSAR software components, ports, interfaces, data types,
and packages. You import these files into the Simulink environment by using the
AUTOSAR arxml importer tool.

• Compiler.h, Platform_Types.h, Rte_ASWC.h, Rte_Type.h, and Std_Types.h
contain stub implementations of AUTOSAR RTE functions. Use these files to test the
generated code in Simulink, for example, in software-in-the-loop (SIL) or processor-in-
the-loop (PIL) simulations of the component under test.

Code Interface

Open and review the Code Interface Report. This information is captured in the ARXML
files. The RTE generator uses the ARXML to interface the code into an AUTOSAR RTE.

Input port:

• Require port, interface: sender-receiver of type real-T of 1 dimension

Entry-point functions:

• Initialization entry-point function, void Runnable_Initialize(void). At startup,
call this function once.

• Simulink function, void Runnable_1s(void). Call this function periodically at the
fastest rate in the model. For this model, call the function every second. To achieve
real-time execution, attach this function to a timer.

• Exported function, void Runnable_Trigger(void). Call this function at any time
from an external trigger.

1-48

 Model for AUTOSAR Platform

Output port:

• Provide port, interface: sender-receiver of type real-T of 1 dimension

Multiple Runnables Configured As Function-Call Subsystem and Simulink Function

Open the example model rtwdemo_autosar_swc_slfcns. The model shows the
implementation of an AUTOSAR atomic software component (ASWC). The model
includes one periodic rate runnable, Runnable_1s, that uses a function-call subsystem,
SS1. The model also includes a Simulink function, readData, to provide a value
(CurVal) to clients that request it.

The model includes an Initialize Function block, which initializes the unit delay in
subsystem RollingCounter to a value of 0.

To display color-coded sample rates with annotations and a legend, select Display >
Sample Time > Colors.

1-49

1 Modeling Environment for Embedded Coder

Use function-call subsystems:

• When it is difficult or not possible to specify system events in a Simulink model.

1-50

 Model for AUTOSAR Platform

• To achieve complex multirate scheduling of runnables. Model each rate as a separate
function-call subsystem.

Relevant Model Configuration Parameter Settings

• Solver > Type set to Fixed-step.
• Solver > Solver set to discrete (no continuous states).
• Solver > Fixed-step size (fundamental sample time) set to 1.
• Solver > Treat each discrete rate as a separate task selected.

Scheduling

In the model window, enable sample time color-coding by clicking Display > Sample
Time > Colors. The sample time legend shows the implicit rate grouping. Red identifies
the discrete rate. Magenta identifies rates inherited from exported functions, indicating
their execution is outside the context of Simulink scheduling.

Your execution framework must schedule the generated function code and handle data
transfers between functions.

Generate Code and Report

Generate code and a code generation report. The example model generates a report.

The code generator:

• Produces an AUTOSAR runnable for the function-call subsystem at the root level of
the model.

• Implements signal connections between runnables as AUTOSAR interrunable
variables (IRVs).

Generated code complies with AUTOSAR so that you can schedule the code with the
AUTOSAR run-time environment (RTE).

Review Generated Code

In the code generation report, review the generated code.

• rtwdemo_autosar_swc_slfcns.c contains entry points for the code that
implements the model algorithm. This file includes the rate scheduling code.

• rtwdemo_autosar_swc_slfcns.h declares model data structures and a public
interface to the model entry points and data structures.

1-51

1 Modeling Environment for Embedded Coder

• rtwdemo_autosar_swc_slfcns_private.h contains local define constants and
local data required by the model and subsystems.

• rtwdemo_autosar_swc_slfcns_types.h provides forward declarations for the
real-time model data structure and the parameters data structure.

• readData.c contains code for the Simulink function.
• readData_private.h contains local define constants and local data required by

the function.
• readData.h declares data structures and a public interface for calling the function.
• rtwtypes.h defines data types, structures, and macros that the generated code

requires.
• rtwdemo_autosar_swc_slfcns_component.arxml,

rtwdemo_autosar_swc_slfcns_datatype.arxml,
rtwdemo_autosar_swc_slfcns_implementation.arxml, and
rtwdemo_autosar_swc_slfcns_interface.arxml contain elements and objects
that represent AUTOSAR software components, ports, interfaces, data types,
and packages. You import these files into the Simulink environment by using the
AUTOSAR arxml importer tool.

• Compiler.h, Platform_Types.h, Rte_ASWC.h, Rte_Type.h, and Std_Types.h
contain stub implementations of AUTOSAR RTE functions. Use these files to test the
generated code in Simulink, for example, in software-in-the-loop (SIL) or processor-in-
the-loop (PIL) simulations of the component under test.

Code Interface

Open and review the Code Interface Report. This information is captured in the ARXML
files. The RTE generator uses the ARXML to interface the code into an AUTOSAR RTE.

Input ports:

• Require port, interface: sender-receiver of type uint16-T of 1 dimension
• Require port, interface: sender-receiver of type real-T of 1 dimension Entry-point

functions:

Entry-point functions:

• Initialization entry-point function, void Runnable_Init(void). At startup, call
this function once.

• Exported function, void Runnable_1s(void). Call this function periodically, every
second.

1-52

 Model for AUTOSAR Platform

• Simulink function, Std_ReturnType readData(real_T Data[2]). Call this
function at any time.

Output ports:

• Provide port, interface: sender-receiver of type uint16-T of 1 dimension

More About

• “AUTOSAR Component Creation”
• “AUTOSAR Code Generation”

1-53

2

Modeling in Simulink Coder

• “Configure a Model for Code Generation” on page 2-2
• “Supported Products and Block Usage” on page 2-4
• “Modeling Semantic Considerations” on page 2-27
• “Modeling Guidelines for Blocks” on page 2-35
• “Modeling Guidelines for Subsystems” on page 2-36
• “Modeling Guidelines for Charts” on page 2-38
• “Modeling Guidelines for MATLAB Functions” on page 2-40
• “Modeling Guidelines for Model Configuration” on page 2-41

2 Modeling in Simulink Coder

Configure a Model for Code Generation

Model configuration parameters determine the method for generating the code and the
resulting format.

1 Open rtwdemo_throttlecntrl and save a copy as throttlecntrl in a writable
location on your MATLAB path.

Note: This model uses Stateflow® software.

2 Open the Configuration Parameters dialog box Solver pane. To generate code for a
model, you must configure the model to use a fixed-step solver. For this example, set
the parameters as noted in the following table.

Parameter Setting Effect on Generated Code

Type Fixed-step Maintains a constant
(fixed) step size, which
is required for code
generation

Solver discrete (no

continuous states)

Applies a fixed-step
integration technique
for computing the state
derivative of the model

Fixed-step size .001 Sets the base rate; must
be the lowest common
multiple of all rates in the
system

3 Open the Code Generation pane and make sure that System target file is set to
grt.tlc.

2-2

 Configure a Model for Code Generation

Note: The GRT (Generic Real-Time Target) configuration requires a fixed-step
solver. However, the rsim.tlc system target file supports variable step code
generation.

The system target file (STF) defines a target, which is an environment for generating
and building code for execution on a certain hardware or operating system platform.
For example, one property of a target is code format. The grt configuration requires a
fixed step solver and the rsim.tlc supports variable step code generation.

4 Open the Code Generation > Custom Code pane, and under Include list of
additional, select Include directories. In the Include directories text field,
enter:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

This directory includes files that are required to build an executable for the model.
5 Apply your changes and close the dialog box.

2-3

2 Modeling in Simulink Coder

Supported Products and Block Usage

In this section...

“Related Products” on page 2-4
“Simulink Built-In Blocks That Support Code Generation” on page 2-6
“Simulink Block Data Type Support Table” on page 2-26
“Block Set Support for Code Generation” on page 2-26

Related Products

The following table summarizes MathWorks products that extend and complement
Simulink Coder software. For information about these and other MathWorks products,
see www.mathworks.com.

Product Extends Code Generation Capabilities for ...

Aerospace Blockset™ Aircraft, spacecraft, rocket, propulsion systems,
and unmanned airborne vehicles

Audio System Toolbox™ Audio processing systems
Automated Driving System Toolbox™ Designing, simulating, and testing ADAS and

autonomous driving systems
Communications System Toolbox™ Physical layer of communication systems
Computer Vision System Toolbox™ Video processing, image processing, and

computer vision systems
Control System Toolbox™ Linear control systems
DSP System Toolbox™ Signal processing systems
Embedded Coder Embedded systems, rapid prototyping boards,

and microprocessors in mass production
Fixed-Point Designer™ Fixed-point systems
Fuzzy Logic Toolbox™ System designs based on fuzzy logic
HDL Verifier™ Direct programming interface (DPI) component

and transaction-level model (TLM) generation
from Simulink

IEC Certification Kit ISO 26262 and IEC 61508 certification

2-4

http://www.mathworks.com

 Supported Products and Block Usage

Product Extends Code Generation Capabilities for ...

Model-Based Calibration Toolbox™ Developing processes for systematically
identifying optimal balance of engine
performance, emissions, and fuel economy,
and reusing statistical models for control
design, hardware-in-the-loop (HIL) testing, or
powertrain simulation

Model Predictive Control Toolbox™ Controllers that optimize performance of multi-
input and multi-output systems that are subject
to input and output constraints

Neural Network Toolbox™ Neural networks
Phased Array System Toolbox™ Sensor array systems in radar, sonar, wireless

communications, and medical imaging
applications

Polyspace® Bug Finder™ MISRA-C compliance and static analysis of
generated code

Polyspace Code Prover™ Formal analysis of generated code
Powertrain Blockset™ Real-time testing of powertrain applications
Robotics System Toolbox™ Robot Operating System (ROS) node generation
Simscape™ Systems spanning mechanical, electrical,

hydraulic, and other physical domains as
physical networks

Simscape Driveline™ Driveline (drivetrain) systems
Simscape Electronics™ Electronic and electromechanical systems
Simscape Fluids™ Hydraulic power and control systems
Simscape Multibody™ Three-dimensional mechanical systems
Simscape Power Systems™ Systems that generate, transmit, distribute, and

consume electrical power
Simulink 3D Animation™ Systems with 3D visualizations
Simulink Code Inspector™ Automated reviews of generated code
Simulink Design Optimization™ Systems requiring maximum overall system

performance

2-5

2 Modeling in Simulink Coder

Product Extends Code Generation Capabilities for ...

Simulink Desktop Real-Time™ Rapid prototyping or hardware-in-the-loop
(HIL) simulation of control system and signal
processing algorithms

Simulink Real-Time™ Rapid control prototyping, hardware-in-the-loop
(HIL) simulation, and other real-time testing
applications

Simulink Report Generator™ Automatically generating project documentation
in a standard format

Simulink Test™ Software-in-the-loop (SIL), processor-in-the-loop
(PIL), and real-time hardware-in-the-loop (HIL)
testing of generated code

Simulink Verification and Validation™ Applications requiring automated requirements
tracing, model standards compliance checking,
and test harness generation

Stateflow State machines and flow charts
System Identification Toolbox™ Systems constructed from measured input-

output data

Support exceptions:

• Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

• Nonlinear ARX models that contain custom
regressors

• neuralnet nonlinearities
• customnet nonlinearities

Vehicle Network Toolbox™ CAN blocks for Accelerator and Rapid
Accelerator simulations and code deployment on
Windows®

Simulink Built-In Blocks That Support Code Generation

The following tables summarize code generator support for Simulink blocks. There is a
table for each block library. For more detail, including data types each block supports, in

2-6

 Supported Products and Block Usage

the MATLAB Command Window, type showblockdatatypetable, or consult the block
reference pages. For some blocks, the generated code might rely on memcpy or memset
(string.h).

• Additional Math and Discrete: Additional Discrete
• Additional Math and Discrete: Increment/Decrement
• Continuous
• Discontinuities
• Discrete
• Logic and Bit Operations
• Lookup Tables
• Math Operations
• Model Verification
• Model-Wide Utilities
• Ports & Subsystems
• Signal Attributes
• Signal Routing
• Sinks
• Sources
• User-Defined

2-7

2 Modeling in Simulink Coder

Additional Math and Discrete: Additional Discrete

Block Support Notes

Fixed-Point State-Space
Transfer Fcn Direct Form II
Transfer Fcn Direct Form II Time Varying

The code generator does not explicitly group
primitive blocks that constitute a nonatomic
masked subsystem block in the generated code.
This flexibility allows for more efficient code
generation. In certain cases, you can achieve
grouping by configuring the masked subsystem
block to execute as an atomic unit by selecting the
Treat as atomic unit option.

2-8

 Supported Products and Block Usage

Additional Math and Discrete: Increment/Decrement

Block Support Notes

Decrement Real World
Decrement Stored Integer

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Decrement Time To Zero Supports code generation.
Decrement To Zero
Increment Real World
Increment Stored Integer

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Continuous

Block Support Notes

Derivative
Integrator
Integrator Limited
(Simulink)
PID Controller
PID Controller (2DOF)
Second-Order Integrator
(Simulink)
Second-Order Integrator
Limited (Simulink)
State-Space
Transfer Fcn
Transport Delay
Variable Time Delay
(Simulink)

Not recommended for production-quality code. Relates to resource
limits and restrictions on speed and memory often found in
embedded systems. The code generated can contain dynamic
allocation and freeing of memory, recursion, additional memory
overhead, and widely-varying execution times. While the code
is functionally valid and generally acceptable in resource-rich
environments, smaller embedded targets often cannot support such
code.

In general, consider using the Simulink Model Discretizer to map
continuous blocks into discrete equivalents that support production
code generation. To start the Model Discretizer, select Analysis
> Control Design > Model Discretizer. One exception is the
Second-Order Integrator block because, for this block, the Model
Discretizer produces an approximate discretization.

2-9

2 Modeling in Simulink Coder

Block Support Notes

Variable Transport Delay
Zero-Pole

Discontinuities

Block Support Notes

Backlash Supports code generation.
Coulomb and Viscous
Friction (Simulink)

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Dead Zone Supports code generation.
Dead Zone Dynamic The code generator does not explicitly group primitive blocks that

constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Hit Crossing Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Quantizer Supports code generation.
Rate Limiter Cannot use inside a triggered subsystem hierarchy.
Rate Limiter Dynamic The code generator does not explicitly group primitive blocks that

constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked

2-10

 Supported Products and Block Usage

Block Support Notes

subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Relay
Saturation

Support code generation.

Saturation Dynamic
Wrap To Zero

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Discrete

Block Support Notes

Delay Supports code generation.
Difference • The code generator does not explicitly group primitive blocks that

constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation.
In certain cases, you can achieve grouping by configuring the
masked subsystem block to execute as an atomic unit by selecting
the Treat as atomic unit option.

• Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Discrete Derivative • Depends on absolute time when used inside a triggered
subsystem hierarchy.

• Supports code generation.
Discrete Filter
Discrete FIR Filter

Support code generation.

2-11

2 Modeling in Simulink Coder

Block Support Notes

PID Controller
PID Controller (2DOF)

• Depends on absolute time when used inside a triggered
subsystem hierarchy.

• Support code generation.
Discrete State-Space
Discrete Transfer Fcn
Discrete Zero-Pole

Support code generation.

Discrete-Time Integrator Depends on absolute time when used inside a triggered subsystem
hierarchy.

Enabled Delay (Simulink) Supports code generation.
First-Order Hold Not recommended for production code. Relates to resource limits and

restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Memory
Resettable Delay
Tapped Delay

Support code generation.

Transfer Fcn First Order
Transfer Fcn Lead or Lag
Transfer Fcn Real Zero

The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Unit Delay
Variable Integer Delay
Zero-Order Hold

Support code generation.

Logic and Bit Operations

2-12

 Supported Products and Block Usage

Block Support Notes

Bit Clear
Bit Set
Bitwise Operator
Combinatorial Logic
Compare to Constant
Compare to Zero
Detect Change
Detect Decrease
Detect Fall Negative
Detect Fall Nonpositive
Detect Increase
Detect Rise Nonnegative
Detect Rise Positive
Extract Bits
Interval Test
Interval Test Dynamic
Logical Operator
Relational Operator
Shift Arithmetic

Support code generation.

Lookup Tables

Block Support Notes

Cosine The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit check box.

Direct Lookup Table (n-D) Support code generation.

2-13

2 Modeling in Simulink Coder

Block Support Notes

Interpolation Using
Prelookup
1-D Lookup Table
2-D Lookup Table
n-D Lookup Table
Lookup Table Dynamic
Prelookup
Sine (Simulink) The code generator does not explicitly group primitive blocks that

constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In
certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Math Operations

Block Support Notes

Abs
Add

Support code generation.

Algebraic Constraint Ignored during code generation.
Assignment
Bias
Complex to Magnitude-
Angle
Complex to Real-Imag
Divide
Dot Product
Find Nonzero Elements
(Simulink)
Gain
Magnitude-Angle to
Complex

Support code generation.

2-14

 Supported Products and Block Usage

Block Support Notes

Math Function (10^u)
Math Function (conj)
Math Function (exp)
Math Function (hermitian)
Math Function (hypot)
Math Function (log)
Math Function (log10)
Math Function
(magnitude^2)
Math Function (mod)
Math Function (pow)
Math Function (reciprocal)
Math Function (rem)
Math Function (square)
Math Function (transpose)
Matrix Concatenate
(Simulink)
MinMax
MinMax Running Resettable
Permute Dimensions
Polynomial
Product
Product of Elements
Real-Imag to Complex
Reciprocal Sqrt (Simulink)
Reshape
Rounding Function
Sign

2-15

2 Modeling in Simulink Coder

Block Support Notes

Signed Sqrt (Simulink)
Sine Wave Function • Does not refer to absolute time when configured for sample-

based operation. Depends on absolute time when in time-based
operation.

• Depends on absolute time when used inside a triggered
subsystem hierarchy.

Slider Gain
Sqrt
Squeeze
Subtract
Sum
Sum of Elements

Support code generation.

Trigonometric Function Functions asinh, acosh, and atanh are not supported by all
compilers. If you use a compiler that does not support those
functions, the software issues a warning for the block and the
generated code fails to link.

Unary Minus
Vector Concatenate
(Simulink)
Weighted Sample Time
Math

Support code generation.

Model Verification

Block Support Notes

Assertion Supports code generation.
Check Discrete Gradient Not recommended for production code. Relates to resource limits and

restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being

2-16

 Supported Products and Block Usage

Block Support Notes

suitable for production code. Thus, blocks suitable for production
code remain suitable.

Check Dynamic Gap
Check Dynamic Lower
Bound
Check Dynamic Range
Check Dynamic Upper
Bound

Support code generation.

Check Input Resolution
Check Static Gap
Check Static Lower Bound
Check Static Range
Check Static Upper Bound

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Model-Wide Utilities

Block Support Notes

Block Support Table Ignored during code generation.
DocBlock Uses the template symbol you specify for the Embedded Coder

Flag block parameter to add comments to generated code. Requires
an Embedded Coder license. For more information, see “Use a
Simulink DocBlock to Add a Comment” on page 36-8.

Model Info
Timed-Based Linearization
Trigger-Based Linearization

Ignored during code generation.

Ports & Subsystems

Block Support Notes

Atomic Subsystem
(Simulink)

Support code generation.

2-17

2 Modeling in Simulink Coder

Block Support Notes

CodeReuse Subsystem
(Simulink)
Configurable Subsystem
Enable
Enabled Subsystem
Enabled and Triggered
Subsystem
For Each Subsystem
For Iterator Subsystem
Function-Call Feedback
Latch
Function-Call Generator
Function-Call Split
Function-Call Subsystem
If
If Action Subsystem
Inport (In1)
Model
Model Variants
Outport (Out1)
Resettable Subsystem
Subsystem
Switch Case
Switch Case Action
Subsystem
Trigger
Triggered Subsystem
Unit System Configuration
Variant Subsystem

2-18

 Supported Products and Block Usage

Block Support Notes

While Iterator Subsystem

Signal Attributes

Block Support Notes

Bus to Vector (Simulink)
Data Type Conversion
Data Type Conversion
Inherited
Data Type Duplicate
Data Type Propagation
(Simulink)
Data Type Scaling Strip

Support code generation.

IC Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Probe Supports code generation.
Rate Transition • Supports code generation.

• Cannot use inside a triggered subsystem hierarchy.
Signal Conversion
Signal Specification
Unit Conversion
Weighted Sample Time
Width

Support code generation.

Signal Routing

2-19

2 Modeling in Simulink Coder

Block Support Notes

Bus Assignment
Bus Creator
Bus Selector
Data Store Memory
Data Store Read
Data Store Write
Demux

Support code generation.

Environment Controller Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

From
Goto
Goto Tag Visibility
Index Vector

Support code generation.

Manual Switch Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Manual Variant Sink
Manual Variant Source

Support code generation.

2-20

 Supported Products and Block Usage

Block Support Notes

Merge When multiple signals connected to a Merge block have a non-Auto
storage class, all non-Auto signals connected to that block must be
identically labeled and have the same storage class. When Merge
blocks connect directly to one another, these rules apply to all
signals connected to Merge blocks in the group.

Multiport Switch
Mux
Selector
State Reader
State Writer
Switch
Variant Sink
Variant Source
Vector Concatenate

Support code generation.

Sinks

Block Support Notes

Display
Floating Scope (Simulink)

Ignored for code generation.

Outport (Out1) Supports code generation.
Scope (Simulink) Ignored for code generation.
Stop Simulation • Not recommended for production code. Relates to resource limits

and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

• Generated code stops executing when the stop condition is true.
Terminator Supports code generation.

2-21

2 Modeling in Simulink Coder

Block Support Notes

To File Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

To Workspace
XY Graph

Ignored for code generation.

Sources

Block Support Notes

Band-Limited White Noise Cannot use inside a triggered subsystem hierarchy.
Chirp Signal
Clock

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Constant Supports code generation.
Counter Free-Running Not recommended for production code. Relates to resource limits and

restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

2-22

 Supported Products and Block Usage

Block Support Notes

Counter Limited • The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation.
In certain cases, you can achieve grouping by configuring the
masked subsystem block to execute as an atomic unit by selecting
the Treat as atomic unit option.

• Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

Digital Clock Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Enumerated Constant Supports code generation.
From File
From Spreadsheet

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

From Workspace Ignored for code generation.
Ground Support code generation.

2-23

2 Modeling in Simulink Coder

Block Support Notes

Inport (In1)
Pulse Generator Cannot use inside a triggered subsystem hierarchy. Does not refer to

absolute time when configured for sample-based operation. Depends
on absolute time when in time-based operation.

Ramp Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Random Number Supports code generation.
Repeating Sequence • Not recommended for production code. Relates to resource limits

and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production code.
Thus, blocks suitable for production code remain suitable.

• Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.

Repeating Sequence
Interpolated

• The code generator does not explicitly group primitive blocks that
constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation.
In certain cases, you can achieve grouping by configuring the
masked subsystem block to execute as an atomic unit by selecting
the Treat as atomic unit option.

• Cannot use inside a triggered subsystem hierarchy.
Repeating Sequence Stair The code generator does not explicitly group primitive blocks that

constitute a nonatomic masked subsystem block in the generated
code. This flexibility allows for more efficient code generation. In

2-24

 Supported Products and Block Usage

Block Support Notes

certain cases, you can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by selecting the Treat
as atomic unit option.

Signal Builder
Signal Generator

Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Sine Wave • Depends on absolute time when used inside a triggered
subsystem hierarchy.

• Does not refer to absolute time when configured for sample-
based operation. Depends on absolute time when in time-based
operation.

Step Not recommended for production code. Relates to resource limits and
restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

Uniform Random Number Supports code generation.
Waveform Generator Not recommended for production code. Relates to resource limits and

restrictions on speed and memory often found in embedded systems.
Generated code can contain dynamic allocation and freeing of
memory, recursion, additional memory overhead, and widely-varying
execution times. While the code is functionally valid and generally
acceptable in resource-rich environments, smaller embedded targets
often cannot support such code. Usually, blocks evolve toward being
suitable for production code. Thus, blocks suitable for production
code remain suitable.

2-25

2 Modeling in Simulink Coder

User-Defined

Block Support Notes

Fcn
Function Caller
Initialize Function

Support code generation.

Interpreted MATLAB
Function

Consider using the MATLAB Function block instead.

Level-2 MATLAB S-
Function

Ignored during code generation.

MATLAB Function
MATLAB System

Support code generation.

S-Function
S-Function Builder

S-functions that call into MATLAB are not supported for code
generation.

Simulink Function
Terminate Function

Support code generation.

Simulink Block Data Type Support Table

The Simulink Block Data Type Support table summarizes characteristics of blocks in the
Simulink and Fixed-Point Designer block libraries, including whether or not they are
recommended for use in production code generation. To view this table, in the MATLAB
Command Window, type showblockdatatypetable, or consult the block reference
pages.

Block Set Support for Code Generation

Several products that include blocks are available for you to consider for code generation.
However, before using the blocks for one of these products, consult the documentation for
that product to confirm which blocks support code generation.

2-26

 Modeling Semantic Considerations

Modeling Semantic Considerations

In this section...

“Data Propagation” on page 2-27
“Sample Time Propagation” on page 2-29
“Latches for Subsystem Blocks” on page 2-30
“Block Execution Order” on page 2-30
“Algebraic Loops” on page 2-32

Data Propagation

The first stage of code generation is compilation of the block diagram. This stage is
analogous to that of a C or C++ program. The compiler carries out type checking and
preprocessing. Similarly, the Simulink engine verifies that input/output data types of
block ports are consistent, line widths between blocks are of expected thickness, and the
sample times of connecting blocks are consistent.

The Simulink engine propagates data from one block to the next along signal lines. The
data propagated consists of

• Data type
• Line widths
• Sample times

You can verify what data types a Simulink block supports by typing

showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command above.

The Simulink engine typically derives signal attributes from a source block. For example,
the Inport block's parameters dialog box specifies the signal attributes for the block.

2-27

2 Modeling in Simulink Coder

In this example, the Inport block has a port width of 3, a sample time of .01 seconds, the
data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the Inport
block through a simple block diagram.

In this example, the Gain and Outport blocks inherit the attributes specified for the
Inport block.

2-28

 Modeling Semantic Considerations

Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can sometimes lead
to unexpected and unintended sample time assignments. Since a block may specify an
inherited sample time, information available at the outset is often insufficient to compile
a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample times to
those blocks that have inherited sample times but that have not yet been assigned a
sample time. Thus, the engine continues to fill in the blanks (the unknown sample times)
until sample times have been assigned to as many blocks as possible. Blocks that still do
not have a sample time are assigned a default sample time.

For a completely deterministic model (one where no sample times are set using the
above rules), you should explicitly specify the sample times of your source blocks. Source
blocks include root inport blocks and blocks without input ports. You do not have to set
subsystem input port sample times. You might want to do so, however, when creating
modular systems.

An unconnected input implicitly connects to ground. For ground blocks and ground
connections, the sample time is always constant (inf).

All blocks have an inherited sample time (Ts = -1). They are assigned a sample time of (Tf
- Ti)/50.

Blocks Whose Outputs Have Constant Values

When you display sample time colors, by default, Constant blocks appear magenta
in color to indicate that the block outputs have constant values during simulation.
Downstream blocks whose output values are also constant during simulation, such as
Gain blocks, similarly appear magenta if they use an inherited sample time. The code
generated for these blocks depends in part on the tunability of the block parameters.

If you set Configuration Parameters > Optimization > Signals and Parameters >
Default parameter behavior to Inlined, the block parameters are not tunable in the
generated code. Because the block outputs are constant, the code generator eliminates
the block code due to constant folding. If the code generator cannot fold the code, or
if you select settings to disable constant folding, the block code appears in the model
initialization function. The generated code is more efficient because it does not compute
the outputs of these blocks during execution.

2-29

2 Modeling in Simulink Coder

However, if you configure a block or model so that the block parameters appear in
the generated code as tunable variables, the code generator represents the blocks in a
different way. Block parameters are tunable if, for example:

• You set Default parameter behavior to Tunable. By default, numeric block
parameters appear as tunable fields of a global parameter structure.

• You use a tunable parameter, such as a Simulink.Parameter object that uses a
storage class other than Auto, as the value of one or more numeric block parameters.
These block parameters are tunable regardless of the setting that you choose for
Default parameter behavior.

If a block parameter is tunable, the generated code must compute the block outputs
during execution. Therefore, the block code appears in the model step function. If the
model uses multiple discrete rates, the block code appears in the output function for the
fastest downstream rate that uses the block outputs.

Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call subsystem, you
can use latch options to preserve input values while the subsystem executes. The Inport
block latch options include:

For Use

Triggered subsystems Latch input by delaying outside signal
Function-call
subsystems

Latch input for feedback signals of function-call
subsystem outputs

When you use Latch input for feedback signals of function-call subsystem
outputs for a function-call subsystem, the code generator

• Preserves latches in generated code regardless of optimizations that might be set
• Places the code for latches at the start of a subsystem's output/update function

For more information on these options, see the block description of Inport.

Block Execution Order

Once the Simulink engine compiles the block diagram, it creates a model.rtw file
(analogous to an object file generated from a C or C++ file). The model.rtw file contains

2-30

 Modeling Semantic Considerations

the connection information of the model, as well as the signal attributes. Thus, the
timing engine in can determine when blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in handwritten code)
in a model. For example, in the next figure the disconnected_trigger model on the
left has its trigger port connected to ground, which can lead to the blocks inheriting a
constant sample time. Calling the trigger function, f(), directly from user code does not
work. Instead, you should use a function-call generator to specify the rate at which f()
should be executed, as shown in the connected_trigger model on the right.

Disconnected
Trigger

Triggered
Subsystem

In1

1 In1 Out1
f0

Out1
1

Triggered
Subsystem

In1

1 In1 Out1
f0

Out1
1

f0

Function-call
Generator

Connected
Trigger

Instead of the function-call generator, you could use another block that can drive the
trigger port. Then, you should call the model's main entry point to execute the trigger
function.

For multirate models, a common use of the code generator is to generate code for
individual models separately and then manually code the I/O between the generated
code modules. This approach places the burden of data consistency between models on
the developer of the models. Another approach is to let Simulink and the code generator
maintain data consistency between rates and generate multirate code for use in a
multitasking environment. The Rate Transition block is able to interface periodic and
asynchronous signals. For a description of the Simulink Coder block libraries, see
“Asynchronous Events” (Simulink Coder). For more information on multirate code
generation, see “Modeling for Multitasking Execution” (Simulink Coder).

2-31

2 Modeling in Simulink Coder

Algebraic Loops

Algebraic loops are circular dependencies between variables. This prevents the
straightforward direct computation of their values. For example, in the case of a system
of equations

• x = y + 2

• y = -x

the values of x and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for x and y (in an intelligent
manner, for example, using gradient based search) or “solve” the system of equations. In
the previous example, solving the system into an explicit form leads to

• 2x = 2

• y = -x

• x = 1

• y = -1

An algebraic loop exists whenever the output of a block having direct feedthrough (such
as Gain, Sum, Product, and Transfer Fcn) is fed back as an input to the same block. The
Simulink engine is often able to solve models that contain algebraic loops, such as the
next diagram.

The code generator does not produce code that solves algebraic loops. This restriction
includes models that use Algebraic Constraint blocks in feedback paths. However, the

2-32

 Modeling Semantic Considerations

Simulink engine can often eliminate algebraic loops that arise, by grouping equations
in certain ways in models that contain them. It does this by separating the update
and output functions to avoid circular dependencies. For details, see “Algebraic Loops”
(Simulink).

Algebraic Loops in Triggered Subsystems

While the Simulink engine can minimize algebraic loops involving atomic and enabled
subsystems, a special consideration applies to some triggered subsystems. An example
for which code can be generated is shown in the following model and triggered
subsystem.

The default Simulink behavior is to combine output and update methods for the
subsystem, which creates an apparent algebraic loop, even though the Unit Delay block
in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the output and
update methods of triggered and enabled-triggered subsystems when feasible. If
you want the code generator to take advantage of this feature, select the Minimize
algebraic loop occurrences check box in the Subsystem Parameters dialog box. Select
this option to avoid algebraic loop warnings in triggered subsystems involved in loops.

Note: If you check this box, the generated code for the subsystem might contain split
output and update methods, even if the subsystem is not actually involved in a loop.
Also, if a direct feedthrough block (such as a Gain block) is connected to the inport in the

2-33

2 Modeling in Simulink Coder

above triggered subsystem, the Simulink engine cannot solve the problem, and the code
generator is unable to generate code.

A similar Minimize algebraic loop occurrences option appears on the Model
Referencing pane of the Configuration Parameters dialog box. Selecting it enables the
Simulink Coder software to generate code for models containing Model blocks that are
involved in algebraic loops.

2-34

 Modeling Guidelines for Blocks

Modeling Guidelines for Blocks

Code generation modeling guidelines include recommended model settings, block
usage, and block parameters. When you develop models for code generation, use these
guidelines.

For more information, see “Modeling Guidelines” (Simulink).

Code
Generation
Modeling
Guidelines

“cgsl_0101: Zero-based indexing” (Simulink)

“cgsl_0102: Evenly spaced breakpoints in lookup tables” (Simulink)

“cgsl_0103: Precalculated signals and parameters” (Simulink)

“cgsl_0104: Modeling global shared memory using data stores”
(Simulink)

“cgsl_0105: Modeling local shared memory using data stores”
(Simulink)

“cgsl_0201: Redundant Unit Delay and Memory blocks” (Simulink)

See Also
“Modeling Guidelines for Subsystems” on page 2-36 | “Modeling Guidelines for
Charts” on page 2-38 | “Modeling Guidelines for MATLAB Functions” on page
2-40 | “Modeling Guidelines for Model Configuration” on page 2-41

2-35

2 Modeling in Simulink Coder

Modeling Guidelines for Subsystems

When you develop models and generate code for subsystems, use the modeling guideline
recommendations.

For more information, see “Modeling Guidelines” (Simulink).

Code
Generation
Modeling
Guidelines

“cgsl_0204: Vector and bus signals crossing into atomic subsystems or
Model blocks” (Simulink)

High-Integrity
Systems
Modeling
Guidelines

“hisl_0009: Usage of For Iterator Subsystem blocks” (Simulink)

“hisl_0010: Usage of If blocks and If Action Subsystem blocks”
(Simulink)

“hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks”
(Simulink)

“hisl_0023: Verification of model and subsystem variants” (Simulink)
MathWorks
Automotive
Advisory
Board (MAAB)
Control
Algorithm
Guidelines

db_0040: Model hierarchy (Simulink)

db_0042: Port block in Simulink models (Simulink)

db_0081: Unconnected signals, block inputs and block outputs
(Simulink)

db_0143: Similar block types on the model levels (Simulink)

db_0144: Use of Subsystems (Simulink)

db_0146: Triggered, enabled, conditional Subsystems (Simulink)

jc_0111: Direction of Subsystem (Simulink)

jc_0201: Usable characters for Subsystem names (Simulink)

jc_0231: Usable characters for block names (Simulink)

jc_0281: Naming of Trigger Port block and Enable Port block
(Simulink)

2-36

 Modeling Guidelines for Subsystems

jc_0321: Trigger layer (Simulink)

jc_0331: Structure layer (Simulink)

jc_0351: Methods of initialization (Simulink)

jm_0002: Block resizing (Simulink)

na_0005: Port block name visibility in Simulink models (Simulink)

na_0006: Guidelines for mixed use of Simulink and Stateflow
(Simulink)

na_0008: Display of labels on signals (Simulink)

na_0009: Entry versus propagation of signal labels (Simulink)

na_0012: Use of Switch vs. If-Then-Else Action Subsystem (Simulink)

See Also
“Modeling Guidelines for Blocks” on page 2-35 | “Modeling Guidelines for Charts”
on page 2-38 | “Modeling Guidelines for MATLAB Functions” on page 2-40 |
“Modeling Guidelines for Model Configuration” on page 2-41

2-37

2 Modeling in Simulink Coder

Modeling Guidelines for Charts

When you develop models and generate code for charts, use the modeling guideline
recommendations.

For more information, see “Modeling Guidelines” (Simulink).

High-Integrity
Systems
Modeling
Guidelines

“hisf_0001: Mealy and Moore semantics” (Simulink)

“hisf_0002: User-specified state/transition execution order” (Simulink)

“hisf_0009: Strong data typing (Simulink and Stateflow boundary)”
(Simulink)

“hisf_0011: Stateflow debugging settings” (Simulink)

“hisf_0003: Usage of bitwise operations” (Simulink)

“hisf_0004: Usage of recursive behavior” (Simulink)

“hisf_0007: Usage of junction conditions (maintaining mutual
exclusion)” (Simulink)

“hisf_0010: Usage of transition paths (looping out of parent of source
and destination objects)” (Simulink)

“hisf_0012: Chart comments” (Simulink)

“hisf_0013: Usage of transition paths (crossing parallel state
boundaries)” (Simulink)

“hisf_0014: Usage of transition paths (passing through states)”
(Simulink)

“hisf_0015: Strong data typing (casting variables and parameters in
expressions)” (Simulink)

MathWorks
Automotive
Advisory
Board (MAAB)
Control

db_0127: MATLAB commands in Stateflow (Simulink)

db_0151: State machine patterns for transition actions (Simulink)

2-38

 Modeling Guidelines for Charts

Algorithm
Guidelines

jc_0451: Use of unary minus on unsigned integers in Stateflow
(Simulink)

jc_0481: Use of hard equality comparisons for floating point numbers in
Stateflow (Simulink)

jc_0501: Format of entries in a State block (Simulink)

jc_0511: Setting the return value from a graphical function (Simulink)

jc_0521: Use of the return value from graphical functions (Simulink)

jc_0531: Placement of the default transition (Simulink)

jc_0541: Use of tunable parameters in Stateflow (Simulink)

jm_0011: Pointers in Stateflow (Simulink)

jm_0012: Event broadcasts (Simulink)

na_0001: Bitwise Stateflow operators (Simulink)

na_0013: Comparison operation in Stateflow (Simulink)

See Also
“Modeling Guidelines for Blocks” on page 2-35 | “Modeling Guidelines for Subsystems”
on page 2-36 | “Modeling Guidelines for MATLAB Functions” on page 2-40 |
“Modeling Guidelines for Model Configuration” on page 2-41

2-39

2 Modeling in Simulink Coder

Modeling Guidelines for MATLAB Functions

When you develop models and generate code for MATLAB Functions, use the modeling
guideline recommendations.

For more information, see “Modeling Guidelines” (Simulink).

High-Integrity
Systems
Modeling
Guidelines

“himl_0001: Usage of standardized MATLAB function headers”
(Simulink)

“himl_0002: Strong data typing at MATLAB function boundaries”
(Simulink)

“himl_0003: Limitation of MATLAB function complexity” (Simulink)

“himl_0005: Usage of global variables in MATLAB functions”
(Simulink)

See Also
“Modeling Guidelines for Blocks” on page 2-35 | “Modeling Guidelines for Subsystems”
on page 2-36 | “Modeling Guidelines for Charts” on page 2-38 | “Modeling Guidelines for
Model Configuration” on page 2-41

2-40

 Modeling Guidelines for Model Configuration

Modeling Guidelines for Model Configuration

When you develop models and generate code, use the modeling guideline configuration
recommendations.

For more information, see “Modeling Guidelines” (Simulink).

Code
Generation
Modeling
Guidelines

“cgsl_0301: Prioritization of code generation objectives for code
efficiency” (Simulink)

“cgsl_0302: Diagnostic settings for multirate and multitasking models”
(Simulink)

High-Integrity
Systems
Modeling
Guidelines

“hisl_0043: Configuration Parameters > Diagnostics > Solver”
(Simulink)

“hisl_0044: Configuration Parameters > Diagnostics > Sample Time”
(Simulink)

“hisl_0301: Configuration Parameters > Diagnostics > Compatibility”
(Simulink)

“hisl_0302: Configuration Parameters > Diagnostics > Data Validity >
Parameters” (Simulink)

“hisl_0303: Configuration Parameters > Diagnostics > Merge block”
(Simulink)

“hisl_0304: Configuration Parameters > Diagnostics > Model
initialization” (Simulink)

“hisl_0305: Configuration Parameters > Diagnostics > Debugging”
(Simulink)

“hisl_0306: Configuration Parameters > Diagnostics > Connectivity >
Signals” (Simulink)

“hisl_0307: Configuration Parameters > Diagnostics > Connectivity >
Buses” (Simulink)

“hisl_0308: Configuration Parameters > Diagnostics > Connectivity >
Function calls” (Simulink)

2-41

2 Modeling in Simulink Coder

“hisl_0309: Configuration Parameters > Diagnostics > Type
Conversion” (Simulink)

“hisl_0310: Configuration Parameters > Diagnostics > Model
Referencing” (Simulink)

“hisl_0311: Configuration Parameters > Diagnostics > Stateflow”
(Simulink)

See Also
“Modeling Guidelines for Blocks” on page 2-35 | “Modeling Guidelines for Subsystems”
on page 2-36 | “Modeling Guidelines for Charts” on page 2-38 | “Modeling Guidelines for
MATLAB Functions” on page 2-40

2-42

3

Subsystems in Simulink Coder

• “Code Generation of Subsystems” on page 3-2
• “Generate Code and Executables for Individual Subsystem” on page 3-4
• “Inline Subsystem Code” on page 3-7
• “Generate Subsystem Code as Separate Function and Files” on page 3-10
• “Generate Reusable Function for Identical Subsystems Within a Model” on page

3-11
• “Optimize Code for Identical Nested Subsystems” on page 3-14
• “Generate Reusable Code for Subsystems Containing S-Function Blocks” on page

3-15
• “Generate Reusable Code from Stateflow Charts” on page 3-16
• “Code Reuse Limitations for Subsystems” on page 3-17
• “Code Reuse For Subsystems Shared Across Models” on page 3-20
• “Reusable Library Subsystem” on page 3-21
• “Code Generation of Constant Parameters” on page 3-23
• “Shared Constant Parameters for Code Reuse” on page 3-24
• “Generate Reusable Code for Subsystems Shared Across Models” on page 3-28
• “Determine Why Subsystem Code Is Not Reused” on page 3-36

3 Subsystems in Simulink Coder

Code Generation of Subsystems

For you to control how code is generated for a nonvirtual subsystem, the code generator
provides subsystem parameters that you can use. The categories of nonvirtual
subsystems are:

• Conditionally executed subsystems. Execution depends upon a control signal or
control block. These subsystems include:

• Triggered
• Enabled
• Action
• Iterator
• Function-call

For more information, see “Conditional Subsystems” (Simulink).

• Atomic subsystems: A virtual subsystem can be declared atomic (and therefore
nonvirtual) by using the “Treat as atomic unit” (Simulink) parameter in the
Subsystem Parameters dialog box.

For more information on nonvirtual subsystems and atomic subsystems, see “Systems
and Subsystems” (Simulink) and open the Subsystem Semantics library.

You can design and configure your model to control the code generated from nonvirtual
subsystems.

To... See...

Generate inlined code from a selected
nonvirtual subsystem.

“Inline Subsystem Code” on page 3-7

Generate code for only a subsystem. “Generate Code and Executables for
Individual Subsystem” on page 3-4

Generate separate functions with no
arguments, and optionally place the
subsystem code in a separate file.

“Generate Subsystem Code as Separate
Function and Files” on page 3-10

Generate a single reentrant function for
a subsystem that is included in multiple
places within a model.

“Generate Reusable Function for Identical
Subsystems Within a Model” on page
3-11

3-2

 Code Generation of Subsystems

To... See...

Generate a single reentrant function for
a subsystem that is included in multiple
places in a model reference hierarchy.

“Generate Reusable Code for Subsystems
Shared Across Models” on page 3-28
and “Code Reuse For Subsystems Shared
Across Models” on page 3-20

Note: If you generate code for a virtual subsystem, code generator treats the subsystem
as atomic and generates the code accordingly. The resulting code can change the
execution behavior of your model, for example, by applying algebraic loops, and therefore
introduce inconsistencies with the simulation behavior. Declare virtual subsystems as
atomic subsystems, which makes simulation and execution behavior consistent for your
model consistent.

Subsystem Code Dependence

Code generated from nonvirtual subsystems may or may not be completely independent
of the generating model. When generating code for a subsystem, the code may reference
global data structures of the model, even if the subsystem code is in a separate file.
Each subsystem code file contains include directives and comments describing the
dependencies. The code generator checks for cyclic file dependencies and warns about
them at build time. For descriptions of how generated code is packaged, see “Manage
Build Process File Dependencies” (Simulink Coder).

To generate subsystem code that is independent of the generating model, place the
subsystem in a library and configure it as a reusable subsystem. For more information,
see “Code Reuse For Subsystems Shared Across Models” on page 3-20.

3-3

3 Subsystems in Simulink Coder

Generate Code and Executables for Individual Subsystem

You can generate code and build an executable for a subsystem within a model. The code
generation and build process uses the code generation and build parameters of the root
model.

1 In the Configuration Parameters dialog box, set up the code generation and build
parameters, similar to setting up the code generation for a model.

2 Right-click the Subsystem block. From the context menu, select C/C++ Code >
Build This Subsystem from the context menu.

Alternatively, in the current model, click a subsystem and then from the Code
menu, select C/C++ Code > Build Selected Subsystem.

Note When you select Build This Subsystem, if the model is operating in external
mode, the build process automatically turns off external mode for the duration of
the build. The code generator restores external mode upon completion of the build
process.

3 The Build code for Subsystem window displays a list of the subsystem
parameters. The upper pane displays the name, class, and storage class of each
variable (or data object) that is referenced as a block parameter in the subsystem.
When you select a parameter in the upper pane, the lower pane shows the blocks
that reference the parameter and the parent system of each block.

The Storage Class column contains a menu for each row. The menu options set the
storage class or inline the parameter. To declare a parameter to be tunable, set the
Storage Class to a value other than Inlined.

3-4

 Generate Code and Executables for Individual Subsystem

For more information on tunable and inlined parameters and storage classes, see
“Block Parameter Representation in the Generated Code” (Simulink Coder).

4 After selecting tunable parameters, Build to initiate the code generation and build
process.

5 The build process displays status messages in the MATLAB Command Window.
When the build is complete, the generated executable is in your working folder.
The name of the generated executable is subsystem.exe (on PC platforms) or
subsystem (on The Open Group UNIX® platforms). subsystem is the name of the
source subsystem block.

The generated code is in a build subfolder, named subsystem_target_rtw.
subsystem is the name of the source subsystem block and target is the name of
the target configuration.

When you generate code for a subsystem, you can generate an S-function by selecting
Code > C/C++ Code> Generate S-Function, or you right-click the subsystem block
and select C/C++ Code > Build This Subsystem from the context menu. For more

3-5

3 Subsystems in Simulink Coder

information on S-functions, see “Automate S-Function Generation with S-Function
Builder” (Simulink Coder).

Subsystem Build Limitations

The following limitations apply to building subsystems:

• Subsystem build does not support a subsystem that has a function-call trigger input
or a function-call output.

• When you right-click a subsystem block and select C/C++ Code > Build This
Subsystem from the context menu to build a subsystem that includes an Outport
block for which the Data type parameter specifies a bus object, you must address
errors that result from setting signal labels. To configure the software to display
these errors, in the Configuration Parameters dialog box for the parent model, on the
Diagnostics > Connectivity pane, set the Signal label mismatch parameter to
error.

• When a subsystem is in a triggered or function-call subsystem, the right-click build
process might fail if the subsystem code is not sample-time independent. To find out
whether a subsystem is sample-time independent:

1 Copy all blocks in the subsystem to an empty model.
2 In the Configuration Parameters dialog box, on the Solver pane, set:

a Type to Fixed-step.
b Periodic sample time constraint to Ensure sample time

independent.
c Click Apply.

3 Update the model. If the model is sample-time dependent, Simulink generates an
error in the process of updating the diagram.

3-6

 Inline Subsystem Code

Inline Subsystem Code

You can configure a nonvirtual subsystem to inline the subsystem code with the model
code. In the Subsystem Parameters dialog box, setting the Function packaging
parameter to Auto or Inline inlines the generated code of the subsystem.

The Auto option is the default. When there is only one instance of a subsystem in
the model, the Auto option inlines the subsystem code. When multiple instances of a
subsystem exist, the Auto option results in a single copy of the function (as a reusable
function). For function-call subsystems with multiple callers, the subsystem code is
generated as if you specified Nonreusable function.

To inline subsystem code, select Inline. The Inline option explicitly directs the code
generator to inline the subsystem unconditionally.

Configure Subsystem to Inline Code

To configure your subsystem for inlining:

1 Right-click the Subsystem block. From the context menu, select Block Parameters
(Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select Treat
as atomic unit. This option makes the subsystem nonvirtual. On the Code
Generation tab, the Function packaging option is now available.

If the system is already nonvirtual, the Function packaging option is already
selected.

3 Click the Code Generation tab and select Auto or Inline from the Function
packaging parameter.

3-7

3 Subsystems in Simulink Coder

4 Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.

When you generate code from your model, the code generator inlines subsystem code
within model.c or model.cpp (or in its parent system's source file). You can identify
this code by system/block identification tags, such as:

/* Atomic SubSystem Block: <Root>/AtomicSubsys1 */

Exceptions to Inlining

There are certain cases in which the code generator does not inline a nonvirtual
subsystem, even though the Inline option is selected.

• If the subsystem is a function-call subsystem that is called by a noninlined S-function,
the Inline option is ignored. Noninlined S-functions make calls by using function

3-8

 Inline Subsystem Code

pointers. Therefore, the function-call subsystem must generate a function with all
arguments present.

• In a feedback loop involving function-call subsystems, the code generator forces one of
the subsystems to be generated as a function instead of inlining it. Based on the order
in which the subsystems are sorted internally, the software selects the subsystem to
be generated as a function.

• If a subsystem is called from an S-function block that sets the option
SS_OPTION_FORCE_NONINLINED_FCNCALL to TRUE, it is not inlined. When user-
defined Async Interrupt blocks or Task Sync blocks are present, this result might
occur. Such blocks must be generated as functions. These blocks are located in the
vxlib1 block library and use the SS_OPTION_FORCE_NONINLINED_FCNCALL option.
This library demonstrates integration with an example RTOS (VxWorks®).1

Note: You can use the blocks in the vxlib1 (Simulink Coder) library (Async Interrupt
and Task Sync) for simulation and code generation. These blocks provide starting point
examples to help you develop custom blocks for your target environment.

1. VxWorks is a registered trademark of Wind River® Systems, Inc.

3-9

3 Subsystems in Simulink Coder

Generate Subsystem Code as Separate Function and Files

To generate both a separate subsystem function and a separate file for a subsystem in a
model:

1 Right-click a Subsystem block. From the context menu, select Block Parameters
(Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select Treat as
atomic unit. On the Code Generation tab, the Function packaging parameter
is now available.

3 Click the Code Generation tab and select Nonreusable function from the
Function packaging parameter. The Nonreusable function option enables two
parameters:

• The “Function name options” (Simulink) parameter controls the naming of the
generated function.

• The “File name options” (Simulink) parameter controls the naming of the
generated file.

4 Set the Function name options parameter.
5 Set the File name options parameter to a value other than Auto. If you are

generating a reusable function for your subsystem, see “Generate Reusable Function
for Identical Subsystems Within a Model” on page 3-11 or “Generate Reusable
Code for Subsystems Shared Across Models” on page 3-28.

6 Click Apply and close the dialog box.

3-10

 Generate Reusable Function for Identical Subsystems Within a Model

Generate Reusable Function for Identical Subsystems Within a
Model

In the Subsystem Parameters dialog box, the Function packaging parameter option
Nonreusable function generates functions that use global data. The Reusable
function option generates reusable functions that have data passed as arguments
(enabling them to be reentrant). Selecting Reusable function generates a function
with arguments that allows the subsystem code to be shared by other instances of it in
the model. This action supports less code instead of replicating the code for each instance
of a subsystem or each time it is called.

To determine reusability of the subsystem code, the code generator performs a checksum
to determine if subsystems are identical. The generated function has arguments, for
example, for block inputs and outputs (rtB_*), continuous states (rtDW_*), parameters
(rtP_*).

Note: In the generated code, the call interface is subject to change from release to
release. Therefore, do not directly call reusable functions from external code.

To generate one reusable function for identical subsystems within a model:

1 Right-click the Subsystem block. From the context menu, select Block Parameters
(Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select Treat as
atomic unit. On the Code Generation tab, the Function packaging menu is now
available.

If the subsystem is already nonvirtual, the Function packaging menu is already
selected.

3 Click the Code Generation tab and select Reusable function for the Function
packaging parameter.

3-11

3 Subsystems in Simulink Coder

For more information about this setting, see “Considerations for Function Packaging
Options Auto and Reusable function” on page 3-13.

4 Set the function name using the “Function name options” (Simulink) parameter.

Note: If you do not choose Auto, for other Subsystem blocks that you want to share
this code, specify the same function name for those Subsystem blocks.

5 Set the file name using the “File name options” (Simulink) parameter to a value
other than Auto. If your generated code is under source control, a value other than
Auto prevents the generated file name from changing due to unrelated model
modifications.

Note: For other Subsystem blocks that you want to share this code, specify the same
file name for those Subsystem blocks.

6 Click Apply and close the dialog box.

3-12

 Generate Reusable Function for Identical Subsystems Within a Model

For a summary of code reuse limitations, see “Code Reuse Limitations for Subsystems”
on page 3-17.

Considerations for Function Packaging Options Auto and Reusable
function

When you want multiple instances of a subsystem to be represented as one reusable
function, you can designate each one of them as Auto or as Reusable function.
Use one or the other, because using both creates two reusable functions, one for each
specification. The outcomes of these choices differ only when reuse is not possible.
Selecting Auto does not allow control of the function or file name for the subsystem code.

The Reusable function and Auto options both try to determine if multiple instances
of a subsystem exist and if the code can be reused. When reuse is not possible, there are
differences in the options behavior:

• Auto yields inlined code. If circumstances prohibit inlining, then the generated code is
separate functions for each subsystem instance.

• Reusable function yields a separate function with arguments for each subsystem
instance in the model.

Code Reuse for Subsystems with Mask Parameters

The code generator can produce reusable (reentrant) code for a model containing
identical atomic subsystems. Selecting the Reusable function option for Function
packaging enables such code reuse, and causes a single function with arguments to be
generated that is called when an identical atomic subsystem executes. See “Subsystems”
(Simulink Coder) for details and restrictions on the use of this option.

Mask parameters become arguments to reusable functions. However, for reuse to occur,
each instance of a reusable subsystem must declare the same set of mask parameters.
If, for example subsystem A has mask parameters b and K, and subsystem B has mask
parameters c and K, then code reuse is not possible, and the code generator produces
separate functions for A and B.

3-13

3 Subsystems in Simulink Coder

Optimize Code for Identical Nested Subsystems

The Function packaging parameter Auto option can optimize code in situations in
which identical subsystems contain other identical subsystems, by both reusing and
inlining generated code. Suppose a model, such as the one shown in Reuse of Identical
Nested Subsystems, contains identical subsystems A1 and A2. A1 contains subsystem
B1, and A2 contains subsystem B2, which are identical. In such cases, the Auto option
causes one function to be generated which is called for both A1 and A2. This function
contains one piece of inlined code to execute B1 and B2. This optimization generates less
code which improves execution speed.

Reuse of Identical Nested Subsystems

3-14

 Generate Reusable Code for Subsystems Containing S-Function Blocks

Generate Reusable Code for Subsystems Containing S-Function
Blocks

There are several requirements that need to be met in order for subsystems containing S-
function blocks to be reused. For the list of requirements, see “S-Functions That Support
Code Reuse” (Simulink Coder).

When you select the Reusable function option, two additional options are enabled,
Function name options and File name options. If you use these fields to enter a
function name and/or a file name, you must specify exactly the same function name and
file name for each instance of identical subsystems for the code generator to reuse the
subsystem code. For an example, follow the procedure in “Generate Reusable Function
for Identical Subsystems Within a Model” on page 3-11.

3-15

3 Subsystems in Simulink Coder

Generate Reusable Code from Stateflow Charts

You can generate reusable code from a Stateflow chart, or from a subsystem containing a
chart, except when the Stateflow chart contains exported graphical functions.

3-16

 Code Reuse Limitations for Subsystems

Code Reuse Limitations for Subsystems

The code generator uses a checksum to determine whether subsystems are identical and
reusable. Subsystem code is not reused, if:

• In blocks and data objects, you use symbols to specify dimensions.
• A port used by multiple instances of a subsystem has different sample times, data

types, complexity, frame status, or dimensions across the instances.
• The output of a subsystem is marked as a global signal.
• Subsystems contain identical blocks with different names or parameter settings.
• The output of a subsystem is connected to a Merge block, and the output of the Merge

block is a custom storage class that is implemented in the C code as memory that is
nonaddressable (for example, BitField).

• The input of a subsystem is nonscalar and has a custom storage class that is
implemented in the C code as memory that is nonaddressable.

• A masked subsystem has a parameter that is nonscalar and has a custom storage
class that is implemented in the C code as memory that is nonaddressable.

• A function-call subsystem uses mask parameters of any kind when you set the model
configuration parameter “Default parameter behavior” (Simulink) to Tunable. To
reuse the masked function-call subsystem, you can place the masked subsystem
inside a new atomic subsystem without a mask, and move the Trigger block from the
masked subsystem into the atomic subsystem.

• A block in the subsystems uses a partially tunable expression. Some partially tunable
expressions can disable code reuse.

Partially tunable expressions are expressions that contain one or more tunable
variables in addition to an expression that is not tunable. For example, suppose
that you create the tunable variable K with value 15.23 and the tunable variable P
with value [5;7;9]. The expression K+P' is a partially tunable expression because
the expression P' is not tunable. For more information about tunable expression
limitations, see “Tunable Expression Limitations” (Simulink Coder).

If you select Reusable function, and the code generator determines that you cannot
reuse the code for a subsystem, it generates a separate function that is not reused. The
code generation report might show that the separate function is reusable, even if only
one subsystem uses it. If you prefer that subsystem code be inlined in such circumstances
rather than deployed as functions, choose Auto for the Function packaging option.

3-17

3 Subsystems in Simulink Coder

Blocks That Prevent Code Reuse

Use of the following blocks in a subsystem can also prevent the subsystem code from
being reused:

• Scope blocks (with data logging enabled)
• S-Function blocks that fail to meet certain criteria (see “S-Functions That Support

Code Reuse” (Simulink Coder))
• To File blocks (with data logging enabled)
• To Workspace blocks (with data logging enabled)

Code Reuse Limitations for Subsystems Shared Across Referenced Models

The code generator uses a checksum to determine whether reusable library subsystems
are identical. The code generator places the reusable library subsystem code in the
shared utilities folder, and the reusable code is independent of the generated code of the
top model or the referenced model. For example, the reusable library subsystem code
does not include model.h or model_types.h.

Reusable code that is generated to the shared utilities folder and is dependent on the
model code does not compile. If the code generator determines that the reusable library
subsystem code is dependent on the model code, the reusable subsystem code is not
generated to the shared utilities folder. The following cases can generate code that is
dependent on the model code, when the reusable library subsystem:

• Contains a block that uses time-related functionality, such as a Step block, or
continuous time or multirate blocks.

• Contains one or more Model blocks.
• Contains subsystems that are not inlined or a reusable library subsystem.
• Contains a signal that is not an Auto storage class. Variables of non-Auto storage

classes are generated to model.h.
• Contains a parameter that is not an Auto storage class.
• Contains a user-defined type where Data Scope is not set to Exported. The code

generator might place the type definition in model_types.h.
• Is a variant subsystem that generates preprocessor conditionals. Preprocessor

directives defining the variant objects are included in model_types.h.

3-18

 Code Reuse Limitations for Subsystems

Related Examples
• “Determine Why Subsystem Code Is Not Reused” on page 3-36

3-19

3 Subsystems in Simulink Coder

Code Reuse For Subsystems Shared Across Models

To reuse common functionality, you can include multiple instances of a subsystem:

• Within a single model, which is a top model or part of model reference hierarchy
• Across multiple referenced models in a model reference hierarchy
• Across multiple top models that contain Model blocks
• Across multiple top models that do not include Model blocks

To generate a reusable function for a subsystem which is included in multiple models:

• If the subsystem is in a model reference hierarchy, set the configuration parameter,
“Shared code placement” (Simulink Coder) to Auto. Otherwise, for each model
that uses the subsystem, set Shared code placement to Shared location. The
Shared code placement parameter is in the Configuration Parameters dialog box,
on the Code Generation > Interface pane.

• The subsystem must be defined in a library and configured for reuse. This subsystem
is referred to as a reusable library subsystem. For more information, see “Reusable
Library Subsystem” on page 3-21.

For an example, see “Generate Reusable Code for Subsystems Shared Across Models” on
page 3-28.

The code generator performs a checksum to determine reusability. There are cases when
the code generator cannot reuse subsystem code. For more information, see “Code Reuse
Limitations for Subsystems” on page 3-17.

Related Examples
• “Determine Why Subsystem Code Is Not Reused” on page 3-36

3-20

 Reusable Library Subsystem

Reusable Library Subsystem

A reusable library subsystem is a subsystem included in a library that is configured for
reuse. The Subsystem parameters must be set as follows:

• Treat as an atomic unit is selected.
• On the Code Generation tab:

• Function packaging is set to Reusable function.
• Function name options

and File name options are set to Auto or Use subsystem name.

For more information on creating a library, see “Libraries” (Simulink). For an example
of creating a reusable library subsystem, see “Generate Reusable Code for Subsystems
Shared Across Models” on page 3-28.

Code Generation of a Reusable Library Subsystem

For incremental code generation, if the reusable library subsystem changes, a rebuild
of itself and its parents occurs. During the build, if a matching function is not found, a
new instance of the reusable function is generated into the shared utilities folder. If a
different matching function is found from previous builds, that function is used, and a
new reusable function is not emitted.

For subsequent builds, unused files are not replaced or deleted from your folder. During
development of a model, when many obsolete shared functions exist in the shared
utilities folder, you can delete the folder and regenerate the code. If all instances of
a reusable library subsystem are removed from a model reference hierarchy and you
regenerate the code, the obsolete shared functions remain in the shared utilities folder
until you delete them.

If a model changes such that the change might cause different generated code for the
subsystem, a new reusable function is generated. For example, model configuration
parameters that modify code comments might cause different generated code for the
subsystem even if the reusable library subsystem did not change.

3-21

3 Subsystems in Simulink Coder

Reusable Library Subsystem Code Placement and Naming

The code generator uses checksums to determine reusability. The generated code of a
reusable library subsystem is independent of the generated code of the model. Code for
the reusable library subsystem is generated to the shared utility folder, slprj/target/
_sharedutils, instead of the model reference hierarchy folders. The generated code for
the supporting types, which are generated to the .h file, are also in the shared utilities
folder.

For unique naming, reusable function names have a checksum appended to the reusable
library subsystem name. For example, the code and files for a subsystem, SS1, which
links to a reusable library subsystem, RLS, might be:

• Function name: RLS_mgdjlngd
• File name: RLS_mgdjlnd.c and RLS_mgdjlnd.h

Reusable Library Subsystem in the Top Model

In a model reference hierarchy, if an instance of the reusable library subsystem is in
the top model, then on the Model Referencing pane of the Configuration Parameters
dialog box, you must select the Pass fixed-size scalar root input by value for code
generation parameter. If you do not select the parameter, a separate shared function is
generated for the reusable library subsystem instance in the top model, and a reusable
function is generated for instances in the referenced models.

Reusable Library Subsystem Connected to Root Outport

If a reusable library subsystem is connected to the root outport, reuse does not happen
with identical subsystems that are not connected to the root outport. However, you
can set Pass reusable system outputs as to Individual arguments on the
Optimizations > Signals and Parameters pane to make sure that reuse occurs
between these subsystems. This parameter requires an Embedded Coder license.

3-22

 Code Generation of Constant Parameters

Code Generation of Constant Parameters

The code generator attempts to generate constant parameters to the shared utilities
folder first. If constant parameters are not generated to the shared utilities folder, they
are defined in the top model in a global constant parameter structure. The declaration of
the structure, ConstParam_model, is in model.h:

/* Constant parameters (auto storage) */

typedef struct {

 /* Expression: [1 2 3 4 5 6 7]

 * Referenced by: '<Root>/Constant'

 */

 real_T Constant_Value[7];

 /* Expression: [7 6 5 4 3 2 1]

 * Referenced by: '<Root>/Gain'

 */

 real_T Gain_Gain[7];

 } ConstParam_model;

The definition of the constant parameters, model_constP, is in:

/* Constant parameters (auto storage) */

const ConstParam_model model_ConstP = {

 /* Expression: [1 2 3 4 5 6 7]

 * Referenced by: '<Root>/Constant'

 */

 { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 },

 /* Expression: [7 6 5 4 3 2 1]

 * Referenced by: '<Root>/Gain'

 */

 { 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 }

};

The model_constP is passed as an argument to referenced models. For more
information on how shared constants are generated, see “Shared Constant Parameters
for Code Reuse” on page 3-24.

3-23

3 Subsystems in Simulink Coder

Shared Constant Parameters for Code Reuse

You can share the generated code for constant parameters across models if:

• Constant parameters are shared in a model reference hierarchy, or
• On the Code Generation > Interface pane, the model configuration parameter

“Shared code placement” (Simulink Coder) is set to Shared location.

If you do not want to generate shared constants, and Shared code placement is set
to Shared location, set the parameter GenerateSharedConstants to off. For
example, to turn off shared constants for the current model, in the Command Window,
type the following.

set_param(gcs,'GenerateSharedConstants','off');

The shared constant parameters are generated individually to the const_params.c file,
which is placed in the shared utilities folder slprj/target/_sharedutils.

For example, if a constant has multiple uses within a model reference hierarchy where
the top model is named topmod, the code for the shared constant is as follows:

• In the shared utility folder, slprj/grt/_sharedutils, the constant parameters
are defined in const_params.c and named rtCP_pooled_ appended to a unique
checksum:
extern const real_T rtCP_pooled_lfcjjmohiecj[7];

const real_T rtCP_pooled_lfcjjmohiecj[7] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };

extern const real_T rtCP_pooled_ppphohdbfcba[7];

const real_T rtCP_pooled_ppphohdbfcba[7] = { 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 };

• In top_model_private.h or in a referenced model, ref_model_private.h, for
better readability, the constants are renamed as follows:
extern const real_T rtCP_pooled_lfcjjmohiecj[7];

extern const real_T rtCP_pooled_ppphohdbfcba[7];

#define rtCP_Constant_Value rtCP_pooled_lfcjjmohiecj /* Expression: [1 2 3 4 5 6 7]

 * Referenced by: '<Root>/Constant'*/

#define rtCP_Gain_Gain rtCP_pooled_ppphohdbfcba /* Expression: [7 6 5 4 3 2 1]

 * Referenced by: '<Root>/Gain' */

• In topmod.c or refmod.c, the call site might be:
for (i = 0; i < 7; i++) {

 topmod_Y.Out1[i] = (topmod_U.In1 + rtCP_Constant_Value[i]) * rtCP_Gain_Gain[i];

}

3-24

 Shared Constant Parameters for Code Reuse

The code generator attempts to generate all constants as individual constants to the
const_params.c file in the shared utilities folder. Otherwise, constants are generated
as described in “Code Generation of Constant Parameters” on page 3-23.

Suppress Shared Constants in the Generated Code

You can choose whether or not the code generator produces shared constants and
shared functions. You may want to be able to keep the code and data separate between
subsystems, or you may find that sharing constants results in a memory shortage during
code generation.

You can change this parameter programmatically using the parameter
GenerateSharedConstants with set_param and get_param.

In the following example, when GenerateSharedConstants is set to on, the
code generator defines the constant values in the_sharedutils folder in the
const_params.c file. When GenerateSharedConstants is set to off, the code
generator defines the constant values in a nonshared area, in the model_ert_rtw file in
the model_data.c file.

Open the model rtwdemo_throttlecntrl:

In the Configuration parameters dialog box, on the Code Generation > Interface pane,
verify that “Shared code placement” (Simulink Coder) is set to Shared location. If

3-25

3 Subsystems in Simulink Coder

Shared code placement is set to Auto, the GenerateSharedConstants setting is
ignored. If you try to set the parameter value, an error message appears. The default
value of GenerateSharedConstants is on.

In the Command Window, set GenerateSharedConstants to on:
>> set_param('rtwdemo_throttlecntrl','GenerateSharedConstants','on')

You see the shared constant definitions in the folder slprj/grt/_sharedutils, in the
file const_params.c:
extern const real_T rtCP_pooled_H4eTKtECwveN[9];

const real_T rtCP_pooled_H4eTKtECwveN[9] = { 1.0, 0.75, 0.6, 0.0, 0.0, 0.0, 0.6,

 0.75, 1.0 } ;

extern const real_T rtCP_pooled_SghuHxKVKGHD[9];

const real_T rtCP_pooled_SghuHxKVKGHD[9] = { -1.0, -0.5, -0.25, -0.05, 0.0, 0.05,

 0.25, 0.5, 1.0 } ;

extern const real_T rtCP_pooled_WqWb2t17NA2R[7];

const real_T rtCP_pooled_WqWb2t17NA2R[7] = { -1.0, -0.25, -0.01, 0.0, 0.01, 0.25,

 1.0 } ;

extern const real_T rtCP_pooled_Ygnal0wM3c14[7];

const real_T rtCP_pooled_Ygnal0wM3c14[7] = { 1.0, 0.25, 0.0, 0.0, 0.0, 0.25, 1.0

} ;

In the Command Window, set GenerateSharedConstants to off:
>> set_param('rtwdemo_throttlecntrl','GenerateSharedConstants','off')

You can see the unshared constants in the folder rtwdemo_throttlecntrl_grt_rtw,
in the file rtwdemo_throttlecntrl_data.c:
/* Constant parameters (auto storage) */

const ConstP_rtwdemo_throttlecntrl_T rtwdemo_throttlecntrl_ConstP = {

 /* Pooled Parameter (Expression: P_OutMap)

 * Referenced by:

 * '<S2>/Proportional Gain Shape'

 * '<S3>/Proportional Gain Shape'

 */

 { 1.0, 0.25, 0.0, 0.0, 0.0, 0.25, 1.0 },

 /* Pooled Parameter (Expression: P_InErrMap)

 * Referenced by:

 * '<S2>/Proportional Gain Shape'

 * '<S3>/Proportional Gain Shape'

 */

 { -1.0, -0.25, -0.01, 0.0, 0.01, 0.25, 1.0 },

 /* Pooled Parameter (Expression: I_OutMap)

 * Referenced by:

3-26

 Shared Constant Parameters for Code Reuse

 * '<S2>/Integral Gain Shape'

 * '<S3>/Integral Gain Shape'

 */

 { 1.0, 0.75, 0.6, 0.0, 0.0, 0.0, 0.6, 0.75, 1.0 },

 /* Pooled Parameter (Expression: I_InErrMap)

 * Referenced by:

 * '<S2>/Integral Gain Shape'

 * '<S3>/Integral Gain Shape'

 */

 { -1.0, -0.5, -0.25, -0.05, 0.0, 0.05, 0.25, 0.5, 1.0 }

};

Shared Constant Parameters Limitations

No shared constants or shared functions are generated for a model when:

• The model has a Code Replacement Library (CRL) that is specified for data
alignment.

• The model is specified to replace data type names in the generated code.
• The Memory Section for constants is MemVolatile or MemConstVolatile.
• The parameter GenerateSharedConstants is set to off.

Individual constants are not shared, if:

• A constant is referenced by a non-inlined S-function.
• A constant has a user-defined type where Data Scope is not set to Exported.

3-27

3 Subsystems in Simulink Coder

Generate Reusable Code for Subsystems Shared Across Models

This example shows how to configure a reusable library subsystem and generate a
reusable function for a subsystem shared across referenced models. The result is reusable
code for the subsystem, which is generated to the shared utility folder (slprj/target/
_sharedutils).

In this section...

“Create a reusable library subsystem.” on page 3-28
“Create the example model.” on page 3-31
“Set configuration parameters of the top model.” on page 3-33
“Create and propagate a configuration reference.” on page 3-33
“Generate and view the code.” on page 3-34

Create a reusable library subsystem.

1 In the Simulink Editor, select File > New > Library. Open rtwdemo_ssreuse
to copy and paste subsystem SS1 into the Library Editor. This action loads the
variables for SS1 into the base workspace. Rename the subsystem block to RLS.

3-28

 Generate Reusable Code for Subsystems Shared Across Models

2 Click the Subsystem block and press Ctrl+U to view the contents of subsystem RLS.

3-29

3 Subsystems in Simulink Coder

3 To configure the subsystem, in the Library editor, right-click RLS. In the context
menu, select Block Parameters(Subsystem). In the Subsystem Parameters dialog
box, choose the following options:

• Select Treat as an atomic unit.
• On the Code Generation tab:

• Set Function packaging to Reusable function.
• Set Function name options and File name options to Auto.

4 Click Apply and OK.
5 Save the reusable library subsystem as ssreuselib, which creates a file,

ssreuselib.slx.

3-30

 Generate Reusable Code for Subsystems Shared Across Models

Create the example model.

1 Create a model which includes one instance of RLS from ssreuselib. Name
this subsystem SS1. Add another subsystem and name it SS2. Name the model
ex_model1.

2 Create another model which includes one instance of RLS from ssreuselib. Name
this subsystem SS1. Add another subsystem and name it SS3. Name the model
ex_model2.

3-31

3 Subsystems in Simulink Coder

3 Create a top model with two model blocks that reference ex_model1 and
ex_model2. Save the top model as ex_mdlref_ssreuse.

3-32

 Generate Reusable Code for Subsystems Shared Across Models

Set configuration parameters of the top model.

1 With model ex_mdlref_ssreuse open in the Simulink Editor, select Simulation
> Model Configuration Parameters to open the Configuration Parameters dialog
box.

2 On the Solver pane, specify the Type as Fixed-step.
3 On the Model Referencing pane, select Pass fixed-size scalar root inputs by

value for code generation.
4 On the Code Generation > Report pane, select Create code generation report

and Open report automatically.
5 On the Code Generation > Interface pane, set the “Shared code placement”

(Simulink Coder) to Shared location.
6 On the Code Generation > Symbols pane, set the Maximum identifier length

to 256. This step is optional.
7 Click Apply and OK.

Create and propagate a configuration reference.

1 In the Simulink Editor, select View > Model Explorer to open the Model
Explorer. In the left navigation column of the Model Explorer, expand the
ex_mdlref_ssreuse node.

2 Right-click Configuration and select Convert to Configuration Reference.
3 In the Convert Active Configuration to Reference dialog box, click OK. This

action converts the model configuration set to a configuration reference,
Simulink.ConfigSetRef, and creates the configuration reference object,
configSetObj, in the base workspace.

4 In the left navigation column, right-click Reference (Active) and select Propagate
to Referenced Models.

5 In the Configuration Reference Propagation to Referenced Models dialog box, select
the referenced models in the list. Click Propagate.

Now, the top model and referenced models use the same configuration reference,
Reference (Active), which points to a model configuration reference object,
configSetObj, in the base workspace. When you save your model, you also need to
export the configSetObj to a MAT-file.

3-33

3 Subsystems in Simulink Coder

Generate and view the code.

1 To generate code, in the Simulink Editor, press Ctrl-B. After the code is generated,
the code generation report opens.

2 To view the code generation report for a referenced model, in the left navigation
pane, in the Referenced Models section, select ex_model1. The code generation
report displays the generated files for ex_model1.

3 In the left navigation pane, expand the Shared files. The code generator uses the
reusable library subsystem name. The code for subsystem SS1 is in myfun.c and
myfun.h.

3-34

 Generate Reusable Code for Subsystems Shared Across Models

4 Click Back and navigate to the ex_model2 code generation report. ex_model2
uses the same source code, myfun.c and myfun.h, as the code for ex_model1. Your
subsystem function and file names will be different.

Related Examples
• “Determine Why Subsystem Code Is Not Reused” on page 3-36
• “Generate Reusable Function for Identical Subsystems Within a Model” on page

3-11
• “Enable Component Reuse with Clone Detection” (Simulink Verification and

Validation)

More About
• “Code Generation of Subsystems” on page 3-2
• “Code Reuse For Subsystems Shared Across Models” on page 3-20
• “Code Reuse Limitations for Subsystems” on page 3-17
• “Libraries” (Simulink)

3-35

3 Subsystems in Simulink Coder

Determine Why Subsystem Code Is Not Reused

Due to the limitations described in “Code Reuse Limitations for Subsystems” on page
3-17, the code generator might not reuse generated code as you expect. To determine why
code generated for a subsystem is not reused, see “Review Subsystems Section of HTML
Code Generation Report” on page 3-36. If you cannot determine why based on the
report, see “Compare Subsystem Checksum Data” on page 3-36.

Review Subsystems Section of HTML Code Generation Report

If you determine that the code generator does not generate code for a subsystem as
reusable code, and you specified the subsystem as reusable, examine the Subsystems
section of the HTML code generation report (see “Generate a Code Generation Report”
(Simulink Coder)). The Subsystems section contains:

• A table that summarizes how nonvirtual subsystems were converted to generated
code.

• Diagnostic information that describes why the contents of some subsystems were not
generated as reusable code.

The Subsystems section also indicates the mapping of each noninlined subsystem in the
model to functions or reused functions in the generated code. For an example, open and
build the rtwdemo_atomic model.

Compare Subsystem Checksum Data

You can determine why subsystem code is not reused by accessing and comparing
subsystem checksum data. The code generator determines whether subsystems are
identical by comparing subsystem checksums, as noted in “Code Reuse Limitations for
Subsystems” on page 3-17. For subsystem reuse across referenced models, this procedure
might not catch every difference.

Consider the model, rtwdemo_ssreuse. SS1 and SS2 are instances of the same
subsystem. In both instances the subsystem parameter Function packaging is set to
Reusable function.

3-36

 Determine Why Subsystem Code Is Not Reused

Use the method, Simulink.SubSystem.getChecksum, to get the checksum for a
subsystem. Compare the results to determine why code is not reused.

1 Open the model rtwdemo_ssreuse. Save a copy of the model in a folder where you
have write access.

2 In the model window, select subsystem SS1. In the command window, enter

SS1 = gcb;

3 In the model window, select subsystem SS2. In the command window, enter

SS2 = gcb;

4 Use the method, Simulink.SubSystem.getChecksum, to get the checksum for
each subsystem. This method returns two output values: the checksum value and
details on the input used to compute the checksum.

[chksum1, chksum1_details] = ...

Simulink.SubSystem.getChecksum(SS1);

[chksum2, chksum2_details] = ...

Simulink.SubSystem.getChecksum(SS2);

5 Compare the two checksum values. They should be equal based on the subsystem
configurations.

isequal(chksum1, chksum2)

ans =

 1

6 To see how you can use Simulink.SubSystem.getChecksum to determine why the
checksums of two subsystems differ, change the data type mode of the output port of
SS1 so that it differs from that of SS2.

3-37

3 Subsystems in Simulink Coder

a Look under the mask of SS1. Right-click the subsystem. In the context menu,
select Mask > Look Under Mask.

b In the block diagram of the subsystem, double-click the Lookup Table block to
open the Subsystem Parameters dialog box.

c Click Data Types.
d Select Saturate on integer overflow and click OK.

7 Get the checksum for SS1. Compare the checksums for the two subsystems. This
time, the checksums are not equal.

[chksum1, chksum1_details] = ...

Simulink.SubSystem.getChecksum(SS1);

isequal(chksum1, chksum2)

ans =

 0

8 After you determine that the checksums are different, find out why. The Simulink
engine uses information, such as signal data types, some block parameter
values, and block connectivity information, to compute the checksums. To
determine why checksums are different, you compare the data used to compute the
checksum values. You can get this information from the second value returned by
Simulink.SubSystem.getChecksum, which is a structure array with four fields.

Look at the structure chksum1_details.

chksum1_details

chksum1_details =

 ContentsChecksum: [1x1 struct]

 InterfaceChecksum: [1x1 struct]

 ContentsChecksumItems: [287x1 struct]

 InterfaceChecksumItems: [53x1 struct]

ContentsChecksum and InterfaceChecksum are component checksums of the
subsystem checksum. The remaining two fields, ContentsChecksumItems and
InterfaceChecksumItems, contain the checksum details.

9 Determine whether a difference exists in the subsystem contents, interface, or both.
For example:

isequal(chksum1_details.ContentsChecksum.Value,...

 chksum2_details.ContentsChecksum.Value)

ans =

3-38

 Determine Why Subsystem Code Is Not Reused

 0

isequal(chksum1_details.InterfaceChecksum.Value,...

 chksum2_details.InterfaceChecksum.Value)

ans =

 1

In this case, differences exist in the contents.
10 Write a script like the following to find the differences.

idxForCDiffs=[];

for idx = 1:length(chksum1_details.ContentsChecksumItems)

 if (~strcmp(chksum1_details.ContentsChecksumItems(idx).Identifier, ...

 chksum2_details.ContentsChecksumItems(idx).Identifier))

 disp(['Identifiers different for contents item ', num2str(idx)]);

 idxForCDiffs=[idxForCDiffs, idx];

 end

 if (ischar(chksum1_details.ContentsChecksumItems(idx).Value))

 if (~strcmp(chksum1_details.ContentsChecksumItems(idx).Value, ...

 chksum2_details.ContentsChecksumItems(idx).Value))

 disp(['Character vector values different for contents item ', num2str(idx)]);

 idxForCDiffs=[idxForCDiffs, idx];

 end

 end

 if (isnumeric(chksum1_details.ContentsChecksumItems(idx).Value))

 if (chksum1_details.ContentsChecksumItems(idx).Value ~= ...

 chksum2_details.ContentsChecksumItems(idx).Value)

 disp(['Numeric values different for contents item ', num2str(idx)]);

 idxForCDiffs=[idxForCDiffs, idx];

 end

 end

end

11 Run the script. The following example assumes that you named the script
check_details.

check_details

Character vector values different for contents item 202

The results indicate that differences exist for index item 202 in the subsystem
contents.

12 Use the returned index values to get the handle, identifier, and value details for each
difference found.

chksum1_details.ContentsChecksumItems(202)

ans =

 Handle: 'rtwdemo_ssreuse/SS1/Lookup Table'

 Identifier: 'SaturateOnIntegerOverflow'

 Value: 'on'

3-39

3 Subsystems in Simulink Coder

The details identify the Lookup Table block parameter Saturate on integer
overflow as the focus for debugging a subsystem reuse issue.

3-40

4

Code Generation of Functions and
Function Callers in Simulink Coder

4 Code Generation of Functions and Function Callers in Simulink Coder

Modeling Functions and Callers for Code Generation

In this section...

“Functions and Callers” on page 4-2
“Input and Output Arguments” on page 4-2
“Function and Function Caller Definitions Across Models” on page 4-3
“Code Generation Files” on page 4-3

Functions and Callers

Use a Simulink Function block and a Function Caller block to instruct the code generator
to generate C functions and function calls in the generated code for encapsulation and
portability. A Simulink Function block is a nonreusable subsystem.

With a Simulink Function block and a Function Caller block, you can:

• Use nested function calls to call a function from a function.
• Choose to separate function definitions and calls into different models.
• Specify SIL and PIL simulations.
• Integrate code for multiple top models where the Simulink Function block and

Function callers are in different models.
• Use global data to communicate between a server and its parent model. This data

uses custom storage classes to customize how the data is communicated.
• Model a client and server application using the export functions modeling style.

Simulink Function blocks and Function Caller blocks do not honor the MaxStackSize
parameter.

For more information, see “Simulink Functions” (Simulink), “Diagnostics Using a Client-
Server Architecture” (Simulink), and Simulink Function block.

Input and Output Arguments

When you set up your model that contains Simulink Function blocks for code generation:

• Do not define the signals entering and leaving Argument Inport blocks and Argument
Outport blocks in the Simulink Function definition with a storage class.

4-2

 Modeling Functions and Callers for Code Generation

• Do not specify Argument Inport and Argument Outport blocks as test points.
• If you specify the data type of signals entering and leaving Argument Inport and

Argument Outport blocks as a Simulink.IntEnumType, Simulink.AliasType
or Simulink.Bus type, then you must specify the arguments as Imported or
Exported, not Auto.

• The Simulink Function block and the Function Caller blocks must agree in data type,
complexity, dimension, and number of arguments.

For more information, see Argument Inport and Argument Outport.

Function and Function Caller Definitions Across Models

You can define a Simulink Function block and Function Caller block in different models.
When the code generator generates code for a model hierarchy, it can encounter either
a Simulink Function block or a Function Caller block first. If the code generator finds
the Simulink Function block first, the software uses the function definition from the
Simulink Function block. If the code generator then encounters a Function Caller block
that does not match the function definition, the code generator issues an error. This error
prompts you to either change the Function Caller block to match the Simulink Function
block or remove the slprj folder. Verify that the arguments and data types in the
Function Caller blocks match the arguments and data types in the Simulink Function
block. Regenerate code for the models involved.

If the code generator encounters a Function Caller block first, then the code generator
uses the function definition derived from the Function Caller block. If the code generator
then encounters a Simulink Function block with different arguments and data types from
the Function Caller block, the code generator issues a warning message. Verify that the
Function Caller blocks match the Simulink Function block. Regenerate the code where
you have made changes.

Specifying two Simulink Function blocks with the same name is an error. Modify one of
the blocks and remove the slprj folder.

Code Generation Files

In the build folders, the code generator creates different files depending on the setting
you choose.

When one of the following is true, the code generator creates files as shown in the table.

4-3

4 Code Generation of Functions and Function Callers in Simulink Coder

• The system target file is grt.tlc.
• The system target file is ert.tlc and you do not have an Embedded Coder license.
• The system target file is ert.tlc and you have an Embedded Coder license. For the

Code Generation > Code Placement > File packaging format parameter, select
Modular.

For a model named model and a function named fn1, the code generator creates files
with modular file packaging.

Modular File Packaging of Files for GRT System Target or ERT System Target

File Folder Contents

model.c model_target_rtw Calls to the function.
model.h model_target_rtw This header file includes declarations and

header files for the function, including
fn1.h and fn1_private.h.

fn1.c model_target_rtw Code for the function.
fn1.h slprj/target/

_sharedutils

This header file contains the fn1 function
prototype declaration. This header file
is included in the code generated for the
Function Caller blocks associated with
the function. The fn1.h file placement is
not affected by the Code Generation >
Interface > Shared code placement
parameter value.

fn1_private.h model_target_rtw This header file includes declarations and
header files for the function, including
fn1.h.

If you have an Embedded Coder license, set the system target file to ert.tlc, and set
the File packaging format parameter to Compact or Compact (with separate
data file), the code generator creates files with compact file packaging.

Compact File Packaging of Files for ERT System Target

File Folder Contents

model.c model_ert_rtw Calls to the function and code for the
function.

4-4

 Modeling Functions and Callers for Code Generation

File Folder Contents

model.h model_ert_rtw This header file includes declarations and
header files for the function, including
fn1.h.

fn1.h slprj\ert

_sharedutils

This header file contains the fn1 function
prototype declaration. This header file
is included in the code generated for the
Function Caller blocks associated with
the function. The fn1.h file placement is
not affected by the Code Generation >
Interface > Shared code placement
parameter value.

For more information, see “Generate Code for Functions and Callers” on page 4-6.

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2
• “Generate Code for Functions and Callers” on page 4-6
• “Entry-Point Functions and Scheduling” on page 25-2
• “Configure AUTOSAR Client-Server Communication”
• “Simulink Functions in Models” (Simulink)
• “Simulink Functions in Referenced Models” (Simulink)
• “Simulink Functions” (Simulink)

4-5

4 Code Generation of Functions and Function Callers in Simulink Coder

Generate Code for Functions and Callers

In this section...

“Generate Code for the Function Definition” on page 4-6
“Generate Code for the Caller Definition” on page 4-8

This example shows how the code generator translates Simulink Function blocks and
Function Caller blocks into C code.

At the command prompt, type rtwdemo_export_functions. This model uses Stateflow
software, but this example reviews only the code generated from the referenced models.

Generate Code for the Function Definition

1 Double click rtwdemo_functions. The Simulink Function block is the f3
subsystem defined as y = f3(u).

4-6

 Generate Code for Functions and Callers

2 In the model window, press Ctrl+B.

The code generator creates rtwdemo_functions.c. This file contains the function
definition and initialization.

• The initialization function is:

void f3_Init(void)

{

 /* InitializeConditions for UnitDelay: '<S5>/Delay' */

 rtDWork.Delay_DSTATE = 1;

}

• The primary function is:

/* Output and update for Simulink Function: '<Root>/f3' */

void f3(real_T rtu_u, real_T *rty_y)

{

 /* Outport: '<Root>/TicToc10' incorporates:

 * UnitDelay: '<S5>/Delay'

4-7

4 Code Generation of Functions and Function Callers in Simulink Coder

 */

 rtY.TicToc10 = rtDWork.Delay_DSTATE;

 /* Gain: '<S5>/Gain' */

 rtDWork.Delay_DSTATE = (int8_T)(int32_T)-(int32_T)rtY.TicToc10;

 /* FunctionCaller: '<S5>/Function Caller' incorporates:

 * Inport: '<Root>/U2'

 * SignalConversion: '<S5>/TmpLatchAtIn1Outport1'

 * SignalConversion: '<S5>/TmpSignal ConversionAtuOutport1'

 */

 adder_h(rtB.Subtract, rtU.U2, rtu_u, rtB.FunctionCaller);

 /* SignalConversion: '<S5>/TmpSignal ConversionAtyInport1' */

 *rty_y = rtB.FunctionCaller;

}

/* Output and update for Simulink Function: '<S6>/adder' */

void adder_h(real_T rtu_u1, real_T rtu_u2, real_T rtu_u3, real_T *rty_y)

{

 /* SignalConversion: '<S7>/TmpSignal ConversionAtyInport1' incorporates:

 * SignalConversion: '<S7>/TmpSignal ConversionAtu1Outport1'

 * SignalConversion: '<S7>/TmpSignal ConversionAtu2Outport1'

 * SignalConversion: '<S7>/TmpSignal ConversionAtu3Outport1'

 * Sum: '<S7>/Sum'

 */

 *rty_y = (rtu_u1 + rtu_u2) + rtu_u3;

}

• The shared header file, f3.h, contains the primary function prototype declaration.

/* Shared type includes */

#include "rtwtypes.h"

extern void f3(real_T rtu_u, real_T *rty_y);

Generate Code for the Caller Definition

1 On the rtwdemo_export_functions model, click rtwdemo_caller.
2 Press Ctrl+B.

The code generator creates the files rtwdemo_caller.h and rtwdemo_caller.c in the
folder rtwdemo_caller_ert_rtw.

4-8

 Generate Code for Functions and Callers

rtwdemo_caller.h includes the shared header file, f3.h, which contains the function
prototype declaration.

rtwdemo_caller.c calls the function f3.

/* Output function for RootInportFunctionCallGenerator: '

 <Root>/RootFcnCall_InsertedFor_t_10tic_at_outport_1' */

void rtwdemo_caller_t_10tic(const real_T *rtu_u, real_T *rty_y)

{

 /* RootInportFunctionCallGenerator: '

 <Root>/RootFcnCall_InsertedFor_t_10tic_at_outport_1' incorporates:

 * SubSystem: '<Root>/Subsystem'

 */

 /* FunctionCaller: '<S1>/Function Caller' */

 f3(*rtu_u, rty_y);

}

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2
• “Modeling Functions and Callers for Code Generation” on page 4-2
• “Entry-Point Functions and Scheduling” on page 25-2
• “Configure AUTOSAR Client-Server Communication”

4-9

5

Referenced Models in Simulink Coder

• “Code Generation of Referenced Models” on page 5-2
• “Generate Code for Referenced Models” on page 5-4
• “Configure Referenced Models” on page 5-14
• “Build Model Reference Targets” on page 5-15
• “Simulink Coder Model Referencing Requirements” on page 5-16
• “Storage Classes for Signals Used with Model Blocks” on page 5-20
• “Inherited Sample Time for Referenced Models” on page 5-23
• “Customize Library File Suffix and File Type” on page 5-25
• “Reusable Code and Referenced Models” on page 5-26
• “Simulink Coder Model Referencing Limitations” on page 5-30

5 Referenced Models in Simulink Coder

Code Generation of Referenced Models

This section describes model referencing considerations that apply specifically to code
generation by the Simulink Coder. This section assumes that you understand referenced
models and related terminology and requirements, as described in “Overview of Model
Referencing” (Simulink) and associated topics.

When generating code for a referenced model hierarchy, the code generator produces a
stand-alone executable for the top model, and a library module called a model reference
target for each referenced model. When the code executes, the top executable invokes
the model reference targets to compute the referenced model outputs. Model reference
targets are sometimes called Simulink Coder targets.

Be careful not to confuse a model reference target (Simulink Coder target) with other
types of targets:

• Target hardware — A platform for which the Simulink Coder software generates code
• System target — A file that tells the Simulink Coder software how to generate code

for particular purpose
• Rapid Simulation target (RSim) — A system target file supplied with the Simulink

Coder product
• Simulation target — A MEX-file that implements a referenced model that executes

with Simulink Accelerator™ software

The code generator places the code for the top model of a hierarchy in the code generation
folder (Simulink) and places the code for referenced models in an slprj folder in the
code generation folder (Simulink). Subfolders in slprj provide separate places for
different types of files. For folder information, see “Manage Build Process Folders”
(Simulink Coder).

By default, the product uses incremental code generation. When generating code, it
compares structural checksums of referenced model files with the generated code files
to determine whether to regenerate model reference targets. To control when rebuilds
occur, use the configuration parameter Model Referencing > Rebuild. For details, see
“Rebuild” (Simulink).

In addition to incremental code generation, the Simulink Coder software uses
incremental loading. The code for a referenced model is not loaded into memory until the
code for its parent model executes and needs the outputs of the referenced model. The

5-2

 Code Generation of Referenced Models

product then loads the referenced model target and executes. Once loaded, the target
remains in memory until it is no longer used.

Most code generation considerations are the same whether or not a model includes
referenced models: the code generator handles the details automatically insofar as
possible. This chapter describes topics that you may need to consider when generating
code for a model reference hierarchy.

If you have a Embedded Coder license, custom targets must declare themselves to be
model reference compliant if they need to support Model blocks. For more information,
see “Support Model Referencing” on page 71-83.

5-3

5 Referenced Models in Simulink Coder

Generate Code for Referenced Models

In this section...

“About Generating Code for Referenced Models” on page 5-4
“Create and Configure the Subsystem” on page 5-4
“Convert Model to Use Model Referencing” on page 5-7
“Generate Model Reference Code for a GRT Target” on page 5-10
“Work with Code Generation Folders” on page 5-12

About Generating Code for Referenced Models

To generate code for referenced models, you

1 Create a subsystem in an existing model.
2 Convert the subsystem to a referenced model (Model block).
3 Call the referenced model from the top model.
4 Generate code for the top model and referenced model.
5 Explore the generated code and the code generation folder.

You can accomplish some of these tasks automatically with a function called
Simulink.Subsystem.convertToModelReference.

Create and Configure the Subsystem

In the first part of this example, you define a subsystem for the vdp
example model, set configuration parameters for the model, and use the
Simulink.Subsystem.convertToModelReference function to convert it into two
new models — the top model (vdptop) and a referenced model vdpmultRM containing a
subsystem you created (vdpmult).

1 In the MATLAB Command Window, create a new working folder wherever you want
to work and cd into it:

mkdir mrexample

cd mrexample

2 Open the vdp example model by typing:

5-4

 Generate Code for Referenced Models

vdp

3 Drag a box around the three blocks outlined in blue below:

4 Choose Create Subsystem from Selection from the Diagram > Subsystem &
Model Reference menu.

A subsystem block replaces the selected blocks.
5 If the new subsystem block is not where you want it, move it to a preferred location.
6 Rename the block vdpmult.
7 Right-click the vdpmult block and select Block Parameters (Subsystem).

The Function Block Parameters dialog box appears.
8 In the Function Block Parameters dialog box, select Treat as atomic unit, then

click OK.

The border of the vdpmult subsystem thickens to indicate that it is now atomic. An
atomic subsystem executes as a unit relative to the parent model: subsystem block
execution does not interleave with parent block execution. This property makes it

5-5

5 Referenced Models in Simulink Coder

possible to extract subsystems for use as stand-alone models and as functions in
generated code.

The block diagram should now appear as follows:

You must set several properties before you can extract a subsystem for use as a
referenced model. To set the properties,

1 Open Model Explorer by selecting Model Explorer from the model's View menu.
2 In the Model Hierarchy pane, click the symbol preceding the model name to reveal

its components.
3 Click Configuration (Active) in the left pane.
4 In the center pane, select Solver.
5 In the right pane, under Solver Options change the Type to Fixed-step, then

click Apply. You must use fixed-step solvers when generating code, although
referenced models can use different solvers than top models.

5-6

 Generate Code for Referenced Models

6 In the center pane, select Diagnostics. In the right pane, select the Data Validity
tab. In the Signals area, set Signal resolution to Explicit only. Alternatively,
if you do not want to use Simulink.Signal objects, set Signal resolution to None.

7 Click Apply.

The model now has the properties that model referencing requires.
8 In the center pane, click Model Referencing. In the right pane, set Rebuild to If

any changes in known dependencies detected. Click Apply. This setting
prevents code regeneration when it is not required.

9 In the vdp model window, choose File > Save as. Save the model as vdptop in your
working folder. Leave the model open.

Convert Model to Use Model Referencing

In this portion of the example, you use the conversion function
Simulink.SubSystem.convertToModelReference to extract the subsystem vdpmult
from vdptop and convert vdpmult into a referenced model named vdpmultRM. To see
the complete syntax of the conversion function, type at the MATLAB prompt:

help Simulink.SubSystem.convertToModelReference

For additional information, type:

doc Simulink.SubSystem.convertToModelReference

If you want to see an example of Simulink.SubSystem.convertToModelReference
before using it yourself, type:

sldemo_mdlref_conversion

Simulink also provides a menu command, Subsystem & Model
Reference > Convert Subsystem to > Referenced Model, that you
can use to convert a subsystem to a referenced model. The command calls
Simulink.SubSystem.convertToModelReference with default arguments. For more
information, see “Convert a Subsystem to a Referenced Model” (Simulink).

Extract the Subsystem to a Referenced Model

To use Simulink.SubSystem.convertToModelReference to extract vdpmult and
convert it to a referenced model, type:

5-7

5 Referenced Models in Simulink Coder

Simulink.SubSystem.convertToModelReference...

('vdptop/vdpmult', 'vdpmultRM',...

'ReplaceSubsystem', true, 'BuildTarget', 'Sim')

This command:

1 Extracts the subsystem vdpmult from vdptop.
2 Converts the extracted subsystem to a separate model named vdpmultRM and saves

the model to the working folder.
3 In vdptop, replaces the extracted subsystem with a Model block that references

vdpmultRM.
4 Creates a simulation target for vdptop and vdpmultRM.

The converter prints progress messages and terminates with

ans =

 1

The parent model vdptop now looks like this:

Note the changes in the appearance of the block vdpmult. These changes indicate that
it is now a Model block rather than a subsystem. As a Model block, it does not have

5-8

 Generate Code for Referenced Models

contents of its own: the previous contents now exist in the referenced model vdpmultRM,
whose name appears at the top of the Model block. Widen the Model block to expose the
complete name of the referenced model.

If the parent model vdptop had been closed at the time of conversion, the converter
would have opened it. Extracting a subsystem to a referenced model does not
automatically create or change a saved copy of the parent model. To preserve the changes
to the parent model, save vdptop.

Right-click the Model block vdpmultRM and choose Open to open the referenced model.
The model looks like this:

Files Created and Changed by the Converter

The files in your working folder now consist of the following (not in this order).

File Description

vdptop model file Top model that contains a Model block where the
vdpmult subsystem was

vdpmultRM model file Referenced model created for the vdpmult
subsystem

vdpmultRM_msf.mexw64 Static library file (Microsoft® Windows platforms
only). The file extension is system-dependent and
may differ. This file executes when the vdptop
model calls the Model block vdpmult. When
called, vdpmult in turn calls the referenced model
vdpmultRM.

5-9

5 Referenced Models in Simulink Coder

File Description

/slprj Folder for generated model reference code

Code for model reference simulation targets is placed in the slprj/sim subfolder.
Generated code for GRT, ERT, and other Simulink Coder targets is placed in slprj
subfolders named for those targets. You will inspect some model reference code later
in this example. For more information on code generation folders, see “Work with Code
Generation Folders” on page 5-12.

Run the Converted Model

Open the Scope block in vdptop if it is not visible. In the vdptop window, click the Run
tool or choose Run from the Simulation menu. The model calls the vdpmultRM_msf
simulation target to simulate. The output looks like this:

Generate Model Reference Code for a GRT Target

The function Simulink.SubSystem.convertToModelReference created the model
and the simulation target files for the referenced model vdpmultRM. In this part of
the example, you generate code for that model and the vdptop model, and run the
executable you create:

1 Verify that you are still working in the mrexample folder.
2 If the model vdptop is not open, open it. Make sure it is the active window.

5-10

 Generate Code for Referenced Models

3 Open Model Explorer by selecting Model Explorer from the model's View menu.
4 In the Model Hierarchy pane, click the symbol preceding the vdptop model to

reveal its components.
5 Click Configuration (Active) in the left pane.
6 In the center pane, select Data Import/Export.
7 In the pane, select Time and Output and clear Data stores. Click Apply.

These settings instruct the model vdptop (and later its executable) to log time and
output data to MAT-files for each time step.

8 Generate GRT code (the default) and an executable for the top model and the
referenced model. For example, in the model, press Ctrl+B.

The Simulink Coder build process generates and compiles code. The current folder now
contains a new file and a new folder:

File Description

vdptop.exe The executable created by the build process
vdptop_grt_rtw/ The build folder, containing generated code

for the top model

The build process also generated GRT code for the referenced model and placed it in the
slprj folder.

To view a model’s generated code in Model Explorer, the model must be open. To use
the Model Explorer to inspect the newly created build folder, vdptop_grt_rtw:

1 Open Model Explorer by selecting Model Explorer from the model's View menu.
2 In the Model Hierarchy pane, click the symbol preceding the model name to reveal

its components.
3 Click the symbol preceding Code for vdptop to reveal its components.
4 Directly under Code for vdptop, click This Model.

A list of generated code files for vdptop appears in the Contents pane:

rtmodel.h

vdptop.c

vdptop.h

vdptop.mk

5-11

5 Referenced Models in Simulink Coder

vdptop_private.h

vdptop_types.h

You can browse code by selecting a file of interest in the Contents pane.

To open a file in a text editor, click a filename, and then click the hyperlink that
appears in the gray area at the top of the Document pane. The figure below
illustrates viewing code for vdptop.c, in a text editor. Your code may differ.

To view the generated code in the HTML code generation report, see “Generate a
Code Generation Report” (Simulink Coder).

Work with Code Generation Folders

When you view generated code in Model Explorer, the files listed in the Contents
pane can exist either in a build folder or a code generation folder. Model reference code
generation folders (located under the slprj folder), like build folders, are created in your
code generation folder (Simulink). This process implies certain constraints on when and
where model reference targets are built and on how they are accessed.

The models referenced by Model blocks can be stored anywhere. A given top model can
include models stored on different file systems or in different folders. The same is not
true for the simulation targets derived from these models; under most circumstances,
models referenced by a given top model must be set up to simulate and generate model
reference target code in a single code generation folder. The top and referenced models
can exist anywhere on your path, but the code generation folder is assumed to exist in
your current folder.

5-12

 Generate Code for Referenced Models

This means that, if you reference the same model from several top models, each stored in
a different folder, you must either

• Always work in the same folder and be sure that the models are on your path
• Allow separate code generation folders, simulation targets, and Simulink Coder

targets to be generated in each folder in which you work

The files in such multiple code generation folders are generally quite redundant.
Therefore, to minimize code regeneration of referenced models, choose a specific working
folder and remain in it for all sessions.

As model reference code generated for Simulink Coder targets as well as for simulation
targets is placed in code generation folders, the same considerations as above apply even
if you are generating target applications only. That is, code for all models referenced from
a given model ends up being generated in the same code generation folder, even if it is
generated for different targets and at different times.

Related Examples
• “Specify Instance-Specific Parameter Values for Reusable Referenced Model” on

page 19-65

5-13

5 Referenced Models in Simulink Coder

Configure Referenced Models

Minimize occurrences of algebraic loops by selecting the Minimize algebraic loop
occurrences parameter on the Model Reference pane. The setting of this option
affects only generation of code from the model. For information on how this option affects
code generation, see “Configure Run-Time Environment Options” (Simulink Coder). For
more information, see “Model Blocks and Direct Feed through” (Simulink).

Use the Integer rounding mode parameter on your model's blocks to simulate the
rounding behavior of the C compiler that you intend to use to compile code generated
from the model. This setting appears on the Signal Attributes pane of the parameter
dialog boxes of blocks that can perform signed integer arithmetic, such as the Product
and n-D Lookup Table blocks.

For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode, the
value of Signed integer division rounds to also affects rounding. For details, see
“Precision” (Fixed-Point Designer).

When models contain Model blocks, all models that they reference must be configured
to use identical hardware settings. For information on the Model Referencing pane
options, see “Model Configuration Parameters: Model Referencing” (Simulink) and
“Configuration Parameter Requirements” (Simulink).

5-14

 Build Model Reference Targets

Build Model Reference Targets

By default, the Simulink engine rebuilds simulation targets before the Simulink Coder
software generates model reference targets. You can change the rebuild criteria or specify
when the engine rebuilds targets. For more information, see “Rebuild” (Simulink).

The Simulink Coder software generates a model reference target directly from the
Simulink model. The product automatically generates or regenerates model reference
targets, for example, when they require an update.

You can command the Simulink and Simulink Coder products to generate a simulation
target for an Accelerator mode referenced model, and a model reference target for a
referenced model, by executing the slbuild command with arguments in the MATLAB
Command Window.

The Simulink Coder software generates only one model reference target for all instances
of a referenced model. See “Reusable Code and Referenced Models” on page 5-26 for
details.

Reduce Change Checking Time

You can reduce the time that the Simulink and Simulink Coder products spend checking
whether simulation targets and model reference targets need to be rebuilt by setting
configuration parameter values as follows:

• In the top model, consider setting the model configuration parameter Model
Referencing > Rebuild to If any changes in known dependencies
detected. (See “Rebuild” (Simulink).)

• In all referenced models throughout the hierarchy, set the configuration parameter
Diagnostics > Data Validity > Signal resolution to Explicit only or None.
(See “Signal resolution” (Simulink).)

These parameter values exist in a referenced model's configuration set, not in the
individual Model block. Setting either value for an instance of a referenced model, sets it
for all instances of that model.

5-15

5 Referenced Models in Simulink Coder

Simulink Coder Model Referencing Requirements

A model reference hierarchy must satisfy various Simulink Coder requirements,
as described in this section. In addition to these requirements, a model referencing
hierarchy to be processed by the Simulink Coder software must satisfy:

• The Simulink requirements listed in:

• “Configuration Requirements for All Referenced Model Simulation” (Simulink)
• “Model Structure Requirements” (Simulink)

• The Simulink limitations listed in “Limitations on All Model Referencing” (Simulink)
• The Simulink Coder limitations listed in “Simulink Coder Model Referencing

Limitations” on page 5-30

Configuration Parameter Requirements

A referenced model uses a configuration set in the same way a top model does, as
described in “Manage a Configuration Set” (Simulink). By default, every model in a
hierarchy has its own configuration set, which it uses in the same way that it would if the
model executed independently.

Because each model can have its own configuration set, configuration parameter
values can be different in different models. Furthermore, some parameter values
are intrinsically incompatible with model referencing. The response of the Simulink
Coder software to an inconsistent or unusable configuration parameter depends on the
parameter:

• Where an inconsistency has no significance, the product ignores or resolves the
inconsistency without posting a warning.

• Where a nontrivial and possibly acceptable solution exists, the product resolves the
conflict silently; resolves it with a warning; or generates an error.

• If an acceptable resolution is not possible, the product generates an error. You must
then change parameter values to eliminate the problem.

When a model reference hierarchy contains many referenced models that have
incompatible parameter values, or a changed parameter value must propagate to many
referenced models, manually eliminating all configuration parameter incompatibilities
can be tedious. You can control or eliminate such overhead by using configuration

5-16

 Simulink Coder Model Referencing Requirements

references to assign an externally-stored configuration set to multiple models. See
“Manage a Configuration Reference” (Simulink) for details.

The following tables list configuration parameters that can cause problems if set
in certain ways, or if set differently in a referenced model than in a parent model.
Where possible, the Simulink Coder software resolves violations of these requirements
automatically, but most cases require changes to the parameters in some or all models.

Configuration Requirements for Model Referencing with All System Targets

Dialog Box Pane Option Requirement

Solver Start time Some system targets require the
start time of all models to be zero.

Hardware
Implementation

All options Values must be the same for top
and referenced models.

System target file Must be the same for top and
referenced models.

Language Must be the same for top and
referenced models.

Code Generation

Generate code only Must be the same for top and
referenced models.

Symbols Maximum identifier length Cannot be longer for a referenced
model than for its parent model.

Code replacement library Must be the same for top and
referenced models.

C API options The C API check boxes must be
the same for top and referenced
models.

Interface

ASAP2 interface Can be on or off in a top model,
but must be off in a referenced
model. If it is not, the Simulink
Coder software temporarily sets
it to off during code generation.

Configuration Requirements for Model Referencing with ERT System Targets (Requires
Embedded Coder License)

5-17

5 Referenced Models in Simulink Coder

Dialog Box
Pane

Option Requirement

All
Parameters
tab

Ignore custom storage classes Must be the same for top and
referenced models.

Global variables
Global types
Subsystem methods
Local temporary variables
Constant macros

$R token must appear.

Signal naming Must be the same for top and
referenced models.

M-function If specified, must be the same for
top and referenced models.

Parameter naming Must be the same for top and
referenced models.

Symbols

#define naming Must be the same for top and
referenced models.

Support floating-point numbers Must be the same for both top and
referenced models

Support non-finite numbers If off for top model, can be off or
off for referenced models.

If on for top model, must be on for
referenced models.

Support complex numbers If off for top model, can be off or
off for referenced models.

If on for top model, must be on for
referenced models.

Interface

Suppress error status in real-
time model

If on for top model, must be on for
referenced models.

Code
Placement

Use owner from data object for
data definition placement

Must be the same for top and
referenced models.

5-18

 Simulink Coder Model Referencing Requirements

Dialog Box
Pane

Option Requirement

Signal display level Must be the same for top and
referenced models.

Parameter tune level Must be the same for top and
referenced models.

Naming Requirements

Within a model that uses model referencing, names of the constituent models can
not collide. When you generate code from a model that uses model referencing, the
Maximum identifier length parameter must be large enough to accommodate the root
model name and the name-mangling text. A code generation error occurs if Maximum
identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a higher-level model
and a symbol within the scope of a referenced model, the symbol from the referenced
model is preserved. Name mangling is performed on the symbol from the higher-level
model.

Embedded Coder Naming Requirements

The Embedded Coder product lets you control the formatting of generated symbols in
much greater detail. When generating code with an ERT target from a model that uses
model referencing:

• The $R token must be included in the Identifier format control parameter
specifications (in addition to the $M token) except for Shared utilities.

• The Maximum identifier length must be large enough to accommodate full
expansions of the $R and $M tokens.

See “Model Configuration Parameters: Code Generation Symbols” (Simulink Coder) for
more information.

Custom Target Requirements

If you have an Embedded Coder license, a custom target must meet various requirements
to support model referencing. For details, see “Support Model Referencing” on page
71-83.

5-19

5 Referenced Models in Simulink Coder

Storage Classes for Signals Used with Model Blocks

Models containing Model blocks can use signals of storage class Auto without restriction.
However, when you declare signals to be global, you must be aware of how the signal
data will be handled.

A global signal is a signal with a storage class other than Auto:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

• Custom

The above are distinct from SimulinkGlobal signals, which are treated as test points
with Auto storage class.

Global signals are declared, defined, and used as follows:

• An extern declaration is generated by all models that use a given global signal.

As a result, if a signal crosses a Model block boundary, the top model and the
referenced model both generate extern declarations for the signal.

• For an exported signal, the top model is responsible for defining (allocating memory
for) the signal, whether or not the top model itself uses the signal.

• Global signals used by a referenced model are accessed directly (as global memory).
They are not passed as arguments to the functions that are generated for the
referenced models.

Custom storage classes also follow the above rules. However, certain custom storage
classes are not currently supported for use with model reference. For details, see “Custom
Storage Class Limitations” on page 23-71.

Storage Classes for Parameters Used with Model Blocks

Storage classes are supported for both simulation and code generation, and all except
Auto are tunable. The supported storage classes thus include

• SimulinkGlobal

• ExportedGlobal

5-20

 Storage Classes for Signals Used with Model Blocks

• ImportedExtern

• ImportedExternPointer

• Custom

Note the following restrictions on parameters in referenced models:

• Tunable parameters are not supported for noninlined S-functions.
• Tunable parameters set using the Model Parameter Configuration dialog box are

ignored.

Note the following considerations concerning how global tunable parameters are
declared, defined, and used in code generated for targets:

• A global tunable parameter is a parameter in the base workspace with a storage class
other than Auto.

• An extern declaration is generated by all models that use a given parameter.
• If a parameter is exported, the top model is responsible for defining (allocating

memory for) the parameter (whether it uses the parameter or not).
• Global parameters are accessed directly (as global memory). They are not passed as

arguments to the functions that are generated for the referenced models.
• Symbols for SimulinkGlobal parameters in referenced models are generated

using unstructured variables (rtP_xxx) instead of being written into the model_P
structure. This is so that each referenced model can be compiled independently.

Certain custom storage classes for parameters are not currently supported for model
reference. For details, see “Custom Storage Class Limitations” on page 23-71.

Parameters used as Model block arguments must be defined in the referenced model's
workspace. For details, see “Parameterize Instances of a Reusable Referenced Model”
(Simulink).

Signal Name Mismatches Across Model Reference Boundary

Within a parent model, the name and storage class for a signal entering or leaving a
Model block might not match those of the signal attached to the root inport or outport
within that referenced model. Because referenced models are compiled independently
without regard to a parent model, they cannot adapt to the possible variations in how
parent models label and store signals.

5-21

5 Referenced Models in Simulink Coder

The Simulink Coder software accepts all cases where input and output signals in a
referenced model have Auto storage class. When such signals are test pointed or are
global, as described above, certain restrictions apply. The following table describes how
mismatches in signal labels and storage classes between parent and referenced models
are handled:

Relationships of Signals and Storage Classes Across Model Reference Boundary

Referenced Model Parent Model Signal Passing Method Signal Mismatch
Checking

Auto Any storage class Function argument None
SimulinkGlobal

or resolved to Signal
Object

Any storage class Function argument Signal label
mismatch

Global Auto or
SimulinkGlobal

Global variable Signal label
mismatch

Global Global Global variable Labels and storage
classes must be
identical (else error)

To summarize, the following signal resolution rules apply to code generation:

• If the storage class of a root input or output signal in a referenced model is Auto (or is
SimulinkGlobal), the signal is passed as a function argument.

• When such a signal is SimulinkGlobal or resolves to a Simulink.Signal
object, the Signal label mismatch diagnostic is applied.

• If a root input or output signal in a referenced model is global, it is communicated by
using direct memory access (global variable). In addition,

• If the corresponding signal in the parent model is also global, the names and
storage classes must match exactly.

• If the corresponding signal in the parent model is not global, the Signal label
mismatch diagnostic is applied.

You can set the Signal label mismatch diagnostic to error, warning, or none in the
Diagnostics > Connectivity pane of the Configuration Parameters dialog box.

5-22

 Inherited Sample Time for Referenced Models

Inherited Sample Time for Referenced Models

For information about Model block sample time inheritance, see “Sample Times for
Model Referencing” (Simulink). In generated code, you can control inheriting sample time
by using ssSetModelReferenceSampleTimeInheritanceRule in different ways:

• An S-function that precludes inheritance: If the sample time is used in the S-
function's run-time algorithm, then the S-function precludes a model from inheriting
a sample time. For example, consider the following mdlOutputs code:

static void mdlOutputs(SimStruct *S, int_T tid)

{

 const real_T *u = (const real_T*)

 ssGetInputPortSignal(S,0);

 real_T *y = ssGetOutputPortSignal(S,0);

 y[0] = ssGetSampleTime(S,tid) * u[0];

}

This mdlOutputs code uses the sample time in its algorithm, and the S-function
therefore should specify

ssSetModelReferenceSampleTimeInheritanceRule

(S, DISALLOW_SAMPLE_TIME_INHERITANCE);

• An S-function that does not preclude Inheritance: If the sample time is only used for
determining whether the S-function has a sample hit, then it does not preclude the
model from inheriting a sample time. For example, consider the mdlOutputs code
from the S-function example sfun_multirate.c:

static void mdlOutputs(SimStruct *S, int_T tid)

{

 InputRealPtrsType enablePtrs;

 int *enabled = ssGetIWork(S);

 if (ssGetInputPortSampleTime

 (S,ENABLE_IPORT)==CONTINUOUS_SAMPLE_TIME &&

 ssGetInputPortOffsetTime(S,ENABLE_IPORT)==0.0) {

 if (ssIsMajorTimeStep(S) &&

 ssIsContinuousTask(S,tid)) {

 enablePtrs =

 ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);

 *enabled = (*enablePtrs[0] > 0.0);

 }

 } else {

5-23

5 Referenced Models in Simulink Coder

 int enableTid =

 ssGetInputPortSampleTimeIndex(S,ENABLE_IPORT);

 if (ssIsSampleHit(S, enableTid, tid)) {

 enablePtrs =

 ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);

 *enabled = (*enablePtrs[0] > 0.0);

 }

 }

 if (*enabled) {

 InputRealPtrsType uPtrs =

 ssGetInputPortRealSignalPtrs(S,SIGNAL_IPORT);

 real_T signal = *uPtrs[0];

 int i;

 for (i = 0; i < NOUTPUTS; i++) {

 if (ssIsSampleHit(S,

 ssGetOutputPortSampleTimeIndex(S,i), tid)) {

 real_T *y = ssGetOutputPortRealSignal(S,i);

 *y = signal;

 }

 }

 }

} /* end mdlOutputs */

The above code uses the sample times of the block, but only for determining whether
there is a hit. Therefore, this S-function should set

ssSetModelReferenceSampleTimeInheritanceRule

(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE);

5-24

 Customize Library File Suffix and File Type

Customize Library File Suffix and File Type

You can control the library file suffix and file type extension that the Simulink Coder
code generator uses to name generated model reference libraries. Use the model
configuration parameter TargetLibSuffix to specify the scheme for the suffix and
extension. The scheme must include a period (.). If you do not set this parameter, the
Simulink Coder software names the libraries as follows:

• On Windows systems, model_rtwlib.lib
• On UNIX or Linux® systems, model_rtwlib.a

For more information, see “Using TargetLibSuffix with the Toolchain Approach”
(Simulink Coder).

5-25

5 Referenced Models in Simulink Coder

Reusable Code and Referenced Models

Models that employ model referencing might require special treatment when generating
and using reusable code. The following sections identify general restrictions and discuss
how reusable functions with inputs or outputs connected to a referenced model's root
Inport or Outport blocks can affect code reuse.

General Considerations

You can generate code for subsystems that contain referenced models using the same
procedures and options described in “Code Generation of Subsystems” (Simulink Coder).
However, the following restrictions apply to such builds:

• A top model that uses single-tasking mode and that has a referenced model that
uses multi-tasking mode executes for blocks with the different rates that are not
connected. However, you get an error if the blocks with different rates are connected
by Rate Transition block (inserted either manually or by Simulink).

• ERT S-functions do not support subsystems that contain a continuous sample time.
• The Simulink Coder S-function target is not supported.
• The Tunable parameters table (set by using the Model Parameter Configuration

dialog box) is ignored; to make parameters tunable, you must define them as
Simulink parameter objects in the base workspace.

• All other parameters are inlined into the generated code and S-function.

Note You can generate subsystem code using any target configuration available in the
System Target File Browser. However, if the S-function target is selected, Build This
Subsystem and Build Selected Subsystem behaves identically to Generate S-
Function. (See “Automate S-Function Generation with S-Function Builder” on page
11-61.)

Code Reuse and Model Blocks with Root Inport or Outport Blocks

Reusable functions with inputs or outputs connected to a referenced model's root
Inport or Outport block can affect code reuse. This means that code for certain atomic
subsystems cannot be reused in a model reference context the same way it is reused in a
standalone model.

5-26

 Reusable Code and Referenced Models

For example, suppose you create the following subsystem and make the following
changes to the subsystem's block parameters:

• Select Treat as an atomic unit
• Go to the Code Generation tab and set Function packaging to Reusable

function

Suppose you then create the following model, which includes three instances of the
preceding subsystem.

With the configuration parameter Default parameter behavior set to Inlined in this
stand-alone model, the code generator can optimize the code by generating a single copy
of the function for the reused subsystem, as shown below.

void reuse_subsys1_Subsystem1(

 real_T rtu_0,

 rtB_reuse_subsys1_Subsystem1 *localB)

{

 /* Gain: '<S1>/Gain' */

 localB->Gain_k = rtu_0 * 3.0;

}

When generated as code for a Model block (into an slprj folder in the code generation
folder (Simulink)), the subsystems have three different function signatures:

/* Output and update for atomic system: '<Root>/Subsystem1' */

void reuse_subsys1_Subsystem1(const real_T *rtu_0,

5-27

5 Referenced Models in Simulink Coder

rtB_reuse_subsys1_Subsystem1

 *localB)

{

 /* Gain: '<S1>/Gain' */

 localB->Gain_w = (*rtu_0) * 3.0;

}

/* Output and update for atomic system: '<Root>/Subsystem2' */

void reuse_subsys1_Subsystem2(real_T rtu_In1,

rtB_reuse_subsys1_Subsystem2

 *localB)

{

 /* Gain: '<S2>/Gain' */

 localB->Gain_y = rtu_In1 * 3.0;

}

/* Output and update for atomic system: '<Root>/Subsystem3' */

void reuse_subsys1_Subsystem3(real_T rtu_In1, real_T *rty_0)

{

 /* Gain: '<S3>/Gain' */

 (*rty_0) = rtu_In1 * 3.0;

}

One way to make all the function signatures the same for code reuse, is to insert Signal
Conversion blocks. Place one between the Inport and Subsystem1 and another between
Subsystem3 and the Outport of the referenced model.

The result is a single reusable function:

void reuse_subsys2_Subsystem1(real_T rtu_In1,

 rtB_reuse_subsys2_Subsystem1 *localB)

{

 /* Gain: '<S1>/Gain' */

 localB->Gain_g = rtu_In1 * 3.0;

}

5-28

 Reusable Code and Referenced Models

You can achieve the same result (reusable code) with only one Signal Conversion block.
You can omit the Signal Conversion block connected to the Inport block if you select the
Pass fixed-size scalar root inputs by value check box at the bottom of the Model
Referencing pane of the Configuration Parameters dialog box. When you do this, you
still need to insert a Signal Conversion block before the Outport block.

5-29

5 Referenced Models in Simulink Coder

Simulink Coder Model Referencing Limitations

The following Simulink Coder limitations apply to model referencing. In addition to these
limitations, a model reference hierarchy used for code generation must satisfy:

• The Simulink requirements listed in:

• “Configuration Requirements for All Referenced Model Simulation” (Simulink)
• “Model Structure Requirements” (Simulink)

• The Simulink limitations listed in “Model Referencing Limitations” (Simulink).
• The Simulink Coder requirements applicable to the code generation target, as listed

in “Configuration Parameter Requirements” on page 5-16.

Customization Limitations

• The code generator ignores custom code settings in the Configuration Parameters
dialog box and custom code blocks when generating code for a referenced model.

• Data type replacement is not supported for simulation target code generation of
referenced models.

• Simulation targets do not include Stateflow target custom code.
• If you have an Embedded Coder license, some restrictions exist on grouped custom

storage classes in referenced models. For details, see “Custom Storage Class
Limitations” on page 23-71.

Data Logging Limitations

• To Workspace blocks, Scope blocks, and all types of runtime display, such as the
display of port values and signal values, are ignored when the Simulink Coder
software generates code for a referenced model. The resulting code is the same as if
the constructs did not exist.

• Code generated for referenced models cannot log data to MAT-files. If data logging
is enabled for a referenced model, the Simulink Coder software disables the option
before code generation and re-enables it afterwards.

• If you log states for a model that contains referenced models, the ordering of the
states in the output is determined by block sorted order, and might not match
between simulation output and generated code MAT-file logging output.

5-30

 Simulink Coder Model Referencing Limitations

State Initialization Limitation

When a top model uses the Data Import/Export > Initial state parameter in the
Configuration Parameters dialog box to specify initial conditions, the Simulink Coder
software does not initialize the discrete states of the referenced models during code
generation.

Reusability Limitations

If a referenced model used for code generation has any of the following properties, the
model must specify the configuration parameter Model Referencing > Total number
of instances allowed per top model as One, and no other instances of the model can
exist in the hierarchy. If you do not set the parameter to One, or more than one instance
of the model exists in the hierarchy, an error occurs. The properties are:

• The model references another model which has been set to single instance
• The model contains a state or signal with non-auto storage class
• The model uses any of the following Stateflow constructs:

• Machine-parented data
• Machine-parented events
• Stateflow graphical functions

• The model contains a subsystem that is marked as function
• The model contains an S-function that is:

• Inlined but has not set the option SS_OPTION_WORKS_WITH_CODE_REUSE
• Not inlined

• The model contains a function-call subsystem that:

• Has been forced by the Simulink engine to be a function
• Is called by a wide signal

For more information about Total number of instances allowed per top model, see
“Total number of instances allowed per top model” (Simulink).

5-31

5 Referenced Models in Simulink Coder

S-Function Limitations

• If a referenced model contains an S-function that should be inlined using a Target
Language Compiler file, the S-function must use the ssSetOptions macro to set
the SS_OPTION_USE_TLC_WITH_ACCELERATOR option in its mdlInitializeSizes
method. The simulation target will not inline the S-function unless this flag is set.

• A referenced model cannot use noninlined S-functions generated by the Simulink
Coder software.

• The Simulink Coder S-function target does not support model referencing.

For additional information, see “S-Functions with Referenced Models” (Simulink).

Simulink Tool Limitations

• Simulink tools that require access to a model's internal data or configuration
(including the Model Coverage tool, the Simulink Report Generator product, the
Simulink debugger, and the Simulink profiler) have no effect on code generated by
the Simulink Coder software for a referenced model, or on the execution of that code.
Specifications made and actions taken by such tools are ignored and effectively do not
exist.

Subsystem Limitations

• If a subsystem contains Model blocks, you cannot build a subsystem module by
right-clicking the subsystem (or by using Code > C/C++ Code > Build Selected
Subsystem) unless the model is configured to use an ERT target.

• If you generate code for an atomic subsystem as a reusable function, inputs or outputs
that connect the subsystem to a referenced model might prevent code reuse, as
described in “Reusable Code and Referenced Models” (Simulink Coder).

Target Limitations

• The Simulink Coder S-function target does not support model referencing.

Other Limitations

• Errors or unexpected behavior can occur if a Model block is part of a cycle, the Model
block is a direct feedthrough block, and an algebraic loop results. For details, see
“Model Blocks and Direct Feed through” (Simulink).

5-32

 Simulink Coder Model Referencing Limitations

• The External mode option is not supported. If it is enabled, it is ignored during code
generation.

• When a model contains a trigger or enable port, you cannot generate standalone
Simulink Coder code or PIL code.

5-33

6

Combined Models in Simulink Coder

6 Combined Models in Simulink Coder

Combine Code Generated for Multiple Models

Techniques

Techniques that you can use to combine code, which the code generator produces for
multiple models or multiple instances of a model, into one executable program include:

• Referenced models. See “Overview of Model Referencing” (Simulink) and “Generate
Code for Referenced Models” on page 5-4.

• If you have Embedded Coder software, interface the code for multiple models to a
common harness program. From the harness program, call the entry-point functions
generated for each model. The ert.tlc system target file has restrictions, relating to
embedded processing, that could be incompatible with your application.

• Generate reusable, multi-instance code that is reentrant. See “Combine Code
Generated for Multiple Models or Multiple Instances of a Model” on page 6-3.

The S-function system target (rtwsfcn.tlc) does not support combining code generated
for multiple models.

Consider using model referencing to combine models for simulation and code generation.
Model referencing helps with:

• Symbol naming consistency
• Required scheduling of the overall algorithm
• Model configuration consistency

If you combine code generated for different models (that is, without using referenced
models), consider:

• Data is global. Symbol (name) clashes can result.
• Configuration parameter settings for the models must match, including settings such

as hardware word sizes.
• Reuse and sharing of code can be suboptimal (for example, duplicate code for shared

utility functions, scheduling, and solvers).
• Scheduling can be more complex (for example, models can have periodic sample

times that are not multiples of each other, making scheduling from a common timer
interrupt more complicated)

6-2

 Combine Code Generated for Multiple Models

• For plant models that use continuous time and state, the continuous time signals
connecting models are not handled by a single solver like continuous time signals
within a model. This can lead to subtle numeric differences.

Control Ownership of Data

If you have Embedded Coder software, you can specify an owner for individual data
items such as signals, parameters, and states. The owner of a data item generates the
definition (memory allocation and initialization) for the data item. For example, if you
apply a custom storage class to a Simulink.Parameter object so that it appears as a
tunable global variable in the generated code, specify one of the combined models as the
owner of the object. The code generated for that model defines the parameter data.

If you use model referencing, you can modularize the generated code and establish clear
ownership of data when you work in a team.

If you do not use model referencing, you can prevent generation of duplicate definitions
for a data item. For example, suppose you store a Simulink.Parameter object in the
base workspace and apply the storage class ExportedGlobal. If you generate code
from two separate models that use the object, each model generates a definition for the
corresponding global variable. Instead, you can specify an owner for the object so that
only the owner generates a definition.

To specify an owner for a data item:

1 Apply a custom storage class to the data item. See “Introduction to Custom Storage
Classes” on page 23-2.

2 Configure the owner of the data item by specifying the Owner custom attribute.
3 Select the model configuration parameter Use owner from data object for data

definition placement.

For more information about controlling ownership and file placement of data definitions
and declarations, see “Manage Placement of Data Definitions and Declarations” on page
36-100.

Combine Code Generated for Multiple Models or Multiple Instances of a
Model

For each model for which you are combining code, generate the code.

6-3

6 Combined Models in Simulink Coder

1 Set the system target file to a GRT- or ERT-based system target file. The system
target file for the models you combine, must be the same.

2 If you intend to have multiple instances of that model in the application, set the
model configuration parameter Code Generation > Interface > Code interface
packaging to Reusable function. If you specified an ERT-based system target
file, optionally, you can set the model configuration parameter Use dynamic
memory allocation for model initialization, depending on whether you want to
statically or dynamically allocate the memory for each instance of the model.

3 Generate source code. The code generator includes an allocation function in the
generated file model.c. The allocation function dynamically allocates model data for
each instance of the model.

After generating source code for each model:

1 Compile the code for each model that you are combining.
2 Combine the makefiles generated for the models into one makefile.
3 Create a combined simulation engine by modifying a main program, such as

rt_malloc_main.c. The main program initializes and calls the code generated for
each model.

4 Run the makefile. The makefile links the object files and the main program into an
executable program.

Share Data Across Models

Use unidirectional signal connections between models. This affects the order in which
models are called. For example, if you use an output signal from modelA as input to
modelB, the modelA output computation should be called first.

Timing Issues

When combining code generated for multiple models or multiple instances of a model:

• Configure the models with the same solver mode (single-tasking or multitasking).
• If the models use continuous states, configure the models with the same solver.

If the base rates for the models differ, the main program (such as rt_malloc_main.c)
must set up the timer interrupt to occur at the greatest common divisor rate of the
models. The main program calls each model at a time interval.

6-4

 Combine Code Generated for Multiple Models

Data Logging and External Mode Support

A multiple-model program can log data to separate MAT-files for each model.

Only one of the models in a multiple-model program can use external mode.

6-5

7

Configure Model Parameters for
Simulink Coder

7 Configure Model Parameters for Simulink Coder

Configure Run-Time Environment Options
When you use Simulink software to create and execute a model and use the code
generator to produce C or C++ code, consider your configuration for up to three run-time
environments:

• The MATLAB development computer run-time environment that runs MathWorks
software during application development.

• The production hardware run-time environment in which you deploy an application
when it is put into production.

• The test hardware run-time environment in which you test an application under
development before deployment.

One run-time environment can serve in multiple capacities, but the run-time
environments remain conceptually distinct. Often, the MATLAB development computer
is the test hardware. Typically, the production hardware is different from, and less
powerful than, the MATLAB development or the test hardware. Many types of
production hardware can do little more than run a downloaded executable file.

Provide information about the production hardware board and the compiler that you use
with it when:

• You use Simulink software to simulate a model for which you later generate code
• You use the code generator to produce code for deployment on production hardware

The software uses the board and compiler information to get bit-true agreement for
the results of integer and fixed-point operations performed in simulation and in code
generated for the production hardware. The code generator uses the information to create
code that executes with maximum efficiency.

When you generate code for testing on test hardware, provide information about the test
hardware board and the compiler that you use. The code generator uses this information
to create code that provides bit-true agreement between results from:

• Integer and fixed-point operations performed in simulation
• Generated code run on the production hardware
• Generated code run on the test hardware

You can achieve bit-true agreement for results even if the production and test hardware
are different. Where the C standard does not completely define behavior, the compilers
for the two types of hardware can use different defaults.

7-2

 Configure Run-Time Environment Options

Configure Production and Test Hardware

You can specify model simulation or code generation for a specific hardware board and its
device type. For example, you can set the data size, byte ordering, and compiler behavior,
such as integer rounding. You can configure:

• The production hardware and the compiler that you use with it. This information
affects simulation and code generation. See “Example Production Hardware Setting
That Affects Normal Mode Simulation” on page 7-13.

• The test hardware and the compiler that you use with it. This information affects only
code generation.

Configure production hardware by selecting Configuration Parameters > Hardware
Implementation. By default, the Hardware Implementation pane lists Hardware
board, Device vendor, and Device type parameter fields only. Unless you have
installed hardware support packages, Hardware board lists values None or Determine
by Code Generation system target file, and Get Hardware Support
Packages. After installing a hardware support package, the list also includes the
corresponding hardware board name. If you select a hardware board name, parameters
for that board appear. To set device details, such as data size and byte ordering, click
Device details.

Configure test hardware in the Configuration Parameters dialog box, on the All
Parameters tab. To enable parameters for configuring test hardware details, set
ProdEqTarget to off. Code generated for test hardware executes in the environment
specified by the test hardware parameters. The code behaves as if it were executing in
the environment specified for the production hardware. For more information, see “Test
Hardware Considerations” on page 7-13.

Default values and properties appear as initial values in the Hardware
Implementation pane when:

• You specify a System target file in the Code Generation pane.
• The system target file specifies a default microprocessor and its hardware properties.

You cannot change parameters that have only one possible value. Parameters that
have more than one possible value provide a list of valid values. If you specify hardware
properties manually in Hardware Implementation pane, verify that these values are
consistent with the system target file. Otherwise, the generated code can fail to compile
or execute, or can execute but produce incorrect results.

7-3

7 Configure Model Parameters for Simulink Coder

Hardware implementation parameters describe hardware and compiler properties to
MATLAB software. The code generator uses the information to produce code for the run-
time environment that runs as efficiently as possible. The generated code gives bit-true
agreement for the results of integer and fixed-point operations in simulation, production
code, and test code.

For details about specific parameters, see “Hardware Implementation Pane” (Simulink).
To see an example of Hardware Implementation pane capabilities, see the
rtwdemo_targetsettings example model. For details related to configuring a
hardware implementation, see:

• “Specify Hardware Board” on page 7-4
• “Specify Device Vendor” on page 7-5
• “Specify the Device Type” on page 7-5
• “Register More Device Vendor and Device Type Values” on page 7-6
• “Set Bit Lengths for Device Data Types” on page 7-8
• “Set Byte Ordering for Device” on page 7-10
• “Set Quotient Rounding Behavior for Signed Integer Division” on page 7-10
• “Set Arithmetic Right Shift Behavior for Signed Integers” on page 7-11
• “Update Release 14 Hardware Configuration” on page 7-11

Specify Hardware Board

Specify the hardware board that runs the code generated from your model. Select a value
for Configuration Parameters > Hardware Implementation > Hardware board.

The Hardware Implementation pane identifies the system target file selected on
Configuration Parameters > Code Generation.

To configure test hardware, use Configuration Parameters > All Parameters.

To enable parameters for configuring test hardware details, set ProdEqTarget to off.

Ways to Specify the Hardware Board

If Select

The menu includes the name of the
hardware board that you want to use.

The name of that hardware board.

7-4

 Configure Run-Time Environment Options

If Select

If you select a hardware board name,
parameters for that board appear.

The menu does not include the name of
the hardware board that you want to
use.

Get Hardware Support Packages.

That value opens the Support Package
Installer. Install the support package that you
want. After you install the support package, the
menu includes relevant hardware board names.

The model configuration uses system
target file ert.tlc, realtime.tlc,
or autosar.tlc.

None.

No hardware board is specified for the
hardware implementation.

The model configuration does not
use system target file ert.tlc,
realtime.tlc, or autosar.tlc.

Determine by Code Generation system

target file.

The code generator uses the specified system
target file to determine the hardware
implementation.

Specify Device Vendor

To specify the vendor of the microprocessor of the hardware device, use the Device
vendor parameter. Your selection determines the available microprocessors in the
Device type menu. If the vendor name does not appear, select Custom Processor.
Then, use the Device type parameter to specify the microprocessor.

• For complete lists of Device vendor and Device type values, see “Device vendor”
(Simulink) and “Device type” (Simulink).

• To add Device vendor and Device type values to the default set that is displayed
on the Hardware Implementation pane, see “Register More Device Vendor and
Device Type Values” on page 7-6.

Specify the Device Type

To specify the microprocessor name from the supported devices listed for your Device
vendor selection, use the Device type parameter. If the microprocessor does not appear
in the menu, change Device vendor to Custom Processor. Then, specify device
details for your custom device.

7-5

7 Configure Model Parameters for Simulink Coder

If you select a device type for which the system target file specifies default hardware
properties, the properties appear as initial values. You cannot change the value of
parameters with only one possible selection. Parameters that have more than one
possible value provide a menu. Select values for your hardware.

Register More Device Vendor and Device Type Values

To add Device vendor and Device type values to the default set that is displayed on
the Hardware Implementation pane, you can use a hardware device registration API
provided by the code generator.

To use this API, you create an sl_customization.m file, on your MATLAB path, that
invokes the registerTargetInfo function and fills in a hardware device registry entry
with device information. The device information is registered with Simulink software
for each subsequent Simulink session. (To register your device information without
restarting MATLAB, issue the MATLAB command sl_refresh_customizations.)

For example, the following sl_customization.m file adds device vendor MyDevVendor
and device type MyDevType to the Simulink device lists.

function sl_customization(cm)

 cm.registerTargetInfo(@loc_register_device);

end

function thisDev = loc_register_device

 thisDev = RTW.HWDeviceRegistry;

 thisDev.Vendor = 'MyDevVendor';

 thisDev.Type = 'MyDevType';

 thisDev.Alias = {};

 thisDev.Platform = {'Prod', 'Target'};

 thisDev.setWordSizes([8 16 32 32 32]);

 thisDev.LargestAtomicInteger = 'Char';

 thisDev.LargestAtomicFloat = 'None';

 thisDev.Endianess = 'Unspecified';

 thisDev.IntDivRoundTo = 'Undefined';

 thisDev.ShiftRightIntArith = true;

 thisDev.setEnabled({'IntDivRoundTo'});

end

After device registration, you can select the device in the Hardware Implementation
pane.

To register multiple devices, specify an array of RTW.HWDeviceRegistry objects in your
sl_customization.m file. For example:

7-6

 Configure Run-Time Environment Options

function sl_customization(cm)

 cm.registerTargetInfo(@loc_register_device);

end

function thisDev = loc_register_device

 thisDev(1) = RTW.HWDeviceRegistry;

 thisDev(1).Vendor = 'MyDevVendor';

 thisDev(1).Type = 'MyDevType1';

 ...

 thisDev(4) = RTW.HWDeviceRegistry;

 thisDev(4).Vendor = 'MyDevVendor';

 thisDev(4).Type = 'MyDevType4';

 ...

end

You can specify various RTW.HWDeviceRegistry properties in the
registerTargetInfo function call in your sl_customization.m file.

Properties for registerTargetInfo Function Call

Property Description

Vendor Character vector specifying the Device vendor value for
your hardware device.

Type Character vector specifying the Device type value for your
hardware device.

Alias Cell array of character vectors specifying aliases or legacy
names that can resolve to this device. Specify each alias or
legacy name in the format 'Vendor->Type'.

Embedded Coder software provides the utility functions
RTW.isHWDeviceTypeEq and RTW.resolveHWDeviceType.
These functions detect and resolve alias values or legacy
values when testing user-specified values for the hardware
device type.

Platform Cell array of enumerated character vector values specifying
whether this device can be listed in the Production
hardware subpane ({'Prod'}), the Test hardware
subpane ({'Target'}), or both ({'Prod', 'Target'}).

7-7

7 Configure Model Parameters for Simulink Coder

Property Description

setWordSizes Array of integer sizes to associate with the Number of bits
parameters char, short, int, long, and native word size,
respectively.

LargestAtomicInteger Character vector specifying an enumerated value for
the Largest atomic size: integer parameter: 'Char',
'Short','Int', or 'Long'.

LargestAtomicFloat Character vector specifying an enumerated value for the
Largest atomic size: floating-point parameter: 'Float',
'Double', or 'None'.

Endianess Character vector specifying an enumerated value for the
Byte ordering parameter: 'Unspecified', 'Little' for
little Endian, or 'Big' for big Endian.

IntDivRoundTo Character vector specifying an enumerated value for the
Signed integer division rounds to parameter: 'Zero',
'Floor', or 'Undefined'.

ShiftRightIntArith Boolean value specifying whether your compiler implements
a signed integer right shift as an arithmetic right shift (true)
or not (false).

setEnabled Cell array of character vectors specifying which
device properties you can modify in the Hardware
Implementation pane when you select this device type.

This property applies for the 'Endianess',
'IntDivRoundTo', and 'ShiftRightIntArith'
properties. You can apply this property to individual
Number of bits parameters by using the property
names 'BitPerChar', 'BitPerShort', 'BitPerInt',
'BitPerLong', and 'NativeWordSize'.

Set Bit Lengths for Device Data Types

The Number of bits parameters describe the native word size of the microprocessor
and the bit lengths of char, short, int, and long data. For code generation to succeed:

• The bit lengths must be such that char <= short <= int <= long.
• Bit lengths must be multiples of 8, with a maximum of 32.

7-8

 Configure Run-Time Environment Options

• The bit length for long data must not be less than 32.

The rtwtypes.h file defines integer type names. The values that you provide must be
consistent with the word sizes as defined in the compiler limits.h header file. The
code generator maps its integer type names to the corresponding Simulink integer type
names.

If no ANSI® C type with a matching word size is available, but a larger ANSI C type
is available, the code generator uses the larger type for int8_T, uint8_T, int16_T,
uint16_T, int32_T, and uint32_T. When the code generator uses a larger type, the
resulting logged values (for example, MAT-file logging) can have different data types
than logged values for simulation.

An application can use an integer data of length from 1 (unsigned) or 2 (signed) bits up
32 bits. If the integer length matches the length of an available type, the code generator
uses that type. If a matching type is not available, the code generator uses the smallest
available type that can hold the data, generating code that does not use unnecessary
higher-order bits. For example, on hardware that supports 8-bit, 16-bit, and 32-bit
integers, for a signal specified as 24 bits, the code generator implements the data as an
int32_T or uint32_T.

Code that uses emulated integer data is not maximally efficient. This code can be useful
during application development for emulating integer lengths that are available only on
production hardware. Emulation does not affect the results of execution.

During code generation, the software checks the compatibility of model data types with
the data types that you specify for production hardware.

• If none of the lengths that you specify for production hardware integers is 32 bits, the
software generates an error.

• If the lengths of data types that the model uses are smaller than the available
production hardware integer lengths, the software generates a warning.

Mapping of Integer Types from Code Generator to Simulink

Code Generator Integer Type Simulink Integer Type

boolean_T boolean

int8_T int8

uint8_T uint8

int16_T int16

7-9

7 Configure Model Parameters for Simulink Coder

Code Generator Integer Type Simulink Integer Type

uint16_T uint16

int32_T int32

uint32_T uint32

Set Byte Ordering for Device

The Byte ordering parameter specifies whether the hardware uses Big Endian (most
significant byte first) or Little Endian (least significant byte first) byte ordering. If left
as Unspecified, the code generator produces code that determines the endianness of
the hardware. This setting is the least efficient.

Set Quotient Rounding Behavior for Signed Integer Division

ANSI C does not completely define the quotient rounding technique for compilers to
use when dividing one signed integer by another. So, the behavior is implementation-
dependent. If both integers are positive, or both are negative, the quotient must round
down. If either integer is positive and the other is negative, the quotient can round up or
down.

The Signed integer division rounds to parameter instructs the code generator about
how the compiler rounds the result of signed integer division. Providing this information
does not change the operation of the compiler. It only describes that behavior to the code
generator, which uses the information to optimize code generated for signed integer
division. The parameter values are:

• Zero — If the quotient is between two integers, the compiler chooses the integer that
is closer to zero as the result.

• Floor — If the quotient is between two integers, the compiler chooses the integer
that is closer to negative infinity.

• Undefined — If Zero or Floor do not describe the compiler behavior or if that
behavior is unknown, choose this value.

Avoid selecting Undefined. When the code generator does not know the signed integer
division rounding behavior of the compiler, the model build generates extra code.

The compiler quotient rounding behavior varies according to these values.

You can obtain the compiler implementation for signed integer division rounding from
the compiler documentation. If documentation is not available, you can determine this
behavior by experiment.

7-10

 Configure Run-Time Environment Options

Example Quotient Rounding for Zero, Floor, and Undefined

N D Ideal N/D Zero Floor Undefined

33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8 or 9

Set Arithmetic Right Shift Behavior for Signed Integers

ANSI C does not define the behavior of right shifts on negative integers for compilers.
So, the behavior is implementation-dependent. The Shift right on a signed integer
as arithmetic shift option instructs the code generator about how the compiler
implements right shifts on negative integers. Providing this information does not change
the operation of the compiler. It only describes that behavior to the code generator, which
uses the information to optimize the code generated for arithmetic right shifts.

If the C compiler implements a signed integer right shift as an arithmetic right shift,
select the option. Otherwise, clear the option. An arithmetic right shift fills bits vacated
by the right shift with the value of the most significant bit, which indicates the sign
of the number in two’s-complement notation. The option is selected by default. If your
compiler handles right shifts as arithmetic shifts, this setting is preferred.

• When you select the option, the code generator produces efficient code whenever the
Simulink model performs arithmetic shifts on signed integers.

• When the option is cleared, the code generator produces fully portable but less
efficient code to implement right arithmetic shifts.

You can obtain the compiler implementation for arithmetic right shifts from the compiler
documentation. If documentation is not available, you can determine this behavior by
experiment.

Update Release 14 Hardware Configuration

If your model was created before Release 14 and you have not updated the model, the
Configure current execution hardware device parameter (TargetUnknown) value
is 'on' by default.

To update your model, clear the box for Configuration Parameters > All Parameters
> Configure current execution hardware device.Or in the Command Window, type:

7-11

7 Configure Model Parameters for Simulink Coder

cs = getActiveConfigSet('your_model_name');

set_param(cs,'TargetUnknown','off');

This update to your model:

• Enables the Test Hardware is the same as production hardware parameter
(ProdEqTarget), setting the parameter to 'on'.

• Copies the Production device vendor and type parameter (ProdHWDeviceType)
value to the Test device vendor and type parameter (TargetHWDeviceType).

To complete the update:

1 Clear the box for Configuration Parameters > All Parameters > Test
Hardware is the same as production hardware. Apply this step only if your
production and test hardware are different.

2 Set the parameters in Configuration Parameters > All Parameters >
Hardware implementation to match your production and test systems.

3 Save the model.

Production Hardware Considerations

When you configure production hardware, consider these points:

• Production hardware can have word sizes and other hardware characteristics that
differ from the MATLAB development computer. You can prototype code on hardware
that is different from the production hardware or the MATLAB development
computer. When producing code, the code generator accounts for these differences.

• The Simulink product uses some of the information in the production hardware
configuration. That information enables simulations without code generation to give
the same results as executing generated code. For example, the results can detect
error conditions that arise on the production hardware, such as hardware overflow.

• The code generator produces code that provides bit-true agreement with Simulink
results for integer and fixed-point operations. Generated code that emulates
unavailable data lengths runs less efficiently than without emulation. The emulation
does not affect bit-true agreement with Simulink for integer and fixed-point results.

• If you change run-time environments during application development, before
generating or regenerating code, reconfigure the hardware implementation
parameters for the new run-time environment. When code executes on hardware for
which it was not generated, bit-true agreement is not always achieved for results of
integer and fixed-point operations in simulation, production code, and test code.

7-12

 Configure Run-Time Environment Options

• To compile code generated from the model, use the Integer rounding mode
parameter on model blocks to simulate the rounding behavior of the C compiler that
you intend. This setting appears on the Signal Attributes pane in the parameter
dialog boxes of blocks that can perform signed integer arithmetic, such as the Product
and n-D Lookup Table blocks.

• For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the simplest rounding mode,
the value of Signed integer division rounds to also affects rounding. For details,
see “Precision” (Fixed-Point Designer).

• When models contain Model blocks, configure models that they reference to use
identical hardware settings.

Test Hardware Considerations

By default, the test hardware configuration is the same as the configuration for the
production hardware. You can use the generated code for testing in an environment that
is identical to the production environment.

If the test and production environments differ, you can generate code that runs on test
hardware as if it were running on production hardware:

1 In the Configuration Parameters dialog box, on the All Parameters tab, enable test
hardware parameters by setting ProdEqTarget to off.

2 Specify device type details through the test hardware (Target*) parameters.

If you select a system target file that specifies a default microprocessor and its hardware
properties, these default values and properties appear as initial values.

Parameters with only one possible value cannot be changed. If you modify hardware
properties, check that their values are consistent with the system target file. Otherwise,
the generated code can fail to compile or execute, or can execute but produce incorrect
results.

Example Production Hardware Setting That Affects Normal Mode
Simulation

Changing some production hardware settings, for example, ProdLongLongMode and
ProdIntDivRoundTo, can affect normal mode simulation results. The following example
simulates an adder with four inputs. In the first simulation, ProdLongLongMode
is disabled. In the second simulation, ProdLongLongMode is enabled. In the plot of

7-13

7 Configure Model Parameters for Simulink Coder

simulation outputs, you observe small differences between output values in the time step
range 125–175.

model = 'hwSettingEffect';

new_system(model)

open_system(model)

% Create adder

pos = [140 140 200 340];

add_block('simulink/Math Operations/Add',[model '/sum_int32'], ...

 'Inputs','++++','SaturateOnIntegerOverflow','on','Position',pos)

pos = [75 155 105 175];

add_block('built-in/Inport',[model '/In1'],'Position',pos)

set_param([model '/In1'], 'OutDataTypeStr','int32','PortDimensions','1','SampleTime','1');

add_line(model, 'In1/1','sum_int32/1')

pos = [75 205 105 225];

add_block('built-in/Inport',[model '/In2'],'Position',pos)

set_param([model '/In2'], 'OutDataTypeStr','int32','PortDimensions','1','SampleTime','1');

add_line(model, 'In2/1','sum_int32/2')

pos = [75 255 105 275];

add_block('built-in/Inport',[model '/In3'],'Position',pos)

set_param([model '/In3'], 'OutDataTypeStr','int32','PortDimensions','1','SampleTime','1');

add_line(model, 'In3/1','sum_int32/3')

pos = [75 305 105 325];

add_block('built-in/Inport',[model '/In4'],'Position',pos)

set_param([model '/In4'], 'OutDataTypeStr','int32','PortDimensions','1','SampleTime','1');

add_line(model, 'In4/1','sum_int32/4')

pos = [275 230 305 250];

add_block('built-in/Outport',[model '/Out1'],'Position',pos)

add_line(model, 'sum_int32/1','Out1/1')

% Specify input data

t = 0:200;

peakValue = 1.5e9;

in1 = peakValue * sin(t*2*pi/100);

in2 = peakValue * cos(t*2*pi/70);

in3 = -peakValue * sin(t*2*pi/40);

in4 = -peakValue * cos(t*2*pi/30);

set = Simulink.SimulationData.Dataset;

set = set.addElement(1, timeseries(int32(in1),t,'Name','sig1'));

set = set.addElement(2, timeseries(int32(in2),t,'Name','sig2'));

set = set.addElement(3, timeseries(int32(in3),t,'Name','sig3'));

set = set.addElement(4, timeseries(int32(in4),t,'Name','sig4'));

set_param(model, 'LoadExternalInput', 'on');

set_param(model, 'ExternalInput', 'set');

set_param(model, 'StopTime', '50');

% Disable production hardware setting and run first simulation

7-14

 Configure Run-Time Environment Options

set_param(model, 'ProdLongLongMode', 'off');

[~, ~, y1] = sim(model, 200);

% Enable production hardware setting and run second simulation

set_param(model, 'ProdLongLongMode', 'on');

[~, ~, y2] = sim(model, 200);

plot([y1 y2]);

figure(gcf);

The difference in behavior is due to the accumulator data type in the Sum block. The
Accumulator data type block parameter is set to Inherit: Inherit via internal
rule. For this example, the resulting accumulator data type is 64 bits wide if the use
of the C long long data type is enabled. Otherwise, it is 32 bits wide. Depending
on the input values for the sum block, the 32-bit accumulator can saturate when the
64-bit accumulator does not. Therefore, normal mode behavior can depend on the
ProdLongLongMode setting. In both cases, the normal mode behavior and production
hardware behavior matches bitwise.

More About
• “Hardware Implementation Pane” (Simulink)
• “Device vendor” (Simulink)
• “Device type” (Simulink)
• “Precision” (Fixed-Point Designer)

7-15

8

Model Protection in Simulink Coder

• “Protect a Referenced Model” on page 8-2
• “Harness Model” on page 8-4
• “Protected Model Report” on page 8-5
• “Code Generation Support in a Protected Model” on page 8-6
• “Protected Model File” on page 8-8
• “Create a Protected Model” on page 8-10
• “Protected Model Creation Settings” on page 8-15
• “Create a Protected Model with Multiple Targets” on page 8-18
• “Use a Protected Model with Multiple Targets” on page 8-19
• “Test the Protected Model” on page 8-20
• “Save Base Workspace Definitions” on page 8-22
• “Package a Protected Model” on page 8-23
• “Specify Custom Obfuscator for Protected Model” on page 8-24
• “Define Callbacks for Protected Model” on page 8-26

8 Model Protection in Simulink Coder

Protect a Referenced Model

Protect a model when you want to share a model with a third party without revealing
intellectual property. Protecting a model does not use encryption technology unless
you use the optional password protection available for read-only view, simulation, and
code generation. If you choose password protection for one of these options, the software
protects the supporting files using AES–256 encryption.

When you create a protected model (Simulink):

• By default, Simulink creates and stores a protected version of the referenced model
in the current working folder. The protected model has the same name as the source
model, with a .slxp extension.

• The original Model block does not change. However, if the Model block parameter
Model name does not specify an extension, a protected model, .slxp, takes
precedence over a model file, .slx.

• You can optionally create a harness model which includes the protected model. A
shield icon appears in the lower-left corner of the protected model block in the harness
model. For more information, see “Harness Model” on page 8-4.

• You can optionally include generated code with the protected model so that a third
party can generate code for a model that contains the protected model. For more
information, see “Code Generation Support in a Protected Model” on page 8-6.

• If the Model block uses variants, only the active variant is protected. For more
information, see “Set up Model Variants” (Simulink).

• If the model defines callbacks, the model protection process does not preserve these
callbacks. For more information on creating callbacks for use with a protected model,
see “Define Callbacks for Protected Model” (Simulink Coder).

• If you rename a protected model, or change its suffix, the model is unusable until
you restore its original name and suffix. You cannot change a protected model file
internally because such changes make the file unusable.

Create a protected model using one of the following options.

• The Model block context menu. For more information, see “Create a Protected Model”
on page 8-10

• The Simulink.ModelReference.protect function.
• The Simulink Editor menu bar. Select File > Export Model To > Protected Model

to create a protected model from the current model.

8-2

 Protect a Referenced Model

Requirements for Protecting a Model

When you create a protected model from a referenced model, the referenced model must
meet all requirements listed in “Model Referencing Limitations” (Simulink), as well as
these requirements:

• You must have a Simulink Coder license to create a protected model.
• A model that you protect must be available on the MATLAB path and not have

unsaved changes.
• A model that you protect cannot reference a protected model directly or indirectly.
• A model that you protect cannot use a non-inlined S-function directly or indirectly.
• To use a protected model that requires passwords across platforms, before you create

the protected model, set the MATLAB character set encoding to 'US-ASCII'. For
more information, see slCharacterEncoding.

Model protection has certain limitations, as listed in “Limitations on All Model
Referencing” (Simulink) and “Limitations on Accelerator Mode Referenced Models”
(Simulink).

8-3

8 Model Protection in Simulink Coder

Harness Model

You can create a harness model for the generated protected model. The harness model
opens as a new, untitled model that contains only a Model block that references the
protected model. This Model block:

• Specifies the Model block parameter, Model name, as the name of the protected
model.

• Has a shield icon in the lower-left corner.
• Has the same number of input and output ports as the protected model.
• Defines model reference arguments that the protected model uses, but does not

provide values.

To create a harness model, see “Create a Protected Model” on page 8-10. You can
use a harness model to test your protected model. For more information, see “Test the
Protected Model” on page 8-20. You can also copy the Model block in your harness
model to another model, where it is an interface to the protected model.

8-4

 Protected Model Report

Protected Model Report

You can generate a protected model report when you create the protected model. The
report is included as part of the protected model. The report has:

• A Summary, including the following tables:

• Environment, providing the Simulink version and platform used to create the
protected model.

• Supported functionality, reporting On, Off, or On with password
protection for each possible functionality that the protected model supports.

• Licenses, listing licenses required to run the protected model.
• An Interface Report, including model interface information such as input and

output specifications, exported function information, interface parameters, and data
stores.

When you create the protected model from the Simulink Editor, the
protected model report is generated. To generate a report when using the
Simulink.ModelReference.protect function, set the ‘Report’ option to true.

If you configure your protected model for multiple targets, the Summary includes a
list of supported targets in the Supported functionality table. When you build a
model that references a protected model with multiple targets, the protected model code
generation report represents the currently configured target.

To view the protected model report, right-click the protected-model badge icon and select
Display Report. Or, call the Simulink.ProtectedModel.open function with the
report option.

8-5

8 Model Protection in Simulink Coder

Code Generation Support in a Protected Model

You can create a protected model that supports code generation. When a protected
model includes generated code, a third party can generate code for a model that includes
the protected model. If you choose to obfuscate the code, the code is obfuscated before
compilation. The protected model file contains only obfuscated headers and binaries.
Source code, such as .c and .cpp, is not present in the protected model file, although
the headers are documented in the protected model report. For more information, see
“Protected Model File” on page 8-8 and “Protected Model Report” on page 8-5.

In the Create Protected Model dialog box, select the Use generated code check box.
The appearance of the generated code is determined by the Content type list. To enable
obfuscated code, select Obfuscated source code from the list. For an example on
including code generation support, see “Create a Protected Model” on page 8-10.

Protected Model Requirements to Support Code Generation

Contents and configuration of a model might prevent code generation support of the
protected model. Interaction between the parent model and the protected model might
also prevent code generation.

• Code generation for the protected model is only supported for Normal, Accelerator,
Software-in-the-Loop (SIL), and Processor-in-the-Loop (PIL) modes and a single
target.

• Source code comments in the Code Generation > Comments pane are ignored.
Obfuscation of the generated code removes comments because comments might reveal
intellectual property.

• Custom code specified in the Code Generation > Custom Code pane is obfuscated,
but identifiers are not.

• Code generation of a model that includes a protected model causes an error, if:

• Their interfaces do not match.
• There are incompatible parameters.
• A protected model and another model share the same name in the same model

reference hierarchy.
• Selecting the Code Generation > Verification > Measure function execution

time check box is incompatible with model protection. If you have this option selected

8-6

 Code Generation Support in a Protected Model

when you protect your model, the software turns the parameter off and displays a
warning.

8-7

8 Model Protection in Simulink Coder

Protected Model File

A protected model file (.slxp) consists of the model itself and supporting files, depending
on the options that you selected when you created the protected model.

If you created a protected model for simulation only and the referencing model is in
Normal mode, after simulation, the model.mexext file is placed in the build folder.

If you created a protected model for simulation only and the referencing model is in
Accelerator or Rapid Accelerator mode, after simulation, the following files are
unpacked:

• slprj/sim/model/*.h

• slprj/sim/model/modellib.a (or modellib.lib)
• slprj/sim/model/tmwinternal/*

• slprj/sim/_sharedutils/*

For the protected model report, these additional files are unpacked (but not in the build
folder):

• slprj/sim/model/html/*

• slprj/sim/model/buildinfo.mat

If you opted to include code generation support when you created the protected model,
after building your model the following files are unpacked (in addition to the preceding
files):

• slprj/sim/model/*.h

• slprj/sim/model/modellib.a (or modellib.lib)
• slprj/sim/model/tmwinternal/*

• slprj/sim/_sharedutils/*

• slprj/target/model/*.h

• slprj/target/model/model_rtwlib.a (or model_rtwlib.lib)
• slprj/target/model/buildinfo.mat

• slprj/target/model/codeinfo.mat

• slprj/target/_sharedutils/*

• slprj/target/model/tmwinternal/*

8-8

 Protected Model File

With an Embedded Coder license, you can specify a Top model code interface. In this
case, if you opted to include code generation support when you created the protected
model, after building your model the following files are unpacked:

• slprj/sim/model/*.h

• slprj/sim/model/modellib.a (or modellib.lib)
• slprj/sim/model/tmwinternal/*

• slprj/sim/_sharedutils/*

• model_target_rtw/*.h

• model_target_rtw/*.objExt

• model_target_rtw/buildinfo.mat

• model_target_rtw/codeinfo.mat

• slprj/target/_sharedutils/*

• slprj/target/model/tmwinternal/*

For the protected model report, after building your model these files are unpacked (in
addition to the preceding files):

• slprj/target/model/html/*

• slprj/target/model/buildinfo.mat

• slprj/target/_sharedutils/html/*

Note: The slprj/sim/model/* files are deleted after they are used.

8-9

8 Model Protection in Simulink Coder

Create a Protected Model

This example shows how to create a protected model for read-only viewing, simulation, or
code generation.

1 Open your model. For this example, sldemo_mdlref_basic is used as a
demonstration.

2 In the Simulink Editor, right-click the model block that references the model for
which you want to generate protected model code. In this example, right-click
CounterA.

3 From the context menu, select Block Parameters (ModelReference).
4 In the Block Parameters dialog box, in the Model name field, specify the extension

for the model, .slx. When both the model and the protected model exist in the same
folder, .slxp takes precedence over .slx. In the Model name field, if you do not
specify an extension, then the original model block in the model becomes protected.

5 Click OK.
6 Right-click the model block. From the context menu, select Subsystem & Model

Reference > Create Protected Model for Selected Model Block.

8-10

 Create a Protected Model

7 In the Create Protected Model dialog box, select the Simulate and Use generated
code check boxes. If you want to password-protect the functionality of the protected
model, enter a password with a minimum of four characters. Each functionality can
have a unique password.

8 If you have an Embedded Coder license and specify an ERT based system target file
(for example, ert.tlc) for the model, the Code interface field is visible. From the
Code interface drop-down list, select one of the following options:

• Model reference — Specifies code access through the model reference code
interface, which allows use of the protected model within a model reference
hierarchy. Users of the protected model can generate code from a parent model
that contains the protected model. In addition, users can run Model block SIL/PIL
simulations with the protected model.

8-11

8 Model Protection in Simulink Coder

• Top model — Specifies code access through the standalone interface. Users of
the protected model can run Model block SIL/PIL simulations with the protected
model.

Note: In this example, sldemo_mdlref_basic does not specify an ERT based
system target file, therefore the Code interface options are not available on the
Create Protected Model dialog box.

9 From the Content type list, select Obfuscated source code to conceal the
source code purpose and logic of the protected model.

10 In the Create protected model in field, specify the folder path for the protected
model. The default value is the current working folder.

11 To create a harness model for the protected model, select the Create harness
model for protected model check box.

12 Click Create. An untitled harness model opens. It contains a model block, which
refers to the protected model sldemo_mdlref_counter.slxp. The Simulation
mode for the Model block is set to Accelerator. You cannot change the mode.

13 To view the protected model report, right-click the protected-model badge icon on the
CounterA block and select Display Report .

8-12

 Create a Protected Model

Related Examples
• “Test the Protected Model” on page 8-20
• “Package a Protected Model” on page 8-23
• “Configure and Run SIL Simulation” on page 64-15

8-13

8 Model Protection in Simulink Coder

More About
• “Code Generation Support in a Protected Model” on page 8-6
• “Protected Model Creation Settings” on page 8-15
• “Code Interfaces for SIL and PIL” on page 64-6

8-14

 Protected Model Creation Settings

Protected Model Creation Settings

When you create a protected model, in the Create Protected Model dialog box, you can
select which settings you want configured. The settings provide certain functionality
permissions when using a protected model. The functionality choices are:

• Read-only viewing
• Simulation
• Code Generation

Password-protection is optional. You must have a minimum of four characters.

8-15

8 Model Protection in Simulink Coder

Open Read-Only View of Model

If you want to share a view-only version of your model, this option will allows someone
using the protected model to open a Web view of the model. The contents and block
parameters are viewable in the model Web view.

Simulate

The Simulate check box allows someone to simulate a protected model. When you select
this check box, the Web view is not inherited. To enable the Web view with simulation
functionality, select the Open Read-Only View of Model check box. The Simulate
functionality:

• Enables protected model Simulation Report.
• Sets Mode to Accelerator. You can run Normal Mode and Accelerator simulations.
• Displays only binaries and headers.
• Enables code obfuscation.

Use Generated Code

The Use generated code check box allows simulation and code generation for a
protected model. To generate code, the Simulate check box must also be selected. This
functionality:

• Enables protected model Simulation Report and Code Generation Report.
• Sets Mode to enable code generation.
• Enables support for simulation.
• Supports the Model block if you have an Embedded Coder license and specify an ERT

system target file (ert.tlc) for the model. From the Code interface drop-down list,
select one of the following options:

• Model reference — Specifies the model reference code interface, which allows
use of the protected model within a model reference hierarchy. Users of the
protected model can generate code from a parent model that contains the protected
model. In addition, users can run Model block SIL/PIL simulations with the
protected model.

• Top model — Specifies code access through the standalone interface. Users of
the protected model can run Model block SIL/PIL simulations with the protected
model.

8-16

 Protected Model Creation Settings

• Determines the appearance of the generated code by the Content type list. The
options are:

• Binaries

• Obfuscated source code (default)
• Readable source code, which also includes readable code comments

8-17

8 Model Protection in Simulink Coder

Create a Protected Model with Multiple Targets

You can create a protected model that supports multiple code generation targets. This
example shows how to use command-line functions to create a protected model that
supports code generation for GRT and ERT targets.

1 Load a model and save a local copy. This model is configured for a GRT target.

sldemo_mdlref_counter

save_system('sldemo_mdlref_counter','mdlref_counter.slx');

2 Add a required password for modifying a protected model. If you do not add a
password, you are prompted to set a password when you create a modifiable,
protected model.

Simulink.ModelReference.ProtectedModel.setPasswordForModify(...

'mdlref_counter','password');

3 Create a modifiable, protected model with support for code generation.

Simulink.ModelReference.protect('mdlref_counter','Mode',...

'CodeGeneration', 'Modifiable',true, 'Report',true);

4 Get a list of targets that the protected model supports.

 st = Simulink.ProtectedModel.getSupportedTargets('mdlref_counter')

st =

 'grt' 'sim'

5 Configure the unprotected model to support an ERT target.

 set_param('mdlref_counter', 'SystemTargetFile', 'ert.tlc');

 save_system('mdlref_counter');

6 Add support to the protected model for the ERT target. You are prompted for the
modification password.

 Simulink.ProtectedModel.addTarget('mdlref_counter');

7 Verify that the list of supported targets now includes the ERT target.

 st = Simulink.ProtectedModel.getSupportedTargets('mdlref_counter')

st =

 'ert' 'grt' 'sim'

8-18

 Use a Protected Model with Multiple Targets

Use a Protected Model with Multiple Targets

When using a protected model with multiple targets, prepare your model for code
generation.

1 Get a list of the targets that the protected model supports using the
Simulink.ProtectedModel.getSupportedTargets function.

You can also get this information from the protected model report. To view the
report, on the protected model block, right-click the badge icon. Select Display
Report. The Summary lists the supported targets.

2 Get the configuration set for your chosen target using the
Simulink.ProtectedModel.getConfigSet function. You can use the
configuration set to verify that the protected model interface is compatible with the
parent model.

3 Generate code. The build process selects the corresponding target.

8-19

8 Model Protection in Simulink Coder

Test the Protected Model

To test a protected model that you created, you use the generated harness model and the
procedure described in “Use Protected Model in Simulation” (Simulink).

You can also compare the output of the protected model to the output of the original
model. Because you are the supplier, both the original and the protected model might
exist on the MATLAB path. In the original model, if the Model block Model name
parameter names the model without providing a suffix, the protected model takes
precedence over the unprotected model. If you need to override this default when testing
the output, in the Model block Model name parameter, specify the file name with the
extension of the unprotected model, .slx.

To compare the unprotected and protected versions of a Model block, use the Simulation
Data Inspector. This example uses sldemo_mdlref_basic and the protected model,
sldemo_mdlref_counter.slxp, which is created in “Create a Protected Model” on
page 8-10.

1 If it is not already open, open sldemo_mdlref_basic.
2 Enable logging for the output signal of the Model block, CounterA. In the

Configuration Parameters dialog box, in the Data Import/Export pane, select the
Signal logging parameter. Click Apply and OK.

3 Right-click the output signal. From the context menu, select Properties. In the
Signal Properties dialog box, select Log signal data. Click Apply and OK. For more
information, see “Export Signal Data Using Signal Logging” (Simulink).

4 Right-click the CounterA block. From the context menu, select Block Parameters
(ModelReference). In the Block Parameters dialog box, specify the Model
name parameter with the name of the unprotected model and the extension,
sldemo_mdlref_counter.slx. Click Apply and OK. Repeat this for CounterB
block and CounterC block.

5 In the Simulink Editor, click the Simulation Data Inspector button arrow and
select Send Logged Workspace Data to Data Inspector from the menu.

6 Simulate the model. When the simulation is complete, click the Simulation Data
Inspector button to open the Simulation Data Inspector.

7 In the Simulation Data Inspector, rename the run to indicate that it is for the
unprotected model.

8 In the Simulink Editor, right-click the CounterA block. From the context menu,
select Block Parameters (ModelReference). In the Block Parameters dialog

8-20

 Test the Protected Model

box, specify the Model name parameter with the name of the protected model,
sldemo_mdlref_counter.slxp. A shield icon appears on the Model block. Repeat
this for CounterB block and CounterC block.

9 Simulate the model, which now refers to the protected model. When the simulation is
complete, a new run appears in the Simulation Data Inspector.

10 In the Simulation Data Inspector, rename the new run to indicate that it is for the
protected model.

11 In the Simulation Data Inspector, click the Compare tab. From the Baseline
and Compare To lists, select the runs from the unprotected and protected model,
respectively. Click Compare Runs to compare the runs. For more information about
comparing runs, see “Compare Simulation Data” (Simulink).

8-21

8 Model Protection in Simulink Coder

Save Base Workspace Definitions

Referenced models might use object definitions or tunable parameters that are defined in
the MATLAB base workspace. These variables are not saved with the model. When you
protect a model, you must obtain the definitions of required base workspace entities and
ship them with the model.

The following base workspace variables must be saved to a MAT-file:

• Global tunable parameter
• Global data store
• The following objects used by a signal that connects to a root-level model Inport or

Outport:

• Simulink.Signal

• Simulink.Bus

• Simulink.Alias

• Simulink.NumericType that is an alias

For more information, see “Edit and Manage Workspace Variables Used by Models”
(Simulink).

Before executing the protected model as a part of a third-party model, the receiver of the
protected model must load the MAT-file.

8-22

 Package a Protected Model

Package a Protected Model

In addition to the protected model file (.slxp), you might need to include additional files
in the protected model package:

• Harness model file.
• Any required definitions saved in a MAT-file. For more information, see “Save Base

Workspace Definitions” on page 8-22.
• Instructions on how to retrieve the files.

Some ways to deliver the protected model package are:

• Provide the .slxp file and other supporting files as separate files.
• Combine the files into a ZIP or other container file.
• Combine the files using a manifest. For more information, see “Export Files in a

Manifest” (Simulink).
• Provide the files in some other standard or proprietary format specified by the

receiver.

Whichever approach you use to deliver a protected model, include information on how
to retrieve the original files. One approach to consider is to use the Simulink Manifest
Tools, as described in “Analyze Model Dependencies” (Simulink).

8-23

8 Model Protection in Simulink Coder

Specify Custom Obfuscator for Protected Model

When creating a protected model, you can specify your own postprocessing
function for files that the protected model creation process generates.
Prior to packaging the protected model files, this function is called by the
Simulink.ModelReference.protect function. You can use this functionality to run
your own custom obfuscator on the generated files by following these steps:

1 Create your postprocessing function. Use this function to call your custom
obfuscator. The function must be on the MATLAB path and accept a
Simulink.ModelReference.ProtectedModel.HookInfo object as an input variable.

2 In your function, get the files and exported symbol information that your custom
obfuscator requires to process the protected model files. To get the files and
information, access the properties of your function input variable. The variable is
a Simulink.ModelReference.ProtectedModel.HookInfo object with the following
properties:

• SourceFiles

• NonSourceFiles

• ExportedSymbols

3 Pass the protected model file information to your custom obfuscator. The following is
an example of a postprocessing function for custom obfuscation:

function myHook(protectedModelInfo)

 % Get source file list information.

 srcFileList = protectedModelInfo.SourceFiles;

 disp('### Obfuscating...');

 for i=1:length(srcFileList)

 disp(['### Obfuscator: Processing ' srcFileList{i} '...']);

 % call to custom obfuscator

 customObfuscator(srcFileList{i});

 end

end

4 Specify your postprocessing function when creating the protected model:

Simulink.ModelReference.protect('myModel, 'Mode', 'CodeGeneration', ...

 'CustomPostProcessingHook', ...

 @(protectedModelInfo)myHook(protectedModelInfo))

8-24

 Specify Custom Obfuscator for Protected Model

The creator of the protected model also has the option of enabling obfuscation of
simulation target code and generated code through the ‘ObfuscateCode’ option of the
Simulink.ModelReference.protect function. Your custom obfuscator runs only
on the generated code and not on the simulation target code. If both obfuscators are in
use, the custom obfuscator is the last to run on the generated code before the files are
packaged.

8-25

8 Model Protection in Simulink Coder

Define Callbacks for Protected Model

When you create a protected model, you can customize its behavior by defining callbacks.
Callbacks specify code that executes when a protected model user views, simulates, or
generates code for the protected model. A protected model user cannot view or modify a
callback. To create a protected model with callbacks:

1 Define Simulink.ProtectedModel.Callback objects for each callback.
2 To create your protected model, call the Simulink.ModelReference.protect

function. Use the 'Callbacks' option to specify a cell array of callbacks to include
in the protected model.

In this section...

“Creating Callbacks” on page 8-26
“Defining Callback Code” on page 8-27
“Create a Protected Model with Callbacks” on page 8-27

Creating Callbacks

To create and define a protected model callback, create a
Simulink.ProtectedModel.Callback object. Callback objects specify:

• The code to execute for the callback. The code can be a character vector of MATLAB
commands or a script on the MATLAB path.

• The event that triggers the callback. The event can be 'PreAccess' or 'Build'.
• The protected model functionality that the event applies to. The functionality can

be 'CODEGEN', 'SIM', 'VIEW', or 'AUTO'. If you select 'AUTO', and the event is
'PreAccess', the callback applies to each functionality. If you select 'AUTO', and
the event is 'Build', the callback applies only to 'CODEGEN' functionality. If you do
not select any functionality, the default behavior is 'AUTO'.

• The option to override the protected model build process. This option applies only to
'CODEGEN' functionality.

You can create only one callback per event and per functionality.

8-26

 Define Callbacks for Protected Model

Defining Callback Code

You can define the code for a callback by using either a character vector of MATLAB
commands or a script on the MATLAB path. When you write callback code, follow these
guidelines:

• Callbacks must use MATLAB code (.m or .p).
• The code can include protected model functions or any MATLAB command that does

not require loading the model.
• Callback code must not call out to external utilities unless those utilities are available

in the environment where the protected model is used.
• Callback code cannot reference the source protected model unless you are using

protected model functions.

You can use the Simulink.ProtectedModel.getCallbackInfo function in
callback code to get information on the protected model. The function returns a
Simulink.ProtectedModel.CallbackInfo object that provides the protected model name
and the names of submodels. If the callback is specified for 'CODEGEN' functionality
and 'Build' event, the object provides the target identifier and model code interface
type (‘Top model' or ‘Model reference').

Create a Protected Model with Callbacks

This example creates a protected model with a callback for code generation.

1 On the MATLAB path, create a callback script, pm_callback.m, containing:

s1 = 'Code interface is: ';

cbinfobj = Simulink.ProtectedModel.getCallbackInfo(...

'sldemo_mdlref_counter','Build','CODEGEN');

disp([s1 cbinfobj.CodeInterface]);

2 Create a callback that uses the script. If the callback code replaces the protected
model build process, set the override option.

pmCallback = Simulink.ProtectedModel.Callback('Build',...

'CODEGEN', 'pm_callback.m');

pmCallback.setOverrideBuild(true);

3 Create the protected model and specify the code generation callback.

Simulink.ModelReference.protect('sldemo_mdlref_counter',...

8-27

8 Model Protection in Simulink Coder

'Mode', 'CodeGeneration','Callbacks',{pmCallback})

4 Build the protected model. In place of the build, the callback displays the code
interface.

rtwbuild('sldemo_mdlref_basic')

See Also
Simulink.ProtectedModel.Callback | Simulink.ModelReference.protect |
Simulink.ProtectedModel.getCallbackInfo

More About
• “Protect a Referenced Model” (Simulink Coder)
• “Code Generation Support in a Protected Model” (Simulink Coder)

8-28

9

Component Initialization, Reset, and
Termination in Simulink Coder

9 Component Initialization, Reset, and Termination in Simulink Coder

Generate Code That Responds to Initialize, Reset, and Terminate
Events

To generate code from a modeling component that responds to initialize, reset, and
terminate events during execution, use the blocks Initialize Function and Terminate
Function. For information on how to use these blocks, see “Create Model to Initialize,
Reset, and Terminate State” (Simulink). You can use the blocks anywhere in a model
hierarchy.

Examples of when to generate code that responds to initialize, reset, or terminate events
include:

• Starting and stopping a component.
• Calculating initial conditions.
• Saving and restoring state from nonvolatile memory.
• Generating reset entry-point functions that respond to external events.

Each nonvirtual subsystem and referenced model can have its own set of initialize, reset,
and terminate functions.

The code generator produces initialization and termination code differently than
reset code. For initialization and termination code, the code generator includes your
component initialization and termination code in the default entry-point functions,
model_initialize and model_terminate. The code generator produces reset code
only if you model reset behavior.

Generate Code for Initialize and Terminate Events

When you generate code for a component that includes Initialize Function and Terminate
Function blocks, the code generator:

• Includes initialize event code with default initialize code in entry-point function
model_initialize.

• Includes terminate event code with default terminate code in entry-point function
model_terminate.

Consider the model rtwdemo_irt_base.

9-2

 Generate Code That Responds to Initialize, Reset, and Terminate Events

For this model, the code generator produces initialize and terminate entry-point
functions that other code can interface with.

void rtwdemo_irt_base_initialize(void)

void rtwdemo_irt_base_terminate(void)

This code appears in the generated file rtwdemo_irt_base.c. The initialize function,
rtwdemo_irt_base_initialize, initializes an error status. The terminate function,
rtwdemo_irt_base_terminate, requires no code. This code assumes that support for
nonfinite numbers and MAT-file logging is disabled.

void rtwdemo_irt_base_initialize(void)

{

 rtmSetErrorStatus(rtwdemo_irt_base_M, (NULL));

 (void) memset((void *)&rtwdemo_irt_base_DW, 0,

 sizeof(DW_rtwdemo_irt_base_T));

 rtwdemo_irt_base_Y.Out1 = 0.0;

 rtwdemo_irt_base_DW.DiscreteIntegrator_DSTATE = 0.0;

}

void rtwdemo_irt_base_terminate(void)

{

 /* (no terminate code required) */

}

Add Initialize Function and Terminate Function blocks to the model (see
rtwdemo_irt_initterm). The Initialize Function block uses the State Writer block
to set the initial condition of a Discrete Integrator block. The Terminate Function block
includes a State Reader block, which reads the state of the Discrete Integrator block.

9-3

9 Component Initialization, Reset, and Termination in Simulink Coder

The Event type parameter of the Event Listener block for the initialize and terminate
functions is set to Initialize and Terminate, respectively. The initialize function uses
the State Writer block to initialize the input value for the Discrete Integrator block to
10. The terminate function uses the State Reader block to read the state of the Discrete
Integrator block.

9-4

 Generate Code That Responds to Initialize, Reset, and Terminate Events

9-5

9 Component Initialization, Reset, and Termination in Simulink Coder

The code generator includes the event code that it produces for the Initialize
Function and Terminate Function blocks with standard initialize and terminate
code in entry-point functions rtwdemo_irt_initterm_initialize and
rtwdemo_irt_initterm_terminate. This code assumes that support for nonfinite
numbers and MAT-file logging is disabled.

void rtwdemo_irt_initterm_initialize(void)

{

 rtmSetErrorStatus(rtwdemo_irt_initterm_M, (NULL));

 (void) memset((void *)&rtwdemo_irt__initterm_DW, 0,

 sizeof(DW_rtwdemo_irt__initterm_T));

 rtwdemo_irt_initterm_Y.Out1 = 0.0;

9-6

 Generate Code That Responds to Initialize, Reset, and Terminate Events

 rtwdemo_irt_initterm_DW.DiscreteIntegrator_DSTATE = 10.0;

}

void rtwdemo_irt__initterm_terminate(void)

{

 /* (no terminate code required) */

}

The initialization code:

• Initializes an error status.
• Allocates memory for block I/O and state parameters.
• Assigns the value of the constant input parameter to the state parameter of the

discrete integrator.

The termination code assigns the value of the discrete integrator state parameter to the
block I/O parameter.

Generate Code for Reset Events

Generate code that responds to a reset event by including an Initialize Function or
Terminate Function block in a modeling component. Configure the block for a reset by
setting the Event type parameter of its Event Listener block to Reset. Also set the
Event name parameter. The default name is reset.

The code generator produces a reset entry-point function only if you model reset
behavior. If a component contains multiple reset specifications, the code that the code
generator produces depends on whether reset functions share an event name. For a given
component hierarchy:

• For reset functions with unique event names, the code generator produces a separate
entry-point function for each named event. The name of each function is the name of
the corresponding event.

• For reset functions that share an event name, the code generator aggregates the
reset code into one entry-point function. The code for the reset functions appears
in order, starting with the lowest level (innermost) of the component hierarchy and
ending with the root (outermost). The name of the function is model_reset. For more
information, see “Event Names and Code Aggregation” (Simulink Coder).

Consider the model rtwdemo_irt_reset, which includes a Reset Function block derived
from an Initialize Function block.

9-7

9 Component Initialization, Reset, and Termination in Simulink Coder

The Event type and Event name parameters of the Event Listener block are set to
Reset and reset, respectively. The function uses the State Writer block to reset the
input value for the Discrete Integrator block to 5.

9-8

 Generate Code That Responds to Initialize, Reset, and Terminate Events

The code generator produces reset function rtwdemo_irt_reset_reset. The code for
the function appears in the Real-time model section of the model.c file.

void rtwdemo_irt_reset_reset(void)

{

 rtwdemo_irt_reset_DW.DiscreteIntegrator_DSTATE = 5.0;

}

Event Names and Code Aggregation

Use the Initialize Function and Terminate Function blocks to define multiple initialize,
reset, and terminate functions for a component hierarchy. Define only one initialize
function and one terminate function per hierarchy level. You can define multiple reset
functions for a hierarchy level. The event names that you configure for the functions at a
given level must be unique.

9-9

9 Component Initialization, Reset, and Termination in Simulink Coder

When producing code, the code generator aggregates code for functions that have a given
event name across the entire component hierarchy into one entry-point function. The
code for reset functions appears in order, starting with the lowest level (innermost) of the
component hierarchy and ending with the root (outermost). The code generator uses the
event name to name the function.

For example, the model rtwdemo_irt_shared includes a subsystem that replicates the
initialize, reset, and terminate functions that are in the parent model.

Although the model includes multiple copies of the initialize, reset,
and terminate functions, the code generator produces one entry-

9-10

 Generate Code That Responds to Initialize, Reset, and Terminate Events

point function for reset (rtwdemo_irt_shared_reset), one for
initialize (rtwdemo_irt_shared_initialize), and one for terminate
(rtwdemo_irt_shared_terminate). Within each entry-point function, after listing
code for blocks configured with an initial condition (model_P.block_IC), the code
generator orders code for components, starting with the lowest level of the hierarchy and
ending with the root.

.

.

.

void rtwdemo_irt_shared_reset(void)

{

 rtwdemo_irt_shared_DW.SubIntegrator2_DSTATE =

 rtwdemo_irt_shared_P.Constant1_Value;

 rtwdemo_irt_shared_DW.SubIntegrator2_DSTATE = 5.0;

 rtwdemo_irt_shared_DW.Integrator2_DSTATE = 5.0;

}

.

.

.

void rtwdemo_irt_shared_initialize(void)

{

 rtmSetErrorStatus(rtwdemo_irt_shared_M, (NULL));

 (void) memset(((void *)&rtwdemo_irt_shared_DW), 0,

 sizeof(DW_rtwdemo_irt_shared_T));

 rtwdemo_irt_shared_Y.Out1 = 0.0;

 rtwdemo_irt_shared_DW.Integrator1_DSTATE = 0.0;

 rtwdemo_irt_shared_DW.SubIntegrator2_DSTATE = 2.0;

 rtwdemo_irt_shared_DW.Integrator2_DSTATE = 10.0;

.

.

.

void rtwdemo_irt_shared_terminate(void)

{

 /* (no terminate code required) */

9-11

9 Component Initialization, Reset, and Termination in Simulink Coder

 }

If you rename the event configured for the subsystem reset function to reset_02, the
code generator produces two reset entry-point functions, rtwdemo_irt_shared_reset
and rtwdemo_irt_shared_reset_02.

void rtwdemo_irt_shared_reset(void)

{

 rtwdemo_irt_shared_DW.Integrator2_DSTATE = 5.0;

}

void rtwdemo_irt_shared_reset_02(void)

{

 rtwdemo_irt_shared_DW.SubIntegrator2_DSTATE = 5.0;

}

Limitations

You cannot generate code from a:

• Harness model—a root model that contains a Model block, which exposes initialize,
reset, or terminate function ports.

• Model configured for C++ code generation.

Related Examples
• “Create Model to Initialize, Reset, and Terminate State” (Simulink)
• “Entry-Point Functions and Scheduling” (Simulink Coder)
• “Initialization of Signal, State, and Parameter Data in the Generated Code” on page

19-165

9-12

10

Stateflow Blocks in Simulink Coder

• “Code Generation of Stateflow Blocks” on page 10-2
• “Generate Reusable Code for Atomic Subcharts” on page 10-6
• “Generate Reusable Code for Unit Testing” on page 10-8
• “Inline State Functions in Generated Code” on page 10-14
• “Air-Fuel Ratio Control System with Stateflow Charts” on page 10-17

10 Stateflow Blocks in Simulink Coder

Code Generation of Stateflow Blocks

The code generator produces code for Stateflow blocks for rapid prototyping. If you have
an Embedded Coder license, you can generate production code for Stateflow blocks.

Comparison of Code Generation Methods

The following sections compare two ways of generating code.

Code Generation Without Atomic Subcharts

You generate code for the entire model in one file and look through that entire file to find
code for a specific part of the chart.

10-2

 Code Generation of Stateflow Blocks

Code Generation With Atomic Subcharts

You specify code generation parameters so that code for an atomic subchart appears in
a separate file. This method of code generation enables unit testing for a specific part of
a chart. You can avoid searching through unrelated code and focus only on the part that
interests you.

10-3

10 Stateflow Blocks in Simulink Coder

Note: Unreachable Stateflow states are optimized out and are not included in the
generated code.

10-4

 Code Generation of Stateflow Blocks

For more information, see “Generate Reusable Code for Unit Testing” on page 10-8.

10-5

10 Stateflow Blocks in Simulink Coder

Generate Reusable Code for Atomic Subcharts

In this section...

“How to Generate Reusable Code for Linked Atomic Subcharts” on page 10-6
“How to Generate Reusable Code for Unlinked Atomic Subcharts” on page 10-7

How to Generate Reusable Code for Linked Atomic Subcharts

To specify code generation parameters for linked atomic subcharts from the same library:

1 Open the library model that contains your atomic subchart.
2 Unlock the library.
3 Right-click the library chart and select Block Parameters.
4 In the dialog box, specify the following parameters:

a On the Main tab, select Treat as atomic unit.
b On the Code Generation tab, set Function packaging to Reusable

function.
c Set File name options to User specified.
d For File name, enter the name of the file with no extension.
e Click OK to apply the changes.

5 (OPTIONAL) Customize the generated function names for atomic subcharts:

a Open the Model Configuration Parameters dialog box.
b On the Code Generation pane, set System target file to ert.tlc.
c Navigate to the Code Generation > Symbols pane.
d For Subsystem methods, specify the format of the function names using a

combination of the following tokens:

• $R — root model name
• $F — type of interface function for the atomic subchart
• $N — block name
• $H — subsystem index
• $M — name-mangling text

10-6

 Generate Reusable Code for Atomic Subcharts

e Click OK to apply the changes.

When you generate code for your model, a separate file stores the code for linked atomic
subcharts from the same library.

How to Generate Reusable Code for Unlinked Atomic Subcharts

To specify code generation parameters for an unlinked atomic subchart:

1 In your chart, right-click the atomic subchart and select Properties.
2 In the dialog box, specify the following parameters:

a Set Code generation function packaging to Reusable function.
b Set Code generation file name options to User specified.
c For Code generation file name, enter the name of the file with no extension.
d Click OK to apply the changes.

3 (OPTIONAL) Customize the generated function names for atomic subcharts:

a Open the Model Configuration Parameters dialog box.
b On the Code Generation pane, set System target file to ert.tlc.
c Navigate to the Code Generation > Symbols pane.
d For Subsystem methods, specify the format of the function names using a

combination of the following tokens:

• $R — root model name
• $F — type of interface function for the atomic subchart
• $N — block name
• $H — subsystem index
• $M — name-mangling text

e Click OK to apply the changes.

When you generate code for your model, a separate file stores the code for the atomic
subchart. For more information, see “Generate Reusable Code for Unit Testing” on page
10-8.

10-7

10 Stateflow Blocks in Simulink Coder

Generate Reusable Code for Unit Testing

In this section...

“Goal of the Tutorial” on page 10-8
“Convert a State to an Atomic Subchart” on page 10-9
“Specify Code Generation Parameters” on page 10-10
“Generate Code for Only the Atomic Subchart” on page 10-11

Goal of the Tutorial

Assume that you have the following model, and the chart has two states:

10-8

 Generate Reusable Code for Unit Testing

Suppose that you want to generate reusable code so that you can perform unit testing on
state A. You can convert that part of the chart to an atomic subchart and then specify a
separate file to store the generated code.

Convert a State to an Atomic Subchart

To convert state A to an atomic subchart, right-click the state and select Group &
Subchart > Atomic Subchart. State A changes to an atomic subchart:

10-9

10 Stateflow Blocks in Simulink Coder

Specify Code Generation Parameters

Set Up a Standalone C File for the Atomic Subchart

1 Open the properties dialog box for A.
2 Set Code generation function packaging to Reusable function.
3 Set Code generation file name options to User specified.
4 For Code generation file name, enter saturator as the name of the file.
5 Click OK.

Set Up the Code Generation Report

1 Open the Model Configuration Parameters dialog box.
2 In the Code Generation pane, set System target file to ert.tlc.
3 In the Code Generation > Report pane, select Create code generation report.

This step automatically selects Open report automatically and Code-to-model
on the All Parameters tab.

10-10

 Generate Reusable Code for Unit Testing

4 Select Model-to-code on the All Parameters tab.
5 Click Apply.

Customize the Generated Function Names

1 In the Model Configuration Parameters dialog box, go to the Code Generation >
Symbols pane.

2 Set Subsystem methods to the format scheme RNMF, where:

• $R is the root model name.
• $N is the block name.
• $M is the mangle token.
• $F is the type of interface function for the atomic subchart.

For more information, see “Subsystem methods” (Simulink Coder).
3 Click Apply.

Generate Code for Only the Atomic Subchart

To generate code for your model, press Ctrl+B. In the code generation report that
appears, you see a separate file that contains the generated code for the atomic subchart.

To inspect the code for saturator.c, click the hyperlink in the report to see the
following code:

10-11

10 Stateflow Blocks in Simulink Coder

Line 28 shows that the during function generated for the atomic subchart has the
name ex_reuse_states_A_during. This name follows the format scheme RNMF
specified for Subsystem methods:

10-12

 Generate Reusable Code for Unit Testing

• $R is the root model name, ex_reuse_states.
• $N is the block name, A.
• $M is the mangle token, which is empty.
• $F is the type of interface function for the atomic subchart, during.

Note: The line numbers shown can differ from the numbers that appear in your code
generation report.

10-13

10 Stateflow Blocks in Simulink Coder

Inline State Functions in Generated Code

In this section...

“Inlined Generated Code for State Functions” on page 10-14
“How to Set the State Function Inline Option” on page 10-16
“Best Practices for Controlling State Function Inlining” on page 10-16

Inlined Generated Code for State Functions

By default, the code generator uses an internal heuristic to determine whether to inline
generated code for state functions. The heuristic takes into consideration an inlining
threshold. As code grows and shrinks in size, generated code for state functions can be
unpredictable.

If your model includes Stateflow objects and you have rigorous requirements for
traceability between generated code and the corresponding state functions, you can
override the default behavior. Use the state property Function Inline Option to
explicitly force or prevent inlining of state functions.

What Happens When You Force Inlining

If you force inlining for a state, the code generator inlines code for state actions into the
parent function. The parent function contains code for executing the state actions, outer
transitions, and flow charts. It does not include code for empty state actions.

What Happens When You Prevent Inlining

If you prevent inlining for a state, the code generator produces these static functions for
state foo.

Function Description

enter_atomic_foo Marks foo active and performs entry
actions.

enter_internal_foo Calls default paths.
inner_default_foo Executes flow charts that originate when

an inner transition and default transition
reach the same junction inside a state.

10-14

 Inline State Functions in Generated Code

Function Description

The code generator produces this function
only when the flow chart is complex enough
to exceed the inlining threshold.

In generated code, Stateflow software
calls this function from both the
enter_internal_foo and foo functions.

foo Checks for valid outer transitions and if
none, performs during actions.

exit_atomic_foo Performs exit actions and marks foo
inactive.

exit_internal_foo Performs exit actions of the child substates
and then exits foo.

Suppose the following chart is in model M.

If you prevent inlining for state A, the code generator produces this code.

static void M_inner_default_A(void);

static void M_exit_atomic_A(void);

static void M_A(void);

static void M_enter_atomic_A(void);

static void M_enter_internal_A(void);

10-15

10 Stateflow Blocks in Simulink Coder

How to Set the State Function Inline Option

To set the function inlining property for a state:

1 Right-click inside the state and, from the context menu, select Properties.

The State properties dialog box opens.
2 In the Function Inline Option field, select one of these options.

Option Behavior

Inline Forces inlining of state functions into the parent function, as long as
the function is not part of a recursion. See “What Happens When You
Force Inlining” on page 10-14.

Function Prevents inlining of state functions. Generates up to six static
functions for the state. See “What Happens When You Prevent
Inlining” on page 10-14.

Auto Uses internal heuristics to determine whether or not to inline the
state functions.

3 Click Apply.

Best Practices for Controlling State Function Inlining

To Set Function Inline Option Property To

Generate a separate function for each
action of a state and a separate function for
each action of its substates

Function for the state and each substate

Generate a separate function for each
action of a state, but include code for the
associated action of its substates

Function for the state and Inline for each
substate

10-16

 Air-Fuel Ratio Control System with Stateflow Charts

Air-Fuel Ratio Control System with Stateflow Charts

Generate code for an air-fuel ratio control system designed with Simulink® and
Stateflow®.

Figures 1, 2, and 3 show relevant portions of the sldemo_fuelsys model, a closed-loop
system containing a plant and controller. The plant validates the controller in simulation
early in the design cycle. In this example, you generate code for the relevant controller
subsystem, "fuel_rate_control". Figure 1 shows the top-level simulation model.

Open sldemo_fuelsys via rtwdemo_fuelsys and compile the diagram to see the signal data
types.

rtwdemo_fuelsys

sldemo_fuelsys([],[],[],'compile');

sldemo_fuelsys([],[],[],'term');

Figure 1: Top-level model of the plant and controller

10-17

10 Stateflow Blocks in Simulink Coder

The air-fuel ratio control system is comprised of Simulink® and Stateflow®. The control
system is the portion of the model for which you generate code.

open_system('sldemo_fuelsys/fuel_rate_control');

Figure 2: The air-fuel ratio controller subsystem

The control logic is a Stateflow® chart that specifies the different modes of operation.

open_system('sldemo_fuelsys/fuel_rate_control/control_logic');

10-18

 Air-Fuel Ratio Control System with Stateflow Charts

Figure 3: Air-fuel rate controller logic

Close these windows.

close_system('sldemo_fuelsys/fuel_rate_control/airflow_calc');

close_system('sldemo_fuelsys/fuel_rate_control/fuel_calc');

close_system('sldemo_fuelsys/fuel_rate_control/control_logic');

hDemo.rt=sfroot;hDemo.m=hDemo.rt.find('-isa','Simulink.BlockDiagram');

hDemo.c=hDemo.m.find('-isa','Stateflow.Chart','-and','Name','control_logic');

hDemo.c.visible=false;

close_system('sldemo_fuelsys/fuel_rate_control');

10-19

10 Stateflow Blocks in Simulink Coder

Configure and Build the Model with Simulink® Coder™

Simulink® Coder™ generates generic ANSI® C code for Simulink® and Stateflow®
models via the Generic Real-Time (GRT) target. You can configure a model for code
generation programmatically.

rtwconfiguredemo('sldemo_fuelsys','GRT');

For this example, build only the air-fuel ratio control system. Once the code generation
process is complete, an HTML report detailing the generated code is displayed. The main
body of the code is located in fuel_rate_control.c.

rtwbuild('sldemo_fuelsys/fuel_rate_control');

Starting build procedure for model: fuel_rate_control

Successful completion of build procedure for model: fuel_rate_control

Configure and Build the Model with Embedded Coder®

Embedded Coder® generates production ANSI® C/C++ code via the Embedded Real-
Time (ERT) target. You can configure a model for code generation programmatically.

rtwconfiguredemo('sldemo_fuelsys','ERT');

Repeat the build process and inspect the generated code. In the Simulink® Coder™
Report, you can navigate to the relevant code segments interactively by using the
Previous and Next buttons. From the chart context menu (right-click the Stateflow®
block), select Code Generation > Navigate to Code. Programmatically, use the
rtwtrace utility.

rtwbuild('sldemo_fuelsys/fuel_rate_control');

rtwtrace('sldemo_fuelsys/fuel_rate_control/control_logic')

Starting build procedure for model: fuel_rate_control

Successful completion of build procedure for model: fuel_rate_control

View the air-fuel ratio control logic in the generated code.

rtwdemodbtype('fuel_rate_control_ert_rtw/fuel_rate_control.c','/* Function for Chart:','case IN_Warmup:',1,0);

/* Function for Chart: '<S1>/control_logic' */

static void Fueling_Mode(const int32_T *sfEvent)

10-20

 Air-Fuel Ratio Control System with Stateflow Charts

{

 /* During 'Fueling_Mode': '<S3>:21' */

 /* This state interprets the other states in the chart to directly control the fueling mode. */

 switch (rtDW.bitsForTID0.is_Fueling_Mode) {

 case IN_Fuel_Disabled:

 rtDW.fuel_mode = DISABLED;

 /* During 'Fuel_Disabled': '<S3>:22' */

 /* The fuel is completely shut off while in this state. */

 switch (rtDW.bitsForTID0.is_Fuel_Disabled) {

 case IN_Overspeed:

 /* Inport: '<Root>/sensors' */

 /* During 'Overspeed': '<S3>:24' */

 /* The speed is dangerously high, so shut off the fuel. */

 if ((rtDW.bitsForTID0.is_Speed == IN_normal) && (rtU.sensors.speed <

 603.0F)) {

 /* Transition: '<S3>:54' */

 if (!(rtDW.bitsForTID0.is_Fail == IN_Multi)) {

 /* Transition: '<S3>:55' */

 rtDW.bitsForTID0.is_Fuel_Disabled = IN_NO_ACTIVE_CHILD;

 rtDW.bitsForTID0.is_Fueling_Mode = IN_Running;

 /* Entry Internal 'Running': '<S3>:23' */

 switch (rtDW.bitsForTID0.was_Running) {

 case IN_Low_Emissions:

 if (rtDW.bitsForTID0.is_Running != IN_Low_Emissions) {

 rtDW.bitsForTID0.is_Running = IN_Low_Emissions;

 rtDW.bitsForTID0.was_Running = IN_Low_Emissions;

 /* Entry 'Low_Emissions': '<S3>:25' */

 rtDW.fuel_mode = LOW;

 }

 /* Entry Internal 'Low_Emissions': '<S3>:25' */

 switch (rtDW.bitsForTID0.was_Low_Emissions) {

 case IN_Normal:

 rtDW.bitsForTID0.is_Low_Emissions = IN_Normal;

 rtDW.bitsForTID0.was_Low_Emissions = IN_Normal;

 break;

Close the model and code generation report.

clear hDemo;

rtwdemoclean;

close_system('sldemo_fuelsys',0);

10-21

10 Stateflow Blocks in Simulink Coder

Related Examples

For related fixed-point examples that use sldemo_fuelsys, see

• Fixed-point design - “Fixed-Point Fuel Rate Control System” (Fixed-Point Designer)
• Fixed-point production C/C++ code generation - “Air-Fuel Ratio Control System

with Fixed-Point Data” (Simulink Coder)

10-22

11

Block Authoring and Code Generation
for Simulink Coder

• “S-Functions and Code Generation” on page 11-2
• “Import Calls to External Code into Generated Code with Legacy Code Tool” on page

11-7
• “External Code Integration Examples” on page 11-50
• “Automate S-Function Generation with S-Function Builder” on page 11-61
• “Write S-Function and TLC Files By Hand” on page 11-66

11 Block Authoring and Code Generation for Simulink Coder

S-Functions and Code Generation

In this section...

“Types of S-Functions” on page 11-3
“Files Required for Implementing Noninlined and Inlined S-Functions” on page
11-5
“Guidelines for Writing S-Functions that Support Code Generation” on page 11-5

You use S-functions to extend Simulink support for simulation and code generation. For
example, you can use them to:

• Represent custom algorithms
• Interface existing external code with Simulink and the code generator
• Represent device drivers for interfacing with hardware
• Generate highly optimized code for embedded systems
• Verify code generated for a subsystem as part of a Simulink simulation

The application program interface (API) for writing S-functions allows you to implement
generic algorithms in the Simulink environment with a great deal of flexibility. If you
intend to use S-functions in a model for code generation, the level of flexibility can vary.
For example, it is not possible to access the MATLAB workspace from an S-function that
you use with the code generator. This topic explains conditions to be aware of for using
S-functions However, using the techniques presented in this topic, you can create S-
functions for most applications that work with the generated code.

Although S-functions provide a generic and flexible solution for implementing complex
algorithms in a model, the underlying API incurs overhead in terms of memory and
computation resources. Most often the additional resources are acceptable for real-time
rapid prototyping systems. In many cases, though, additional resources are unavailable
in real-time embedded applications. You can minimize memory and computational
requirements by using the Target Language Compiler technology provided with the
code generator to inline your S-functions. If you are producing an S-function for existing
external code, consider using the Legacy Code Tool to generate your S-function and
relevant TLC file.

This content assumes that you understand the following concepts:

• Level 2 S-functions

11-2

 S-Functions and Code Generation

• Target Language Compiler (TLC) scripting
• How the code generator produces and builds C/C++ code

Notes This information is for code generator users. Even if you do not currently use the
code generator, follow these practices when writing S-functions, especially if you are
creating general-purpose S-functions.

Types of S-Functions

Examples for which you might choose to implement an S-function for simulation and code
generation include:

1 “I'm not concerned with efficiency. I just want to write one version of my algorithm
and have it work in the Simulink and code generator products automatically.”

2 “I want to implement a highly optimized algorithm in the Simulink and code
generator products that looks like a built-in block and generates very efficient code.”

3 “I have a lot of hand-written code that I need to interface. I want to call my function
from the Simulink and code generator products in an efficient manner.”

Respectively, the preceding situations map to the following MathWorks terminology:

1 Noninlined S-function
2 Inlined S-function
3 Autogenerated S-function for external code

Noninlined S-Functions

A noninlined S-function is a C or C++ MEX S-function that is treated identically by the
Simulink engine and generated code. In general, you implement your algorithm once
according to the S-function API. The Simulink engine and generated code call the S-
function routines (for example, mdlOutputs) during model execution.

Additional memory and computation resources are required for each instance of a
noninlined S-Function block. However, this routine of incorporating algorithms into
models and code generation applications is typical during the prototyping phase of a
project where efficiency is not important. The advantage gained by forgoing efficiency is
the ability to change model parameters and structures rapidly.

11-3

11 Block Authoring and Code Generation for Simulink Coder

Writing a noninlined S-function does not involve TLC coding. Noninlined S-functions are
the default case for the build process in the sense that once you build a MEX S-function
in your model, there is no additional preparation prior to pressing Ctrl+B to build your
model.

Some restrictions exist concerning the names and locations of noninlined S-function files
when generating makefiles. See “Write Noninlined S-Function and TLC Files” on page
11-66.

Inlined S-Functions

For S-functions to work in the Simulink environment, some overhead code is generated.
When the code generator produces code from models that contain S-functions (without
sfunction.tlc files), it embeds some of this overhead code in the generated code. If you
want to optimize your real-time code and eliminate some of the overhead code, you must
inline (or embed) your S-functions. This involves writing a TLC (sfunction.tlc) file
that eliminates overhead code from the generated code. The Target Language Compiler
processes sfunction.tlc files to define how to inline your S-function algorithm in the
generated code.

Note The term inline should not be confused with the C++ inline keyword. Inline
means to specify text in place of the call to the general S-function API routines (for
example, mdlOutputs). For example, when a TLC file is used to inline an S-function,
the generated code contains the C/ C++ code that would normally appear within the S-
function routines and the S-function itself has been removed from the build process.

A fully inlined S-function builds your algorithm (block) into generated code in a manner
that is indistinguishable from a built-in block. Typically, a fully inlined S-function
requires you to implement your algorithm twice: once for the Simulink model (C/C++
MEX S-function) and once for code generation (TLC file). The complexity of the TLC file
depends on the complexity of your algorithm and the level of efficiency you're trying to
achieve in the generated code. TLC files vary from simple to complex in structure.

Autogenerated S-Functions for Legacy or Custom Code

If you need to invoke hand-written C/C++ code in your model, consider using the
Simulink Legacy Code Tool. The Legacy Code Tool can automate the generation of a fully
inlined S-function and a corresponding TLC file based on information that you register in
a Legacy Code Tool data structure.

11-4

 S-Functions and Code Generation

For more information, see “Integrate C Functions Using Legacy Code Tool” (Simulink)
and see “Import Calls to External Code into Generated Code with Legacy Code Tool” on
page 11-7.

Files Required for Implementing Noninlined and Inlined S-Functions

This topic briefly describes what files and functions you need to create noninlined and
inlined S-functions.

• Noninlined S-functions require the C or C++ MEX S-function source code
(sfunction.c or sfunction.cpp).

• Fully inlined S-functions require an sfunction.tlc file. Fully inlined S-functions
produce the optimal code for a parameterized S-function. This is an S-function that
operates in a specific mode dependent upon fixed S-function parameters that do not
change during model execution. For a given operating mode, the sfunction.tlc
file specifies the exact code that is generated to implement the algorithm for that
mode. For example, the direct-index lookup table S-function in “Write Fully Inlined S-
Functions with mdlRTW Routine” on page 11-78 contains two operating modes —
one for evenly spaced x-data and one for unevenly spaced x-data.

Note: Fully-inlined S-functions that are generated to invoke legacy or custom C/C++
code also require an sfunction.tlc file, which is generated by Legacy Code Tool.

Fully inlined S-functions might require the placement of the mdlRTW routine in your
S-function MEX-file sfunction.c or sfunction.cpp. The mdlRTW routine lets you
place information in model.rtw, the record file that specifies a model, and which the
code generator invokes the Target Language Compiler to process prior to executing
sfunction.tlc when generating code.

Including a mdlRTW routine is useful when you want to introduce nontunable parameters
into your TLC file. Such parameters are generally used to determine which operating
mode is active in a given instance of the S-function. Based on this information, the TLC
file for the S-function can generate highly efficient, optimal code for that operating mode.

Guidelines for Writing S-Functions that Support Code Generation

• You can use C/C++ MEX, MATLAB language, and Fortran MEX S-functions with code
generation.

11-5

11 Block Authoring and Code Generation for Simulink Coder

• You can inline S-functions for code generation by providing an inlining TLC file. See
S-Function Inlining in “Target Language Compiler” (Simulink Coder). MATLAB and
Fortran MEX S-functions must be inlined. C/C++ MEX S-functions can be inlined for
code efficiency, or noninlined.

• To automatically generate a fully inlined C MEX S-function for invoking legacy
or custom code, use the Legacy Code Tool. For more information, see “Integrate C
Functions Using Legacy Code Tool” (Simulink) and see “Import Calls to External
Code into Generated Code with Legacy Code Tool” (Simulink Coder).

• If code efficiency is not an overriding consideration, for example, if you are rapid
prototyping, you can choose not to inline a C/C++ MEX S-function. For more
information, see “Write Noninlined S-Function and TLC Files” on page 11-66.

More About
• “Import Calls to External Code into Generated Code with Legacy Code Tool” on

page 11-7
• “Automate S-Function Generation with S-Function Builder” on page 11-61
• “Write S-Function and TLC Files By Hand” on page 11-66

11-6

 Import Calls to External Code into Generated Code with Legacy Code Tool

Import Calls to External Code into Generated Code with Legacy
Code Tool

In this section...

“Legacy Code Tool and Code Generation” on page 11-7
“Generate Inlined S-Function Files for Code Generation” on page 11-8
“Apply Code Style Settings to Legacy Functions” on page 11-9
“Address Dependencies on Files in Different Locations” on page 11-9
“Deploy S-Functions for Simulation and Code Generation” on page 11-10
“Integrate External C++ Object Methods” on page 11-11
“Integrate External C++ Objects” on page 11-14
“Legacy Code Tool Examples” on page 11-16

Legacy Code Tool and Code Generation

You can use the Simulink Legacy Code Tool to generate fully inlined C MEX S-functions
for legacy or custom code. The S-functions are optimized for embedded components, such
as device drivers and lookup tables, and they call existing C or C++ functions.

Note: The Legacy Code Tool can interface with C++ functions, but not C++ objects. To
work around this issue so that the tool can interface with C++ objects, see “Legacy Code
Tool Limitations” (Simulink).

You can use the tool to:

• Compile and build the generated S-function for simulation.
• Generate a masked S-Function block that is configured to call the existing external

code.

If you want to include these types of S-functions in models for which you intend to
generate code, use the tool to generate a TLC block file. The TLC block file specifies how
the generated code for a model calls the existing C or C++ function.

If the S-function depends on files in folders other than the folder containing
the S-function dynamically loadable executable file, use the tool to generate an

11-7

11 Block Authoring and Code Generation for Simulink Coder

sFunction_makecfg.m or rtwmakecfg.m file for the S-function. Generating the file
maintains those dependencies when you build a model that includes the S-function.
For example, for some applications, such as custom targets, you might want to locate
files in a target-specific location. The build process looks for sFunction_makecfg.m or
rtwmakecfg.m in the same folder as the S-function dynamically loadable executable and
calls the function in the file.

For more information, see “Integrate C Functions Using Legacy Code Tool” (Simulink).

Generate Inlined S-Function Files for Code Generation

Depending on the code generation requirements of your application, to generate code for
a model that uses the S-function, do either of the following:

• Generate one .cpp file for the inlined S-function. In the Legacy Code Tool data
structure, set the value of the Options.singleCPPMexFile field to true before
generating the S-function source file from your existing C function. For example:

def.Options.singleCPPMexFile = true;

legacy_code('sfcn_cmex_generate', def);

• Generate a source file and a TLC block file for the inlined S-function. For example:

def.Options.singleCPPMexFile = false;

legacy_code('sfcn_cmex_generate', def);

legacy_code('sfcn_tlc_generate', def);

singleCPPMexFile Limitations

You cannot set the singleCPPMexFile field to true if

• Options.language='C++'

• You use one of the following Simulink objects with the IsAlias property set to true:

• Simulink.Bus

• Simulink.AliasType

• Simulink.NumericType

• The Legacy Code Tool function specification includes a void* or void** to represent
scalar work data for a state argument

• HeaderFiles field of the Legacy Code Tool structure specifies multiple header files

11-8

 Import Calls to External Code into Generated Code with Legacy Code Tool

Apply Code Style Settings to Legacy Functions

To apply the model configuration parameters for code style to a legacy function:

1 Initialize the Legacy Code Tool data structure. For example:

def = legacy_code('initialize');

2 In the data structure, set the value of the Options.singleCPPMexFile field to
true. For example:

def.Options.singleCPPMexFile = true;

To check the setting, enter:

def.Options.singleCPPMexFile

singleCPPMexFile Limitations

You cannot set the singleCPPMexFile field to true if

• Options.language='C++'

• You use one of the following Simulink objects with the IsAlias property set to true:

• Simulink.Bus

• Simulink.AliasType

• Simulink.NumericType

• The Legacy Code Tool function specification includes a void* or void** to represent
scalar work data for a state argument

• HeaderFiles field of the Legacy Code Tool structure specifies multiple header files

Address Dependencies on Files in Different Locations

By default, the Legacy Code Tool assumes that files on which an S-function depends
reside in the same folder as the dynamically loadable executable file for the S-function.
If your S-function depends on files that reside elsewhere and you are using the template
makefile build process, generate an sFunction_makecfg.m or rtwmakecfg.m file for
the S-function. For example, you might generate this file if your Legacy Code Tool data
structure defines compilation resources as path names.

To generate the sFunction_makecfg.m or rtwmakecfg.m file, call the legacy_code
function with 'sfcn_makecfg_generate' or 'rtwmakecfg_generate' as the first

11-9

11 Block Authoring and Code Generation for Simulink Coder

argument, and the name of the Legacy Code Tool data structure as the second argument.
For example:

legacy_code('sfcn_makecfg_generate', lct_spec);

If you use multiple registration files in the same folder and generate an S-function for
each file with a single call to legacy_code, the call to legacy_code that specifies
'sfcn_makecfg_generate' or 'rtwmakecfg_generate' must be common to all
registration files. For more information, see “Handling Multiple Registration Files”
(Simulink) in the Simulink documentation.

For example, if you define defs as an array of Legacy Code Tool structures, you call
legacy_code with 'sfcn_makecfg_generate' once.

defs = [defs1(:);defs2(:);defs3(:)];

legacy_code('sfcn_makecfg_generate', defs);

For more information, see “Build Support for S-Functions” (Simulink Coder).

Deploy S-Functions for Simulation and Code Generation

You can deploy the S-functions that you generate with the Legacy Code Tool so that other
people can use them. To deploy an S-function for simulation and code generation, share
the following files:

• Registration file
• Compiled dynamically loadable executable
• TLC block file
• sFunction_makecfg.m or rtwmakecfg.m file
• Header, source, and include files on which the generated S-function depends

When you use these deployed files:

• Before using the deployed files in a Simulink model, add the folder that contains the
S-function files to the MATLAB path.

• If the Legacy Code Tool data structure registers required files as absolute paths
and the location of the files changes, regenerate the sFunction_makecfg.m or
rtwmakecfg.m file.

11-10

 Import Calls to External Code into Generated Code with Legacy Code Tool

Integrate External C++ Object Methods

Integrate legacy C++ object methods by using the Legacy Code Tool.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C++ MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a block TLC file and optional rtwmakecfg.m file that calls the legacy code

during code generation.

Provide the Legacy Function Specification

Functions provided with the Legacy Code Tool take a specific data structure or array
of structures as the argument. The data structure is initialized by calling the function
legacy_code() using 'initialize' as the first input. After initializing the structure, assign its
properties to values corresponding to the legacy code being integrated. For detailed help
on the properties, call legacy_code('help'). The definition of the legacy C++ class in this
example is:

class adder {

 private:

 int int_state;

 public:

 adder();

 int add_one(int increment);

 int get_val();

};

The legacy source code is in the files adder_cpp.h and adder_cpp.cpp.

% rtwdemo_sfun_adder_cpp

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_adder_cpp';

def.StartFcnSpec = 'createAdder()';

def.OutputFcnSpec = 'int32 y1 = adderOutput(int32 u1)';

def.TerminateFcnSpec = 'deleteAdder()';

def.HeaderFiles = {'adder_cpp.h'};

def.SourceFiles = {'adder_cpp.cpp'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

11-11

11 Block Authoring and Code Generation for Simulink Coder

def.Options.language = 'C++';

def.Options.useTlcWithAccel = false;

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_adder_cpp.cpp.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_adder_cpp

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex06428671', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpcdc884c8_6765_4d9f_9154_5b502c98a82c', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\adder_cpp.cpp')

Building with 'Microsoft Visual C++ 2013 Professional'.

MEX completed successfully.

 mex('rtwdemo_sfun_adder_cpp.cpp', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex06428671', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpcdc884c8_6765_4d9f_9154_5b502c98a82c\adder_cpp.obj')

Building with 'Microsoft Visual C++ 2013 Professional'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_adder_cpp

Exit

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again. Set the first input to 'sfcn_tlc_generate' to generate a TLC block
file that supports code generation through Simulink® Coder™. If the TLC block file is
not created and you try to generate code for a model that includes the S-function, code
generation fails. The TLC block file for the S-function is: rtwdemo_sfun_adder_cpp.tlc.

legacy_code('sfcn_tlc_generate', def);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again. Set
the first input to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file that supports

11-12

 Import Calls to External Code into Generated Code with Legacy Code Tool

code generation through Simulink® Coder™. If the required source and header files
for the S-function are not in the same folder as the S-function, and you want to add
these dependencies in the makefile produced during code generation, generate the
rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again. Set the first input to 'slblock_generate' to generate a masked S-function block that
is configured to call that S-function. The software places the block in a new model. You
can copy the block to an existing model.

% legacy_code('slblock_generate', def);

Show the Generated Integration with Legacy Code

The model rtwdemo_lct_cpp shows integration with the legacy code.

open_system('rtwdemo_lct_cpp')

sim('rtwdemo_lct_cpp')

11-13

11 Block Authoring and Code Generation for Simulink Coder

Integrate External C++ Objects

The Legacy Code Tool can interface with C++ functions, but not C++ objects. Using the
previous example as a starting point, here is an example of how you can work around
this limitation.

• Modify the class definition for adder in a new file adder_cpp.hpp. Add three new
macros that dynamically allocate a new adder object, invoke the method add_one(),
and free the memory allocated. Each macro takes a pointer to an adder object.
Because each function called by the Legacy Code Tool must have a C-like signature,

11-14

 Import Calls to External Code into Generated Code with Legacy Code Tool

the pointer is cached and passed as a void*. Then you must explicitly cast to adder*
in the macro. The new class definition for adder:

#ifndef _ADDER_CPP_

#define _ADDER_CPP_

class adder {

private:

 int int_state;

public:

 adder(): int_state(0) {};

 int add_one(int increment);

 int get_val() {return int_state;};

};

// Method wrappers implemented as macros

#define createAdder(work1) \

 *(work1) = new adder

#define deleteAdder(work1) \

 delete(static_cast(adder*)(*(work1)))

#define adderOutput(work1, u1) \

 (static_cast(adder*) ((work1)))->add_one(u1)

#endif /* _ADDER_CPP_ */

• Update adder_cpp.cpp. With the class modification, instead of one global instance,
each generated S-function manages its own adder object.

#include "adder_cpp.hpp"

int adder::add_one(int increment)

{

 int_state += increment;

 return int_state;

}

• Update rtwdemo_sfun_adder_cpp.cpp with the following changes:

• StartFcnSpec calls the macro that allocates a new adder object and caches the
pointer.

def.StartFcnSpec = 'createAdder(void **work1)';

11-15

11 Block Authoring and Code Generation for Simulink Coder

• OutputFcnSpec calls the macro that invokes the method add_one() and
provides the S-function specific adder pointer object.

def.OutputFcnSpec = 'int32 y1 = adderOutput(void *work1, int32 u1)';

• TerminateFcnSpec calls the macro that frees the memory.

def.TerminateFcnSpec = 'deleteAdder(void **work1)';

Legacy Code Tool Examples

Integrate External C Functions That Pass Input Arguments By Value Versus Address

This example shows how to use the Legacy Code Tool to integrate legacy C functions that
pass their input arguments by value versus address.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototypes of the legacy functions being called in
this example are:

• FLT filterV1(const FLT signal, const FLT prevSignal, const FLT gain)
• FLT filterV2(const FLT* signal, const FLT prevSignal, const FLT gain)

FLT is a typedef to float. The legacy source code is in the files your_types.h, myfilter.h,
filterV1.c, and filterV2.c.

Note the difference in the OutputFcnSpec defined in the two structures; the first case
specifies that the first input argument is passed by value, while the second case specifies
pass by pointer.

11-16

 Import Calls to External Code into Generated Code with Legacy Code Tool

defs = [];

% rtwdemo_sfun_filterV1

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_filterV1';

def.OutputFcnSpec = 'single y1 = filterV1(single u1, single u2, single p1)';

def.HeaderFiles = {'myfilter.h'};

def.SourceFiles = {'filterV1.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

defs = [defs; def];

% rtwdemo_sfun_filterV2

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_filterV2';

def.OutputFcnSpec = 'single y1 = filterV2(single u1[1], single u2, single p1)';

def.HeaderFiles = {'myfilter.h'};

def.SourceFiles = {'filterV2.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

defs = [defs; def];

Generate S-Functions for Simulation

To generate C-MEX S-functions according to the description provided by the input
argument 'defs', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-functions call the legacy functions in simulation.
The source code for the S-functions is in the files rtwdemo_sfun_filterV1.c and
rtwdemo_sfun_filterV2.c.

legacy_code('sfcn_cmex_generate', defs);

Compile the Generated S-Functions for Simulation

After you generate the C-MEX S-function source files, to compile the S-functions for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', defs);

Start Compiling rtwdemo_sfun_filterV1

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex19632214', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpd1471dec_c695_40c3_930b_0f287072e390', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\filterV1.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

11-17

11 Block Authoring and Code Generation for Simulink Coder

MEX completed successfully.

 mex('rtwdemo_sfun_filterV1.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex19632214', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpd1471dec_c695_40c3_930b_0f287072e390\filterV1.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_filterV1

Exit

Start Compiling rtwdemo_sfun_filterV2

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex19632214', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp4fedc269_a8a7_46a8_a82e_68eee6e8da8e', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\filterV2.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_filterV2.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex19632214', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp4fedc269_a8a7_46a8_a82e_68eee6e8da8e\filterV2.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_filterV2

Exit

Generate TLC Block Files for Code Generation

After you compile the S-functions and use them in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate TLC
block files. Block files specify how the generated code for a model calls the legacy code.
If you do not generate TLC block files and you try to generate code for a model that
includes the S-functions, code generation fails. The TLC block files for the S-functions are
rtwdemo_sfun_filterV1.tlc and rtwdemo_sfun_filterV2.tlc.

legacy_code('sfcn_tlc_generate', defs);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block files, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-functions are not in the
same folder as the S-functions, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', defs);

Generate Masked S-Function Blocks for Calling the Generated S-Functions

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate masked S-function blocks
that call the S-functions. The software places the blocks in a new model. From there you
can copy them to an existing model.

11-18

 Import Calls to External Code into Generated Code with Legacy Code Tool

legacy_code('slblock_generate', defs);

Show the Generated Integration with Legacy Code

The model rtwdemo_lct_filter shows integration of the model with the legacy code. The
subsystem TestFilter serves as a harness for the calls to the legacy C functions via the
generate S-functions, with unit delays serving to store the previous output values.

open_system('rtwdemo_lct_filter')

open_system('rtwdemo_lct_filter/TestFilter')

sim('rtwdemo_lct_filter')

11-19

11 Block Authoring and Code Generation for Simulink Coder

Integrate External C Functions That Pass the Output Argument As a Return Argument

This example shows how to use the Legacy Code Tool to integrate legacy C functions that
pass their output as a return argument.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()

11-20

 Import Calls to External Code into Generated Code with Legacy Code Tool

using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototype of the legacy functions being called in
this example is:

FLT gainScalar(const FLT in, const FLT gain)

FLT is a typedef to float. The legacy source code is in the files your_types.h, gain.h, and
gainScalar.c.

% rtwdemo_sfun_gain_scalar

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_gain_scalar';

def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';

def.HeaderFiles = {'gain.h'};

def.SourceFiles = {'gainScalar.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_gain_scalar.c.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_gain_scalar

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex09148220', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpb6b51f46_0016_4dbc_893b_71eaca3219dd', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\gainScalar.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_gain_scalar.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex09148220', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpb6b51f46_0016_4dbc_893b_71eaca3219dd\gainScalar.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

11-21

11 Block Authoring and Code Generation for Simulink Coder

Finish Compiling rtwdemo_sfun_gain_scalar

Exit

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate a TLC block
file. The block file specifies how the generated code for a model calls the legacy code.
If you do not generate a TLC block file and you try to generate code for a model that
includes the S-function, code generation fails. The TLC block file for the S-function is:
rtwdemo_sfun_gain_scalar.tlc.

legacy_code('sfcn_tlc_generate', def);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-function are not in the
same folder as the S-function, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate a masked S-function block
that calls that S-function. The software places the block in a new model. From there you
can copy it to an existing model.

legacy_code('slblock_generate', def);

Show the Generated Integration with Legacy Code

The model rtwdemo_lct_gain shows integration of the model with the legacy code. The
subsystem TestGain serves as a harness for the call to the legacy C function via the
generate S-function.

11-22

 Import Calls to External Code into Generated Code with Legacy Code Tool

open_system('rtwdemo_lct_gain')

open_system('rtwdemo_lct_gain/TestGain')

sim('rtwdemo_lct_gain')

Integrate External C Functions That Pass Input and Output Arguments as Signals with a Fixed-
Point Data Type

This example shows how to use the Legacy Code Tool to integrate legacy C functions that
pass their inputs and outputs by using parameters of fixed-point data type.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototype of the legacy functions being called in
this example is:

myFixpt timesS16(const myFixpt in1, const myFixpt in2, const uint8_T fracLength)

myFixpt is logically a fixed-point data type, which is physically a typedef to a 16-bit
integer:

myFixpt = Simulink.NumericType;

myFixpt.DataTypeMode = 'Fixed-point: binary point scaling';

11-23

11 Block Authoring and Code Generation for Simulink Coder

myFixpt.Signed = true;

myFixpt.WordLength = 16;

myFixpt.FractionLength = 10;

myFixpt.IsAlias = true;

myFixpt.HeaderFile = 'timesFixpt.h';

The legacy source code is in the files timesFixpt.h, and timesS16.c.

% rtwdemo_sfun_times_s16

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_times_s16';

def.OutputFcnSpec = 'myFixpt y1 = timesS16(myFixpt u1, myFixpt u2, uint8 p1)';

def.HeaderFiles = {'timesFixpt.h'};

def.SourceFiles = {'timesS16.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_times_s16.c.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_times_s16

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex96454812', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp5124a2b1_cc2f_4bca_aa7a_66d9d37dd18a', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\timesS16.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_times_s16.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex96454812', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp5124a2b1_cc2f_4bca_aa7a_66d9d37dd18a\timesS16.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_times_s16

Exit

11-24

 Import Calls to External Code into Generated Code with Legacy Code Tool

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate a TLC block
file. The block file specifies how the generated code for a model calls the legacy code.
If you do not generate a TLC block file and you try to generate code for a model that
includes the S-function, code generation fails. The TLC block file for the S-function is:
rtwdemo_sfun_times_s16.tlc.

legacy_code('sfcn_tlc_generate', def);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-function are not in the
same folder as the S-function, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate a masked S-function block
that calls that S-function. The software places the block in a new model. From there you
can copy it to an existing model.

legacy_code('slblock_generate', def);

Show the Integration of the Model with Legacy Code

The model rtwdemo_lct_fixpt_signals shows integration of the model with the legacy
code. The subsystem TestFixpt serves as a harness for the call to the legacy C function
via the generated S-function.

open_system('rtwdemo_lct_fixpt_signals')

11-25

11 Block Authoring and Code Generation for Simulink Coder

open_system('rtwdemo_lct_fixpt_signals/TestFixpt')

sim('rtwdemo_lct_fixpt_signals')

Integrate External C Functions with Instance-Specific Persistent Memory

Integrate legacy C functions that use instance-specific persistent memory by using the
Legacy Code Tool.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototypes of the legacy functions being called in
this example are:

void memory_bus_init(COUNTERBUS *mem, int32_T upper_sat, int32_T lower_sat);

void memory_bus_step(COUNTERBUS *input, COUNTERBUS *mem, COUNTERBUS
*output);

11-26

 Import Calls to External Code into Generated Code with Legacy Code Tool

mem is an instance-specific persistent memory for applying a one integration step
delay. COUNTERBUS is a struct typedef defined in counterbus.h and implemented
with a Simulink.Bus object in the base workspace. The legacy source code is in the files
memory_bus.h, and memory_bus.c.

evalin('base','load rtwdemo_lct_data.mat')

% rtwdemo_sfun_work

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_work';

def.InitializeConditionsFcnSpec = ...

 'void memory_bus_init(COUNTERBUS work1[1], int32 p1, int32 p2)';

def.OutputFcnSpec = ...

 'void memory_bus_step(COUNTERBUS u1[1], COUNTERBUS work1[1], COUNTERBUS y1[1])';

def.HeaderFiles = {'memory_bus.h'};

def.SourceFiles = {'memory_bus.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_work.c.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_work

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex38707886', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpcdb3cab5_6345_4f5e_a708_6b6f176c7308', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\memory_bus.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_work.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex38707886', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpcdb3cab5_6345_4f5e_a708_6b6f176c7308\memory_bus.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

11-27

11 Block Authoring and Code Generation for Simulink Coder

Finish Compiling rtwdemo_sfun_work

Exit

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate a TLC block
file. The block file specifies how the generated code for a model calls the legacy code.
If you do not generate a TLC block file and you try to generate code for a model that
includes the S-function, code generation fails. The TLC block file for the S-function is:
rtwdemo_sfun_work.tlc.

legacy_code('sfcn_tlc_generate', def);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-function are not in the
same folder as the S-function, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate a masked S-function block
that calls that S-function. The software places the block in a new model. From there you
can copy it to an existing model.

legacy_code('slblock_generate', def);

Show the Integration of the Model with Legacy Code

The model rtwdemo_lct_work shows integration of the model with the legacy code. The
subsystem memory_bus serves as a harness for the call to the legacy C function.

11-28

 Import Calls to External Code into Generated Code with Legacy Code Tool

open_system('rtwdemo_lct_work')

open_system('rtwdemo_lct_work/memory_bus')

sim('rtwdemo_lct_work')

Integrate External C Functions That Use Structure Arguments

Integrate legacy C functions with structure arguments that use Simulink® buses with
the Legacy Code Tool.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototype of the legacy functions being called in
this example is:

counterbusFcn(COUNTERBUS *u1, int32_T u2, COUNTERBUS *y1, int32_T *y2)

COUNTERBUS is a struct typedef defined in counterbus.h and implemented with
a Simulink.Bus object in the base workspace. The legacy source code is in the files
counterbus.h, and counterbus.c.

11-29

11 Block Authoring and Code Generation for Simulink Coder

evalin('base','load rtwdemo_lct_data.mat')

% rtwdemo_sfun_counterbus

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_counterbus';

def.OutputFcnSpec = ...

 'void counterbusFcn(COUNTERBUS u1[1], int32 u2, COUNTERBUS y1[1], int32 y2[1])';

def.HeaderFiles = {'counterbus.h'};

def.SourceFiles = {'counterbus.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_counterbus.c.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_counterbus

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex90330074', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp5c30c030_9e08_4710_ac90_3f9b267a02b0', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\counterbus.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_counterbus.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex90330074', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp5c30c030_9e08_4710_ac90_3f9b267a02b0\counterbus.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_counterbus

Exit

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate a TLC block

11-30

 Import Calls to External Code into Generated Code with Legacy Code Tool

file. The block file specifies how the generated code for a model calls the legacy code.
If you do not generate a TLC block file and you try to generate code for a model that
includes the S-function, code generation fails. The TLC block file for the S-function is:
rtwdemo_sfun_counterbus.tlc.

legacy_code('sfcn_tlc_generate', def);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-function are not in the
same folder as the S-function, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate a masked S-function block
that calls that S-function. The software places the block in a new model. From there you
can copy it to an existing model.

legacy_code('slblock_generate', def);

Show the Integration of the Model with Legacy Code

The model rtwdemo_lct_bus shows integration of the model with the legacy code. The
subsystem TestCounter serves as a harness for the call to the legacy C function.

open_system('rtwdemo_lct_bus')

open_system('rtwdemo_lct_bus/TestCounter')

sim('rtwdemo_lct_bus')

11-31

11 Block Authoring and Code Generation for Simulink Coder

Integrate External C Functions That Pass Input and Output Arguments as Signals with Complex
Data

Integrate legacy C functions using complex signals with the Legacy Code Tool.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototype of the legacy functions being called in
this example is:

void cplx_gain(creal_T *input, creal_T *gain, creal_T *output);

creal_T is the complex representation of a double. The legacy source code is in the files
cplxgain.h, and cplxgain.c.

% rtwdemo_sfun_gain_scalar

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_cplx_gain';

def.OutputFcnSpec = ...

11-32

 Import Calls to External Code into Generated Code with Legacy Code Tool

 'void cplx_gain(complex<double> u1[1], complex<double> p1[1], complex<double> y1[1])';

def.HeaderFiles = {'cplxgain.h'};

def.SourceFiles = {'cplxgain.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_cplx_gain.c.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_cplx_gain

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex97344681', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpf83dc885_0975_4626_b716_227b6bae37c5', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\cplxgain.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_cplx_gain.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex97344681', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpf83dc885_0975_4626_b716_227b6bae37c5\cplxgain.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_cplx_gain

Exit

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate a TLC block
file. The block file specifies how the generated code for a model calls the legacy code.
If you do not generate a TLC block file and you try to generate code for a model that
includes the S-function, code generation fails. The TLC block file for the S-function is:
rtwdemo_sfun_cplx_gain.tlc.

legacy_code('sfcn_tlc_generate', def);

11-33

11 Block Authoring and Code Generation for Simulink Coder

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-function are not in the
same folder as the S-function, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate a masked S-function block
that calls that S-function. The software places the block in a new model. From there you
can copy it to an existing model.

legacy_code('slblock_generate', def);

Show the Integration of the Model with Legacy Code

The model rtwdemo_lct_cplxgain shows integration of the model with the legacy code.
The subsystem complex_gain serves as a harness for the call to the legacy C function via
the generate S-function.

if isempty(find_system('SearchDepth',0,'Name','rtwdemo_lct_cplxgain'))

 open_system('rtwdemo_lct_cplxgain')

 open_system('rtwdemo_lct_cplxgain/complex_gain')

 sim('rtwdemo_lct_cplxgain')

end

11-34

 Import Calls to External Code into Generated Code with Legacy Code Tool

Integrate External C Functions That Pass Arguments That Have Inherited Dimensions

This example shows how to use the Legacy Code Tool to integrate legacy C functions
whose arguments have inherited dimensions.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototypes of the legacy functions being called in
this example are:

• void mat_add(real_T *u1, real_T *u2, int32_T nbRows, int32_T nbCols, real_T *y1)
• void mat_mult(real_T *u1, real_T *u2, int32_T nbRows1, int32_T nbCols1, int32_T

nbCols2, real_T *y1)

real_T is a typedef to double, and int32_T is a typedef to a 32-bit integer. The legacy
source code is in the files mat_ops.h, and mat_ops.c.

defs = [];

% rtwdemo_sfun_mat_add

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_mat_add';

11-35

11 Block Authoring and Code Generation for Simulink Coder

def.OutputFcnSpec = ['void mat_add(double u1[][], double u2[][], ' ...

 'int32 u3, int32 u4, double y1[size(u1,1)][size(u1,2)])'];

def.HeaderFiles = {'mat_ops.h'};

def.SourceFiles = {'mat_ops.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

defs = [defs; def];

% rtwdemo_sfun_mat_mult

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_mat_mult';

def.OutputFcnSpec = ['void mat_mult(double u1[p1][p2], double u2[p2][p3], '...

 'int32 p1, int32 p2, int32 p3, double y1[p1][p3])'];

def.HeaderFiles = {'mat_ops.h'};

def.SourceFiles = {'mat_ops.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

defs = [defs; def];

Generate S-Functions for Simulation

To generate C-MEX S-functions according to the description provided by the input
argument 'defs', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-functions call the legacy functions during simulation.
The source code for the S-function is in the files rtwdemo_sfun_mat_add.c and
rtwdemo_sfun_mat_mult.c.

legacy_code('sfcn_cmex_generate', defs);

Compile the Generated S-Functions for Simulation

After you generate the C-MEX S-function source files, to compile the S-functions for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', defs);

Start Compiling rtwdemo_sfun_mat_add

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex89794148', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp4e38d4cb_de8b_4c0a_833b_de2559ba5652', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\mat_ops.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_mat_add.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex89794148', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp4e38d4cb_de8b_4c0a_833b_de2559ba5652\mat_ops.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

11-36

 Import Calls to External Code into Generated Code with Legacy Code Tool

MEX completed successfully.

Finish Compiling rtwdemo_sfun_mat_add

Exit

Start Compiling rtwdemo_sfun_mat_mult

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex89794148', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp3ce29ca2_0ba4_406f_9d46_c7b0d0ca81ec', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\mat_ops.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_mat_mult.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex89794148', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp3ce29ca2_0ba4_406f_9d46_c7b0d0ca81ec\mat_ops.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_mat_mult

Exit

Generate TLC Block Files for Code Generation

After you compile the S-functions and use them in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate TLC
block files. Block files specify how the generated code for a model calls the legacy code.
If you do not generate TLC block files and you try to generate code for a model that
includes the S-functions, code generation fails. The TLC block files for the S-functions are
rtwdemo_sfun_mat_add.tlc and rtwdemo_sfun_mat_mult.tlc.

legacy_code('sfcn_tlc_generate', defs);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block files, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-functions are not in the
same folder as the S-functions, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', defs);

Generate Masked S-Function Blocks for Calling the Generated S-Functions

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate masked S-function blocks
that call the S-functions. The software places the blocks in a new model. From there you
can copy them to an existing model

legacy_code('slblock_generate', defs);

11-37

11 Block Authoring and Code Generation for Simulink Coder

Show the Generated Integration with Legacy Code

The model rtwdemo_lct_inherit_dims shows integration of the model with the legacy
code. The subsystem TestMatOps serves as a harness for the calls to the legacy C
functions, with unit delays serving to store the previous output values.

open_system('rtwdemo_lct_inherit_dims')

open_system('rtwdemo_lct_inherit_dims/TestMatOps')

sim('rtwdemo_lct_inherit_dims')

11-38

 Import Calls to External Code into Generated Code with Legacy Code Tool

Integrate External C Functions That Implement Start and Terminate Actions

Integrate legacy C functions that have start and terminate actions by using the Legacy
Code Tool.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the

11-39

11 Block Authoring and Code Generation for Simulink Coder

properties, call legacy_code('help'). The prototypes of the legacy functions being called in
this example are:

• void initFaultCounter(unsigned int *counter)
• void openLogFile(void **fid)
• void incAndLogFaultCounter(void *fid, unsigned int *counter, double time)
• void closeLogFile(void **fid)

The legacy source code is in the files your_types.h, fault.h, and fault.c.

% rtwdemo_sfun_fault

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_fault';

def.InitializeConditionsFcnSpec = 'initFaultCounter(uint32 work2[1])';

def.StartFcnSpec = 'openLogFile(void **work1)';

def.OutputFcnSpec = ...

 'incAndLogFaultCounter(void *work1, uint32 work2[1], double u1)';

def.TerminateFcnSpec = 'closeLogFile(void **work1)';

def.HeaderFiles = {'fault.h'};

def.SourceFiles = {'fault.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

def.Options.useTlcWithAccel = false;

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_fault.c.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_fault

11-40

 Import Calls to External Code into Generated Code with Legacy Code Tool

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex46254423', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp69e94a59_0cbd_4ad7_99a9_af11d5530b4d', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\fault.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_fault.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex46254423', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp69e94a59_0cbd_4ad7_99a9_af11d5530b4d\fault.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_fault

Exit

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate a TLC block
file. The block file specifies how the generated code for a model calls the legacy code.
If you do not generate a TLC block file and you try to generate code for a model that
includes the S-function, code generation fails. The TLC block file for the S-function is:
rtwdemo_sfun_fault.tlc.

legacy_code('sfcn_tlc_generate', def);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-function are not in the
same folder as the S-function, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate a masked S-function block
that calls that S-function. The software places the block in a new model. From there you
can copy it to an existing model.

legacy_code('slblock_generate', def);

11-41

11 Block Authoring and Code Generation for Simulink Coder

Showing the Generated Integration with Legacy Code

The model rtwdemo_lct_start_term shows integration of the model with the legacy code.
The subsystem TestFixpt serves as a harness for the call to the legacy C function, and
the scope compares the output of the function with the output of the built-in Simulink®
product block; the results should be identical.

open_system('rtwdemo_lct_start_term')

open_system('rtwdemo_lct_start_term/TestFault')

sim('rtwdemo_lct_start_term')

Integrate External C Functions That Pass Arguments as Multi-Dimensional Signals

This example shows how to use the Legacy Code Tool to integrate legacy C functions with
multi-dimensional Signals.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototype of the legacy functions being called in
this example is:

11-42

 Import Calls to External Code into Generated Code with Legacy Code Tool

void array3d_add(real_T *y1, real_T *u1, real_T *u2, int32_T nbRows, int32_T nbCols,
int32_T nbPages);

real_T is a typedef to double, and int32_T is a typedef to a 32-bit integer. The legacy
source code is in the files ndarray_ops.h, and ndarray_ops.c.

% rtwdemo_sfun_ndarray_add

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_ndarray_add';

def.OutputFcnSpec = ['void array3d_add(double y1[size(u1,1)][size(u1,2)][size(u1,3)], ',...

 'double u1[][][], double u2[][][], ' ...

 'int32 size(u1,1), int32 size(u1,2), int32 size(u1,3))'];

def.HeaderFiles = {'ndarray_ops.h'};

def.SourceFiles = {'ndarray_ops.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

y1 is a 3-D output signal of same dimensions as the 3-D input signal u1. Note that the
last 3 arguments passed to the legacy function correspond to the number of element in
each dimension of the 3-D input signal u1.

Generate an S-Function for Simulation

To generate a C-MEX S-function according to the description provided by the input
argument 'def', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-function calls the legacy functions during simulation. The
source code for the S-function is in the file rtwdemo_sfun_ndarray_add.c.

legacy_code('sfcn_cmex_generate', def);

Compile the Generated S-Function for Simulation

After you generate the C-MEX S-function source file, to compile the S-function for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', def);

Start Compiling rtwdemo_sfun_ndarray_add

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex14927435', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp730e6593_abb7_4b1d_b5d6_cd1bb7752f02', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\ndarray_ops.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_ndarray_add.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex14927435', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp730e6593_abb7_4b1d_b5d6_cd1bb7752f02\ndarray_ops.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

11-43

11 Block Authoring and Code Generation for Simulink Coder

MEX completed successfully.

Finish Compiling rtwdemo_sfun_ndarray_add

Exit

Generate a TLC Block File for Code Generation

After you compile the S-function and use it in simulation, you can call the function
legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate a TLC block
file. The block file specifies how the generated code for a model calls the legacy code.
If you do not generate a TLC block file and you try to generate code for a model that
includes the S-function, code generation fails. The TLC block file for the S-function is:
rtwdemo_sfun_ndarray_add.tlc.

legacy_code('sfcn_tlc_generate', def);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block file, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-function are not in the
same folder as the S-function, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', def);

Generate a Masked S-Function Block for Calling the Generated S-Function

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate a masked S-function block
that calls that S-function. The software places the block in a new model. From there you
can copy it to an existing model.

legacy_code('slblock_generate', def);

Showing the Generated Integration with Legacy Code

The model rtwdemo_lct_ndarray shows integration of the model with the legacy code.
The subsystem ndarray_add serves as a harness for the call to the legacy C function.

11-44

 Import Calls to External Code into Generated Code with Legacy Code Tool

open_system('rtwdemo_lct_ndarray')

open_system('rtwdemo_lct_ndarray/ndarray_add')

sim('rtwdemo_lct_ndarray')

Integrate External C Functions with a Block Sample Time Specified, Inherited, and
Parameterized

This example shows how to use the Legacy Code Tool to integrate legacy C functions with
the block's sample time specified, inherited and parameterized.

With the Legacy Code Tool, you can:

• Provide the legacy function specification.
• Generate a C-MEX S-function that calls the legacy code during simulation.
• Compile and build the generated S-function for simulation.
• Generate a TLC block file and optional rtwmakecfg.m file that specifies how the

generated code for a model calls the legacy code.

Provide the Legacy Function Specification

Legacy Code Tool functions take a specific data structure or array of structures as the
argument. You can initialize the data structure by calling the function legacy_code()
using 'initialize' as the first input. After initializing the structure, assign its properties
to values corresponding to the legacy code being integrated. For detailed help on the
properties, call legacy_code('help'). The prototype of the legacy functions being called in
this example is:

FLT gainScalar(const FLT in, const FLT gain)

11-45

11 Block Authoring and Code Generation for Simulink Coder

FLT is a typedef to float. The legacy source code is in the files your_types.h, gain.h, and
gainScalar.c.

defs = [];

% rtwdemo_sfun_st_inherited

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_st_inherited';

def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';

def.HeaderFiles = {'gain.h'};

def.SourceFiles = {'gainScalar.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

defs = [defs; def];

% rtwdemo_sfun_st_fixed

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_st_fixed';

def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';

def.HeaderFiles = {'gain.h'};

def.SourceFiles = {'gainScalar.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

def.SampleTime = [2 1];

defs = [defs; def];

% rtwdemo_sfun_st_parameterized

def = legacy_code('initialize');

def.SFunctionName = 'rtwdemo_sfun_st_parameterized';

def.OutputFcnSpec = 'single y1 = gainScalar(single u1, single p1)';

def.HeaderFiles = {'gain.h'};

def.SourceFiles = {'gainScalar.c'};

def.IncPaths = {'rtwdemo_lct_src'};

def.SrcPaths = {'rtwdemo_lct_src'};

def.SampleTime = 'parameterized';

defs = [defs; def];

Generate S-Functions for Simulation

To generate C-MEX S-functions according to the description provided by the input
argument 'defs', call the function legacy_code() again with the first input set to
'sfcn_cmex_generate'. The S-functions call the legacy functions during simulation.
The source code for the S-functions is in the files rtwdemo_sfun_st_inherited.c and
rtwdemo_sfun_st_fixed.c. rtwdemo_sfun_st_parameterized.c.

11-46

 Import Calls to External Code into Generated Code with Legacy Code Tool

legacy_code('sfcn_cmex_generate', defs);

Compile the Generated S-Functions for Simulation

After you generate the C-MEX S-function source files, to compile the S-functions for
simulation with Simulink®, call the function legacy_code() again with the first input set
to 'compile'.

legacy_code('compile', defs);

Start Compiling rtwdemo_sfun_st_inherited

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex74504488', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpce30538d_f8fb_4591_b0cb_61abb3c1bf10', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\gainScalar.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_st_inherited.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex74504488', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tpce30538d_f8fb_4591_b0cb_61abb3c1bf10\gainScalar.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_st_inherited

Exit

Start Compiling rtwdemo_sfun_st_fixed

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex74504488', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp0b76c488_5cf3_49ed_86f4_1aebf181dfcb', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\gainScalar.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_st_fixed.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex74504488', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp0b76c488_5cf3_49ed_86f4_1aebf181dfcb\gainScalar.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_st_fixed

Exit

Start Compiling rtwdemo_sfun_st_parameterized

 mex('-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex74504488', '-c', '-outdir', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp41c61171_10ba_4d9b_b5a5_9348b4e79303', 'B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src\gainScalar.c')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

 mex('rtwdemo_sfun_st_parameterized.c', '-IB:\matlab\toolbox\rtw\rtwdemos\rtwdemo_lct_src', '-IC:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp846ae012\ex74504488', 'C:\TEMP\Bdoc17a_538369_5692\IB_CPU_29\tp41c61171_10ba_4d9b_b5a5_9348b4e79303\gainScalar.obj')

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Finish Compiling rtwdemo_sfun_st_parameterized

Exit

Generate TLC Block Files for Code Generation

After you compile the S-functions and use them in simulation, you can call the
function legacy_code() again with the first input set to 'sfcn_tlc_generate' to generate

11-47

11 Block Authoring and Code Generation for Simulink Coder

TLC block files. Block files specify how the generated code for a model calls the
legacy code. If you do not generate TLC block files and you try to generate code for
a model that includes the S-functions, code generation fails. The TLC block files for
the S-functions are rtwdemo_sfun_st_inherited.tlc and rtwdemo_sfun_st_fixed.tlc.
rtwdemo_sfun_st_parameterized.tlc.

legacy_code('sfcn_tlc_generate', defs);

Generate an rtwmakecfg.m File for Code Generation

After you create the TLC block files, you can call the function legacy_code() again with
the first input set to 'rtwmakecfg_generate' to generate an rtwmakecfg.m file to support
code generation. If the required source and header files for the S-functions are not in the
same folder as the S-functions, and you want to add these dependencies in the makefile
produced during code generation, generate the rtwmakecfg.m file.

legacy_code('rtwmakecfg_generate', defs);

Generate Masked S-Function Blocks for Calling the Generated S-Functions

After you compile the C-MEX S-function source, you can call the function legacy_code()
again with the first input set to 'slblock_generate' to generate masked S-function blocks
that call the S-functions. The software places the blocks in a new model. From there you
can copy them to an existing model.

legacy_code('slblock_generate', defs);

11-48

 Import Calls to External Code into Generated Code with Legacy Code Tool

Show the Generated Integration with Legacy Code

The model rtwdemo_lct_sampletime shows integration of the model with the legacy code.
The subsystem sample_time serves as a harness for the calls to the legacy C functions,
with unit delays serving to store the previous output values.

open_system('rtwdemo_lct_sampletime')

open_system('rtwdemo_lct_sampletime/sample_time')

sim('rtwdemo_lct_sampletime')

See Also
legacy_code

Related Examples
• “Integrate C Functions Using Legacy Code Tool” (Simulink)
• “Call External C Code from Model and Generated Code”

11-49

11 Block Authoring and Code Generation for Simulink Coder

External Code Integration Examples
This topic shows various scenarios of external code integration.

Insert External C and C++ Code Into Stateflow Charts for Code
Generation

This example shows how to use Stateflow® to integrate external code into a model.

Open Model

model='rtwdemo_sfcustom';

open_system(model);

Integrate Code

1. The example includes the custom header file my_header.c and the custom source file
my_function.c.

11-50

 External Code Integration Examples

%Open files my_header.h and my_function.c

eval('edit my_header.h')

eval('edit my_function.c')

2. On the Configuration Parameters dialog box Simulation Target pane, enter the
custom source file and header file. Also enter additional include directories and source
files.

In this example, the custom header file my_header.c and source file my_function.c
are entered on the Simulation Target pane.

%Open Configuration Parameters dialog box

slCfgPrmDlg(model,'Open');

slCfgPrmDlg(bdroot,'TurnToPage','Simulation Target');

3. If you generate code with Simulink Coder®, on the Configuration Parameters dialog
box Code Generation > Custom Code pane, enter the same custom source file and
header file. Also enter the same additional include directories and source files.

In this example, the custom header file my_header.c and source file my_function.c
are entered on the Code Generation > Custom Code pane.

%Open Configuration Parameters dialog box

slCfgPrmDlg(model,'Open');

slCfgPrmDlg(bdroot,'TurnToPage','Code Generation/Custom Code');

Generate Code

rtwbuild('rtwdemo_sfcustom')

Starting build procedure for model: rtwdemo_sfcustom

Successful completion of build procedure for model: rtwdemo_sfcustom

Call C Code from Stateflow

To call custom C code functions from Stateflow, use the same syntax as graphical
function calls: result = my_custom_function(in_args);

To call variables of structure type, use the dot notation: result = my_var.my_field;

See Also

• Include Custom C Code in Simulation Targets for Library Models
• Integrate Custom C++ Code for Simulation

11-51

11 Block Authoring and Code Generation for Simulink Coder

Close Model

rtwdemoclean;

close_system('rtwdemo_sfcustom',0);

Integrate External C Code Into Generated Code By Using Custom Code
Blocks and Model Configuration Parameters

This example shows how to place external code in generated code by using custom code
blocks and model configuration parameters.

1. Open the model rtwdemo_slcustcode.

open_system('rtwdemo_slcustcode')

11-52

 External Code Integration Examples

2. Open the Model Configuration Parameters dialog box and navigate to the Custom
Code pane.

11-53

11 Block Authoring and Code Generation for Simulink Coder

3. Examine the settings for parameters Source file and Initialize function.

• Source file specifies a comment and sets the variable GLOBAL_INT2 to -1.
• Initialize function intializes the variable GLOBAL_INT2 to 1.

4. Close the dialog box.

5. Double-click the Model Source block. The Top of Model Source field specifies that
the code generator declare the variable GLOBAL_INT1 and set it to 0 at the top of the
generated file rtwdemo_slcustcode.c.

6. Open the triggered subsystem Amplifier. The subsystem includes the System
Outputs block. The code generator places code that you specify in that block in the
generated code for the nearest parent atomic subsystem. In this case, the code generator
places the external code in the generated code for the Amplifier subsystem. The
external code:

• Declares the pointer variable *intPtr and intitializes it with the value of variable
GLOBAL_INT1.

• Sets the pointer variable to -1 during execution.
• Resets the pointer variable to 0 before exiting.

7. Generate code and a code generation report.

8. Examine the code in the generated source file rtwdemo_slcustcode.c. At the top
of the file, after the #include statements, you find the following declaration code. The
example specifies the first declaration with the Source file configuration parameter and
the second declaration with the Model Source block.

int_T GLOBAL_INT2 = -1;

int_T GLOBAL_INT1 = 0;

The Output function for the Amplifier subsystem includes the following code, which
shows the external code integrated with generated code that applies the gain. The
example specifies the three lines of code for the pointer variable with the System Output
block in the Amplifier subsystem.

int_T *intPtr = &GLOBAL_INT1;

*intPtr = -1;

11-54

 External Code Integration Examples

rtwdemo_slcustcode_Y.Output = rtwdemo_slcustcode_U.Input << 1;

*intPtr = 0;

The following assignment appears in the model initialize entry-point function. The
example specifies this assignment with the Initialize function configuration parameter.

GLOBAL_INT2 = 1;

Integrate External C Code Into Generated Code By Using Custom Code
Blocks and Model Configuration Parameters

This example shows how to place external code in generated code by using custom code
blocks and model configuration parameters.

1. Open the model rtwdemo_slcustcode.

open_system('rtwdemo_slcustcode')

11-55

11 Block Authoring and Code Generation for Simulink Coder

2. Open the Model Configuration Parameters dialog box and navigate to the Custom
Code pane.

11-56

 External Code Integration Examples

3. Examine the settings for parameters Source file and Initialize function.

• Source file specifies a comment and sets the variable GLOBAL_INT2 to -1.
• Initialize function intializes the variable GLOBAL_INT2 to 1.

4. Close the dialog box.

5. Double-click the Model Source block. The Top of Model Source field specifies that
the code generator declare the variable GLOBAL_INT1 and set it to 0 at the top of the
generated file rtwdemo_slcustcode.c.

6. Open the triggered subsystem Amplifier. The subsystem includes the System
Outputs block. The code generator places code that you specify in that block in the
generated code for the nearest parent atomic subsystem. In this case, the code generator
places the external code in the generated code for the Amplifier subsystem. The
external code:

• Declares the pointer variable *intPtr and intitializes it with the value of variable
GLOBAL_INT1.

• Sets the pointer variable to -1 during execution.
• Resets the pointer variable to 0 before exiting.

7. Generate code and a code generation report.

8. Examine the code in the generated source file rtwdemo_slcustcode.c. At the top
of the file, after the #include statements, you find the following declaration code. The
example specifies the first declaration with the Source file configuration parameter and
the second declaration with the Model Source block.

int_T GLOBAL_INT2 = -1;

int_T GLOBAL_INT1 = 0;

The Output function for the Amplifier subsystem includes the following code, which
shows the external code integrated with generated code that applies the gain. The
example specifies the three lines of code for the pointer variable with the System Output
block in the Amplifier subsystem.

int_T *intPtr = &GLOBAL_INT1;

*intPtr = -1;

11-57

11 Block Authoring and Code Generation for Simulink Coder

rtwdemo_slcustcode_Y.Output = rtwdemo_slcustcode_U.Input << 1;

*intPtr = 0;

The following assignment appears in the model initialize entry-point function. The
example specifies this assignment with the Initialize function configuration parameter.

GLOBAL_INT2 = 1;

Insert External C and C++ Code Into Stateflow Charts for Code
Generation

This example shows how to use Stateflow® to integrate external code into a model.

Open Model

model='rtwdemo_sfcustom';

open_system(model);

11-58

 External Code Integration Examples

Integrate Code

1. The example includes the custom header file my_header.c and the custom source file
my_function.c.

%Open files my_header.h and my_function.c

eval('edit my_header.h')

eval('edit my_function.c')

2. On the Configuration Parameters dialog box Simulation Target pane, enter the
custom source file and header file. Also enter additional include directories and source
files.

In this example, the custom header file my_header.c and source file my_function.c
are entered on the Simulation Target pane.

%Open Configuration Parameters dialog box

slCfgPrmDlg(model,'Open');

slCfgPrmDlg(bdroot,'TurnToPage','Simulation Target');

3. If you generate code with Simulink Coder®, on the Configuration Parameters dialog
box Code Generation > Custom Code pane, enter the same custom source file and
header file. Also enter the same additional include directories and source files.

In this example, the custom header file my_header.c and source file my_function.c
are entered on the Code Generation > Custom Code pane.

%Open Configuration Parameters dialog box

slCfgPrmDlg(model,'Open');

slCfgPrmDlg(bdroot,'TurnToPage','Code Generation/Custom Code');

Generate Code

rtwbuild('rtwdemo_sfcustom')

Starting build procedure for model: rtwdemo_sfcustom

Successful completion of build procedure for model: rtwdemo_sfcustom

Call C Code from Stateflow

To call custom C code functions from Stateflow, use the same syntax as graphical
function calls: result = my_custom_function(in_args);

To call variables of structure type, use the dot notation: result = my_var.my_field;

11-59

11 Block Authoring and Code Generation for Simulink Coder

See Also

• Include Custom C Code in Simulation Targets for Library Models
• Integrate Custom C++ Code for Simulation

Close Model

rtwdemoclean;

close_system('rtwdemo_sfcustom',0);

11-60

 Automate S-Function Generation with S-Function Builder

Automate S-Function Generation with S-Function Builder
The Generate S-function feature automates the process of generating an S-function
from a subsystem. In addition, the Generate S-function feature presents a display of
parameters used within the subsystem, and lets you declare selected parameters tunable.

As an example, consider SourceSubsys, the same subsystem illustrated in the example
“Create S-Function Blocks from a Subsystem” on page 46-37. The objective is to
automatically extract SourceSubsys from the model and build an S-Function block from
it, as in the previous example. In addition, the workspace variable K , which is the gain
factor of the Gain block within SourceSubsys (as shown in the Gain block parameter
dialog box below), is declared and generated as a tunable variable.

To auto-generate an S-function from SourceSubsys with tunable parameter K,

1 With the SourceSubsys model open, click the subsystem to select it.
2 From the Code menu, select C/C++ Code > Generate S-Function. This menu item

is enabled when a subsystem is selected in the current model.

Alternatively, you can right-click the subsystem and select C/C++ Code > Generate
S-Function from the subsystem block's context menu.

3 The Generate S-Function window is displayed (see the next figure). This window
shows variables (or data objects) that are referenced as block parameters in the
subsystem, and lets you declare them as tunable.

11-61

11 Block Authoring and Code Generation for Simulink Coder

The upper pane of the window displays three columns:

• Variable Name: name of the parameter.
• Class: If the parameter is a workspace variable, its data type is shown. If the

parameter is a data object, its name and class is shown
• Tunable: Lets you select tunable parameters. To declare a parameter tunable,

select the check box. In the next figure, the parameter K is declared tunable.

When you select a parameter in the upper pane, the lower pane shows the blocks
that reference the parameter, and the parent system of each such block.

Generate S-Function Window

4 After selecting tunable parameters, click the Build button. This initiates code
generation and compilation of the S-function, using the S-function target. The
Create New Model option is automatically enabled.

5 The build process displays status messages in the MATLAB Command Window.
When the build completes, the tunable parameters window closes, and a new
untitled model window opens.

11-62

 Automate S-Function Generation with S-Function Builder

6 The model window contains an S-Function block with the same name as the
subsystem from which the block was generated (in this example, SourceSubsys).
Optionally, you can save the generated model containing the generated block.

7 The generated code for the S-Function block is stored in the current working folder.
The following files are written to the top level folder:

• subsys_sf.c or .cpp, where subsys is the subsystem name (for example,
SourceSubsys_sf.c)

• subsys_sf.h

• subsys_sf.mexext, where mexext is a platform-dependent MEX-file extension
(for example, SourceSubsys_sf.mexw64)

The source code for the S-function is written to the subfolder subsys_sfcn_rtw.
The top-level .c or .cpp file is a stub file that simply contains an include directive
that you can use to interface other C/C++ code to the generated code.

Note: For a list of files required to deploy your S-Function block for simulation or
code generation, see “Required Files for S-Function Deployment” on page 46-35.

8 The generated S-Function block has inports and outports whose widths and sample
times correspond to those of the original model.

The following code, from the mdlOutputs routine of the generated S-function code (in
SourceSubsys_sf.c), shows how the tunable variable K is referenced by using calls to
the MEX API.
static void mdlOutputs(SimStruct *S, int_T tid)

11-63

11 Block Authoring and Code Generation for Simulink Coder

...

/* Gain: '<S1>/Gain' incorporates:

 * Sum: '<S1>/Sum'

 */

 rtb_Gain_n[0] = (rtb_Product_p + (*(((const

 real_T**)ssGetInputPortSignalPtrs(S, 2))[0]))) * (*(real_T

 *)(mxGetData(K(S))));

 rtb_Gain_n[1] = (rtb_Product_p + (*(((const

 real_T**)ssGetInputPortSignalPtrs(S, 2))[1]))) * (*(real_T

 *)(mxGetData(K(S))));

• In automatic S-function generation, the Use Value for Tunable Parameters option
is cleared or at the command line is set to ‘off’.

• Use a MEX S-function wrapper only in the MATLAB version in which the wrapper is
created.

If you specify paths and files with absolute

Macro Parameters

Suppose that you apply a custom storage class such as Define to a
Simulink.Parameter object so that the parameter appears as a macro in the generated
code. If you use the parameter object inside a subsystem from which you generate an
ERT S-function, you cannot select the parameter object as a tunable parameter. Instead,
the S-function code generator applies the custom storage class to the parameter object.
This generation of macros in the S-function code allows you to generate S-functions
from subsystems that contain variant elements, such as Variant Subsystem blocks, that
you configure to produce preprocessor conditionals in the generated code. However, you
cannot change the value of the parameter during simulation of the S-function.

To select the parameter object as a tunable parameter, apply a different storage class or
custom storage class. Custom storage classes that treat parameters as macros include
Define, ImportedDefine, CompilerFlag, and custom storage classes that you create
by setting Data initialization to Macro in the Custom Storage Class Designer. If you
use a non-macro storage class or custom storage class, you cannot use the parameter
object as a variant control variable and generate preprocessor conditionals.

If you apply a custom storage class that treats the parameter object as an imported
macro, provide the macro definition before you generate the ERT S-function.
For example, suppose you apply the custom storage class ImportedDefine to a
Simulink.Parameter object, and use the parameter object as a variant control variable
in the subsystem. If you set the custom attribute HeaderFile to 'myHdr.h', when you

11-64

 Automate S-Function Generation with S-Function Builder

generate the S-function, place the custom header file myHdr.h in the current folder. The
generated S-function uses the macro value from your header file instead of the value
from the Value property of the parameter object.

To use a macro that you define through a compiler option, for example by applying
the custom storage class CompilerFlag, use the model configuration parameter
Configuration Parameters > Code Generation > Custom Code > Additional build
information > Defines to specify the compiler option. For more information, see Code
Generation Pane: Custom Code: Additional Build Information: Defines (Simulink Coder).

See Also
legacy_code

More About
• “S-Functions and Code Generation” on page 11-2
• “Import Calls to External Code into Generated Code with Legacy Code Tool” on

page 11-7

11-65

11 Block Authoring and Code Generation for Simulink Coder

Write S-Function and TLC Files By Hand

You can choose from several approaches for writing S-function and TLC files by hand.

Write Noninlined S-Function and TLC Files

• “About Noninlined S-Functions” on page 11-66
• “Guidelines for Writing Noninlined S-Functions” on page 11-66
• “Noninlined S-Function Parameter Type Limitations” on page 11-67

About Noninlined S-Functions

Noninlined S-functions are identified by the absence of an sfunction.tlc file for your
S-function. The filename varies depending on your platform. For example, on a 64–bit
Microsoft Windows system, the file name would be sfunction.mexw64. Type mexext in
the MATLAB Command Window to see which extension your system uses.

Guidelines for Writing Noninlined S-Functions

• The MEX-file cannot call MATLAB functions.
• If the MEX-file uses functions in the MATLAB External Interface libraries, include

the header file cg_sfun.h instead of mex.h or simulink.c. To handle this case,
include the following lines at the end of your S-function:
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

• Use only MATLAB API function that the code generator supports, which include:
mxGetEps

mxGetInf

mxGetM

mxGetN

mxGetNaN

mxGetPr

mxGetScalar

mxGetString

mxIsEmpty

mxIsFinite

mxIsInf

11-66

 Write S-Function and TLC Files By Hand

• MEX library calls are not supported in generated code. To use such calls in MEX-file
and not in the generated code, conditionalize the code as follows:
#ifdef MATLAB_MEX_FILE

#endif

• Use only full matrices that contain only real data.
• Do not specify a return value for calls to mxGetString . If you do specify a return

value, the MEX-file will not compile. Instead, use the function's second input
argument, which returns a pointer to a character vector.

• Make sure that the #define s-function_name statement is correct. The S-function
name that you specify must match the S-function's filename.

• Use the data types real_T and int_T instead of double and int, if possible.
The data types real_T and int_T are more generic and can be used in multiple
environments.

• Provide the build process with the names of the modules used to build the S-function.
You can do this by using a template make file, the set_param function, or the
S-function modules field of the S-Function block parameters dialog box. For
example, suppose you build your S-function with the following command:
mex sfun_main.c sfun_module1.c sfun_module2.c

You can then use the following call to set_param to include the required modules:
set_param(sfun_block, "SFunctionModules","sfun_module1 sfun_module2")

When you are ready to generate code, force the code generator to rebuild the top
model, as explained in “Control Regeneration of Top Model Code” (Simulink Coder).

Noninlined S-Function Parameter Type Limitations

Parameters to noninlined S-functions can be of the following types only:

• Double precision
• Characters in scalars, vectors, or 2-D matrices

For more flexibility in the type of parameters you can supply to S-functions or the
operations in the S-function, inline your S-function and consider using an mdlRTW S-
function routine.

Use of other functions from the MATLAB matrix.h API or other MATLAB APIs, such
as mex.h and mat.h, is not supported. If you call unsupported APIs from an S-function

11-67

11 Block Authoring and Code Generation for Simulink Coder

source file, compiler errors occur. See the files matlabroot/rtw/c/src/rt_matrx.h
and matlabroot/rtw/c/src/rt_matrx.c for details on supported MATLAB API
functions.

If you use mxGetPr on an empty matrix, the function does not return NULL; rather,
it returns a random value. Therefore, you should protect calls to mxGetPr with
mxIsEmpty.

Write Wrapper S-Function and TLC Files

This topic describes how to create S-functions that work seamlessly with the Simulink
and code generator products using the wrapper concept. This topic begins by describing
how to interface your algorithms in Simulink models by writing MEX S-function
wrappers (sfunction.mex). It finishes with a description of how to direct the code
generator to insert your algorithm into the generated code by creating a TLC S-function
wrapper (sfunction.tlc).

• “MEX S-Function Wrapper” on page 11-68
• “TLC S-Function Wrapper” on page 11-73
• “Code Overhead for Noninlined S-Functions” on page 11-73
• “How to Inline” on page 11-74
• “The Inlined Code” on page 11-76

MEX S-Function Wrapper

Creating S-functions using an S-function wrapper allows you to insert C/C++ code
algorithms in Simulink models and the generated code with little or no change to your
original C/C++ function. A MEX S-function wrapper is an S-function that calls code that
resides in another module. A TLC S-function wrapper is a TLC file that specifies how the
code generator should call your code (the same code that was called from the C MEX S-
function wrapper).

Note: A MEX S-function wrapper must only be used in the MATLAB version in which the
wrapper is created.

Suppose you have an algorithm (that is, a C function) called my_alg that resides in the
file my_alg.c. You can integrate my_alg into a Simulink model by creating a MEX S-

11-68

 Write S-Function and TLC Files By Hand

function wrapper (for example, wrapsfcn.c). Once this is done, a Simulink model can
call my_alg from an S-Function block. However, the Simulink S-function contains a set
of empty functions that the Simulink engine requires for various API-related purposes.
For example, although only mdlOutputs calls my_alg, the engine calls mdlTerminate
as well, even though this S-function routine performs no action.

You can integrate my_alg into generated code (that is, embed the call to my_alg in the
generated code) by creating a TLC S-function wrapper (for example, wrapsfcn.tlc).
The advantage of creating a TLC S-function wrapper is that the empty function calls
can be eliminated and the overhead of executing the mdlOutputs function and then the
my_alg function can be eliminated.

Wrapper S-functions are useful when you are creating new algorithms that are
procedural in nature or when you are integrating legacy code into a Simulink model.
However, if you want to create code that is

• Interpretive in nature (that is, highly parameterized by operating modes)
• Heavily optimized (that is, no extra tests to decide what mode the code is operating

in)

then you must create a fully inlined TLC file for your S-function.

The next figure shows the wrapper S-function concept.

11-69

11 Block Authoring and Code Generation for Simulink Coder

Simulink

Place the name of your S-function
in the S-Function block dialog box.

wrapsfcn

S-function

wrapper.mdl

Simulink Coder

wrapper.c, the generated code,
calls mdlOutputs,
which then calls my_alg.

wrapper.c
...
MdlOutputs(...)
{
 ...
 my_alg();
}

*See note below

In Simulink, the S-function
calls mdlOutputs, which
in turn calls my_alg.

wrapsfcn.c
...
mdlOutputs(...)
{
 ...
 my_alg();
}

In the TLC wrapper
version of the S-function,
mdlOutputs in
wrapper.exe calls my_alg.

mdlOutputs in
wrapsfcn.mex
calls external
function my_alg.

my_alg.c
...
real_T my_alg(real_T u)
{
 ...
 y=f(u);
}

*The dotted line is the path taken if the S-function does not have a TLC wrapper
 file. If there is no TLC wrapper file, the generated code calls mdlOutputs.

Using an S-function wrapper to import algorithms in your Simulink model means that
the S-function serves as an interface that calls your C/C++ algorithms from mdlOutputs.
S-function wrappers have the advantage that you can quickly integrate large standalone
C /C++ programs into your model without having to make changes to the code.

The following sample model includes an S-function wrapper.

11-70

 Write S-Function and TLC Files By Hand

There are two files associated with the wrapsfcn block, the S-function wrapper and the
C/C++ code that contains the algorithm. The S-function wrapper code for wrapsfcn.c
appears below. The first three statements do the following:

1 Defines the name of the S-function (what you enter in the Simulink S-Function block
dialog).

2 Specifies that the S-function is using the level 2 format.
3 Provides access to the SimStruct data structure, which contains pointers to data

used during simulation and code generation and defines macros that store data in
and retrieve data from the SimStruct.

For more information, see “Templates for C S-Functions” (Simulink).
#define S_FUNCTION_NAME wrapsfcn

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

extern real_T my_alg(real_T u); /* Declare my_alg as extern */

/*

 * mdlInitializeSizes - initialize the sizes array

 */

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, 0); /*number of input arguments*/

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, 1);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;

 ssSetOutputPortWidth(S, 0, 1);

 ssSetNumSampleTimes(S, 1);

}

/*

11-71

11 Block Authoring and Code Generation for Simulink Coder

 * mdlInitializeSampleTimes - indicate that this S-function runs

 * at the rate of the source (driving block)

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

}

/*

 * mdlOutputs - compute the outputs by calling my_alg, which

 * resides in another module, my_alg.c

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 *y = my_alg(*uPtrs[0]); /* Call my_alg in mdlOutputs */

 }

/*

 * mdlTerminate - called when the simulation is terminated.

 */

static void mdlTerminate(SimStruct *S)

{

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

The S-function routine mdlOutputs contains a function call to my_alg, which is the
C function containing the algorithm that the S-function performs. This is the code for
my_alg.c:
#ifdef MATLAB_MEX_FILE

#include "tmwtypes.h"

#else

#include "rtwtypes.h"

#endif

real_T my_alg(real_T u)

{

return(u * 2.0);

}

For more information, see “Manage Build Process File Dependencies” (Simulink Coder).

The wrapper S-function wrapsfcn calls my_alg, which computes u * 2.0. To build
wrapsfcn.mex, use the following command:
mex wrapsfcn.c my_alg.c

11-72

 Write S-Function and TLC Files By Hand

TLC S-Function Wrapper

This topic describes how to inline the call to my_alg in the mdlOutputs section of
the generated code. In the above example, the call to my_alg is embedded in the
mdlOutputs section as
*y = my_alg(*uPtrs[0]);

When you are creating a TLC S-function wrapper, the goal is to embed the same type of
call in the generated code.

It is instructive to look at how the code generator executes S-functions that are not
inlined. A noninlined S-function is identified by the absence of the file sfunction.tlc
and the existence of sfunction.mex. When generating code for a noninlined S-function,
the code generator produces a call to mdlOutputs through a function pointer that, in this
example, then calls my_alg.

The wrapper example contains one S-function, wrapsfcn.mex. You must compile and
link an additional module, my_alg, with the generated code. To do this, specify
set_param('wrapper/S-Function','SFunctionModules','my_alg')

Code Overhead for Noninlined S-Functions

The code generated when using grt.tlc as the system target file without
wrapsfcn.tlc is
<Generated code comments for wrapper model with noninlined wrapsfcn S-function>

#include <math.h>

#include <string.h>

#include "wrapper.h"

#include "wrapper.prm"

/* Start the model */

void mdlStart(void)

{

 /* (start code not required) */

}

/* Compute block outputs */

void mdlOutputs(int_T tid)

{

 /* Sin Block: <Root>/Sin */

 rtB.Sin = rtP.Sin.Amplitude *

 sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

 /* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */

11-73

11 Block Authoring and Code Generation for Simulink Coder

 {

 /* Noninlined S-functions create a SimStruct object and

 * generate a call to S-function routine mdlOutputs

 */

 SimStruct *rts = ssGetSFunction(rtS, 0);

 sfcnOutputs(rts, tid);

 }

 /* Outport Block: <Root>/Out */

 rtY.Out = rtB.S_Function;

}

/* Perform model update */

void mdlUpdate(int_T tid)

{

 /* (update code not required) */

}

/* Terminate function */

void mdlTerminate(void)

{

 /* Level2 S-Function Block: <Root>/S-Function (wrapsfcn) */

 {

/* Noninlined S-functions require a SimStruct object and

 * the call to S-function routine mdlTerminate

 */

 SimStruct *rts = ssGetSFunction(rtS, 0);

 sfcnTerminate(rts);

 }

}

#include "wrapper.reg"

/* [EOF] wrapper.c */

In addition to the overhead outlined above, the wrapper.reg generated file contains
the initialization of the SimStruct for the wrapper S-Function block. There is one child
SimStruct for each S-Function block in your model. You can significantly reduce this
overhead by creating a TLC wrapper for the S-function.

How to Inline

The generated code makes the call to your S-function, wrapsfcn.c, in mdlOutputs by
using this code:
SimStruct *rts = ssGetSFunction(rtS, 0);

sfcnOutputs(rts, tid);

This call has computational overhead associated with it. First, the Simulink engine
creates a SimStruct data structure for the S-Function block. Second, the code generator
constructs a call through a function pointer to execute mdlOutputs, then mdlOutputs

11-74

 Write S-Function and TLC Files By Hand

calls my_alg. By inlining the call to your C/C++ algorithm, my_alg, you can eliminate
both the SimStruct and the extra function call, thereby improving the efficiency and
reducing the size of the generated code.

Inlining a wrapper S-function requires an sfunction.tlc file for the S-function (see
the “Target Language Compiler” (Simulink Coder) for details). The TLC file must contain
the function call to my_alg. The following figure shows the relationships between the
algorithm, the wrapper S-function, and the sfunction.tlc file.

my_alg.c
 myalg()
 {
 <C code here>
 }

wrapper.c
 ...
 mdlOutputs
 {
 ...
 y = my_alg();
 ...
 }
 ...

wrapsfcn.tlc
 ...
 %<y> = my_alg(%<u>);
 ...

The wrapsfcn.tlc file tells
Simulink Coder how to
inline the call to my_alg
using this statement.

To inline this call, you have to place your function call in an sfunction.tlc file with
the same name as the S-function (in this example, wrapsfcn.tlc). This causes the
Target Language Compiler to override the default method of placing calls to your S-
function in the generated code.

This is the wrapsfcn.tlc file that inlines wrapsfcn.c.
%% File : wrapsfcn.tlc

%% Abstract:

%% Example inlined tlc file for S-function wrapsfcn.c

%%

%implements "wrapsfcn" "C"

%% Function: BlockTypeSetup ==

%% Abstract:

%% Create function prototype in model.h as:

%% "extern real_T my_alg(real_T u);"

%%

%function BlockTypeSetup(block, system) void

 %openfile buffer

 extern real_T my_alg(real_T u); /* This line is placed in wrapper.h */

 %closefile buffer

11-75

11 Block Authoring and Code Generation for Simulink Coder

 %<LibCacheFunctionPrototype(buffer)>

%endfunction %% BlockTypeSetup

%% Function: Outputs ===

%% Abstract:

%% y = my_alg(u);

%%

%function Outputs(block, system) Output

 /* %<Type> Block: %<Name> */

 %assign u = LibBlockInputSignal(0, "", "", 0)

 %assign y = LibBlockOutputSignal(0, "", "", 0)

 %% PROVIDE THE CALLING STATEMENT FOR "algorithm"

 %% The following line is expanded and placed in mdlOutputs within wrapper.c

 %<y> = my_alg(%<u>);

%endfunction %% Outputs

The first section of this code inlines the wrapsfcn S-Function block and generates the
code in C:
%implements "wrapsfcn" "C"

The next task is to tell the code generator that the routine my_alg needs to be declared
external in the generated wrapper.h file for any wrapsfcn S-Function blocks in the
model. You only need to do this once for all wrapsfcn S-Function blocks, so use the
BlockTypeSetup function. In this function, you tell the Target Language Compiler to
create a buffer and cache the my_alg as extern in the wrapper.h generated header
file.

The final step is the inlining of the call to the function my_alg. This is done by the
Outputs function. In this function, you access the block's input and output and place a
direct call to my_alg. The call is embedded in wrapper.c.

The Inlined Code

The code generated when you inline your wrapper S-function is similar to the default
generated code. The mdlTerminate function does not contain a call to an empty function
and the mdlOutputs function now directly calls my_alg.
void mdlOutputs(int_T tid)

{

 /* Sin Block: <Root>/Sin */

 rtB.Sin = rtP.Sin.Amplitude *

 sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

 /* S-Function Block: <Root>/S-Function */

 rtB.S_Function = my_alg(rtB.Sin); /* Inlined call to my_alg */

 /* Outport Block: <Root>/Out */

11-76

 Write S-Function and TLC Files By Hand

 rtY.Out = rtB.S_Function;

}

In addition, wrapper.reg does not create a child SimStruct for the S-function because
the generated code is calling my_alg directly. This eliminates over 1 KB of memory
usage.

Write Fully Inlined S-Functions

Using the example from “Write Wrapper S-Function and TLC Files” (Simulink Coder),
you could eliminate the call to my_alg entirely by specifying the explicit code (that is,
2.0 * u) in wrapsfcn.tlc. This is referred to as a fully inlined S-function. While this
can improve performance, if you are working with a large amount of C/C++ code, this can
be a lengthy task. In addition, you now have to maintain your algorithm in two places,
the C/C++ S-function itself and the corresponding TLC file. However, the performance
gains might outweigh the disadvantages. To inline the algorithm used in this example, in
the Outputs section of your wrapsfcn.tlc file, instead of writing
%<y> = my_alg(%<u>);

use
%<y> = 2.0 * %<u>;

This is the code produced in mdlOutputs:
void mdlOutputs(int_T tid)

{

 /* Sin Block: <Root>/Sin */

 rtB.Sin = rtP.Sin.Amplitude *

 sin(rtP.Sin.Frequency * ssGetT(rtS) + rtP.Sin.Phase);

 /* S-Function Block: <Root>/S-Function */

 rtB.S_Function = 2.0 * rtB.Sin; /* Explicit embedding of algorithm */

 /* Outport Block: <Root>/Out */

 rtY.Out = rtB.S_Function;

}

The Target Language Compiler has replaced the call to my_alg with the algorithm itself.

Multiport S-Function

A more advanced multiport inlined S-function example is sfun_multiport.c and
sfun_multiport.tlc. This S-function illustrates how to create a fully inlined TLC

11-77

11 Block Authoring and Code Generation for Simulink Coder

file for an S-function that contains multiple ports. You might find that looking at this
example helps you to understand fully inlined TLC files.

Write Fully Inlined S-Functions with mdlRTW Routine

You can inline more complex S-functions that use the S-function mdlRTW routine. The
purpose of the mdlRTW routine is to provide the code generation process with more
information about how the S-function is to be inlined, by creating a parameter record of
a nontunable parameter for use with a TLC file. The mdlRTW routine does this by placing
information in the model.rtw file. The mdlRTW function is described in the text file
matlabroot/simulink/src/sfuntmpl_doc.c.

As an example of how to use the mdlRTW function, this topic discusses the steps you must
take to create a direct-index lookup S-function. Lookup tables are collections of ordered
data points of a function. Typically, these tables use some interpolation scheme to
approximate values of the associated function between known data points. To incorporate
the example lookup table algorithm into a Simulink model, the first step is to write an S-
function that executes the algorithm in mdlOutputs. To produce the most efficient code,
the next step is to create a corresponding TLC file to eliminate computational overhead
and improve the speed of the lookup computations.

For your convenience, the Simulink product provides support for two general-purpose
lookup 1-D and 2-D algorithms. You can use these algorithms as they are or create a
custom lookup table S-function to fit your requirements. This topic illustrates how to
create a 1-D lookup S-function, sfun_directlook.c, and its corresponding inlined
sfun_directlook.tlc file (see “Target Language Compiler” (Simulink Coder) for more
details). This 1-D direct-index lookup table example illustrates the following concepts
that you need to know to create your own custom lookup tables:

• Error checking of S-function parameters
• Caching of information for the S-function that doesn't change during model execution
• How to use the mdlRTW function to customize the code generator to produce the

optimal code for a given set of block parameters
• How to generate an inlined TLC file for an S-function in a combination of the fully

inlined form and/or the wrapper form

• “S-Function RTWdata” on page 11-79
• “Direct-Index Lookup Table Algorithm” on page 11-79

11-78

 Write S-Function and TLC Files By Hand

• “Direct-Index Lookup Table Example” on page 11-81

S-Function RTWdata

There is a property of blocks called RTWdata, which can be used by the Target Language
Compiler when inlining an S-function. RTWdata is a structure of character vectors that
you can attach to a block. It is saved with the model and placed in the model.rtw file
when generating code. For example, this set of MATLAB commands,
mydata.field1 = 'information for field1';

mydata.field2 = 'information for field2';

set_param(gcb,'RTWdata',mydata)

get_param(gcb,'RTWdata')

produces this result:
ans =

 field1: 'information for field1'

 field2: 'information for field2'

Inside the model.rtw file for the associated S-Function block is this information.
Block {

 Type "S-Function"

 RTWdata {

 field1 "information for field1"

 field2 "information for field2"

 }

Note: RTWdata is saved in the model file for S-functions that are not linked to a library.
However, RTWdata is not persistent for S-Function blocks that are linked to a library.

Direct-Index Lookup Table Algorithm

The 1-D lookup table block provided in the Simulink library uses interpolation or
extrapolation when computing outputs. This extra accuracy might not be required. In
this example, you create a lookup table that directly indexes the output vector (y-data
vector) based on the current input (x-data) point.

This direct 1-D lookup example computes an approximate solution p(x) to a partially
known function f(x) at x=x0, given data point pairs (x,y) in the form of an x-data vector
and a y-data vector. For a given data pair (for example, the i'th pair), y_i = f(x_i). It is
assumed that the x-data values are monotonically increasing. If x0 is outside the range of
the x-data vector, the first or last point is returned.

11-79

11 Block Authoring and Code Generation for Simulink Coder

The parameters to the S-function are

XData, YData, XEvenlySpaced

XData and YData are double vectors of equal length representing the values of the
unknown function. XDataEvenlySpaced is a scalar, 0.0 for false and 1.0 for true. If
the XData vector is evenly spaced, XDataEvenlySpaced is 1.0 and more efficient code
is generated.

The following graph shows how the parameters XData=[1:6]and
YData=[1,2,7,4,5,9] are handled. For example, if the input (x-value) to the S-
Function block is 3, the output (y-value) is 7.

11-80

 Write S-Function and TLC Files By Hand

Direct-Index Lookup Table Example

This topic shows how to improve the lookup table by inlining a direct-index S-function
with a TLC file. This direct-index lookup table S-function does not require a TLC file.
Here the example uses a TLC file for the direct-index lookup table S-function to reduce
the code size and increase efficiency of the generated code.

Implementation of the direct-index algorithm with inlined TLC file requires the S-
function main module, sfun_directlook.c, and a corresponding lookup_index.c
module. The lookup_index.c module contains the GetDirectLookupIndex function
that is used to locate the index in the XData for the current x input value when the
XData is unevenly spaced. The GetDirectLookupIndex routine is called from both
the S-function and the generated code. Here the example uses the wrapper concept for
sharing C/C++ code between Simulink MEX-files and the generated code.

If the XData is evenly spaced, then both the S-function main module and the generated
code contain the lookup algorithm (not a call to the algorithm) to compute the y-value of a
given x-value, because the algorithm is short. This illustrates the use of a fully inlined S-
function for generating optimal code.

The inlined TLC file, which either performs a wrapper call or embeds the optimal C/
C++ code, is sfun_directlook.tlc (see the example in “mdlRTW Usage” on page
11-82).
Error Handling

In this example, the mdlCheckParameters routine verifies that

• The new parameter settings are valid.
• XData and YData are vectors of the same length containing real finite numbers.
• XDataEvenlySpaced is a scalar.
• The XData vector is a monotonically increasing vector and evenly spaced.

The mdlInitializeSizes function explicitly calls mdlCheckParameters after it
verifies the number of parameters passed to the S-function. After the Simulink engine
calls mdlInitializeSizes, it then calls mdlCheckParameters whenever you change
the parameters or there is a need to reevaluate them.
User Data Caching

The mdlStart routine shows how to cache information that does not change during
the simulation (or while the generated code is executing). The example caches the value

11-81

#mdlCheckParameters
#mdlStart

11 Block Authoring and Code Generation for Simulink Coder

of the XDataEvenlySpaced parameter in UserData, a field of the SimStruct. The
following line in mdlInitializeSizes tells the Simulink engine to disallow changes to
XDataEvenlySpaced.
ssSetSFcnParamTunable(S, iParam, SS_PRM_NOT_TUNABLE);

During execution, mdlOutputs accesses the value of XDataEvenlySpaced from
UserData rather than calling the mxGetPr MATLAB API function.

mdlRTW Usage

The code generator calls the mdlRTW routine while generating the model.rtw file.
To produce optimal code for your Simulink model, you can add information to the
model.rtw file about the mode in which your S-Function block is operating.

The following example adds parameter settings to the model.rtw file. The parameter
settings do not change during execution. In this case, the XDataEvenlySpaced S-
function parameter cannot change during execution (ssSetSFcnParamTunable was
specified as false (0) for it in mdlInitializeSizes). The example writes it out as a
parameter setting (XSpacing) using the function ssWriteRTWParamSettings.

Because xData and yData are registered as run-time parameters in
mdlSetWorkWidths, the code generator handles writing to the model.rtw file
automatically.

Before examining the S-function and the inlined TLC file, consider the generated code for
the following model.

11-82

 Write S-Function and TLC Files By Hand

The model uses evenly spaced XData in the top S-Function block and unevenly spaced
XData in the bottom S-Function block. When creating this model, you need to specify the
following for each S-Function block.
set_param(`sfun_directlook_ex/S-Function','SFunctionModules','lookup_index')

set_param(`sfun_directlook_ex/S-Function1','SFunctionModules','lookup_index')

This informs the build process to use the module lookup_index.c when creating the
executable.

When generating code for this model, the code generator uses the S-function mdlRTW
method to generate a model.rtw file with the value EvenlySpaced for the XSpacing
parameter for the top S-Function block, and the value UnEvenlySpaced for the
XSpacing parameter for the bottom S-Function block. The TLC-file uses the value of
XSpacing to determine what algorithm to include in the generated code. The generated
code contains the lookup algorithm when the XData is evenly spaced, but calls the
GetDirectLookupIndex routine when the XData is unevenly spaced. The generated
model.c or model.cpp code for the lookup table example model is similar to the
following:
/*

 * sfun_directlook_ex.c

 *

 * Code generation for Simulink model

 * "sfun_directlook_ex.slx".

 *

...

 */

#include "sfun_directlook_ex.h"

#include "sfun_directlook_ex_private.h"

/* External outputs (root outports fed by signals with auto storage) */

ExtY_sfun_directlook_ex_T sfun_directlook_ex_Y;

/* Real-time model */

RT_MODEL_sfun_directlook_ex_T sfun_directlook_ex_M_;

RT_MODEL_sfun_directlook_ex_T *const sfun_directlook_ex_M =

 &sfun_directlook_ex_M_;

/* Model output function */

void sfun_directlook_ex_output(void)

{

 /* local block i/o variables */

 real_T rtb_SFunction;

 real_T rtb_SFunction1;

 /* Sin: '<Root>/Sine Wave' */

 rtb_SFunction1 = sin(sfun_directlook_ex_M->Timing.t[0]);

/* Code that is inlined for the top S-function block in the

11-83

11 Block Authoring and Code Generation for Simulink Coder

 * sfun_directlook_ex model

 */

 /* S-Function (sfun_directlook): '<Root>/S-Function' */

 {

 const real_T *xData = sfun_directlook_ex_ConstP.SFunction_XData;

 const real_T *yData = sfun_directlook_ex_ConstP.SFunction_YData;

 real_T spacing = xData[1] - xData[0];

 if (rtb_SFunction1 <= xData[0]) {

 rtb_SFunction = yData[0];

 } else if (rtb_SFunction1 >= yData[20]) {

 rtb_SFunction = yData[20];

 } else {

 int_T idx = (int_T)((rtb_SFunction1 - xData[0]) / spacing);

 rtb_SFunction = yData[idx];

 }

 }

 /* Outport: '<Root>/Out1' */

 sfun_directlook_ex_Y.Out1 = rtb_SFunction;

/* Code that is inlined for the bottom S-function block in the

 * sfun_directlook_ex model

 */

 /* S-Function (sfun_directlook): '<Root>/S-Function1' */

 {

 const real_T *xData = sfun_directlook_ex_ConstP.SFunction1_XData;

 const real_T *yData = sfun_directlook_ex_ConstP.SFunction1_YData;

 int_T idx;

 idx = GetDirectLookupIndex(xData, 5, rtb_SFunction1);

 rtb_SFunction1 = yData[idx];

 }

 /* Outport: '<Root>/Out2' */

 sfun_directlook_ex_Y.Out2 = rtb_SFunction1;

}

/* Model update function */

void sfun_directlook_ex_update(void)

{

 /* signal main to stop simulation */

 { /* Sample time: [0.0s, 0.0s] */

 if ((rtmGetTFinal(sfun_directlook_ex_M)!=-1) &&

 !((rtmGetTFinal(sfun_directlook_ex_M)-sfun_directlook_ex_M->Timing.t[0])

 > sfun_directlook_ex_M->Timing.t[0] * (DBL_EPSILON))) {

 rtmSetErrorStatus(sfun_directlook_ex_M, "Simulation finished");

 }

 }

 /* Update absolute time for base rate */

 /* The "clockTick0" counts the number of times the code of this task has

 * been executed. The absolute time is the multiplication of "clockTick0"

 * and "Timing.stepSize0". Size of "clockTick0" ensures timer will not

 * overflow during the application lifespan selected.

 * Timer of this task consists of two 32 bit unsigned integers.

 * The two integers represent the low bits Timing.clockTick0 and the high bits

11-84

 Write S-Function and TLC Files By Hand

 * Timing.clockTickH0. When the low bit overflows to 0, the high bits increment.

 */

 if (!(++sfun_directlook_ex_M->Timing.clockTick0)) {

 ++sfun_directlook_ex_M->Timing.clockTickH0;

 }

 sfun_directlook_ex_M->Timing.t[0] = sfun_directlook_ex_M->Timing.clockTick0 *

 sfun_directlook_ex_M->Timing.stepSize0 +

 sfun_directlook_ex_M->Timing.clockTickH0 *

 sfun_directlook_ex_M->Timing.stepSize0 * 4294967296.0;

}

...

matlabroot/toolbox/simulink/simdemos/simfeatures/src/sfun_directlook.c

/*

* File : sfun_directlook.c

 * Abstract:

 *

 * Direct 1-D lookup. Here we are trying to compute an approximate

 * solution, p(x) to an unknown function f(x) at x=x0, given data point

 * pairs (x,y) in the form of a x data vector and a y data vector. For a

 * given data pair (say the i'th pair), we have y_i = f(x_i). It is

 * assumed that the x data values are monotonically increasing. If the

 * x0 is outside of the range of the x data vector, then the first or

 * last point will be returned.

 *

 * This function returns the "nearest" y0 point for a given x0.

 * Interpolation is not performed.

 *

 * The S-function parameters are:

 * XData - double vector

 * YData - double vector

 * XDataEvenlySpacing - double scalar 0 (false) or 1 (true)

 * The third parameter cannot be changed during simulation.

 *

 * To build:

 * mex sfun_directlook.c lookup_index.c

 *

 * Copyright 1990-2012 The MathWorks, Inc.

 */

#define S_FUNCTION_NAME sfun_directlook

#define S_FUNCTION_LEVEL 2

#include <math.h>

#include "simstruc.h"

#include <float.h>

/* use utility function IsRealVect() */

#if defined(MATLAB_MEX_FILE)

#include "sfun_slutils.h"

#endif

/*================*

11-85

11 Block Authoring and Code Generation for Simulink Coder

 * Build checking *

 ================/

#if !defined(MATLAB_MEX_FILE)

/*

 * This file cannot be used directly with Simulink Coder. However,

 * this S-function does work with Simulink Coder via

 * the Target Language Compiler technology. See matlabroot/

 * toolbox/simulink/simdemos/simfeatures/tlc_c/sfun_directlook.tlc

 * for the C version

 */

error This_file_can_be_used_only_during_simulation_inside_Simulink

#endif

/*=========*

 * Defines *

 =========/

#define XVECT_PIDX 0

#define YVECT_PIDX 1

#define XDATAEVENLYSPACED_PIDX 2

#define NUM_PARAMS 3

#define XVECT(S) ssGetSFcnParam(S,XVECT_PIDX)

#define YVECT(S) ssGetSFcnParam(S,YVECT_PIDX)

#define XDATAEVENLYSPACED(S) ssGetSFcnParam(S,XDATAEVENLYSPACED_PIDX)

/*==============*

 * misc defines *

 ==============/

#if !defined(TRUE)

#define TRUE 1

#endif

#if !defined(FALSE)

#define FALSE 0

#endif

/*===========*

 * typedef's *

 ===========/

typedef struct SFcnCache_tag {

 boolean_T evenlySpaced;

} SFcnCache;

/*===*

 * Prototype define for the function in separate file lookup_index.c *

 ===/

extern int_T GetDirectLookupIndex(const real_T *x, int_T xlen, real_T u);

/*====================*

 * S-function methods *

 ====================/

11-86

 Write S-Function and TLC Files By Hand

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */

#if defined(MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

/* Function: mdlCheckParameters ==

 * Abstract:

 * This routine will be called after mdlInitializeSizes, whenever

 * parameters change or get re-evaluated. The purpose of this routine is

 * to verify the new parameter settings.

 *

 * You should add a call to this routine from mdlInitalizeSizes

 * to check the parameters. After setting your sizes elements, you should:

 * if (ssGetSFcnParamsCount(S) == ssGetNumSFcnParams(S)) {

 * mdlCheckParameters(S);

 * }

 */

static void mdlCheckParameters(SimStruct *S)

{

 if (!IsRealVect(XVECT(S))) {

 ssSetErrorStatus(S,"1st, X-vector parameter must be a real finite "

 " vector");

 return;

 }

 if (!IsRealVect(YVECT(S))) {

 ssSetErrorStatus(S,"2nd, Y-vector parameter must be a real finite "

 "vector");

 return;

 }

 /*

 * Verify that the dimensions of X and Y are the same.

 */

 if (mxGetNumberOfElements(XVECT(S)) != mxGetNumberOfElements(YVECT(S)) ||

 mxGetNumberOfElements(XVECT(S)) == 1) {

 ssSetErrorStatus(S,"X and Y-vectors must be of the same dimension "

 "and have at least two elements");

 return;

 }

 /*

 * Verify we have a valid XDataEvenlySpaced parameter.

 */

 if ((!mxIsNumeric(XDATAEVENLYSPACED(S)) &&

 !mxIsLogical(XDATAEVENLYSPACED(S))) ||

 mxIsComplex(XDATAEVENLYSPACED(S)) ||

 mxGetNumberOfElements(XDATAEVENLYSPACED(S)) != 1) {

 ssSetErrorStatus(S,"3rd, X-evenly-spaced parameter must be logical

scalar");

 return;

 }

 /*

 * Verify x-data is correctly spaced.

11-87

11 Block Authoring and Code Generation for Simulink Coder

 */

 {

 size_t i;

 boolean_T spacingEqual;

 real_T *xData = mxGetPr(XVECT(S));

 size_t numEl = mxGetNumberOfElements(XVECT(S));

 /*

 * spacingEqual is TRUE if user XDataEvenlySpaced

 */

 spacingEqual = (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0);

 if (spacingEqual) { /* XData is 'evenly-spaced' */

 boolean_T badSpacing = FALSE;

 real_T spacing = xData[1] - xData[0];

 real_T space;

 if (spacing <= 0.0) {

 badSpacing = TRUE;

 } else {

 real_T eps = DBL_EPSILON;

 for (i = 2; i < numEl; i++) {

 space = xData[i] - xData[i-1];

 if (space <= 0.0 ||

 fabs(space-spacing) >= 128.0*eps*spacing){

 badSpacing = TRUE;

 break;

 }

 }

 }

 if (badSpacing) {

 ssSetErrorStatus(S,"X-vector must be an evenly spaced "

 "strictly monotonically increasing vector");

 return;

 }

 } else { /* XData is 'unevenly-spaced' */

 for (i = 1; i < numEl; i++) {

 if (xData[i] <= xData[i-1]) {

 ssSetErrorStatus(S,"X-vector must be a strictly "

 "monotonically increasing vector");

 return;

 }

 }

 }

 }

}

#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes ==

 * Abstract:

 * The sizes information is used by Simulink to determine the S-function

11-88

 Write S-Function and TLC Files By Hand

 * block's characteristics (number of inputs, outputs, states, and so on).

 */

static void mdlInitializeSizes(SimStruct *S)

{

 ssSetNumSFcnParams(S, NUM_PARAMS); /* Number of expected parameters */

 /*

 * Check parameters passed in, providing the correct number was specified

 * in the S-function dialog box. If an incorrect number of parameters

 * was specified, Simulink will detect the error since ssGetNumSFcnParams

 * and ssGetSFcnParamsCount will differ.

 * ssGetNumSFcnParams - This sets the number of parameters your

 * S-function expects.

 * ssGetSFcnParamsCount - This is the number of parameters entered by

 * the user in the Simulink S-function dialog box.

 */

#if defined(MATLAB_MEX_FILE)

 if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {

 mdlCheckParameters(S);

 if (ssGetErrorStatus(S) != NULL) {

 return;

 }

 } else {

 return; /* Parameter mismatch will be reported by Simulink */

 }

#endif

 {

 int iParam = 0;

 int nParam = ssGetNumSFcnParams(S);

 for (iParam = 0; iParam < nParam; iParam++)

 {

 switch (iParam)

 {

 case XDATAEVENLYSPACED_PIDX:

 ssSetSFcnParamTunable(S, iParam, SS_PRM_NOT_TUNABLE);

 break;

 default:

 ssSetSFcnParamTunable(S, iParam, SS_PRM_TUNABLE);

 break;

 }

 }

 }

 ssSetNumContStates(S, 0);

 ssSetNumDiscStates(S, 0);

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetInputPortDirectFeedThrough(S, 0, 1);

 ssSetInputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

11-89

11 Block Authoring and Code Generation for Simulink Coder

 ssSetInputPortOverWritable(S, 0, TRUE);

 if (!ssSetNumOutputPorts(S, 1)) return;

 ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

 ssSetOutputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

 ssSetNumSampleTimes(S, 1);

 ssSetOptions(S,

 SS_OPTION_WORKS_WITH_CODE_REUSE |

 SS_OPTION_EXCEPTION_FREE_CODE |

 SS_OPTION_USE_TLC_WITH_ACCELERATOR);

} /* mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes ==

 * Abstract:

 * The lookup inherits its sample time from the driving block.

 */

static void mdlInitializeSampleTimes(SimStruct *S)

{

 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

 ssSetOffsetTime(S, 0, 0.0);

 ssSetModelReferenceSampleTimeDefaultInheritance(S);

} /* end mdlInitializeSampleTimes */

/* Function: mdlSetWorkWidths ===

 * Abstract:

 * Set up the [X,Y] data as run-time parameters

 * that is, these values can be changed during execution.

 */

#define MDL_SET_WORK_WIDTHS

static void mdlSetWorkWidths(SimStruct *S)

{

 const char_T *rtParamNames[] = {"XData","YData"};

 ssRegAllTunableParamsAsRunTimeParams(S, rtParamNames);

}

#define MDL_START /* Change to #undef to remove function */

#if defined(MDL_START)

/* Function: mdlStart ==

 * Abstract:

 * Here we cache the state (true/false) of the XDATAEVENLYSPACED parameter.

 * We do this primarily to illustrate how to "cache" parameter values (or

 * information which is computed from parameter values) which do not change

 * for the duration of the simulation (or in the generated code). In this

 * case, rather than repeated calls to mxGetPr, we save the state once.

 * This results in a slight increase in performance.

 */

static void mdlStart(SimStruct *S)

{

 SFcnCache *cache = malloc(sizeof(SFcnCache));

11-90

 Write S-Function and TLC Files By Hand

 if (cache == NULL) {

 ssSetErrorStatus(S,"memory allocation error");

 return;

 }

 ssSetUserData(S, cache);

 if (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0){

 cache->evenlySpaced = TRUE;

 }else{

 cache->evenlySpaced = FALSE;

 }

}

#endif /* MDL_START */

/* Function: mdlOutputs ==

 * Abstract:

 * In this function, you compute the outputs of your S-function

 * block. Generally outputs are placed in the output vector, ssGetY(S).

 */

static void mdlOutputs(SimStruct *S, int_T tid)

{

 SFcnCache *cache = ssGetUserData(S);

 real_T *xData = mxGetPr(XVECT(S));

 real_T *yData = mxGetPr(YVECT(S));

 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

 real_T *y = ssGetOutputPortRealSignal(S,0);

 size_t ny = ssGetOutputPortWidth(S,0);

 size_t xLen = mxGetNumberOfElements(XVECT(S));

 size_t i;

 /*

 * When the XData is evenly spaced, we use the direct lookup algorithm

 * to calculate the lookup

 */

 if (cache->evenlySpaced) {

 real_T spacing = xData[1] - xData[0];

 for (i = 0; i < ny; i++) {

 real_T u = *uPtrs[i];

 if (u <= xData[0]) {

 y[i] = yData[0];

 } else if (u >= xData[xLen-1]) {

 y[i] = yData[xLen-1];

 } else {

 int_T idx = (int_T)((u - xData[0])/spacing);

 y[i] = yData[idx];

 }

 }

 } else {

 /*

11-91

11 Block Authoring and Code Generation for Simulink Coder

 * When the XData is unevenly spaced, we use a bisection search to

 * locate the lookup index.

 */

 for (i = 0; i < ny; i++) {

 int_T idx = GetDirectLookupIndex(xData,xLen,*uPtrs[i]);

 y[i] = yData[idx];

 }

 }

} /* end mdlOutputs */

/* Function: mdlTerminate ==

 * Abstract:

 * Free the cache which was allocated in mdlStart.

 */

static void mdlTerminate(SimStruct *S)

{

 SFcnCache *cache = ssGetUserData(S);

 if (cache != NULL) {

 free(cache);

 }

} /* end mdlTerminate */

#define MDL_RTW /* Change to #undef to remove function */

#if defined(MDL_RTW) && (defined(MATLAB_MEX_FILE) || defined(NRT))

/* Function: mdlRTW ==

 * Abstract:

 * This function is called when Simulink Coder is generating the

 * model.rtw file. In this routine, you can call the following functions

 * which add fields to the model.rtw file.

 *

 * Important! Since this S-function has this mdlRTW method, it is required

 * to have a corresponding .tlc file so as to work with Simulink Coder. See the

 * sfun_directlook.tlc in matlabroot/toolbox/simulink/simdemos/simfeatures/tlc_c/.

 */

static void mdlRTW(SimStruct *S)

{

 /*

 * Write out the spacing setting as a param setting, that is, this cannot be

 * changed during execution.

 */

 {

 boolean_T even = (mxGetScalar(XDATAEVENLYSPACED(S)) != 0.0);

 if (!ssWriteRTWParamSettings(S, 1,

 SSWRITE_VALUE_QSTR,

 "XSpacing",

 even ? "EvenlySpaced" : "UnEvenlySpaced")){

 return;/* An error occurred which will be reported by Simulink */

 }

 }

11-92

 Write S-Function and TLC Files By Hand

}

#endif /* MDL_RTW */

/*=============================*

 * Required S-function trailer *

 =============================/

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

/* [EOF] sfun_directlook.c */

matlabroot/toolbox/simulink/simdemos/simfeatures/src/lookup_index.c

/* File : lookup_index.c

* Abstract:

 *

 * Contains a routine used by the S-function sfun_directlookup.c to

 * compute the index in a vector for a given data value.

 *

 * Copyright 1990-2014 The MathWorks, Inc.

 */

#ifdef MATLAB_MEX_FILE

#include <tmwtypes.h>

#else

#include "rtwtypes.h"

#endif

/*

 * Function: GetDirectLookupIndex ==

 * Abstract:

 * Using a bisection search to locate the lookup index when the x-vector

 * isn't evenly spaced.

 *

 * Inputs:

 * *x : Pointer to table, x[0]x[xlen-1]

 * xlen : Number of values in xtable

 * u : input value to look up

 *

 * Output:

 * idx : the index into the table such that:

 * if u is negative

 * x[idx] <= u < x[idx+1]

 * else

 * x[idx] < u <= x[idx+1]

 */

int_T GetDirectLookupIndex(const real_T *x, int_T xlen, real_T u)

{

 int_T idx = 0;

 int_T bottom = 0;

 int_T top = xlen-1;

11-93

11 Block Authoring and Code Generation for Simulink Coder

 /*

 * Deal with the extreme cases first:

 *

 * i] u <= x[bottom] then idx = bottom

 * ii] u >= x[top] then idx = top-1

 *

 */

 if (u <= x[bottom]) {

 return(bottom);

 } else if (u >= x[top]) {

 return(top);

 }

 /*

 * We have: x[bottom] < u < x[top], onward

 * with search for the index ...

 */

 for (;;) {

 idx = (bottom + top)/2;

 if (u < x[idx]) {

 top = idx;

 } else if (u > x[idx+1]) {

 bottom = idx + 1;

 } else {

 /*

 * We have: x[idx] <= u <= x[idx+1], only need

 * to do two more checks and we have the answer

 */

 if (u < 0) {

 /*

 * We want right continuity, that is,

 * if u == x[idx+1]

 * then x[idx+1] <= u < x[idx+2]

 * else x[idx] <= u < x[idx+1]

 */

 return((u == x[idx+1]) ? (idx+1) : idx);

 } else {

 /*

 * We want left continuity, that is,

 * if u == x[idx]

 * then x[idx-1] < u <= x[idx]

 * else x[idx] < u <= x[idx+1]

 */

 return((u == x[idx]) ? (idx-1) : idx);

 }

 }

 }

} /* end GetDirectLookupIndex */

/* [EOF] lookup_index.c */

matlabroot/toolbox/simulink/simdemos/simfeatures/tlc_c/sfun_directlook.tlc

%% File : sfun_directlook.tlc

%% Abstract:

11-94

 Write S-Function and TLC Files By Hand

%% Level-2 S-function sfun_directlook block target file.

%% It is using direct lookup algorithm without interpolation

%%

%% Copyright 1990-2010 The MathWorks, Inc.

%%

%implements "sfun_directlook" "C"

%% Function: BlockTypeSetup ==

%% Abstract:

%% Place include and function prototype in the model's header file.

%%

%function BlockTypeSetup(block, system) void

 %% To add this external function's prototype in the header of the generated

 %% file.

 %%

 %openfile buffer

 extern int_T GetDirectLookupIndex(const real_T *x, int_T xlen, real_T u);

 %closefile buffer

 %<LibCacheFunctionPrototype(buffer)>

%endfunction

%% Function: mdlOutputs ==

%% Abstract:

%% Direct 1-D lookup table S-function example.

%% Here we are trying to compute an approximate solution, p(x) to an

%% unknown function f(x) at x=x0, given data point pairs (x,y) in the

%% form of a x data vector and a y data vector. For a given data pair

%% (say the i'th pair), we have y_i = f(x_i). It is assumed that the x

%% data values are monotonically increasing. If the first or last x is

%% outside of the range of the x data vector, then the first or last

%% point will be returned.

%%

%% This function returns the "nearest" y0 point for a given x0.

%% Interpolation is not performed.

%%

%% The S-function parameters are:

%% XData

%% YData

%% XEvenlySpaced: 0 or 1

%% The third parameter cannot be changed during execution and is

%% written to the model.rtw file in XSpacing filed of the SFcnParamSettings

%% record as "EvenlySpaced" or "UnEvenlySpaced". The first two parameters

%% can change during execution and show up in the parameter vector.

%%

%function Outputs(block, system) Output

 /* %<Type> Block: %<Name> */

 {

 %assign rollVars = ["U", "Y"]

 %%

 %% Load XData and YData as local variables

11-95

11 Block Authoring and Code Generation for Simulink Coder

 %%

 const real_T *xData = %<LibBlockParameterAddr(XData, "", "", 0)>;

 const real_T *yData = %<LibBlockParameterAddr(YData, "", "", 0)>;

 %assign xDataLen = SIZE(XData.Value, 1)

 %%

 %% When the XData is evenly spaced, we use the direct lookup algorithm

 %% to locate the lookup index.

 %%

 %if SFcnParamSettings.XSpacing == "EvenlySpaced"

 real_T spacing = xData[1] - xData[0];

 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

 %assign u = LibBlockInputSignal(0, "", lcv, idx)

 %assign y = LibBlockOutputSignal(0, "", lcv, idx)

 if (%<u> <= xData[0]) {

 %<y> = yData[0];

 } else if (%<u> >= yData[%<xDataLen-1>]) {

 %<y> = yData[%<xDataLen-1>];

 } else {

 int_T idx = (int_T)((%<u> - xData[0]) / spacing);

 %<y> = yData[idx];

 }

 %%

 %% Generate an empty line if we are not rolling,

 %% so that it looks nice in the generated code.

 %%

 %if lcv == ""

 %endif

 %endroll

 %else

 %% When the XData is unevenly spaced, we use a bisection search to

 %% locate the lookup index.

 int_T idx;

 %assign xDataAddr = LibBlockParameterAddr(XData, "", "", 0)

 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

 %assign u = LibBlockInputSignal(0, "", lcv, idx)

 idx = GetDirectLookupIndex(xData, %<xDataLen>, %<u>);

 %assign y = LibBlockOutputSignal(0, "", lcv, idx)

 %<y> = yData[idx];

 %%

 %% Generate an empty line if we are not rolling,

 %% so that it looks nice in the generated code.

 %%

 %if lcv == ""

 %endif

 %endroll

 %endif

 }

%endfunction

%% EOF: sfun_directlook.tlc

11-96

 Write S-Function and TLC Files By Hand

Guidelines for Writing Inlined S-Functions

• Consider using the block property RTWdata (see “S-Function RTWdata” (Simulink
Coder)). This property is a structure of character vectors that you can associate with
a block. The code generator saves the structure with the model in the model.rtw file
and makes the .rtw file more readable. For example, suppose you enter the following
commands in the MATLAB Command Window:
mydata.field1 = 'information for field1';

mydata.field2 = 'information for field2';

set_param(sfun_block, 'RTWdata', mydata);

The .rtw file that the code generator produces for the block includes the comments
specified in the structure mydata.

• Consider using the mdlRTW function to inline your C MEX S-function in the generated
code. This is useful when you want to

• Rename tunable parameters in the generated code
• Introduce nontunable parameters into a TLC file

S-Functions That Support Expression Folding

• “About S-Functions that Support Expression Folding” on page 11-97
• “Categories of Output Expressions” on page 11-98
• “Acceptance or Denial of Requests for Input Expressions” on page 11-102
• “Expression Folding in a TLC Block Implementation” on page 11-104

About S-Functions that Support Expression Folding

This topic describes how you can take advantage of expression folding to increase the
efficiency of code generated by your own inlined S-Function blocks, by calling macros
provided in the S-Function API. This topic assumes that you are familiar with:

• Writing inlined S-functions (see “S-Function Basics” (Simulink)).
• “Target Language Compiler” (Simulink Coder)

The S-Function API lets you specify whether a given S-Function block should nominally
accept expressions at a given input port. A block should not always accept expressions.
For example, if the address of the signal at the input is used, expressions should not be
accepted at that input, because it is not possible to take the address of an expression.

11-97

11 Block Authoring and Code Generation for Simulink Coder

The S-Function API also lets you specify whether an expression can represent the
computations associated with a given output port. When you request an expression at a
block's input or output port, the Simulink engine determines whether or not it can honor
that request, given the block's context. For example, the engine might deny a block's
request to output an expression if the destination block does not accept expressions at its
input, if the destination block has an update function, or if multiple output destinations
exist.

The decision to honor or deny a request to output an expression can also depend on the
category of output expression the block uses (see “Categories of Output Expressions” on
page 11-98).

The topics that follow explain

• When and how you can request that a block accept expressions at an input port
• When and how you can request that a block generate expressions at an outport
• The conditions under which the Simulink engine will honor or deny such requests

To take advantage of expression folding in your S-functions, you should understand when
to request acceptance and generation of expressions for specific blocks. You do not have
to understand the algorithm by which the Simulink engine chooses to accept or deny
these requests. However, if you want to trace between the model and the generated code,
it is helpful to understand some of the more common situations that lead to denial of a
request.

Categories of Output Expressions

When you implement a C MEX S-function, you can specify whether the code
corresponding to a block's output is to be generated as an expression. If the block
generates an expression, you must specify that the expression is constant, trivial, or
generic.

A constant output expression is a direct access to one of the block's parameters. For
example, the output of a Constant block is defined as a constant expression because the
output expression is simply a direct access to the block's Value parameter.

A trivial output expression is an expression that can be repeated, without a performance
penalty, when the output port has multiple output destinations. For example, the output
of a Unit Delay block is defined as a trivial expression because the output expression is
simply a direct access to the block's state. Because the output expression does not have
computations, it can be repeated more than once without degrading the performance of
the generated code.

11-98

 Write S-Function and TLC Files By Hand

A generic output expression is an expression that should be assumed to have a
performance penalty if repeated. As such, a generic output expression is not suitable
for repeating when the output port has multiple output destinations. For instance, the
output of a Sum block is a generic rather than a trivial expression because it is costly to
recompute a Sum block output expression as an input to multiple blocks.

Examples of Trivial and Generic Output Expressions

Consider the following block diagram. The Delay block has multiple destinations, yet its
output is designated as a trivial output expression, so that it can be used more than once
without degrading the efficiency of the code.

The following code excerpt shows code generated from the Unit Delay block in this
block diagram. The three root outputs are directly assigned from the state of the Unit
Delay block, which is stored in a field of the global data structure rtDWork. Since the
assignment is direct, without expressions, there is no performance penalty associated
with using the trivial expression for multiple destinations.
void MdlOutputs(int_T tid)

{

 ...

 /* Outport: <Root>/Out1 incorporates:

 * UnitDelay: <Root>/Unit Delay */

 rtY.Out1 = rtDWork.Unit_Delay_DSTATE;

 /* Outport: <Root>/Out2 incorporates:

 * UnitDelay: <Root>/Unit Delay */

 rtY.Out2 = rtDWork.Unit_Delay_DSTATE;

 /* Outport: <Root>/Out3 incorporates:

 * UnitDelay: <Root>/Unit Delay */

 rtY.Out3 = rtDWork.Unit_Delay_DSTATE;

11-99

11 Block Authoring and Code Generation for Simulink Coder

 ...

}

On the other hand, consider the Sum blocks in the following model:

The upper Sum block in the preceding model generates the signal labeled non_triv.
Computation of this output signal involves two multiplications and an addition. If the
Sum block's output were permitted to generate an expression even when the block
had multiple destinations, the block's operations would be duplicated in the generated
code. In the case illustrated, the generated expressions would proliferate to four
multiplications and two additions. This would degrade the efficiency of the program.
Accordingly the output of the Sum block is not allowed to be an expression because it has
multiple destinations

The code generated for the previous block diagram shows how code is generated for Sum
blocks with single and multiple destinations.

The Simulink engine does not permit the output of the upper Sum block to be an
expression because the signal non_triv is routed to two output destinations. Instead,
the result of the multiplication and addition operations is stored in a temporary variable
(rtb_non_triv) that is referenced twice in the statements that follow, as seen in the
code excerpt below.

In contrast, the lower Sum block, which has only a single output destination (Out2), does
generate an expression.
void MdlOutputs(int_T tid)

{

 /* local block i/o variables */

 real_T rtb_non_triv;

11-100

 Write S-Function and TLC Files By Hand

 real_T rtb_Sine_Wave;

 /* Sum: <Root>/Sum incorporates:

 * Gain: <Root>/Gain

 * Inport: <Root>/u1

 * Gain: <Root>/Gain1

 * Inport: <Root>/u2

 *

 * Regarding <Root>/Gain:

 * Gain value: rtP.Gain_Gain

 *

 * Regarding <Root>/Gain1:

 * Gain value: rtP.Gain1_Gain

 */

 rtb_non_triv = (rtP.Gain_Gain * rtU.u1) + (rtP.Gain1_Gain *

rtU.u2);

 /* Outport: <Root>/Out1 */

 rtY.Out1 = rtb_non_triv;

 /* Sin Block: <Root>/Sine Wave */

 rtb_Sine_Wave = rtP.Sine_Wave_Amp *

 sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_model) +

 rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

 /* Outport: <Root>/Out2 incorporates:

 * Sum: <Root>/Sum1

 */

 rtY.Out2 = (rtb_non_triv + rtb_Sine_Wave);

}

Specify the Category of an Output Expression

The S-Function API provides macros that let you declare whether an output of a block
should be an expression, and if so, to specify the category of the expression. The following
table specifies when to declare a block output to be a constant, trivial, or generic output
expression.

Types of Output Expressions

Category of
Expression

When to Use

Constant Use only if block output is a direct memory access to a block
parameter.

Trivial Use only if block output is an expression that can appear multiple
times in the code without reducing efficiency (for example, a
direct memory access to a field of the DWork vector, or a literal).

Generic Use if output is an expression, but not constant or trivial.

11-101

11 Block Authoring and Code Generation for Simulink Coder

You must declare outputs as expressions in the mdlSetWorkWidths function using
macros defined in the S-Function API. The macros have the following arguments:

• SimStruct *S: pointer to the block's SimStruct.
• int idx: zero-based index of the output port.
• bool value: pass in TRUE if the port generates output expressions.

The following macros are available for setting an output to be a constant, trivial, or
generic expression:

• void ssSetOutputPortConstOutputExprInRTW(SimStruct *S, int idx,

bool value)

• void ssSetOutputPortTrivialOutputExprInRTW(SimStruct *S, int idx,

bool value)

• void ssSetOutputPortOutputExprInRTW(SimStruct *S, int idx, bool

value)

The following macros are available for querying the status set by prior calls to the macros
above:

• bool ssGetOutputPortConstOutputExprInRTW(SimStruct *S, int idx)

• bool ssGetOutputPortTrivialOutputExprInRTW(SimStruct *S, int idx)

• bool ssGetOutputPortOutputExprInRTW(SimStruct *S, int idx)

The set of generic expressions is a superset of the set of trivial expressions, and the set of
trivial expressions is a superset of the set of constant expressions.

Therefore, when you query an output that has been set to be a constant expression with
ssGetOutputPortTrivialOutputExprInRTW, it returns True. A constant expression
is considered a trivial expression, because it is a direct memory access that can be
repeated without degrading the efficiency of the generated code.

Similarly, an output that has been configured to be a constant or trivial expression
returns True when queried for its status as a generic expression.

Acceptance or Denial of Requests for Input Expressions

A block can request that its output be represented in code as an expression. Such a
request can be denied if the destination block cannot accept expressions at its input port.
Furthermore, conditions independent of the requesting block and its destination blocks
can prevent acceptance of expressions.

11-102

 Write S-Function and TLC Files By Hand

This topic discusses block-specific conditions under which requests for input expressions
are denied. For information on other conditions that prevent acceptance of expressions,
see “Denial of Block Requests to Output Expressions” on page 11-104.

A block should not be configured to accept expressions at its input port under the
following conditions:

• The block must take the address of its input data. It is not possible to take the
address of most types of input expressions.

• The code generated for the block references the input more than once (for example,
the Abs or Max blocks). This would lead to duplication of a potentially complex
expression and a subsequent degradation of code efficiency.

If a block refuses to accept expressions at an input port, then a block that is connected to
that input port is not permitted to output a generic or trivial expression.

A request to output a constant expression is not denied, because there is no performance
penalty for a constant expression, and the software can take the parameter’s address.

S-Function API to Specify Input Expression Acceptance

The S-Function API provides macros that let you:

• Specify whether a block input should accept nonconstant expressions (that is, trivial
or generic expressions)

• Query whether a block input accepts nonconstant expressions

By default, block inputs do not accept nonconstant expressions.

You should call the macros in your mdlSetWorkWidths function. The macros have the
following arguments:

• SimStruct *S: pointer to the block's SimStruct.
• int idx: zero-based index of the input port.
• bool value: pass in TRUE if the port accepts input expressions; otherwise pass in

FALSE.

The macro available for specifying whether or not a block input should accept a
nonconstant expression is as follows:
void ssSetInputPortAcceptExprInRTW(SimStruct *S, int portIdx, bool value)

11-103

11 Block Authoring and Code Generation for Simulink Coder

The corresponding macro available for querying the status set by any prior calls to
ssSetInputPortAcceptExprInRTW is as follows:
bool ssGetInputPortAcceptExprInRTW(SimStruct *S, int portIdx)

Denial of Block Requests to Output Expressions

Even after a specific block requests that it be allowed to generate an output expression,
that request can be denied for generic reasons. These reasons include, but are not limited
to

• The output expression is nontrivial, and the output has multiple destinations.
• The output expression is nonconstant, and the output is connected to at least one

destination that does not accept expressions at its input port.
• The output is a test point.
• The output has been assigned an external storage class.
• The output must be stored using global data (for example is an input to a merge block

or a block with states).
• The output signal is complex.

You do not need to consider these generic factors when deciding whether or not to utilize
expression folding for a particular block. However, these rules can be helpful when
you are examining generated code and analyzing cases where the expression folding
optimization is suppressed.

Expression Folding in a TLC Block Implementation

To take advantage of expression folding, you must modify the TLC block implementation
of an inlined S-Function such that it informs the Simulink engine whether it generates or
accepts expressions at its

• Input ports, as explained in “S-Function API to Specify Input Expression Acceptance”
on page 11-103.

• Output ports, as explained in “Categories of Output Expressions” on page 11-98.

This topic discusses required modifications to the TLC implementation.
Expression Folding Compliance

In the BlockInstanceSetup function of your S-function, register your block to be
compliant with expression folding. Otherwise, expression folding requested or allowed at
the block's outputs or inputs will be disabled, and temporary variables will be used.

11-104

 Write S-Function and TLC Files By Hand

To register expression folding compliance, call the TLC library function
LibBlockSetIsExpressionCompliant(block), which is defined in matlabroot/rtw/c/
tlc/lib/utillib.tlc. For example:
%% Function: BlockInstanceSetup ===

%%

%function BlockInstanceSetup(block, system) void

 %%

 %<LibBlockSetIsExpressionCompliant(block)>

 %%

%endfunction

You can conditionally disable expression folding at the inputs and outputs of a block by
making the call to this function conditionally.

If you override one of the TLC block implementations provided by the code generator
with your own implementation, you should not make the preceding call until you have
updated your implementation, as described by the guidelines for expression folding in the
following topics.

Output Expressions

The BlockOutputSignal function is used to generate code for a scalar output
expression or one element of a nonscalar output expression. If your block outputs an
expression, you should add a BlockOutputSignal function. The prototype of the
BlockOutputSignal is
%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

The arguments to BlockOutputSignal are as follows:

• block: the record for the block for which an output expression is being generated
• system: the record for the system containing the block
• portIdx: zero-based index of the output port for which an expression is being

generated
• ucv: user control variable defining the output element for which code is being

generated
• lcv: loop control variable defining the output element for which code is being

generated
• idx: signal index defining the output element for which code is being generated
• retType: character vector defining the type of signal access desired:

"Signal" specifies the contents or address of the output signal.

11-105

11 Block Authoring and Code Generation for Simulink Coder

"SignalAddr" specifies the address of the output signal

The BlockOutputSignal function returns a character vector for the output signal or
address. The character vector should enforce the precedence of the expression by using
opening and terminating parentheses, unless the expression consists of a function call.
The address of an expression can only be returned for a constant expression; it is the
address of the parameter whose memory is being accessed. The code implementing the
BlockOutputSignal function for the Constant block is shown below.
%% Function: BlockOutputSignal ===

%% Abstract:

%% Return the reference to the parameter. This function *may*

%% be used by Simulink when optimizing the Block IO data structure.

%%

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

 %switch retType

 %case "Signal"

 %return LibBlockParameter(Value,ucv,lcv,idx)

 %case "SignalAddr"

 %return LibBlockParameterAddr(Value,ucv,lcv,idx)

 %default

 %assign errTxt = "Unsupported return type: %<retType>"

 %<LibBlockReportError(block,errTxt)>

 %endswitch

%endfunction

The code implementing the BlockOutputSignal function for the Relational Operator
block is shown below.
%% Function: BlockOutputSignal ===

%% Abstract:

%% Return an output expression. This function *may*

%% be used by Simulink when optimizing the Block IO data structure.

%%

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

%switch retType

%case "Signal"

%assign logicOperator = ParamSettings.Operator

 %if ISEQUAL(logicOperator, "~=")

 %assign op = "!="

elseif ISEQUAL(logicOperator, "==") %assign op = "=="

 %else

%assign op = logicOperator

%endif

 %assign u0 = LibBlockInputSignal(0, ucv, lcv, idx)

%assign u1 = LibBlockInputSignal(1, ucv, lcv, idx)

 %return "(%<u0> %<op> %<u1>)"

 %default

 %assign errTxt = "Unsupported return type: %<retType>"

 %<LibBlockReportError(block,errTxt)>

%endswitch

11-106

 Write S-Function and TLC Files By Hand

%endfunction

Expression Folding for Blocks with Multiple Outputs

When a block has a single output, the Outputs function in the block's TLC file is called
only if the output port is not an expression. Otherwise, the BlockOutputSignal
function is called.

If a block has multiple outputs, the Outputs function is called if any output port is not
an expression. The Outputs function should guard against generating code for output
ports that are expressions. This is achieved by guarding sections of code corresponding to
individual output ports with calls to LibBlockOutputSignalIsExpr().

For example, consider an S-Function with two inputs and two outputs, where

• The first output, y0, is equal to two times the first input.
• The second output, y1, is equal to four times the second input.

The Outputs and BlockOutputSignal functions for the S-function are shown in the
following code excerpt.
%% Function: BlockOutputSignal ===

%% Abstract:

%% Return an output expression. This function *may*

%% be used by Simulink when optimizing the Block IO data structure.

%%

%function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

%switch retType

%case "Signal"

 %assign u = LibBlockInputSignal(portIdx, ucv, lcv, idx)

 %case "Signal"

 %if portIdx == 0

 %return "(2 * %<u>)"

%elseif portIdx == 1

 %return "(4 * %<u>)"

%endif

%default

%assign errTxt = "Unsupported return type: %<retType>"

 %<LibBlockReportError(block,errTxt)>

%endswitch

%endfunction

%%

%% Function: Outputs ===

%% Abstract:

%% Compute output signals of block

%%

%function Outputs(block,system) Output

%assign rollVars = ["U", "Y"]

%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

%assign u0 = LibBlockInputSignal(0, "", lcv, sigIdx)

 %assign u1 = LibBlockInputSignal(1, "", lcv, sigIdx)

11-107

11 Block Authoring and Code Generation for Simulink Coder

 %assign y0 = LibBlockOutputSignal(0, "", lcv, sigIdx)

 %assign y1 = LibBlockOutputSignal(1, "", lcv, sigIdx)

%if !LibBlockOutputSignalIsExpr(0)

%<y0> = 2 * %<u0>;

%endif

%if !LibBlockOutputSignalIsExpr(1)

 %<y1> = 4 * %<u1>;

%endif

%endroll

%endfunction

Comments for Blocks That Are Expression-Folding-Compliant

In the past, blocks preceded their outputs code with comments of the form
/* %<Type> Block: %<Name> */

When a block is expression-folding-compliant, the initial line shown above is
generated automatically. You should not include the comment as part of the
block's TLC implementation. Additional information should be registered using the
LibCacheBlockComment function.

The LibCacheBlockComment function takes a character vector as an input, defining
the body of the comment, except for the opening header, the final newline of a single or
multiline comment, and the closing trailer.

The following TLC code illustrates registering a block comment. Note the use of the
function LibBlockParameterForComment, which returns a character vector, suitable
for a block comment, specifying the value of the block parameter.
%openfile commentBuf

 $c(*) Gain value: %<LibBlockParameterForComment(Gain)>

 %closefile commentBuf

 %<LibCacheBlockComment(block, commentBuf)>

S-Functions That Specify Port Scope and Reusability

You can use the following SimStruct macros in the mdlInitializeSizes method
to specify the scope and reusability of the memory used for your S-function's input and
output ports:

• ssSetInputPortOptimOpts: Specify the scope and reusability of the memory
allocated to an S-function input port

• ssSetOutputPortOptimOpts: Specify the scope and reusability of the memory
allocated to an S-function output port

• ssSetInputPortOverWritable: Specify whether one of your S-function's input
ports can be overwritten by one of its output ports

11-108

 Write S-Function and TLC Files By Hand

• ssSetOutputPortOverwritesInputPort: Specify whether an output port can
share its memory buffer with an input port

You declare an input or output as local or global, and indicate its reusability, by
passing one of the following four options to the ssSetInputPortOptimOpts and
ssSetOutputPortOptimOpts macros:

• SS_NOT_REUSABLE_AND_GLOBAL: Indicates that the input and output ports are
stored in separate memory locations in the global block input and output structure

• SS_NOT_REUSABLE_AND_LOCAL: Indicates that the code generator can declare
individual local variables for the input and output ports

• SS_REUSABLE_AND_LOCAL: Indicates that the code generator can reuse a single local
variable for these input and output ports

• SS_REUSABLE_AND_GLOBAL: Indicates that these input and output ports are stored
in a single element in the global block input and output structure

Note Marking an input or output port as a local variable does not imply that the code
generator uses a local variable in the generated code. If your S-function accesses the
inputs and outputs only in its mdlOutputs routine, the code generator declares the
inputs and outputs as local variables. However, if the inputs and outputs are used
elsewhere in the S-function, the code generator includes them in the global block input
and output structure.

The reusability setting indicates if the memory associated with an input or output port
can be overwritten. To reuse input and output port memory:

1 Indicate the ports are reusable using either the SS_REUSABLE_AND_LOCAL or
SS_REUSABLE_AND_GLOBAL option in the ssSetInputPortOptimOpts and
ssSetOutputPortOptimOpts macros

2 Indicate the input port memory is overwritable using
ssSetInputPortOverWritable

3 If your S-function has multiple input and output ports, use
ssSetOutputPortOverwritesInputPort to indicate which output and input
ports share memory

The following example shows how different scope and reusability settings affect the
generated code. The following model contains an S-function block pointing to the C

11-109

11 Block Authoring and Code Generation for Simulink Coder

MEX S-function matlabroot/toolbox/simulink/simdemos/simfeatures/src/
sfun_directlook.c, which models a direct 1-D lookup table.

The S-function's mdlInitializeSizes method declares the input port as reusable,
local, and overwritable and the output port as reusable and local, as follows:
static void mdlInitializeSizes(SimStruct *S)

{

/* snip */

 ssSetInputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

 ssSetInputPortOverWritable(S, 0, TRUE);

/* snip */

 ssSetOutputPortOptimOpts(S, 0, SS_REUSABLE_AND_LOCAL);

/* snip */

}

The generated code for this model stores the input and output signals in a single local
variable rtb_SFunction, as shown in the following output function:
static void sl_directlook_output(int_T tid)

{

 /* local block i/o variables */

 real_T rtb_SFunction[2];

 /* Sin: '<Root>/Sine Wave' */

 rtb_SFunction[0] = sin(((real_T)sl_directlook_DWork.counter[0] +

 sl_directlook_P.SineWave_Offset) * 2.0 * 3.1415926535897931E+000 /

 sl_directlook_P.SineWave_NumSamp) * sl_directlook_P.SineWave_Amp[0] +

 sl_directlook_P.SineWave_Bias;

 rtb_SFunction[1] = sin(((real_T)sl_directlook_DWork.counter[1] +

 sl_directlook_P.SineWave_Offset) * 2.0 * 3.1415926535897931E+000 /

 sl_directlook_P.SineWave_NumSamp) * sl_directlook_P.SineWave_Amp[1] +

 sl_directlook_P.SineWave_Bias;

 /* S-Function Block: <Root>/S-Function */

 {

 const real_T *xData = &sl_directlook_P.SFunction_XData[0];

 const real_T *yData = &sl_directlook_P.SFunction_YData [0];

 real_T spacing = xData[1] - xData[0];

 if (rtb_SFunction[0] <= xData[0]) {

 rtb_SFunction[0] = yData[0];

 } else if (rtb_SFunction[0] >= yData[20]) {

11-110

 Write S-Function and TLC Files By Hand

 rtb_SFunction[0] = yData[20];

 } else {

 int_T idx = (int_T)((rtb_SFunction[0] - xData[0]) / spacing);

 rtb_SFunction[0] = yData[idx];

 }

 if (rtb_SFunction[1] <= xData[0]) {

 rtb_SFunction[1] = yData[0];

 } else if (rtb_SFunction[1] >= yData[20]) {

 rtb_SFunction[1] = yData[20];

 } else {

 int_T idx = (int_T)((rtb_SFunction[1] - xData[0]) / spacing);

 rtb_SFunction[1] = yData[idx];

 }

 }

 /* Outport: '<Root>/Out1' */

 sl_directlook_Y.Out1[0] = rtb_SFunction[0];

 sl_directlook_Y.Out1[1] = rtb_SFunction[1];

 UNUSED_PARAMETER(tid);

}

The following table shows variations of the code generated for this model when using the
generic real-time target (GRT). Each row explains a different setting for the scope and
reusability of the S-function's input and output ports.

Scope and
reusability

S-function mdlInitializeSizes code Generated code

Inputs: Local,
reusable,
overwritable

Outputs: Local,
reusable

ssSetInputPortOptimOpts(S, 0,

SS_REUSABLE_AND_LOCAL);

ssSetInputPortOverWritable(S, 0,

TRUE);

ssSetOutputPortOptimOpts(S, 0,

SS_REUSABLE_AND_LOCAL);

The model.c file declares a local
variable in the output function.
/* local block i/o variables */

 real_T rtb_SFunction[2];

Inputs: Global,
reusable,
overwritable

Outputs: Global,
reusable

ssSetInputPortOptimOpts(S, 0,

SS_REUSABLE_AND_GLOBAL);

ssSetInputPortOverWritable(S, 0,

TRUE);

ssSetOutputPortOptimOpts(S, 0,

SS_REUSABLE_AND_GLOBAL);

The model.h file defines a block
signals structure with a single element
to store the S-function's input and
output.
/* Block signals (auto storage) */

typedef struct {

 real_T SFunction[2];

} BlockIO_sl_directlook;

The model.c file uses this element of
the structure in calculations of the S-
function's input and output signals.
 /* Sin: '<Root>/Sine Wave' */

11-111

11 Block Authoring and Code Generation for Simulink Coder

Scope and
reusability

S-function mdlInitializeSizes code Generated code

sl_directlook_B.SFunction[0] = sin ...

/* snip */

/*S-Function Block:<Root>/S-Function*/

{

const real_T *xData =

 &sl_directlook_P.SFunction_XData[0]

Inputs: Local,
not reusable

Outputs: Local,
not reusable

ssSetInputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_LOCAL);

ssSetInputPortOverWritable(S, 0,

FALSE);

ssSetOutputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_LOCAL);

The model.c file declares local
variables for the S-function's input and
output in the output function
/* local block i/o variables */

 real_T rtb_SineWave[2];

 real_T rtb_SFunction[2];

Inputs: Global,
not reusable

Outputs: Global,
not reusable

ssSetInputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_GLOBAL);

ssSetInputPortOverWritable(S, 0,

FALSE);

ssSetOutputPortOptimOpts(S, 0,

SS_NOT_REUSABLE_AND_GLOBAL);

The model.h file defines a block signal
structure with individual elements to
store the S-function's input and output.
/* Block signals (auto storage) */

typedef struct {

 real_T SineWave[2];

 real_T SFunction[2];

} BlockIO_sl_directlook;

The model.c file uses the different
elements in this structure when
calculating the S-function's input and
output.
 /* Sin: '<Root>/Sine Wave' */

sl_directlook_B.SineWave[0] = sin ...

/* snip */

/*S-Function Block:<Root>/S-Function*/

{

const real_T *xData =

 &sl_directlook_P.SFunction_XData[0]

S-Functions That Specify Sample Time Inheritance Rules

For the Simulink engine to determine whether a model can inherit a
sample time, the S-functions in the model need to specify how they use
sample times. You can specify this information by calling the macro
ssSetModelReferenceSampleTimeInheritanceRule from mdlInitializeSizes or
mdlSetWorkWidths. To use this macro:

1 Check whether the S-function calls any of the following macros:

11-112

 Write S-Function and TLC Files By Hand

• ssGetSampleTime

• ssGetInputPortSampleTime

• ssGetOutputPortSampleTime

• ssGetInputPortOffsetTime

• ssGetOutputPortOffsetTime

• ssGetSampleTimePtr

• ssGetInputPortSampleTimeIndex

• ssGetOutputPortSampleTimeIndex

• ssGetSampleTimeTaskID

• ssGetSampleTimeTaskIDPtr

2 Check for the following in your S-function TLC code:

• LibBlockSampleTime

• CompiledModel.SampleTime

• LibBlockInputSignalSampleTime

• LibBlockInputSignalOffsetTime

• LibBlockOutputSignalSampleTime

• LibBlockOutputSignalOffsetTime

3 Depending on your search results, use
ssSetModelReferenceSampleTimeInheritanceRule as indicated in the
following table.

If... Use...

None of the macros or functions
are present, the S-function does
not preclude the model from
inheriting a sample time.

ssSetModelReferenceSampleTimeInheritanceRule

 (S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE)

Any of the macros or functions are
used for

• Throwing errors if sample time
is inherited, continuous, or
constant

ssSetModelReferenceSampleTimeInheritanceRule...

(S,USE_DEFAULT_FOR_DISCRETE_INHERITANCE)

11-113

11 Block Authoring and Code Generation for Simulink Coder

If... Use...

• Checking ssIsSampleHit
• Checking whether sample

time is inherited in either
mdlSetInputPortSampleTime

or
mdlSetOutputPortSampleTime

before setting
The S-function uses its sample
time for computing parameters,
outputs, and so on

ssSetModelReferenceSampleTimeInheritanceRule

(S, DISALLOW_SAMPLE_TIME_INHERITANCE)

Note If an S-function does not set the
ssSetModelReferenceSampleTimeInheritanceRule macro, by default the Simulink
engine assumes that the S-function does not preclude the model containing that S-
function from inheriting a sample time. However, the engine issues a warning indicating
that the model includes S-functions for which this macro is not set.

You can use settings on the All Parameters pane of the Configuration Parameters
dialog box or Model Explorer to control how the Simulink engine responds when it
encounters S-functions that have unspecified sample time inheritance rules. Toggle the
Unspecified inheritability of sample time diagnostic to none, warning, or error.
The default is warning.

S-Functions That Support Code Reuse

You can reuse the generated code for identical subsystems that occur in multiple
instances within a model and across referenced models. For more information about code
generation of subsystems for code reuse, see “Code Generation of Subsystems” (Simulink
Coder). If you want your S-function to support code reuse for a subsystem, the S-function
must meet the following requirements:

• The S-function must be inlined.
• Code generated from the S-function must not use static variables.
• The S-function must initialize its pointer work vector in mdlStart and not before.
• The S-function must not be a sink that logs data to the workspace.

11-114

 Write S-Function and TLC Files By Hand

• The S-function must register its parameters as run-time parameters in
mdlSetWorkWidths. (It must not use ssWriteRTWParameters in its mdlRTW
function for this purpose.)

• The S-function must not be a device driver.

In addition to meeting the preceding requirements, your S-function must set the
SS_OPTION_WORKS_WITH_CODE_REUSE flag (see the description of ssSetOptions
in the Simulink Writing S-Function documentation). This flag indicates that your S-
function meets the requirements for subsystem code reuse.

S-Functions for Multirate Multitasking Environments

• “About S-Functions for Multirate Multitasking Environments” on page 11-115
• “Rate Grouping Support in S-Functions” on page 11-115
• “Create Multitasking, Multirate, Port-Based Sample Time S-Functions” on page

11-116

About S-Functions for Multirate Multitasking Environments

S-functions can be used in models with multiple sample rates and deployed in
multitasking target environments. Likewise, S-functions themselves can have multiple
rates at which they operate. The code generator produces code for multirate multitasking
models using an approach called rate grouping. In code generated for ERT-based targets,
rate grouping generates separate model_step functions for the base rate task and each
subrate task in the model. Although rate grouping is a code generation feature found in
ERT targets only, your S-functions can use it in other contexts when you code them as
explained below.

Rate Grouping Support in S-Functions

To take advantage of rate grouping, you must inline your multirate S-functions if you
have not done so. You need to follow certain Target Language Compiler protocols to
exploit rate grouping. Coding TLC to exploit rate grouping does not prevent your inlined
S-functions from functioning properly in GRT. Likewise, your inlined S-functions will
still generate valid ERT code even if you do not make them rate-grouping-compliant. If
you do so, however, they will generate more efficient code for multirate models.

For instructions and examples of Target Language Compiler code illustrating how to
create and upgrade S-functions to generate rate-grouping-compliant code, see “Rate
Grouping Compliance and Compatibility Issues” on page 49-17.

11-115

11 Block Authoring and Code Generation for Simulink Coder

For each multirate S-function that is not rate grouping-compliant, the code generator
issues the following warning when you build:
Warning: Simulink Coder: Code of output function for multirate block

'<Root>/S-Function' is guarded by sample hit checks rather than being rate

grouped. This will generate the same code for all rates used by the block,

possibly generating dead code. To avoid dead code, you must update the TLC

file for the block.

You will also find a comment such as the following in code generated for each
noncompliant S-function:
/* Because the output function of multirate block

 <Root>/S-Function is not rate grouped,

 the following code might contain unreachable blocks of code.

 To avoid this, you must update your block TLC file. */

The words “update function” are substituted for “output function” in these warnings.

Create Multitasking, Multirate, Port-Based Sample Time S-Functions

The following instructions show how to support both data determinism and data integrity
in multirate S-functions. They do not cover cases where there is no determinism nor
integrity. Support for frame-based processing does not affect the requirements.

Note The slow rates must be multiples of the fastest rate. The instructions do not apply
when two rates being interfaced are not multiples or when the rates are not periodic.

Rules for Properly Handling Fast-to-Slow Transitions

The rules that multirate S-functions should observe for inputs are

• The input should only be read at the rate that is associated with the input port
sample time.

• Generally, the input data is written to DWork, and the DWork can then be accessed at
the slower (downstream) rate.

The input can be read at every sample hit of the input rate and written into DWork
memory, but this DWork memory cannot then be directly accessed by the slower rate.
DWork memory that will be read by the slow rate must only be written by the fast rate
when there is a special sample hit. A special sample hit occurs when both this input port
rate and rate to which it is interfacing have a hit. Depending on their requirements and
design, algorithms can process the data in several locations.

11-116

 Write S-Function and TLC Files By Hand

The rules that multirate S-functions should observe for outputs are

• The output should not be written by a rate other than the rate assigned to the output
port, except in the optimized case described below.

• The output should always be written when the sample rate of the output port has a
hit.

If these conditions are met, the S-Function block can specify that the input port and
output port can both be made local and reusable.

You can include an optimization when little or no processing needs to be done on the
data. In such cases, the input rate code can directly write to the output (instead of by
using DWork) when there is a special sample hit. If you do this, however, you must
declare the outport port to be global and not reusable. This optimization results in one
less memcpy but does introduce nonuniform processing requirements on the faster rate.

Whether you use this optimization or not, the most recent input data, as seen by the
slower rate, is the value when both the faster and slower rate had their hits (and possible
earlier input data as well, depending on the algorithm). Subsequent steps by the faster
rate and the associated input data updates are not seen by the slower rate until the next
hit for the slow rate occurs.

Pseudocode Examples of Fast-to-Slow Rate Transition

The pseudocode below abstracts how you should write your C MEX code to handle fast-
to-slow transitions, illustrating with an input rate of 0.1 second driving an output rate
of one second. A similar approach can be taken when inlining the code. The block has
following characteristics:

• File: sfun_multirate_zoh.c, Equation: y = u(tslow)
• Input: local and reusable
• Output: local and reusable
• DirectFeedthrough: yes

OutputFcn

if (ssIsSampleHit(".1")) {

 if (ssIsSepcialSampleHit("1")) {

 DWork = u;

 }

}

if (ssIsSampleHit("1")) {

 y = DWork;

}

11-117

11 Block Authoring and Code Generation for Simulink Coder

An alternative, slightly optimized approach for simple algorithms:

• Input: local and reusable
• Output: global and not reusable because it needs to persist between special sample

hits
• DirectFeedthrough: yes

OutputFcn

if (ssIsSampleHit(".1")) {

 if (ssIsSpecialSampleHit("1")) {

 y = u;

 }

}

Example adding a simple algorithm:

• File: sfun_multirate_avg.c; Equation: y = average(u)
• Input: local and reusable
• Output: local and reusable
• DirectFeedthrough: yes

(Assume DWork[0:10] and DWork[mycounter] are initialized to zero)
OutputFcn

if (ssIsSampleHit(".1")) {

 /* In general, processing on 'u' could be done here,

 it runs on every hit of the fast rate. */

 DWork[DWork[mycounter]++] = u;

 if (ssIsSpecialSampleHit("1")) {

 /* In general, processing on DWork[0:10] can be done

 here, but it does cause the faster rate to have

 nonuniform processing requirements (every 10th hit,

 more code needs to be run).*/

 DWork[10] = sum(DWork[0:9])/10;

 DWork[mycounter] = 0;

 }

}

if (ssIsSampleHit("1")) {

 /* Processing on DWork[10] can be done here before

 outputing. This code runs on every hit of the

 slower task. */

 y = DWork[10];

}

Rules for Properly Handling Slow-to-Fast Transitions

When output rates are faster than input rates, input should only be read at the rate that
is associated with the input port sample time, observing the following rules:

11-118

 Write S-Function and TLC Files By Hand

• Always read input from the update function.
• Use no special sample hit checks when reading input.
• Write the input to a DWork.
• When there is a special sample hit between the rates, copy the DWork into a second

DWork in the output function.
• Write the second DWork to the output at every hit of the output sample rate.

The block can request that the input port be made local but it cannot be set to reusable.
The output port can be set to local and reusable.

As in the fast-to-slow transition case, the input should not be read by a rate other than
the one assigned to the input port. Similarly, the output should not be written to at a rate
other than the rate assigned to the output port.

An optimization can be made when the algorithm being implemented is only required
to run at the slow rate. In such cases, you use only one DWork. The input still writes
to the DWork in the update function. When there is a special sample hit between the
rates, the output function copies the same DWork directly to the output. You must set
the output port to be global and not reusable in this case. This optimization results in one
less memcpy operation per special sample hit.

In either case, the data that the fast rate computations operate on is always delayed, that
is, the data is from the previous step of the slow rate code.

Pseudocode Examples of Slow-to-Fast Rate Transition

The pseudocode below abstracts what your S-function needs to do to handle slow-to-fast
transitions, illustrating with an input rate of one second driving an output rate of 0.1
second. The block has following characteristics:

• File: sfun_multirate_delay.c, Equation: y = u(tslow-1)
• Input: Set to local, will be local if output/update are combined (ERT) otherwise will

be global. Set to not reusable because input needs to be preserved until the update
function runs.

• Output: local and reusable
• DirectFeedthrough: no

OutputFcn

if (ssIsSampleHit(".1") {

 if (ssIsSpecialSampleHit("1") {

 DWork[1] = DWork[0];

11-119

11 Block Authoring and Code Generation for Simulink Coder

 }

 y = DWork[1];

}

UpdateFcn

if (ssIsSampleHit("1")) {

 DWork[0] = u;

}

An alternative, optimized approach can be used by some algorithms:

• Input: Set to local, will be local if output/update are combined (ERT) otherwise will
be global. Set to not reusable because input needs to be preserved until the update
function runs.

• Output: global and not reusable because it needs to persist between special sample
hits.

• DirectFeedthrough: no
OutputFcn

if (ssIsSampleHit(".1") {

 if (ssIsSpecialSampleHit("1") {

 y = DWork;

 }

}

UpdateFcn

if (ssIsSampleHit("1")) {

 DWork = u;

}

Example adding a simple algorithm:

• File: sfun_multirate_modulate.c, Equation: y = sin(tfast) + u(tslow-1)
• Input: Set to local, will be local if output/update are combined (an ERT feature)

otherwise will be global. Set to not reusable because input needs to be preserved until
the update function runs.

• Output: local and reusable
• DirectFeedthrough: no

OutputFcn

if (ssIsSampleHit(".1") {

 if (ssIsSpecialSampleHit("1") {

 /* Processing not likely to be done here. It causes

 * the faster rate to have nonuniform processing

 * requirements (every 10th hit, more code needs to

 * be run).*/

 DWork[1] = DWork[0];

 }

 /* Processing done at fast rate */

 y = sin(ssGetTaskTime(".1")) + DWork[1];

11-120

 Write S-Function and TLC Files By Hand

}

UpdateFcn

if (ssIsSampleHit("1")) {

 /* Processing on 'u' can be done here. There is a delay of

 one slow rate period before the fast rate sees it.*/

 DWork[0] = u;}

See Also
legacy_code

Related Examples
• “Introduction to the Target Language Compiler” (Simulink Coder)
• “Inlining S-Functions” (Simulink Coder)
• “Import Calls to External Code into Generated Code with Legacy Code Tool” on

page 11-7

11-121

12

Guidelines and Standards for
Embedded Coder

• “Support for Standards and Guidelines” on page 12-2
• “MAAB Guidelines” on page 12-4
• “MISRA C Guidelines” on page 12-5
• “IEC 61508 Standard” on page 12-7
• “Develop a Model that Complies with the IEC 61508 Standard” on page 12-9
• “IEC 62304 Standard” on page 12-12
• “ISO 26262 Standard” on page 12-13
• “EN 50128 Standard” on page 12-15
• “DO-178C Standard” on page 12-17

12 Guidelines and Standards for Embedded Coder

Support for Standards and Guidelines

If your application has mission-critical development and certification goals, your models
or subsystems and the code generated for them might need to comply with one or more of
the standards and guidelines listed in the following table.

Standard or Guidelines Organization For More Information, See...

Guidelines: Use of MATLAB,
Simulink, and Stateflow
software for control algorithm
modeling – MathWorks
Automotive Advisory Board
(MAAB) Guidelines

MAAB • Control Algorithm Modeling
Guidelines Using MATLAB,
Simulink, and Stateflow
Software: MathWorks
Automotive Advisory Board
(MAAB) Guidelines

• Develop Models and Code
That Comply with “MAAB
Guidelines” on page 12-4

Guidelines: Use of the C
Language in Critical Systems
(MISRA C®a)

Motor Industry Software
Reliability Association
(MISRA)

• MISRA C website
• Technical Solution 1-1IFP0W on

the MathWorks website
• Develop Models and Code

That Comply with “MISRA C
Guidelines” on page 12-5

Standard: AUTomotive
Open System ARchitecture
(AUTOSAR)

AUTOSAR Development
Partnership

• Publications and specifications
available from the AUTOSAR
website

• AUTOSAR Support from
Embedded Coder on the
MathWorks website

• “AUTOSAR Standard”
• Embedded Coder “AUTOSAR”

documentation
Standard: IEC 61508,
Functional safety of electrical/
electronic/programmable
electronic safety-related
systems

International
Electrotechnical Commission

• IEC functional safety zone
website

• IEC 61508 Support in MATLAB
and Simulink

12-2

http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.misra.org.uk/
http://www.misra.org.uk/
http://www.misra.org.uk/
https://www.misra.org.uk/
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.mathworks.com/hardware-support/autosar.html
http://www.mathworks.com/hardware-support/autosar.html
http://www.iec.ch/
http://www.iec.ch/
http://www.iec.ch/zone/fsafety/
http://www.iec.ch/zone/fsafety/
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html

 Support for Standards and Guidelines

Standard or Guidelines Organization For More Information, See...

• Develop Models and Code
That Comply with “IEC 61508
Standard” on page 12-7

Standard: IEC 62304, Medical
device software - Software life
cycle processes

International
Electrotechnical Commission

• Develop Models and Code
That Comply with “IEC 62304
Standard” on page 12-12

Standard: ISO 26262, Road
Vehicles - Functional Safety

International Organization
for Standardization

• ISO 26262 Support in MATLAB
and Simulink

• Develop Models and Code
That Comply with “ISO 26262
Standard” on page 12-13

Standard: EN 50128, Railway
applications — Software for
railway control and protection
systems

European Committee
for Electrotechnical
Standardization

• Develop Models and Code
That Comply with “EN 50128
Standard” on page 12-15

Standard: DO-178C, Software
Considerations in Airborne
Systems and Equipment
Certification

Radio Technical Commission
for Aeronautics (RTCA)

• Develop Models and Code
That Comply with “DO-178C
Standard” on page 12-17

a. MISRA® and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

12-3

http://www.iec.ch/
http://www.iec.ch/
http://www.iso.org/iso/home.html
http://www.iso.org/iso/home.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.cenelec.eu/
http://www.cenelec.eu/
http://www.cenelec.eu/
http://www.rtca.org/
http://www.rtca.org/

12 Guidelines and Standards for Embedded Coder

MAAB Guidelines

The MathWorks Automotive Advisory Board (MAAB) involves major automotive OEMs
and suppliers in the process of evolving MathWorks controls, simulation, and code
generation products, including Simulink, Stateflow, and Simulink Coder. An important
result of the MAAB has been the “MAAB Control Algorithm Modeling” (Simulink)
guidelines.

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem, and the code that you generate from it, complies
with MAAB guidelines. To check your model or subsystem, open the Simulink Model
Advisor (Simulink). Navigate to By Product > Simulink Verification and Validation
> Modeling Standards > MathWorks Automotive Advisory Board Checks and
run the MathWorks Automotive Advisory Board checks (Simulink Verification and
Validation).

For more information on using the Model Advisor, see “Run Model Checks” (Simulink).

12-4

http://www.mathworks.com/products/simverification/

 MISRA C Guidelines

MISRA C Guidelines

The Motor Industry Software Reliability Association (MISRA2) has established
“Guidelines for the Use of the C Language in Critical Systems” (MISRA C).

For information about MISRA C, see www.misra.org.uk.

In 1998, MIRA Ltd. published MISRA C (MISRA C:1998) to provide a restricted subset of
a standardized, structured language that met Safety Integrity Level (SIL) 2 and higher.
A major update based on feedback was published in 2004 (MISRA C:2004), followed by a
minor update in 2007 known as Technical Corrigendum (TC1).

In 2007, MIRA Ltd. published the MISRA AC AGC standard, “MISRA AC AGC:
Guidelines for the Application of MISRA-C:2004 in the Context of Automatic Code
Generation.” MISRA AC AGC does not change MISRA C:2004 rules, rather it modifies
the adherence recommendation.

In 2013, MIRA Ltd. published the MISRA C:2012 standard, “Guidelines for the use of
the C language in critical systems.” MISRA C:2012 provides improvements based on user
feedback and includes guidance on automatic code generation.

Embedded Coder and Simulink offer capabilities to minimize the potential for MISRA C
rule violations.

To configure a model or subsystem so that the code generator is most likely to produce
MISRA C:2012 compliant code, use the Code Generation Advisor. For more information,
see “Configure Model for Code Generation Objectives by Using Code Generation Advisor”
on page 29-2.

The Model Advisor (Simulink) also checks that you developed your model or subsystem
to increase the likelihood of generating MISRA C:2012 compliant code. To check your
model or subsystem:

1 Open the Model Advisor.
2 Navigate to By Task > Modeling Guidelines for MISRA C:2012.
3 Run the checks in the folder.

For more information about using the Model Advisor, see “Run Model Checks”
(Simulink).

2. MISRA and MISRA C are registered trademarks of MIRA Ltd., held on behalf of the MISRA Consortium.

12-5

https://www.misra.org.uk/

12 Guidelines and Standards for Embedded Coder

For information about using Embedded Coder software within MISRA C guidelines, see
Technical Solution 1-1IFP0W on the MathWorks website.

12-6

http://www.mathworks.com/support/solutions/data/1-1IFP0W.html

 IEC 61508 Standard

IEC 61508 Standard

In this section...

“Apply Simulink and Embedded Coder to the IEC 61508 Standard” on page 12-7
“Check for IEC 61508 Standard Compliance Using the Model Advisor” on page 12-7
“Validate Traceability” on page 12-7

Apply Simulink and Embedded Coder to the IEC 61508 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined safety standards. IEC 61508, Functional
safety of electrical/electronic/programmable electronic safety related systems, is such
a standard. Because the standard was published when most software was coded by
hand, the standard needs to be mapped to Model-Based Design technologies. For
further information about MathWorks support for IEC 61508, see IEC 61508 Support in
MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can use to certify
MathWorks code generation and verification tools for projects based on the IEC 61508
standard. For more information, see http://www.mathworks.com/products/iec-61508/.

Check for IEC 61508 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the IEC 61508 standard by running the Simulink Model Advisor
(Simulink). Navigate to By Task > Modeling Standards for IEC 61508 and run the
“IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” (Simulink Verification and
Validation).

For more information on using the Model Advisor, see “Run Model Checks” (Simulink).

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

12-7

http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/solutions/automotive/standards/iec-61508.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

12 Guidelines and Standards for Embedded Coder

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” (Simulink
Verification and Validation) that is available if
you have a Simulink Verification and Validation
license.

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option on page
61-8 when generating an HTML report
during the code generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option on page
61-6 when generating an HTML report
during the code generation or build process.

12-8

 Develop a Model that Complies with the IEC 61508 Standard

Develop a Model that Complies with the IEC 61508 Standard

This example shows how to use Model Advisor checks for the IEC 61508 standard to
develop a model and code that comply with the standard.

The IEC 61508 checks identify issues with a model that impede deployment in safety-
related applications or limit traceability.

Understanding the Model

According to the functional requirements, a model shall be created that checks whether
the 1-norm distance between points (x1,x2) and (y1,y2) is less than or equal to a
given threshold thr. For two points (x1,x2) and (y1,y2), the 1-norm distance is given
as:

The rtwdemo_iec61508 model implements the preceding requirement. Open and get
familiar with the model.

model='rtwdemo_iec61508';

open_system(model)

12-9

12 Guidelines and Standards for Embedded Coder

Apply the IEC 61508 Modeling Standard Checks

To deploy the model in a safety-related software component that must comply with the
IEC 61508 safety standard, check the model for issues that might impede deployment in
such an environment or limit traceability between the model and generated source code.

To identify possible compliance issues with the model:

12-10

 Develop a Model that Complies with the IEC 61508 Standard

1 Start the Model Advisor by selecting Analysis > Analysis > Model Advisor or by
entering modeladvisor('rtwdemo_IEC61508') at the MATLAB command line.

2 In the Task Hierarchy, expand By Task > Modeling Standards for IEC 61508.
3 Select the checks within the group.
4 Select Show report after run to generate an HTML report that shows the check

results.
5 Click Run Selected Checks. Model Advisor processes the IEC 61508 checks and

displays the results.

To review the check results and make changes:

1 Review the Summary in the Report section of the right pane.
2 In the Task Hierarchy, select a check that did not pass. Review the results that

appear in the right pane for that check. For more information on the check and on
how to resolve reported issues, with the check selected, click Help.

3 Click the Generate Code Using Embedded Coder button in the model to inspect
the generated code and the traceability report.

4 Resolve the reported issues and rerun the checks.
5 Review the generated HTML report of the check results by clicking the link in the

Report box.
6 Print the generated HTML report. You can use the report as evidence in the IEC

61508 compliance example process.

See Also

• For descriptions of the IEC 61508 checks, see IEC 61508, IEC 62304, ISO 26262, and
EN 50128 Checks in the Simulink Verification and Validation documentation.

• For more information on using Model Advisor, see Run Model Checks in the Simulink
documentation.

12-11

12 Guidelines and Standards for Embedded Coder

IEC 62304 Standard

Apply Simulink and Embedded Coder to the IEC 62304 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined safety standards. Standard: IEC 62304,
Medical device software - Software life cycle processes, is such a standard.

MathWorks provides an IEC Certification Kit product that you can use to certify
MathWorks code generation and verification tools for projects based on the IEC 62304
standard. For more information, see http://www.mathworks.com/products/iec-61508/.

Check for IEC 62304 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the IEC 62304 standard by running the Simulink Model Advisor
(Simulink). Navigate to By Task > Modeling Standards for IEC 62304 and run the
“IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” (Simulink Verification and
Validation).

For more information on using the Model Advisor, see “Run Model Checks” (Simulink).

12-12

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

 ISO 26262 Standard

ISO 26262 Standard
In this section...

“Apply Simulink and Embedded Coder to the ISO 26262 Standard” on page 12-13
“Check for ISO 26262 Standard Compliance Using the Model Advisor” on page 12-13
“Validate Traceability” on page 12-7

Apply Simulink and Embedded Coder to the ISO 26262 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined functional safety standards. ISO 26262,
Road Vehicles - Functional Safety, is such a standard. For further information about
MathWorks support for ISO 26262, see ISO 26262 Support in MATLAB and Simulink.

MathWorks provides an IEC Certification Kit product that you can use to qualify
MathWorks code generation and verification tools for projects based on the ISO 26262
standard. For more information, see http://www.mathworks.com/products/iso–26262/.

Check for ISO 26262 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies with
selected aspects of the ISO 26262 standard by running the Simulink Model Advisor
(Simulink). Navigate to By Task > Modeling Standards for ISO 26262 and run the
“IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” (Simulink Verification and
Validation).

For more information on using the Model Advisor, see “Run Model Checks” (Simulink).

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” (Simulink
Verification and Validation) that is available if
you have a Simulink Verification and Validation
license.

12-13

http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

12 Guidelines and Standards for Embedded Coder

To... Use...

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option on page
61-8 when generating an HTML report
during the code generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option on page
61-6 when generating an HTML report
during the code generation or build process.

12-14

 EN 50128 Standard

EN 50128 Standard

In this section...

“Apply Simulink and Embedded Coder to the EN 50128 Standard” on page 12-15
“Check for EN 50128 Standard Compliance Using the Model Advisor” on page 12-15
“Validate Traceability” on page 12-7

Apply Simulink and Embedded Coder to the EN 50128 Standard

Applying Model-Based Design to a safety-critical system requires extra consideration
and rigor so that the system adheres to defined safety standards. EN 50128, Railway
applications — Software for railway control and protection systems, is such a standard.

MathWorks provides an IEC Certification Kit product that you can use to certify
MathWorks code generation and verification tools for projects based on the EN 50128
standard. For more information, see http://www.mathworks.com/products/iec-61508/.

Check for EN 50128 Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies
with selected aspects of the EN 50128 standard by running the Simulink Model Advisor
(Simulink). Navigate to By Task > Modeling Standards for EN 50128 and run the
“IEC 61508, IEC 62304, ISO 26262, and EN 50128 Checks” (Simulink Verification and
Validation).

For more information on using the Model Advisor, see “Run Model Checks” (Simulink).

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” (Simulink
Verification and Validation) that is available if
you have a Simulink Verification and Validation
license.

12-15

http://www.mathworks.com/products/iec-61508/
http://www.mathworks.com/products/simverification/

12 Guidelines and Standards for Embedded Coder

To... Use...

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option on page
61-8 when generating an HTML report
during the code generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option on page
61-6 when generating an HTML report
during the code generation or build process.

12-16

 DO-178C Standard

DO-178C Standard

In this section...

“Apply Simulink and Embedded Coder to the DO-178C Standard” on page 12-17
“Check for Standard Compliance Using the Model Advisor” on page 12-17
“Validate Traceability” on page 12-7

Apply Simulink and Embedded Coder to the DO-178C Standard

Applying Model-Based Design to a high-integrity system requires extra consideration
and rigor so that the system adheres to defined safety standards. DO-178C Software
Considerations in Airborne Systems and Equipment Certification is such a standard. A
supplement to DO-178C, DO-331, provides guidance on the use of Model-Based Design
technologies. MathWorks provides a DO Qualification Kit product that you can use to
qualify MathWorks verification tools for projects based on the DO-178C, DO-331, and
related standards. For more information, see http://www.mathworks.com/products/
do-178/.

For information about Model-Based Design and MathWorks support of aerospace and
defense industry standards, see http://www.mathworks.com/aerospace-defense/ .

Check for Standard Compliance Using the Model Advisor

If you have a Simulink Verification and Validation product license, you can check that
your Simulink model or subsystem and the code that you generate from it complies
with selected aspects of the DO-178C standard by running the Simulink Model Advisor
(Simulink). Navigate to By Product > Simulink Verification and Validation
> Modeling Standards > DO-178C/DO-331 Checks or By Task > Modeling
Standards for DO-178C/DO-331 and run the DO-178C/DO-331 checks (Simulink
Verification and Validation).

For more information on using the Model Advisor, see “Run Model Checks” (Simulink).

Validate Traceability

Typically, applications that require certification require some level of traceability
between requirements, models, and corresponding code.

12-17

http://www.mathworks.com/products/do-178/
http://www.mathworks.com/products/do-178/
http://www.mathworks.com/aerospace-defense/
http://www.mathworks.com/products/simverification/

12 Guidelines and Standards for Embedded Coder

To... Use...

Associate requirements documents
with objects in Simulink models

The “Requirements Traceability” (Simulink
Verification and Validation) that is available if
you have a Simulink Verification and Validation
license.

Trace model blocks and subsystems to
generated code

The Model-to-code traceability option on page
61-8 when generating an HTML report
during the code generation or build process.

Trace generated code to model blocks
and subsystems

The Code-to-model traceability option on page
61-6 when generating an HTML report
during the code generation or build process.

12-18

13

Patterns for C Code in Embedded
Coder

• “Prepare a Model for Code Generation” on page 13-3
• “Definition, Initialization, and Declaration of Parameter Data” on page 13-8
• “Definition and Declaration of Signal Data” on page 13-10
• “Data Type Conversion” on page 13-12
• “Type Qualifiers” on page 13-15
• “Relational and Logical Operators” on page 13-17
• “Bitwise Operations” on page 13-21
• “Enumeration” on page 13-24
• “If-Else” on page 13-28
• “Switch” on page 13-34
• “For Loop” on page 13-40
• “While Loop” on page 13-48
• “Do While Loop” on page 13-58
• “Function Call” on page 13-65
• “Function Prototyping” on page 13-67
• “External C Functions” on page 13-71
• “Macro Definitions (#define)” on page 13-77
• “Conditional Inclusions (#if / #endif)” on page 13-80
• “Typedef” on page 13-81
• “Structures of Parameters” on page 13-83
• “Structures of Signals” on page 13-87
• “Nested Structures of Signals” on page 13-90
• “Bitfields” on page 13-95

13 Patterns for C Code in Embedded Coder

• “Arrays for Parameters” on page 13-98
• “Arrays for Signals” on page 13-100
• “Pointers” on page 13-102

13-2

 Prepare a Model for Code Generation

Prepare a Model for Code Generation

In this section...

“Configure a Signal” on page 13-3
“Configure Input and Output Ports” on page 13-4
“Initialize States” on page 13-4
“Set Up Configuration Parameters for Code Generation” on page 13-5
“Set Up an Example Model With a Stateflow Chart” on page 13-5
“Set Up an Example Model With a MATLAB Function Block” on page 13-6

Several standard methods are available for setting up a model to generate specific C
constructs in your code. For preparing your model for code generation, some of these
methods include: configuring signals and ports, initializing states, and setting up
configuration parameters for code generation. Depending on the components of your
model, some of these methods are optional. Methods for configuring a model to generate
specific C constructs are organized by category, for example, the Control Flow category
includes constructs if-else, switch, for, and while. Refer to the name of a construct
to see how you should configure blocks and parameters in your model. Different modeling
methodologies are available, such as Simulink blocks, Stateflow charts, and MATLAB
Function blocks, to implement a C construct.

Model examples in “Modeling Patterns for C Code” have the following naming
conventions:

Model Components Naming Convention

Inputs u1, u2, u3, and so on
Outputs y1, y2, y3, and so on
Parameters p1, p2, p3, and so on
States x1, x2, x3, and so on

Input ports are named to reflect the signal names that they propagate.

Configure a Signal

1 Create a model in Simulink. For more information, see “Model Editing
Fundamentals” (Simulink).

13-3

13 Patterns for C Code in Embedded Coder

2 Right-click a signal line. Select Properties. For more information about the Signal
Properties dialog box, see “Signal Properties” (Simulink).

3 Enter a signal name for the Signal name parameter.
4 On the same Signal Properties dialog box, select the Code Generation tab. Use

the drop down menu for the Storage class parameter to specify a storage class.
Examples in this chapter use ExportedGlobal.

Note: Alternatively, on the Signal Properties dialog box, select Signal name must
resolve to Simulink signal object. Then create a signal data object in the base
workspace with the same name as the signal. See “Create Data Objects for Code
Generation with Data Object Wizard” on page 24-2 for more information on
creating data objects in the base workspace. (Examples use Simulink.Signal and
specify the Storage class as ExportedGlobal.)

Configure Input and Output Ports

1 In your model,

Double-click an Inport or Outport block. A Block Parameters dialog box opens.
2 Select the Signal Attributes tab.
3 Specify the Port dimensions and Data type. Examples leave the default value for

Port dimensions as —1 (for inherited) and Data type as Inherit: auto.

Initialize States

1 Double-click a block.
2 In the Block Parameters dialog box, select the Main tab.
3 Specify the Initial conditions and Sample time. For more information, see

“Specify Sample Time” (Simulink).
4 Select the State Attributes pane. Specify the state name. See “Discrete Block State

Naming in Generated Code” (Simulink Coder).
5 You can also use the Data Object Wizard for creating data objects. A part of this

process initializes states. See “Create Data Objects for Code Generation with Data
Object Wizard” on page 24-2.

13-4

 Prepare a Model for Code Generation

Set Up Configuration Parameters for Code Generation

1 Open the Configuration Parameter dialog box by selecting Simulation > Model
Configuration parameters. You can also use the keyboard shortcut Ctrl+E.

2 Open the Solver pane and select

• Solver type: Fixed-Step
• Solver: discrete (no continuous states)

3 Open the Optimization > Signals and Parameters pane, and set Default
parameter behavior to Inlined.

4 Open the Code Generation pane, and specify ert.tlc as the System Target
File.

5 Clear Generate makefile.
6 Select Generate code only.
7 Enable the HTML report generation by opening the Code Generation > Report

pane and selecting Create code generation report and Launch report
automatically. On the All Parameters tab, select Code-to-model. Enabling the
HTML report generation is optional.

8 Click Apply and then OK to exit.

Set Up an Example Model With a Stateflow Chart

Follow this general procedure to create a simple model containing a Stateflow chart.

1 From the Stateflow > Chart library, add a Stateflow chart to your model .
2 Add Inport blocks and Outport blocks according to the example model.

13-5

13 Patterns for C Code in Embedded Coder

3 Open the Stateflow Editor by performing one of the following:

• Double-click the Stateflow chart.
• Press Ctrl+R.

4 Select Chart > Add Inputs & Outputs > Data Input from Simulink to add the
inputs to the chart. A Data dialog box opens for each input.

5 Specify the Name (u1, u2, ...) and the Type (Inherit: Same as Simulink)
for each input, unless specified differently in the example. Click OK.

Click Apply and close each dialog box.
6 Select Chart > Add Inputs & Outputs > Data Output from Simulink to add the

outputs to the chart. A Data dialog opens for each output.
7 Specify the Name (y1, y2, ...) and Type (Inherit: Same as Simulink) for

each output, unless specified differently in the example. Click OK.
8 Click Apply and close each dialog box.
9 In the Stateflow Editor, create the Stateflow diagram specific to the example.
10 The inputs and outputs appear on the chart in your model.
11 Connect the Inport and Outport blocks to the Stateflow Chart.
12 Configure the input and output signals; see “Configure a Signal” on page 13-3.

Set Up an Example Model With a MATLAB Function Block

1 Add the number of Inport and Outport blocks according to a C construct example
included in this chapter.

2 From the Simulink User-defined Functions library drag a MATLAB Function block
into the model.

13-6

 Prepare a Model for Code Generation

3 Double-click the block. The MATLAB Function Block Editor opens. Edit the function
to implement your application.

4 Click File > Save and close the MATLAB Function Block Editor.
5 Connect the Inport and Outport blocks to the MATLAB Function block. See

“Configure a Signal” on page 13-3.
6 Save your model.

13-7

13 Patterns for C Code in Embedded Coder

Definition, Initialization, and Declaration of Parameter Data

This example shows how to export the definition, initialization, and declaration of a
global variable that the generated code uses as a parameter.

C Construct

int32 myParam = 3;

extern int32 myParam;

Procedure

1 Create the ex_defn_decl model by using a Gain block.

2 In the Gain block dialog box, set Gain to myParam. Click Apply.
3 Click the button next to the parameter value. Select Create Variable.
4 In the Create New Data dialog box, set Value to Simulink.Parameter(3). Click

Create.

A Simulink.Parameter object, myParam, appears in the base workspace. The Gain
block uses the object to set the value of the Gain parameter, in this case, 3.

5 In the Simulink.Parameter property dialog box, set Data type to int32.
6 Set Storage class to ExportToFile.
7 Set HeaderFile to myDecls.h.
8 Set DefinitionFile to myDefns.c. Click OK.
9 Generate code from the model.

Results

The generated header file myDecls.h declares the global variable myParam by using the
extern keyword.

13-8

 Definition, Initialization, and Declaration of Parameter Data

/* Declaration for custom storage class: ExportToFile */

extern int32_T myParam;

The generated source file myDefns.c defines and initializes myParam.

/* Definition for custom storage class: ExportToFile */

int32_T myParam = 3;

Related Examples
• “Block Parameter Representation in the Generated Code” on page 19-47
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11
• “Manage Placement of Data Definitions and Declarations” on page 36-100

13-9

13 Patterns for C Code in Embedded Coder

Definition and Declaration of Signal Data

This example shows how to export the definition and declaration of a global variable that
the generated code uses as a signal.

C Construct

float mySig;

extern float mySig;

Procedure

1 Create the ex_defn_decl model by using a Gain block.

2 In the model, select View > Model Data.
3 In the Model Data Editor, view the Inports/Outports tab.
4 From the Change View drop-down list, select Design.
5 In the model, select the Inport block.
6 In the Model Data Editor, for the Inport block, set Signal Name to mySig.
7 Set Data Type to single.
8 From the Change View drop-down list, select Code.
9 For the Inport block, set Storage Class to ExportToFile.
10 Set Header File to myDecls.h.
11 Set Definition File to myDefns.c.
12 Generate code from the model.

Results

The generated header file myDecls.h declares the global variable mySig by using the
extern keyword.

13-10

 Definition and Declaration of Signal Data

/* Declaration for custom storage class: ExportToFile */

extern real32_T mySig;

The generated source file myDefns.c defines the variable mySig.

/* Definition for custom storage class: ExportToFile */

real32_T mySig;

Related Examples
• “Signal Representation in Generated Code” on page 19-112
• “Control Signals and States in Code by Applying Storage Classes” on page 19-123

13-11

13 Patterns for C Code in Embedded Coder

Data Type Conversion

C Construct

 y1 = (double)u1;

Modeling Patterns

• “Modeling Pattern for Data Type Conversion — Simulink Block” on page 13-12
• “Modeling Pattern for Data Type Conversion — Stateflow Chart” on page 13-13
• “Modeling Pattern for Data Type Conversion — MATLAB Function Block” on page

13-14

Modeling Pattern for Data Type Conversion — Simulink Block

One method to create a data type conversion is to use a Data Type Conversion block from
the Simulink > Commonly Used Blocks library.

ex_data_type_SL

1 From the Commonly Used Blocks library, drag a Data Type Conversion block into
your model and connect to the Inport and Outport blocks.

2 Double-click on the Data Type Conversion block to open the Block Parameters dialog
box.

3 Select the Output data type parameter as double.
4 Press Ctrl+B to build the model and generate code.

The generated code appears in ex_data_type_SL.c, as follows:

int32_T u1;

real_T y1;

13-12

 Data Type Conversion

void ex_data_type_SL_step(void)

{

 y1 = (real_T)u1;

}

The code generator type definition for double is real_T.

Modeling Pattern for Data Type Conversion — Stateflow Chart

Stateflow Chart Type Conversion

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page 13-5
. This example contains one Inport block and one Outport block.

2 Name the example model ex_data_type_SF.
3 Double-click the Inport block and select the Signal Attributes tab. Specify the

Data Type as int32 from the drop down menu.
4 Double-click the Outport block and select the Signal Attributes tab. Specify the

Data Type as Inherit: auto from the drop down menu.
5 Press Ctrl+B to build the model and generate code.

Results

The generated code appears in ex_data_type_SF.c, as follows:
int32_T u1;

real_T y1;

RT_MODEL_ex_data_type_SF ex_data_type_SF_M_;

RT_MODEL_ex_data_type_SF *const ex_data_type_SF_M = &ex_data_type_SF_M_;

void ex_data_type_SF_step(void)

{

 y1 = u1;

}

13-13

13 Patterns for C Code in Embedded Coder

Modeling Pattern for Data Type Conversion — MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 13-6 . This example model contains one Inport block and one Outport block.

2 Name the model ex_data_type_ML_Func.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = typeconv(u1)

y1 = double(u1);

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code appears in ex_data_type_ML_func.c, where real32_T is a float
and real_T is a double. Type conversion occurs across assignments.
real32_T u1;

real_T y1;

void ex_data_type_ML_func_step(void)

{

 y1 = u1;

}

Other Type Conversions in Modeling

Type conversions can also occur on the output of blocks where the output variable is
specified as a different data type. For example, in the Gain block, you can select the
Inherit via internal rule parameter to control the output signal data type. Another
example of type conversion can occur at the boundary of a Stateflow chart. You can
specify the output variable as a different data type.

See Also
Data Type Conversion

13-14

 Type Qualifiers

Type Qualifiers

This example shows how to apply the const and volatile keywords to a global variable
that represents parameter data.

C Construct

const volatile double myParam = 9.8;

Procedure

1 Create the ex_const_volatile model by using a Gain block.

2 In the Gain block dialog box, set Gain to myParam. Click Apply.
3 Click the button next to the parameter value. Select Create Variable.
4 In the Create New Data dialog box, set Value to Simulink.Parameter(9.8).

Click Create.

A Simulink.Parameter object, myParam, appears in the base workspace. The Gain
block uses the object to set the value of the Gain parameter, in this case, 9.8.

5 In the Simulink.Parameter property dialog box, set Storage class to
ConstVolatile. Click OK.

Alternatively, to apply only one of the keywords, you can use the storage classes
Const or Volatile.

6 Generate code from the model.

Results

The generated source file ex_const_volatile.c defines myParam by using the const
and volatile keywords.

/* Definition for custom storage class: ConstVolatile */

13-15

13 Patterns for C Code in Embedded Coder

const volatile real_T myParam = 9.8;

Related Examples
• “Create Tunable Calibration Parameter in the Generated Code” on page 19-60
• “Control Data Representation by Applying Custom Storage Classes” on page

23-58

13-16

 Relational and Logical Operators

Relational and Logical Operators

Modeling Patterns for Relational and Logical Operators

• “Modeling Pattern for Relational or Logical Operators — Simulink Blocks” on page
13-17

• “Modeling Pattern for Relational and Logical Operators – Stateflow Chart” on page
13-18

• “Modeling Pattern for Relational and Logical Operators — MATLAB Function Block”
on page 13-19

Modeling Pattern for Relational or Logical Operators — Simulink Blocks

ex_logical_SL

Procedure

1 From the Logic and Bit Operations library, drag a Logical Operator block into
your model.

2 Double-click the block to configure the logical operation. Set the Operator field to
OR.

3 Name the blocks, as shown in the model ex_logical_SL.
4 Connect the blocks and name the signals, as shown in the model ex_logical_SL.
5 Press Ctrl+B to build the model and generate code.

Note: You can use the above procedure to implement relational operators by replacing
the Logical Operator block with a Relational Operator block.

13-17

13 Patterns for C Code in Embedded Coder

Results

Code implementing the logical operator OR is in the ex_logical_SL_step function in
ex_logical_SL.c:

/* Exported block signals */

 boolean_T u1; /* '<Root>/u1' */

 boolean_T u2; /* '<Root>/u2' */

 boolean_T y1; /* '<Root>/Logical Operator'*/

 /* Logic: '<Root>/Logical Operator' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 */

 y1 = (u1 || u2);

Modeling Pattern for Relational and Logical Operators – Stateflow Chart

ex_logical_SF/Logical Operator Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page
13-5. This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_logical_SF.
3 In the Stateflow Editor, specify the Data Type for y1 as Boolean.
4 In the Stateflow Editor, create the Stateflow diagram as shown. The relational

or logical operation actions are on the transition from one junction to another.
Relational statements specify conditions to conditionally allow a transition. In that
case, the statement would be within square brackets.

13-18

 Relational and Logical Operators

5 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_logical_SF_step function in
ex_logical_SF.c:

boolean_T u1; /* '<Root>/u1' */

boolean_T u2; /* '<Root>/u2' */

boolean_T y1; /* '<Root>/Chart' */

void ex_logical_SF_step(void)

{

 y1 = (u1 || u2);

}

Modeling Pattern for Relational and Logical Operators — MATLAB
Function Block

This example demonstrates the MATLAB Function block method for incorporating
operators into the generated code using a relational operator.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 13-6 . This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_rel_operator_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

y1 = u1 > u2;

end

4 Press Ctrl+B to build the model and generate code.

Results

Code implementing the relational operator '>' is in the ex_rel_operator_ML_step
function in ex_rel_operator_ML.c:

real_T u1; /* '<Root>/u1' */

real_T u2; /* '<Root>/u2' */

boolean_T y; /* '<Root>/MATLAB Function' */

13-19

13 Patterns for C Code in Embedded Coder

void ex_rel_operator_ML_step(void)

{

 y = (u1 > u2);

 }

13-20

 Bitwise Operations

Bitwise Operations

Simulink Bitwise-Operator Block

ex_bit_logic_SL

Procedure

1 Drag a Bitwise Operator block from the Logic and Bit Operations library into
your model.

2 Double-click the block to open the Block Parameters dialog.
3 Select the type of Operator. In this example, select AND.
4 In order to perform Bitwise operations with a bit-mask, select Use bit mask.

Note: If another input uses Bitwise operations, clear the Use bit mask parameter
and enter the number of input ports.

5 In the Bit Mask field, enter a decimal number. Use bin2dec or hex2dec to convert
from binary or hexadecimal. In this example, enter hex2dec('D9').

6 Name the blocks, as shown in, model ex_bit_logic_SL.
7 Connect the blocks and name the signals, as shown in, model ex_bit_logic_SL.
8 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_bit_logic_SL_step function
in ex_bit_logic_SL.c:

13-21

13 Patterns for C Code in Embedded Coder

uint8_T u1;

uint8_T y1;

void ex_bit_logic_SL_step(void)

{

 y1 = (uint8_T)(u1 & 217);

}

Stateflow Chart

ex_bit_logic_SF/Bit_Logic Stateflow Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page
13-5. This example contains one Inport block and one Outport block.

2 Name the example model ex_bit_logic_SF.
3 From the Stateflow Editor, select Tools > Explore to open the Model Explorer.
4 In the Model Explorer, on the right pane, select Enable C-bit operations.
5 In the Stateflow Editor, create the Stateflow diagram, ex_bit_logic_SF/

Bit_Logic.
6 Press Ctrl+B to build the model and generate code.

Results

Code implementing the logical operator OR is in the ex_bit_logic_SF_step function
in ex_bit_logic_SF.c:

uint8_T u1;

uint8_T y1;

void bit_logic_SF_step(void)

13-22

 Bitwise Operations

{

 y1 = (uint8_T)(u1 & 0xD9);

}

MATLAB Function Block

In this example, to demonstrate the MATLAB Function block method for implementing
bitwise logic into the generated code, use the bitwise OR, '|'.

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 13-6. This example model contains two Inport blocks and one Outport block.

2 Name your model ex_bit_logic_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

y1 = bitor(u1, u2);

end

4 Press Ctrl+B to build the model and generate code.

Results

Code implementing the bitwise operator OR is in the ex_bit_logic_ML_step function
in ex_bit_logic_ML.c:

uint8_T u1;

uint8_T u2;

uint8_T y1;

void ex_bit_logic_ML_step(void)

{

 y1 = (uint8_T)(u1 | u2);

}

13-23

13 Patterns for C Code in Embedded Coder

Enumeration

To generate an enumerated data type, define an enumeration class in a MATLAB file.
Then, use the enumeration class as the data type of signals, block parameters, and states
in a model.

C Construct

typedef enum {

 Choice1 = 0,

 Choice2

} myEnumType;

Procedure

In your current folder, create the MATLAB file myEnumType.m. The file defines an
enumeration class myEnumType.

classdef myEnumType < Simulink.IntEnumType

 enumeration

 Choice1(0)

 Choice2(1)

 end %enumeration

 methods (Static)

 function retVal = getHeaderFile()

 retVal = 'myEnumHdr.h';

 end %function

 function retVal = getDataScope()

 retVal = 'Exported';

 end %function

 end %methods

end %classdef

Create the model ex_pattern_enum by using an Enumerated Constant block and a
Multiport Switch block.

open_system('ex_pattern_enum')

13-24

 Enumeration

In the base workspace, create a Simulink.Parameter object myChoice. Use the
enumeration member Choice1 to set the value of the parameter object.

myChoice = Simulink.Parameter(myEnumType.Choice1);

Set the storage class of the parameter object to ExportedGlobal so that the object
appears in the generated code as a global variable.

myChoice.CoderInfo.StorageClass = 'ExportedGlobal';

In the Enumerated Constant block dialog box, set:

• Output data type to Enum: myEnumType.
• Value to myChoice.

In the Multiport Switch block dialog box, set:

• Data port order to Specify indices.
• Data port indices to enumeration('myEnumType'). This expression returns all of

the enumeration members of myEnumType.

Generate code from the model.

rtwbuild('ex_pattern_enum');

Starting build procedure for model: ex_pattern_enum

Successful completion of build procedure for model: ex_pattern_enum

Results

View the generated header file myEnumHdr.h. The file defines the enumerated data type.

13-25

13 Patterns for C Code in Embedded Coder

file = fullfile('ex_pattern_enum_ert_rtw','myEnumHdr.h');

rtwdemodbtype(file,'typedef enum {','} myEnumType;',1,1)

typedef enum {

 Choice1 = 0, /* Default value */

 Choice2

} myEnumType;

View the source file ex_pattern_enum.c. The file defines the variable myChoice. The
algorithm in the step function uses myChoice to route one of the input signals to the
output signal.

file = fullfile('ex_pattern_enum_ert_rtw','ex_pattern_enum.c');

rtwdemodbtype(file,'myEnumType myChoice = Choice1;','/* Variable: myChoice',1,1)

rtwdemodbtype(file,'/* Model step function */','/* Model initialize function */',1,0)

myEnumType myChoice = Choice1; /* Variable: myChoice

/* Model step function */

void ex_pattern_enum_step(void)

{

 /* MultiPortSwitch: '<Root>/Multiport Switch' incorporates:

 * Constant: '<S1>/Constant'

 */

 if (myChoice == Choice1) {

 /* Outport: '<Root>/Data Out' incorporates:

 * Inport: '<Root>/Data In 1'

 */

 rtY.DataOut = rtU.DataIn1;

 } else {

 /* Outport: '<Root>/Data Out' incorporates:

 * Inport: '<Root>/Data In 2'

 */

 rtY.DataOut = rtU.DataIn2;

 }

 /* End of MultiPortSwitch: '<Root>/Multiport Switch' */

}

See Also
enumeration

13-26

 Enumeration

Related Examples
• “Use Enumerated Data in Simulink Models” (Simulink)
• “Use Enumerated Data in Generated Code” on page 19-22
• “Define Enumerated Data in a Chart” (Stateflow)
• “Define Enumerations for MATLAB Function Blocks” (Simulink)

13-27

13 Patterns for C Code in Embedded Coder

If-Else

C Construct

if (u1 > u2)

{

 y1 = u1;

}

else

{

 y1 = u2;

}

Modeling Patterns

• “Modeling Pattern for If-Else: Switch block” on page 13-29
• “Modeling Pattern for If-Else: Stateflow Chart” on page 13-31
• “Modeling Pattern for If-Else: MATLAB Function Block” on page 13-33

13-28

 If-Else

Modeling Pattern for If-Else: Switch block

One method to create an if-else statement is to use a Switch block from the Simulink
> Signal Routing library.

Model ex_if_else_SL

Procedure

1 Drag the Switch block from the Simulink>Signal Routing library into your model.
2 Connect the data inputs and outputs to the block.
3 Drag a Relational Operator block from the Logic & Bit Operations library into your

model.
4 Connect the signals that are used in the if-expression to the Relational Operator

block. The order of connection determines the placement of each signal in the if-
expression.

5 Configure the Relational Operator block to be a greater than operator.
6 Connect the controlling input to the middle input port of the Switch block.
7 Double-click the Switch block and set Criteria for passing first input to u2~=0.

The software selects u1 if u2 is TRUE; otherwise u2 passes.
8 Enter Ctrl+B to build the model and generate code.

13-29

13 Patterns for C Code in Embedded Coder

Results

The generated code includes the following ex_if_else_SL_step function in the file
ex_if_else_SL.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_if_else_SL_step(void)

 {

 /* Switch: '<Root>/Switch' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 * Outport: '<Root>/y1'

 * RelationalOperator: '<Root>/Relational Operator'

 */

 if (U.u1 > U.u2) {

 Y.y1 = U.u1;

 } else {

 Y.y1 = U.u2;

 }

 }

13-30

 If-Else

Modeling Pattern for If-Else: Stateflow Chart

ex_if_else_SF/Chart

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page
13-5. This example model contains two Inport blocks and one Outport block.

2 Name your model ex_if_else_SF.
3 When configuring your Stateflow chart, select Chart > Add Patterns > Decision >

If-Else. The Stateflow Pattern dialog opens. Fill in the fields as follows:

Description If-Else (optional)
If condition u1 > u2

If action y1 = u1

Else action y1 = u2

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_if_else_SF_step function in the file
If_Else_SF.c:
 /* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

13-31

13 Patterns for C Code in Embedded Coder

/* Model step function */

void ex_If_Else_SF_step(void)

{

 /* Chart: '<Root>/Chart' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 */

 /* Gateway: Chart */

 /* During: Chart */

 /* Entry Internal: Chart */

 /* Transition: '<S1>:15' */

 /* If-Else */

 if (U.u1 > U.u2) {

 /* Outport: '<Root>/y1' */

 /* Transition: '<S1>:16' */

 /* Transition: '<S1>:18' */

 Y.y1 = U.u1;

 /* Transition: '<S1>:19' */

 } else {

 /* Outport: '<Root>/y1' */

 /* Transition: '<S1>:17' */

 Y.y1 = U.u2;

 }

 /* End of Chart: '<Root>/Chart' */

 /* Transition: '<S1>:20' */

}

13-32

 If-Else

Modeling Pattern for If-Else: MATLAB Function Block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 13-6. This example model contains two Inport blocks and one Outport block.

2 Name your model ex_if_else_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2)

if u1 > u2;

 y1 = u1;

else y1 = u2;

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_if_else_ML_step function in the file
ex_if_else_ML.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_if_else_ML_step(void)

 {

 /* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 * Outport: '<Root>/y1'

 */

 /* MATLAB Function 'MATLAB Function': '<S1>:1' */

 if (U.u1 > U.u2) {

 /* '<S1>:1:4' */

 /* '<S1>:1:5' */

 Y.y1 = U.u1;

 } else {

 /* '<S1>:1:6' */

 Y.y1 = U.u2;

 }

 }

13-33

13 Patterns for C Code in Embedded Coder

Switch

C Construct

switch (u1)

{

 case 2:

 y1 = u2;

 break;

 case 3:

 u3;

 break;

 default:

 y1 = u4;

 break;

}

Modeling Patterns

• “Modeling Pattern for Switch: Switch Case block” on page 13-35
• “Modeling Pattern for Switch: MATLAB Function block” on page 13-38
• “Convert If-Elseif-Else to Switch statement” on page 13-39

13-34

 Switch

Modeling Pattern for Switch: Switch Case block

One method for creating a switch statement is to use a Switch Case block from the
Simulink > Ports and Subsystems library.

Model ex_switch_SL

Procedure

1 Drag a Switch Case block from the Simulink > Ports and Subsystems library into
your model.

2 Double-click the block. In the Block Parameters dialog box, fill in the Case
Conditions parameter. In this example, the two cases are: {2,3}.

3 Select the Show default case parameter. The default case is optional in a switch
statement.

4 Connect the condition input u1 to the input port of the Switch block.
5 Drag Switch Case Action Subsystem blocks from the Simulink>Ports and

Subsystems library to correspond with the number of cases.

13-35

13 Patterns for C Code in Embedded Coder

6 Configure the Switch Case Action Subsystem (Simulink) subsystems.
7 Drag a Merge block from the Simulink > Signal Routing library to merge the

outputs.
8 The Switch Case block takes an integer input, therefore, the input signal u1 is type

cast to an int32.
9 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_switch_SL_step function in the file
ex_switch_SL.c:
 /* Exported block signals */

 int32_T u1; /* '<Root>/u1' */

 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_switch_SL_step(void)

 {

 /* SwitchCase: '<Root>/Switch Case' incorporates:

 * ActionPort: '<S1>/Action Port'

 * ActionPort: '<S2>/Action Port'

 * ActionPort: '<S3>/Action Port'

 * Inport: '<Root>/u1'

 * SubSystem: '<Root>/Switch Case Action Subsystem'

 * SubSystem: '<Root>/Switch Case Action Subsystem1'

 * SubSystem: '<Root>/Switch Case Action Subsystem2'

 */

 switch (u1) {

 case 2:

 /* Inport: '<S1>/u2' incorporates:

 * Inport: '<Root>/u2'

 * Outport: '<Root>/y1'

 */

 Y.y1 = U.u2;

 break;

 case 3:

 /* Inport: '<S2>/u3' incorporates:

 * Inport: '<Root>/u3'

 * Outport: '<Root>/y1'

 */

 Y.y1 = U.u3;

 break;

 default:

 /* Inport: '<S3>/u4' incorporates:

 * Inport: '<Root>/u4'

 * Outport: '<Root>/y1'

 */

 Y.y1 = U.u4;

13-36

 Switch

 break;

 }

 }

13-37

13 Patterns for C Code in Embedded Coder

Modeling Pattern for Switch: MATLAB Function block

Procedure

1 Follow the steps for “Set Up an Example Model With a MATLAB Function Block” on
page 13-6. This example model contains four Inport blocks and one Outport block.

2 Name your model ex_switch_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1, u2, u3, u4)

switch u1

 case 2

 y1 = u2;

 case 3

 y1 = u3;

 otherwise

 y1 = u4;

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_switch_ML_step function in the file
ex_switch_ML.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_switch_ML_step(void)

 {

 /* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

 * Inport: '<Root>/u1'

 * Inport: '<Root>/u2'

 * Inport: '<Root>/u3'

 * Inport: '<Root>/u4'

 * Outport: '<Root>/y1'

 */

 /* MATLAB Function 'MATLAB Function': '<S1>:1' */

 /* '<S1>:1:4' */

 switch (U.u1) {

 case 2:

 /* '<S1>:1:6' */

 Y.y1 = U.u2;

 break;

13-38

 Switch

 case 3:

 /* '<S1>:1:8' */

 Y.y1 = U.u3;

 break;

 default:

 /* '<S1>:1:10' */

 Y.y1 = U.u4;

 break;

 }

 }

Convert If-Elseif-Else to Switch statement

If a MATLAB Function block or a Stateflow chart uses if-elseif-else decision logic,
you can convert it to a switch statement by using a configuration parameter. In the
Configuration Parameters dialog box, on the Code Generation > Code Style pane,
select the “Convert if-elseif-else patterns to switch-case statements” parameter. For
more information, see “Converting If-Elseif-Else Code to Switch-Case Statements”
(Simulink). For more information on this conversion using a Stateflow chart, see
“Enhance Readability of Code for Flow Charts” on page 36-127.

See Also
Switch Case

Related Examples
• “If-Else” on page 13-28
• “Enumeration” on page 13-24
• “Create Flow Charts with the Pattern Wizard” (Stateflow)
• “What Is a MATLAB Function Block?” (Simulink)

13-39

13 Patterns for C Code in Embedded Coder

For Loop

C Construct

y1 = 0;

for(inx = 0; inx <10; inx++)

{

 y1 = u1[inx] + y1;

}

Modeling Patterns:

• “Modeling Pattern for For Loop: For-Iterator Subsystem block” on page 13-41
• “Modeling Pattern for For Loop: Stateflow Chart” on page 13-44
• “Modeling Pattern for For Loop: MATLAB Function block” on page 13-46

13-40

 For Loop

Modeling Pattern for For Loop: For-Iterator Subsystem block

One method for creating a for loop is to use a For Iterator Subsystem block from the
Simulink > Ports and Subsystems library.

Model ex_for_loop_SL

For Iterator Subsystem

Procedure

1 Drag a For Iterator Subsystem (Simulink) block from the Simulink > Ports and
Subsystems library into your model.

2 Connect the data inputs and outputs to the For Iterator Subsystem block.
3 Open the Inport block.

13-41

13 Patterns for C Code in Embedded Coder

4 In the Block Parameters dialog box, select the Signal Attributes pane and set the
Port dimensions parameter to 10.

5 Double-click the For Iterator Subsystem block to open the subsystem.
6 Drag an Index Vector block from the Signal-Routing library into the subsystem.
7 Open the For Iterator block. In the Block Parameters dialog box set the Index-mode

parameter to Zero-based and the Iteration limit parameter to 10.
8 Connect the controlling input to the topmost input port of the Index Vector block,

and the other input to the second port.
9 Drag an Add block from the Math Operations library into the subsystem.
10 Drag a Unit Delay block from Commonly Used Blocks library into the subsystem.
11 Double-click the Unit Delay block and set the Initial Conditions parameter to 0.

This parameter initializes the state to zero.
12 Connect the blocks as shown in the model diagram.
13 Save the subsystem and the model.
14 Enter Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_SL_step function in the file
ex_for_loop_SL.c:
 /* External inputs (root inport signals with auto storage) */

 ExternalInputs U;

 /* External outputs (root outports fed by signals with auto storage) */

 ExternalOutputs Y;

 /* Model step function */

 void ex_for_loop_SL_step(void)

 {

 int32_T s1_iter;

 int32_T rtb_y1;

 /* Outputs for iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:

 * ForIterator: '<S1>/For Iterator'

 */

 for (s1_iter = 0; s1_iter < 10; s1_iter++) {

 /* Sum: '<S1>/Add' incorporates:

 * Inport: '<Root>/u1'

 * MultiPortSwitch: '<S1>/Index Vector'

 * UnitDelay: '<S1>/Unit Delay'

 */

 rtb_y1 = U.u1[s1_iter] + DWork.UnitDelay_DSTATE;

 /* Update for UnitDelay: '<S1>/Unit Delay' */

 DWork.UnitDelay_DSTATE = rtb_y1;

 }

13-42

 For Loop

 /* end of Outputs for SubSystem: '<Root>/For Iterator Subsystem' */

 /* Outport: '<Root>/y1' */

 Y.y1 = rtb_y1;

 }

13-43

13 Patterns for C Code in Embedded Coder

Modeling Pattern for For Loop: Stateflow Chart

Model ex_for_loop_SF

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page
13-5. This example model contains one Inport block and one Outport block.

2 Name the model ex_for_loop_SF.
3 Enter Ctrl+R to open the Model Explorer.
4 In the Model Explorer, select the output variable, u1, and in the right pane, select

the General tab and set the Initial Value to 0.
5 In the Stateflow Editor, select Chart > Add Patterns > Loop > For. The

Stateflow Pattern dialog opens.
6 Fill in the fields in the Stateflow Pattern dialog box as follows:

Description For Loop (optional)
Initializer expression inx = 0

Loop test expression inx < 10

Counting expression inx++

For loop body y1 = u1[inx] + y1

The Stateflow diagram is shown.

13-44

 For Loop

7 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_SF_step function in the file
ex_for_loop_SF.c:
/* External inputs (root inport signals with auto storage) */

ExternalInputs U;

/* External outputs (root outports fed by signals with auto storage) */

ExternalOutputs Y;

/* Model step function */

void ex_for_loop_SF_step(void)

{

 int32_T inx;

 /* Chart: '<Root>/Chart' */

 /* Gateway: Chart */

 /* During: Chart */

 /* Entry Internal: Chart */

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:14' */

 for (inx = 0; inx < 10; inx++) {

 /* Outport: '<Root>/y1' incorporates:

 * Inport: '<Root>/u1'

 */

 /* Transition: '<S1>:11' */

 /* Transition: '<S1>:12' */

 Y.y1 += U.u1[inx];

 /* Transition: '<S1>:10' */

 }

 /* End of Chart: '<Root>/Chart' */

 /* Transition: '<S1>:9' */

}

13-45

13 Patterns for C Code in Embedded Coder

Modeling Pattern for For Loop: MATLAB Function block

Procedure

1 Follow the directions for “Set Up an Example Model With a MATLAB Function
Block” on page 13-6. This example model contains one Inport block and one Outport
block.

2 Name your model ex_for_loop_ML.
3 In the MATLAB Function Block Editor enter the function, as follows:

function y1 = fcn(u1)

y1 = 0;

for inx=1:10

 y1 = u1(inx) + y1 ;

end

4 Press Ctrl+B to build the model and generate code.

Results

The generated code includes the following ex_for_loop_ML_step function in the file
ex_for_loop_ML.c:
 /* Exported block signals */

 real_T u1[10]; /* '<Root>/u1' */

 real_T y1; /* '<Root>/MATLAB Function' */

 /* Model step function */

 void ex_for_loop_ML_step(void)

 {

 int32_T inx;

 /* MATLAB Function Block: '<Root>/MATLAB Function' incorporates:

 * Inport: '<Root>/u1'

 */

 /* MATLAB Function 'MATLAB Function': '<S1>:1' */

 /* '<S1>:1:3' */

 y1 = 0.0;

 for (inx = 0; inx < 10; inx++) {

 /* '<S1>:1:5' */

 /* '<S1>:1:6' */

 y1 = u1[inx] + y1;

 }

 }

See Also
For Iterator Subsystem

13-46

 For Loop

Related Examples
• “Create Flow Charts with the Pattern Wizard” (Stateflow)

More About
• “What Is a MATLAB Function Block?” (Simulink)

13-47

13 Patterns for C Code in Embedded Coder

While Loop

C Construct

while(flag && (num_iter <= 100)

{

 flag = func ();

 num_iter ++;

}

Modeling Patterns

• “Modeling Pattern for While Loop: While Iterator Subsystem block” on page 13-49
• “Modeling Pattern for While Loop: Stateflow Chart” on page 13-52
• “Modeling Pattern for While Loop: MATLAB Function Block” on page 13-55

13-48

 While Loop

Modeling Pattern for While Loop: While Iterator Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem block from
the Simulink > Ports and Subsystems library.

Model ex_while_loop_SL

ex_while_loop_SL/While Iterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Drag a Constant block from the Simulink > Commonly Used Blocks library
into the model. In this case, set the Initial Condition to 1 and the Data Type to
Boolean. You do not have to set the initial condition to FALSE. The initial condition
can be dependent on the input to the block.

13-49

13 Patterns for C Code in Embedded Coder

3 Connect the Constant block to the While Iterator Subsystem block.
4 Double-click the While Iterator Subsystem block to open the subsystem.
5 Place a Subsystem block next to the While Iterator block.
6 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
7 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.
8 Select the Code Generation tab. From the Function packaging list, select the

option, Nonreusable function.
9 From the Function name options list, select the option, User specified. The

Function name parameter is displayed.
10 Specify the name as func.
11 Click Apply.
12 Double-click the func subsystem block. In this example, function func() has an

output flag set to 0 or 1 depending on the result of the algorithm in func(). Create
the func() algorithm as shown in the following diagram:

func

13 Double-click the While Iterator block to set the Maximum number of iterations to
100.

14 Connect blocks as shown in the model and subsystem diagrams.

Results

The generated code includes the following ex_while_loop_SL_step function in the file
ex_while_loop_SL.c:

13-50

 While Loop

/* Model step function */

void ex_while_loop_SL_step(void)

{

 int32_T s1_iter;

 boolean_T loopCond;

 /* Constant: '<Root>/Initial Condition SET to TRUE' */

 IC = P.InitialConditionSETtoTRUE_Value;

 /* Outputs for Iterator SubSystem: '<Root>/While Iterator Subsystem' incorporates:

 * WhileIterator: '<S1>/While Iterator'

 */

 s1_iter = 1;

 /* InitializeConditions for Atomic SubSystem: '<S1>/func' */

 func_Init();

 /* End of InitializeConditions for SubSystem: '<S1>/func' */

 loopCond = IC;

 while (loopCond && (s1_iter <= 100)) {

 /* Outputs for Atomic SubSystem: '<S1>/func' */

 func();

 /* End of Outputs for SubSystem: '<S1>/func' */

 loopCond = flag;

 s1_iter++;

 }

 /* End of Outputs for SubSystem: '<Root>/While Iterator Subsystem' */

}

13-51

13 Patterns for C Code in Embedded Coder

Modeling Pattern for While Loop: Stateflow Chart

Model ex_while_loop_SF

ex_while_loop_SF/Chart Executes the desired while-loop

Procedure

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.
2 Double-click the chart.
3 Add the input, flag, and output, func, to the chart and specify their data type.
4 Connect the data input and output to the Stateflow chart as shown in the model

diagram.

13-52

 While Loop

5 In the Model Explorer, select the output variable, then, in the right pane, select the
General tab and set the Initial Value to 0.

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern dialog opens.
7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.
9 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
10 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.
11 Select the Code Generation tab. From the Function packaging list, select the

option, Nonreusable function.
12 From the Function name options list, select the option, User specified. The

Function name parameter is displayed.
13 Specify the name as func.
14 Click Apply to apply the changes.
15 Double-click the func subsystem block. In this example, function func has an

output flag set to 0 or 1 depending on the result of the algorithm in func(). The
Trigger block parameter Trigger type is function-call. Create the func()
algorithm, as shown in the following diagram:

ex_while_loop_SF/func A function that updates the flag

16 Save and close the subsystem.

13-53

13 Patterns for C Code in Embedded Coder

17 Connect blocks to the Stateflow chart as shown in the model diagram for
ex_while_loop_SF.

18 Save your model.

Results

The generated code includes the following ex_while_loop_SF_step function in the file
ex_while_loop_SF.c:

/* Exported block signals */

int32_T num_iter; /* '<Root>/Chart' */

boolean_T flag; /* '<S2>/Relational Operator' */

/* Block states (auto storage) */

D_Work DWork;

/* Model step function */

void ex_while_loop_SF_step(void)

{

 /* Chart: '<Root>/Chart' */

 /* Gateway: Chart */

 /* During: Chart */

 /* Entry Internal: Chart */

 /* Transition: '<S1>:2' */

 num_iter = 1;

 while (flag && (num_iter <= 100)) {

 /* Outputs for Function Call SubSystem: '<Root>/func' */

 /* Transition: '<S1>:3' */

 /* Transition: '<S1>:4' */

 /* Event: '<S1>:12' */

 func();

 /* End of Outputs for SubSystem: '<Root>/func' */

 num_iter++;

 /* Transition: '<S1>:5' */

 }

 /* End of Chart: '<Root>/Chart' */

 /* Transition: '<S1>:1' */

}

13-54

 While Loop

Modeling Pattern for While Loop: MATLAB Function Block

Model ex_while_loop_ML

Procedure

1 In the Simulink Library Browser, click Simulink > User Defined Functions, and
drag a MATLAB Function block into your model.

2 Double-click the MATLAB Function block. The MATLAB Function Block Editor
opens.

3 In the MATLAB Function Block Editor enter the function, as follows:

function fcn(func_flag)

flag = true;

num_iter = 1;

while(flag && (num_iter<=100))

 func;

 flag = func_flag;

 num_iter = num_iter + 1;

end

4 Select Edit Data on the Editor tab. The Ports and Data Manager opens.
5 Select Add > Function Call Output. Change the name of the function call output

to func.
6 Click Save and close the MATLAB Function Block Editor.

13-55

13 Patterns for C Code in Embedded Coder

7 Place a Subsystem block in your model, right-click the subsystem and select Block
Parameters (Subsystem). The Block Parameters dialog box opens.

8 Select the Treat as atomic unit parameter to configure the subsystem to generate
a function. This enables parameters on the Code Generation tab.

9 Select the Code Generation tab. From the Function packaging list, select the
option, Nonreusable function.

10 From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

11 Specify the name as func.
12 Click Apply.
13 Double-click the func() subsystem block. In this example, function func() has

an output flag set to 0 or 1 depending on the result of the algorithm in func().
The Trigger block parameter Trigger type is function-call. Create the func()
algorithm, as shown in the following diagram:

Model ex_while_loop_ML_func

14 Save and close the subsystem.
15 Connect the MATLAB Function block to the func() subsystem.
16 Save your model.

Results

The generated code includes the following while_loop_ML_step function in the file
while_loop_ML.c. In some cases an equivalent for loop might be generated instead of
a while loop.

/* Model step function */

void ex_while_loop_ML_step(void)

13-56

 While Loop

{

 boolean_T func_flag_0;

 boolean_T flag;

 int32_T num_iter;

 /* MATLAB Function: '<Root>/MATLAB Function' */

 func_flag_0 = func_flag;

 /* MATLAB Function 'MATLAB Function': '<S1>:1' */

 /* '<S1>:1:3' */

 flag = true;

 /* '<S1>:1:4' */

 num_iter = 1;

 while (flag && (num_iter <= 100)) {

 /* Outputs for Function Call SubSystem: '<Root>/func' */

 /* '<S1>:1:6' */

 /* '<S1>:1:7' */

 func();

 /* End of Outputs for SubSystem: '<Root>/func' */

 /* '<S1>:1:8' */

 flag = func_flag_0;

 /* '<S1>:1:9' */

 num_iter++;

 }

 /* End of MATLAB Function: '<Root>/MATLAB Function' */

}

See Also
While Iterator Subsystem

Related Examples
• “Create Flow Charts with the Pattern Wizard” (Stateflow)

More About
• “What Is a MATLAB Function Block?” (Simulink)

13-57

13 Patterns for C Code in Embedded Coder

Do While Loop

C Construct

num_iter = 1;

do {

 flag = func();

 num_iter++;

 }

while (flag && num_iter <= 100)

Modeling Patterns

• “Modeling Pattern for Do While Loop: While Iterator Subsystem block” on page
13-59

• “Modeling Pattern for Do While Loop: Stateflow Chart” on page 13-62

13-58

 Do While Loop

Modeling Pattern for Do While Loop: While Iterator Subsystem block

One method for creating a while loop is to use a While Iterator Subsystem block from
the Simulink > Ports and Subsystems library.

ex_do_while_loop_SL

ex_do_while_loop_SL/While Iterator Subsystem

Procedure

1 Drag a While Iterator Subsystem block from the Simulink > Ports and
Subsystems library into the model.

2 Double-click the While Iterator Subsystem block to open the subsystem.
3 Place a Subsystem block next to the While Iterator block.
4 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
5 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.

13-59

13 Patterns for C Code in Embedded Coder

6 Select the Code Generation tab. From the Function packaging list, select the
option, Nonreusable function.

7 From the Function name options list, select the option, User specified. The
Function name parameter is displayed.

8 Specify the name as func.
9 Click Apply.
10 Double-click the func subsystem block. In this example, function func has an

output flag set to 0 or 1 depending on the result of the algorithm in func. Create the
func algorithm as shown in the following diagram:

ex_do_while_loop_SL/While Iterator Subsystem/func

11 Double-click the While Iterator block. This opens the Block Parameters dialog.
12 Set the Maximum number of iterations to 100.
13 Specify the While loop type as do-while.
14 Connect blocks as shown in the model and subsystem diagrams.
15 Enter Ctrl+B to generate code.

Results

void func(void)

{

 flag = (DWork.NextOutput > (real_T)P.Constant1_Value);

 DWork.NextOutput =

 rt_NormalRand(&DWork.RandSeed) * P.RandomNumber_StdDev +

 P.RandomNumber_Mean;

}

void ex_do_while_loop_SL_step(void)

{

 int32_T s1_iter;

13-60

 Do While Loop

 s1_iter = 1;

 do {

 func();

 s1_iter++;

 } while (flag && (s1_iter <= 100));

}

13-61

13 Patterns for C Code in Embedded Coder

Modeling Pattern for Do While Loop: Stateflow Chart

ex_do_while_loop_SF

ex_do_while_loop_SF/Chart

1 Add a Stateflow Chart to your model from the Stateflow > Chart library.
2 Double-click the chart to open it.
3 Add the inputs and outputs to the chart and specify their data type.
4 Connect the data input and output to the Stateflow chart.
5 In the Model Explorer, select the output variable, then, in the right pane, select the

General tab and set the Initial Value to 0.

13-62

 Do While Loop

6 Select Chart > Add Patterns > Loop > While. The Stateflow Pattern dialog opens.
7 Fill in the fields for the Stateflow Pattern dialog box as follows:

Description While Loop (optional)
While condition (flag) && (num_iter<=100)

Do action func; num_iter++;

8 Place a Subsystem block in your model.
9 Right-click the subsystem and select Block Parameters (Subsystem). The Block

Parameters dialog box opens.
10 Select the Treat as atomic unit parameter to configure the subsystem to generate

a function. This enables parameters on the Code Generation tab.
11 Select the Code Generation tab. From the Function packaging list, select the

option, Nonreusable function.
12 From the Function name options list, select the option, User specified. The

Function name parameter is displayed.
13 Specify the name as func.
14 Click Apply to apply the changes.
15 Double-click the func subsystem block. In this example, function func has an

output flag set to 0 or 1 depending on the result of the algorithm in func. The
Trigger block parameter Trigger type is function-call. Create the func
algorithm, as shown in the following diagram:

ex_do_while_loop_SF/func Updates the flag

16 Save and close the subsystem.
17 Connect blocks to the Stateflow chart as shown in the model diagram for

ex_do_while_loop_SF.

13-63

13 Patterns for C Code in Embedded Coder

18 Save your model.

Results

void ex_do_while_loop_SF_step(void)

{

 int32_T sf_num_iter;

 num_iter = 1;

 do {

 func();

 num_iter++;

 } while (flag && (sf_num_iter <= 100));

}

See Also
While Iterator Subsystem

Related Examples
• “Create Flow Charts with the Pattern Wizard” (Stateflow)

13-64

 Function Call

Function Call

To generate a function call, add a subsystem, which implements the operations that you
want.

C Construct

void add_function(void)

{

 y1 = u1 + u2;

}

ex_function_call

Procedure

1 Create a model containing a subsystem. In this example, the subsystem has two
inputs and returns one output.

2 Double-click the subsystem. Create Add_Subsystem, as shown.

ex_function_call/Add_Subsystem

3 Right-click the subsystem and select Block Parameters (Subsystem) to open the
Subsystem Parameters dialog box.

13-65

13 Patterns for C Code in Embedded Coder

4 Select the Treat as atomic unit parameter. This enables parameters on the Code
Generation tab.

Select the Code Generation tab. For the Function packaging parameter, from
the drop-down list, select Nonreusable function.

5 For the Function name options parameter, from the drop-down list, select User
specified.

6 In the Function name field, enter the subsystem name, add_function.
7 In the File name options field, select Use function name.
8 Click Apply and OK.
9 Press Ctrl+B to build and generate code.

Results

In ex_function_call.c, the function is called from ex_function_call_step:
void ex_function_call_step(void)

{

 add_function();

}

The function prototype is externed through the subsystem file, add_function.h.
extern void add_function(void);

The function definition is in the subsystem file add_function.c:
void add_function(void)

{

 function_call_Y.y1 = u1 + u2;

}

See Also
Function-Call Subsystem

Related Examples
• “Generate Reusable Function for Identical Subsystems Within a Model” (Simulink

Coder)

More About
• “Conditional Subsystems” (Simulink)

13-66

 Function Prototyping

Function Prototyping

C Construct

double add_function(double u1, double u2)

{

 return u1 + u2;

}

Modeling Patterns

• “Function Call Using Graphical Functions” on page 13-67
• “Control Function Prototype of the model_step Function” on page 13-69

Function Call Using Graphical Functions

Procedure

1 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page
13-5. This example model contains two Inport blocks and one Outport block.

2 Name the example model ex_func_SF.
3

In the Stateflow Editor, create a graphical function by clicking the fx button and
placing a graphical function into the Stateflow chart.

4 Edit the graphical function signature to: output = add_function(u1, u2).
5 Add the transition action, as shown in the following diagram.

13-67

13 Patterns for C Code in Embedded Coder

ex_func_SF/Chart

In the Stateflow chart is an example of a simple transition that calls add_function.
6 Open the Model Explorer. From the Model Hierarchy tree, select ex_func_SF >

Chart > f()add_function. On the right pane, specify the Function Inline Option
as Function.

7 From the Model Hierarchy tree, click Chart and on the right pane select the Export
Chart Level Functions (Make Global) parameter. This makes the function
available globally to the entire model.

8 Press Ctrl+B to build the model and generate code.

Results

ex_func_SF.c contains the generated code:
real_T add_function(real_T in1, real_T in2)

{

 return in1 + in2;

}

.

.

.

void ex_func_SF_step(void)

{

 y1 = add_function(u1, u2);

}

13-68

 Function Prototyping

Control Function Prototype of the model_step Function

ex_control_step_function

Procedure

1 Create the model, ex_control_step_function. See “Configure a Signal” on page
13-3 and “Configure Input and Output Ports” on page 13-4, for more information.

2 Press Ctrl+E to open the Configuration Parameters dialog box.
3 On the Code Generation > Interface pane, click Configure Model Functions to

open the Model Interface dialog box.
4 Specify the Function specification parameter as Model specific C

prototypes.
5 Click Get Default Configuration to update the Configure model initialize and

step functions section and list the input and output arguments.
6 To configure the function output argument to pass a pointer, in the Step function

arguments table, specify the Category for the Outport as a Pointer. In addition,
you can specify the step function arguments order and type qualifiers.

7 To validate your changes, click Validate.
8 Press Ctrl+B to build the model and generate code.

Results

ex_control_step_function.c contains the generated code:
void ex_control_step_function_custom(real_T arg_u1, real_T arg_u2, ...

 real_T *arg_y1)

{

 (*arg_y1) = arg_u1 + arg_u2;

}

Related Examples
• “About Function Prototype Control” on page 26-2

13-69

13 Patterns for C Code in Embedded Coder

• “Reuse Logic Patterns Using Graphical Functions” (Stateflow)

13-70

 External C Functions

External C Functions

C Construct

extern double add(double, double);

#include "add.h"

double add(double u1, double u2)

{

 double y1;

 y1 = u1 + u2;

 return (y1);

}

Modeling Patterns

There are several methods for integrating legacy C functions into the generated code.
These methods either create an S-function or make a call to an external C function. For
more information on S-functions, see “S-Functions and Code Generation” (Simulink
Coder).

• “Use the Legacy Code Tool to Create S-functions” on page 13-71
• “Use a Stateflow Chart to Make Calls to C Functions” on page 13-73
• “Using a MATLAB Function Block to Make Calls to C Functions” on page 13-75

Use the Legacy Code Tool to Create S-functions

This method uses the Legacy Code Tool to create an S-function and generate a TLC file.
The code generation software uses the TLC file to generate code from this S-function. The
advantage of using the Legacy Code Tool is that the generated code is fully inlined and
does not need wrapper functions to access the custom code.

Procedure

1 Create a C header file named add.h that contains the function signature:

extern double add(double, double);

2 Create a C source file named add.c that contains the function body:

13-71

13 Patterns for C Code in Embedded Coder

double add(double u1, double u2)

{

 double y1;

 y1 = u1 + u2;

 return (y1);

}

3 To build an S-function for use in both simulation and code generation, run the
following script or execute each of these commands at the MATLAB command line:

%% Initialize legacy code tool data structure

def = legacy_code('initialize');

%% Specify Source File

def.SourceFiles = {'add.c'};

%% Specify Header File

def.HeaderFiles = {'add.h'};

%% Specify the Name of the generated S-function

def.SFunctionName = 'add_function';

%% Create a c-mex file for S-function

legacy_code('sfcn_cmex_generate', def);

%% Define function signature and target the Output method

def.OutputFcnSpec = ['double y1 = add(double u1, double u2)'];

%% Compile/Mex and generate a block that can be used in simulation

legacy_code('generate_for_sim', def);

%% Create a TLC file for Code Generation

legacy_code('sfcn_tlc_generate', def);

%% Create a Masked S-function Block

legacy_code('slblock_generate', def);

The output of this script produces:

• A new model containing the S-function block
• A TLC file named add_function.tlc.
• A C source file named add_function.c.
• A mexw32 dll file named add_function.mexw32

13-72

 External C Functions

4 Add inport blocks and an outport block and make the connections, as shown in the
model.

ex_function_call_lct

5 Name and save your model. In this example, the model is named
ex_function_call_lct.

6 Press Ctrl+B to build the model and generate code.

Results

The following code is generated in ex_function_call_lct.c:
real_T u1;

real_T u2;

real_T y1;

void ex_function_call_lct_step(void)

{

 y1 = add(u1, u2);

}

The user-specified header file, add.h, is included in ex_function_call_lct.h:

#include "add.h"

Use a Stateflow Chart to Make Calls to C Functions

Procedure

1 Create a C header file named add.h that contains the example function signature.
2 Create a C source file named add.c that contains the function body.
3 Follow the steps for “Set Up an Example Model With a Stateflow Chart” on page

13-5. This example model contains two Inport blocks and one Outport block.
4 Name the example model ex_exfunction_call_SF.
5 Double-click the Stateflow chart and edit the chart as shown. Place the call to the

add function within a transition action.

13-73

13 Patterns for C Code in Embedded Coder

ex_exfunction_call_SF/Chart

6 On the Stateflow Editor, select Simulation > Model Configuration
Parameters.

7 On the Configuration Parameters dialog box, select Simulation Target > Custom
Code. In the Include custom C code in generated section, on the left pane, select
Header file and in the Header file field, enter the #include statement:

#include "add.h"

8 In the Include list of additional section, select Source files and in the Source
files field, enter add.c.

9 On the Configuration Parameters dialog box, select Code Generation > Custom
Code.

10 Select Use the same custom code settings as Simulation Target .
11 Press Ctrl+B to build the model and generate code.

Results

ex_exfunction_call_SF.c contains the following code in the step function:
real_T u1;

real_T u2;

real_T y1;

void exfunction_call_SF_step(void)

{

 y1 = (real_T)add(u1, u2);

}

ex_exfunction_call_SF.h contains the include statement for add.h:
#include "add.h"

13-74

 External C Functions

Using a MATLAB Function Block to Make Calls to C Functions

Procedure

1 Create a C header file named add.h that contains the example function signature.
2 Create a C source file named add.c that contains the function body.
3 In the Simulink Library Browser, click Simulink > User Defined Functions, and

drag a MATLAB Function block into your model.
4 Double-click the MATLAB Function block. The MATLAB Function Block Editor

opens.
5 Edit the function to include the statement:

function y1 = add_function(u1, u2)

% Set the class and size of output

y1 = u1;

% Call external C function

y1 = coder.ceval('add',u1,u2);

end

6 Open the Configuration Parameters dialog box, and select Simulation Target >
Custom Code.

7 In the Include custom C code in generated section, on the left pane, select
Header file and in the Header file field, enter the statement, :

#include "add.h"

8 In the Include list of additional section, select Source files and in the Source
files field, enter add.c.

9 Add two Inport blocks and one Outport block to the model and connect to the
MATLAB Function block.

10 Configure the signals: u1, u2, and y1, as described in “Configure a Signal” on page
13-3.

11 Save the model as ex_exfunction_call_ML.
12 Press Ctrl+B to build the model and generate code.

Results

ex_exfunction_call_ML.c contains the following code:

13-75

13 Patterns for C Code in Embedded Coder

real_T u1;

real_T u2;

real_T y1;

void ex_exfunction_call_ML_step(void)

{

 y1 = add(u1, u2);

}

ex_exfunction_call_ML.h contains the #include statement for add.h:
#include "add.h"

Related Examples
• “Call C Functions in C Charts” (Stateflow)

More About
• “When to Generate Code from MATLAB Algorithms” (Simulink)
• “Legacy Code Tool and Code Generation” (Simulink Coder)

13-76

 Macro Definitions (#define)

Macro Definitions (#define)

C Construct

#define myParam 9.8;

Export Generated Macro Definition

Procedure

1 Create the ex_param_macro model by using a Gain block.

2 In the Gain block dialog box, set Gain to myParam. Click Apply.
3 Click the button next to the parameter value. Select Create Variable.
4 In the Create New Data dialog box, set Value to Simulink.Parameter(9.8).

Click Create.

A Simulink.Parameter object, myParam, appears in the base workspace. The Gain
block uses the object to set the value of the Gain parameter, in this case, 9.8.

5 In the Simulink.Parameter property dialog box, set Storage class to Define. Click
OK.

6 Generate code from the model.

Results

The generated header file ex_param_macro.h defines myParam as a macro.

/* Definition for custom storage class: Define */

#define myParam 9.8

Reuse Macro from Handwritten Code

Procedure

1 Follow the steps in “Export Generated Macro Definition” on page 13-77.

13-77

13 Patterns for C Code in Embedded Coder

2 At the command prompt, change the custom storage class of myParam from Define
to ImportedDefine.

myParam.CoderInfo.CustomStorageClass = 'ImportedDefine';

3 Configure the code generator to import the macro definition from a custom header
file named external_params.h.

myParam.CoderInfo.CustomAttributes.HeaderFile = 'external_params.h';

4 In your current folder, create the C header file external_params.h, which contains
the #define statement.

#ifndef _EXTERNAL_PARAMS

#define _EXTERNAL_PARAMS

#define myParam 9.8

#endif

/* EOF */

5 Generate code from the model.

Results

The generated header file ex_param_macro.h does not define the macro. Instead, the
file includes (#include) the custom header file external_params.h.

/* Includes for objects with custom storage classes. */

#include "external_params.h"

The source file ex_param_macro.c contains a guard to check that a definition for
myParam exists.

/*

* Check that imported macros with storage class "ImportedDefine" are defined

*/

#ifndef myParam

#error The variable for the parameter "myParam" is not defined

#endif

Related Examples
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11

13-78

 Macro Definitions (#define)

• “Control Data Representation by Applying Custom Storage Classes” on page
23-58

13-79

13 Patterns for C Code in Embedded Coder

Conditional Inclusions (#if / #endif)

You can generate preprocessor conditional directives in your code by implementing
variant blocks (Model Variants block or Variant Subsystem block) in your model. In the
generated code, preprocessor conditional directives select a section of code to execute at
compile time. To implement variants in your model, see “Create a Simple Variant Model”
(Simulink). To generate code for variants, see “Generate Preprocessor Conditionals for
Variant Systems” on page 14-33.

13-80

 Typedef

Typedef

C Construct

typedef float float_32;

Procedure

To create a data type alias in Simulink, use a Simulink.AliasType. The code
generator creates a typedef statement.

The built-in Simulink data type single corresponds to the C data type float.

1 At the command prompt, create a Simulink.AliasType object named float_32
that represents an alias of single.

float_32 = Simulink.AliasType('single')

2 Create the ex_typedef model by using a Gain block.

3 In the model, select View > Model Data.
4 In the Model Data Editor, view the Inports/Outports tab.
5 From the Change View drop-down list, select Design.
6 In the model, select the Inport block.
7 In the Model Data Editor, for the Inport block, set Data Type to float_32.
8 From the Change View drop-down list, select Code.
9 For the Inport block, set Signal Name to mySig.
10 Set Storage Class to ExportedGlobal.

With this setting, the Inport block appears in the generated code as a separate global
variable.

11 Generate code from the model.

13-81

13 Patterns for C Code in Embedded Coder

Results

The generated header file ex_typedef.h defines the data type alias float_32.

#ifndef DEFINED_TYPEDEF_FOR_float_32_

#define DEFINED_TYPEDEF_FOR_float_32_

typedef real32_T float_32;

#endif

By default, the code generator also creates the alias real32_T, which corresponds to
the C data type float. You can see the typedef statement in the generated header file
rtwtypes.h.

typedef float real32_T;

The generated source file ex_typedef.c uses float_32 to define the global variable
mySig.

/* Exported block signals */

float_32 mySig; /* '<Root>/In1' */

See Also
Simulink.AliasType

Related Examples
• “Create Data Type Alias in the Generated Code” on page 21-12
• “Data Type Replacement” on page 21-36
• “Structures of Signals” on page 13-87

13-82

 Structures of Parameters

Structures of Parameters

Create a structure in the generated code. The structure stores parameter data.

C Construct

typedef struct {

 double G1;

 double G2;

} myStructType;

myStructType myStruct = {

 2.0,

 -2.0

} ;

Procedure

At the command prompt, create a structure named myStruct with two fields.

myStruct.G1 = 2;

myStruct.G2 = -2;

Store the structure in a Simulink.Parameter object.

myStruct = Simulink.Parameter(myStruct);

Apply the storage class ExportedGlobal so that the structure appears in the generated
code as a global variable.

myStruct.CoderInfo.StorageClass = 'ExportedGlobal';

Open the example model rtwdemo_paraminline.

rtwdemo_paraminline

13-83

13 Patterns for C Code in Embedded Coder

In the G1 block dialog box, set Gain to myStruct.G1.

set_param('rtwdemo_paraminline/G1','Gain','myStruct.G1')

In the G2 block dialog box, set Gain to myStruct.G2.

set_param('rtwdemo_paraminline/G2','Gain','myStruct.G2')

Results

Generate code from the model.

rtwbuild('rtwdemo_paraminline')

Starting build procedure for model: rtwdemo_paraminline

Successful completion of build procedure for model: rtwdemo_paraminline

The generated header file rtwdemo_paraminline_types.h defines a structure type
with a randomized name.

file = fullfile('rtwdemo_paraminline_grt_rtw',...

 'rtwdemo_paraminline_types.h');

13-84

 Structures of Parameters

rtwdemodbtype(file,'typedef struct {','} struct_6h72eH5WFuEIyQr5YrdGuB;',...

 1,1)

typedef struct {

 real_T G1;

 real_T G2;

} struct_6h72eH5WFuEIyQr5YrdGuB;

The source file rtwdemo_paraminline.c defines and initializes the structure variable
myStruct.

file = fullfile('rtwdemo_paraminline_grt_rtw','rtwdemo_paraminline.c');

rtwdemodbtype(file,'struct_6h72eH5WFuEIyQr5YrdGuB myStruct',...

 '/* Variable: myStruct',1,1)

struct_6h72eH5WFuEIyQr5YrdGuB myStruct = {

 2.0,

 -2.0

} ; /* Variable: myStruct

Specify Name of Structure Type

Optionally, specify a name to use for the structure type definition (struct).

Create a Simulink.Bus object that represents the structure type.

Simulink.Bus.createObject(myStruct.Value);

The default name of the object is slBus1. Change the name by copying the object into a
new MATLAB variable.

myStructType = slBus1.copy;

Use the bus object as the data type of the parameter object.

myStruct.DataType = 'Bus: myStructType';

Generate code from the model.

rtwbuild('rtwdemo_paraminline')

Starting build procedure for model: rtwdemo_paraminline

Successful completion of build procedure for model: rtwdemo_paraminline

13-85

13 Patterns for C Code in Embedded Coder

The code generates the definition of the structure type myStructType and uses this type
to define the global variable myStruct.

rtwdemodbtype(file,'myStructType myStruct = {','/* Variable: myStruct',...

 1,1)

myStructType myStruct = {

 2.0,

 -2.0

} ; /* Variable: myStruct

Related Examples
• “Organize Block Parameter Values into Structures in the Generated Code” on page

19-97

13-86

 Structures of Signals

Structures of Signals

C Construct

typedef struct {

 double signal1;

 double signal2;

 double signal3;

} my_signals_type;

Procedure

To represent a structure type in a model, create a Simulink.Bus object. Use the object
as the data type of bus signals in your model.

1 Create the ex_signal_struct model with Gain blocks, a Bus Creator block,
and a Unit Delay block. The Gain and Unit Delay blocks make the structure more
identifiable in the generated code.

To configure the Bus Creator block to accept three inputs, in the block dialog box, set
Number of inputs to 3.

2 In the model, select Edit > Bus Editor.
3 Use the Bus Editor to create a Simulink.Bus object named my_signals_type

that contains three signal elements: signal1, signal2, and signal3. To create
bus objects with the Bus Editor, see “Create Bus Objects with the Bus Editor”
(Simulink).

13-87

13 Patterns for C Code in Embedded Coder

This bus object represents the structure type that you want the generated code to
use.

4 In the Bus Creator block dialog box, set Output data type to Bus:
my_signals_type.

5 Select Output as nonvirtual bus. Click OK.

A nonvirtual bus appears in the generated code as a structure.
6 In the model, select View > Model Data.
7 In the Model Data Editor, on the Signals tab, from the Change View drop-down

list, select Code.
8 In the model, click the output signal of the Bus Creator block.
9 In the Model Data Editor, for the output of the Bus Creator block, set Name to

sig_struct_var.
10 Set Storage Class to ExportedGlobal.

With this setting, the output of the Bus Creator block appears in the generated code
as a separate global structure variable named sig_struct_var.

11 Generate code from the model.

Results

The generated header file ex_signal_struct.h defines the structure type
my_signals_type.

typedef struct {

 real_T signal1;

 real_T signal2;

 real_T signal3;

} my_signals_type;

The source file ex_signal_struct.c allocates memory for the global variable
sig_struct_var, which represents the output of the Bus Creator block.

13-88

 Structures of Signals

/* Exported block signals */

my_signals_type sig_struct_var; /* '<Root>/Bus Creator' */

In the same file, in the model step function, the algorithm uses sig_struct_var and
the fields of sig_struct_var.

See Also
Simulink.Bus

Related Examples
• “Group Signals into Structures in the Generated Code Using Buses” on page

19-139
• “Combine Buses into an Array of Buses” (Simulink)

13-89

13 Patterns for C Code in Embedded Coder

Nested Structures of Signals

C Construct

typedef struct {

 double signal1;

 double signal2;

 double signal3;

} B_struct_type;

typedef struct {

 double signal1;

 double signal2;

} C_struct_type;

typedef struct {

 B_struct_type subStruct_B;

 C_struct_type subStruct_C;

} A_struct_type;

Procedure

To represent a structure type in a model, create a Simulink.Bus object. Use the object
as the data type of bus signals in your model.

To nest a structure inside another structure, use a bus object as the data type of a signal
element in another bus object.

1 Create the ex_signal_nested_struct model with Gain blocks, Bus Creator
blocks, and a Unit Delay block. The Gain and Unit Delay blocks make the structure
more identifiable in the generated code.

13-90

 Nested Structures of Signals

To configure a Bus Creator block to accept three inputs, in the block dialog box, set
Number of inputs to 3.

2 In the model, select Edit > Bus Editor.
3 Use the Bus Editor to create a Simulink.Bus object named A_struct_type

that contains two signal elements: subStruct_B and subStruct_C. To create
bus objects with the Bus Editor, see “Create Bus Objects with the Bus Editor”
(Simulink).

This bus object represents the top-level structure type that you want the generated
code to use.

4 For the subStruct_B element, set DataType to Bus: B_struct_type. Use a
similar type name for subStruct_C.

13-91

13 Patterns for C Code in Embedded Coder

Each signal element in A_struct_type uses another bus object as a data type. Now
these elements represent substructures.

5 Use the Bus Editor to create the Simulink.Bus objects B_struct_type (with three
signal elements) and C_struct_type (with two signal elements).

6 In the dialog box of the Bus Creator block that collects the three Gain signals, set
Output data type to Bus: B_struct_type. Click Apply.

7 Select Output as nonvirtual bus. Click OK.
8 In the dialog box of the other subordinate Bus Creator block, set Output data type

to Bus: C_struct_type and select Output as nonvirtual bus. Click OK.
9 In the last Bus Creator block dialog box, set Output data type to Bus:

A_struct_type and select Output as nonvirtual bus. Click OK.
10 In the model, select View > Model Data.
11 In the Model Data Editor, on the Signals tab, from the Change View drop-down

list, select Code.
12 In the model, click the output signal of the A_struct_type Bus Creator block,

which feeds the Unit Delay block.

13-92

 Nested Structures of Signals

13 In the Model Data Editor, for the output of the Bus Creator block, set Name to
sig_struct_var.

14 Set Storage Class to ExportedGlobal.

With this setting, the output of the Bus Creator block appears in the generated code
as a separate global structure variable named sig_struct_var.

15 Generate code from the model.

Results

The generated header file ex_signal_nested_struct.h defines the structure types.
Each structure type corresponds to a Simulink.Bus object.

typedef struct {

 real_T signal1;

 real_T signal2;

 real_T signal3;

} B_struct_type;

typedef struct {

 real_T signal1;

 real_T signal2;

} C_struct_type;

typedef struct {

 B_struct_type subStruct_B;

 C_struct_type subStruct_C;

} A_struct_type;

The generated source file ex_signal_nested_struct.c allocates memory for the
global structure variable sig_struct_var. By default, the name of the A_struct_type
Bus Creator block is Bus Creator2.

/* Exported block signals */

A_struct_type sig_struct_var; /* '<Root>/Bus Creator2' */

In the same file, in the model step function, the algorithm uses sig_struct_var and
the fields of sig_struct_var.

See Also
Simulink.Bus

13-93

13 Patterns for C Code in Embedded Coder

Related Examples
• “Group Signals into Structures in the Generated Code Using Buses” on page

19-139
• “Combine Buses into an Array of Buses” (Simulink)

13-94

 Bitfields

Bitfields

C Construct

typedef struct {

 unsigned int p1 : 1;

 unsigned int p2 : 1;

 unsigned int p3 : 1;

} my_struct_type

Procedure

1 Create the ex_struct_bitfield_CSC model with three Constant blocks and three
Outport blocks. In each Constant block, set Constant value to p1, p2, or p3.

2 Create a Simulink.Parameter object in the base workspace for each Constant
block, p1, p2, and p3. At the command prompt, enter:

p1 = Simulink.Parameter(false);

p2 = Simulink.Parameter(true);

p3 = Simulink.Parameter(false);

Each object stores a Boolean value (true or false) and uses the data type boolean.
3 Apply the custom storage class BitField to each parameter object.

p1.CoderInfo.StorageClass = 'Custom';

p1.CoderInfo.CustomStorageClass = 'BitField';

p2.CoderInfo.StorageClass = 'Custom';

p2.CoderInfo.CustomStorageClass = 'BitField';

13-95

13 Patterns for C Code in Embedded Coder

p3.CoderInfo.StorageClass = 'Custom';

p3.CoderInfo.CustomStorageClass = 'BitField';

4 Configure each object to use the same structure type.

p1.CoderInfo.CustomAttributes.StructName = 'my_struct';

p2.CoderInfo.CustomAttributes.StructName = 'my_struct';

p3.CoderInfo.CustomAttributes.StructName = 'my_struct';

5 Generate code from the model.

Results

The generated header file ex_struct_bitfield_CSC.h defines the structure type
my_struct_type.

/* Type definition for custom storage class: BitField */

typedef struct my_struct_tag {

 uint_T p1 : 1;

 uint_T p2 : 1;

 uint_T p3 : 1;

} my_struct_type;

The generated source file ex_struct_bitfield_CSC.c defines and initializes the
structure variable my_struct.

/* Definition for custom storage class: BitField */

my_struct_type my_struct = {

 /* p1 */

 0,

 /* p2 */

 1,

 /* p3 */

 0

};

Related Examples
• “Control Data Representation by Applying Custom Storage Classes” on page

23-58

13-96

 Bitfields

• “Pack Boolean data into bitfields” (Simulink)

13-97

13 Patterns for C Code in Embedded Coder

Arrays for Parameters

C Construct

float myParams[5]= {1.0F,2.0F,3.0F,4.0F,5.0F};

Procedure

1 Create the ex_param_array model by using a Gain block.

2 In the Gain block dialog box, set Gain to myParams. Click Apply.
3 Click the button next to the parameter value. Select Create Variable.
4 In the Create New Data dialog box, set Value to Simulink.Parameter([1 2 3 4

5]). Click Create.

A Simulink.Parameter object, myParams, appears in the base workspace. The
Gain block uses the object to set the value of the Gain parameter.

5 In the Simulink.Parameter property dialog box, set Storage class to
ExportedGlobal.

With this setting, myParams appears in the generated code as a separate global
variable.

6 Set Data type to single. Click OK.
7 Generate code from the model.

Results

The generated source file ex_param_array.c defines and initializes the global variable
myParams.

/* Exported block parameters */

real32_T myParams[5] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F } ;/* Variable: myParams

13-98

 Arrays for Parameters

 * Referenced by: '<Root>/Gain'

 */

Related Examples
• “Block Parameter Representation in the Generated Code” (Simulink Coder)
• “Code Generation of Matrices and Arrays” on page 33-76

13-99

13 Patterns for C Code in Embedded Coder

Arrays for Signals

C Construct

double myIn[5];

double myOut[5];

Procedure

1 Create the ex_signal_array model by using a Gain block.

2 In the model, select View > Model Data.
3 In the Model Data Editor, view the Inports/Outports tab.
4 From the Change View drop-down list, select Design.
5 In the model, select the Inport block.
6 In the Model Data Editor, for the Inport block, set Signal Name to myIn.
7 Set Dimensions to [5 1].
8 For the Outport block, set Signal Name to myOut.
9 From the Change View drop-down list, select Code.
10 For the Inport block and the Outport block, set Storage Class to ExportedGlobal.

With this setting, the blocks appear in the generated code as separate global
variables.

11 Generate code from the model.

Results

The generated source file ex_signal_array.c defines the global variables myIn and
myOut as arrays with 5 elements each.

/* Exported block signals */

13-100

 Arrays for Signals

real_T myIn[5]; /* '<Root>/In1' */

real_T myOut[5]; /* '<Root>/Out1' */

Related Examples
• “Determine Output Signal Dimensions” (Simulink)
• “Signal Dimensions” (Simulink)
• “Signal Representation in Generated Code” on page 19-112
• “Code Generation of Matrices and Arrays” on page 33-76

13-101

13 Patterns for C Code in Embedded Coder

Pointers

When your handwritten code allocates memory for signal, state, or parameter data,
you can generate code that accesses that data through a pointer. Apply a storage class
such as ImportedExternPointer to a data item in the model. Your handwritten code
provides the pointer definition.

C Construct

extern double *myIn;

Procedure

1 Create the ex_pointer model by using a Gain block.

2 In the model, select View > Model Data.
3 In the Model Data Editor, view the Inports/Outports tab.
4 From the Change View drop-down list, select Code.
5 In the model, select the Inport block.
6 In the Model Data Editor, for the Inport block, set Signal Name to myIn.
7 Set Storage Class to ImportedExternPointer.
8 Generate code from the model.

Results

The generated header file ex_pointer.h declares the pointer.

/* Imported (extern) pointer block signals */

extern real_T *myIn; /* '<Root>/In1' */

In the generated source file ex_pointer.c, in the model step function, the algorithm
dereferences the pointer, myIn.

13-102

 Pointers

/* Model step function */

void ex_pointer_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 */

 rtY.Out1 = *myIn;

}

Related Examples
• “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
• “Block Parameter Representation in the Generated Code” on page 19-47

13-103

14

Variant Systems in Embedded Coder

• “Implement Dimension Variants for Array Sizes in Generated Code” on page
14-2

• “Code Generation for Variant Blocks” on page 14-16
• “Represent Subsystem and Model Variants in Generated Code” on page 14-21
• “Generate Preprocessor Conditionals for Variant Systems” on page 14-33
• “Represent Variant Source and Sink Blocks in Generated Code” on page 14-37
• “Configure Dimension Variants for S-Function Blocks” on page 14-47
• “Generate Code for Variant Subsystem with Child Subsystems of Different Output

Signal Dimensions” on page 14-52

14 Variant Systems in Embedded Coder

Implement Dimension Variants for Array Sizes in Generated Code

Dimension Variants

Use symbolic dimensions to simulate various sets of dimension choices without
regenerating code for every set. Set up your model with dimensions that you specify
as symbols in blocks and data objects. These symbols propagate throughout the model
during simulation, and then go into the generated code. Modeling constraints for symbols
during simulation (for example, C=A+B) are output as preprocessor conditionals in either
the model.h or the model _types.h file.

You can directly specify dimension information as a symbol or a numeric constant for
these blocks and data objects:

• Inport
• Outport
• Signal Specification
• Data Store Memory
• Interpreted MATLAB Function
• Simulink.Signal

• Simulink.Parameter

• Simulink.BusElement

• AUTOSAR.Parameter

The Data Store Memory and Interpreted MATLAB Function blocks also support variable
dimension signals. For these blocks, the symbolic dimensions control the maximum
allowed size.

You use Simulink.Parameter objects to specify dimension information as symbols. For
more information on signal dimensions, see “Signal Dimensions” (Simulink).

Note: The dimension variants feature is on by default. You can turn off this feature by
clearing the “Allow symbolic dimension specification” (Simulink) parameter on the All
Parameters tab of the Configuration Parameters dialog box.

14-2

 Implement Dimension Variants for Array Sizes in Generated Code

Define Symbolic Dimensions

This example uses the model rtwdemo_dimension_variants to show how to
implement symbolic dimensions. This model has four modeling patterns involving vectors
and matrices.

1 Open the model matlab:rtwdemo_dimension_variants.
2 Open the Model Explorer. Select the base workspace pane.
3 In the base workspace, there are four Simulink.Parameter objects for specifying

symbolic dimensions. These Simulink.Parameter objects have the names A, B, C,
and D.

4 Select the Simulink.Parameter object A. Review the information in the
Simulink.Parameter dialog box. A has a storage class of CompilerFlag.

5 Repeat Step 4 for each of the Simulink.Parameter objects B, C, and D.

14-3

14 Variant Systems in Embedded Coder

6 For Simulink.Parameter objects with an ImportedDefine custom storage class,
provide a header file on the MATLAB path. Insert the name of the header file in the
HeaderFile field in the Simulink.Parameter dialog box.

To use a Simulink.Parameter object for dimension specification, it must have one of these
storage classes:

• Define or ImportedDefine with header file specified
• CompilerFlag

• User-defined custom storage class that defines data as a macro in a specified header
file

You can use MATLAB expressions to specify symbolic dimensions. For a list of supported
MATLAB expressions, see the section Operators and Operands in Variant Condition
Expressions in “Introduction to Variant Controls” (Simulink).

Specify Symbolic Dimensions for Blocks and Data Objects

1 Open the Source Block Parameters dialog box of Inport Block In2. In the Signal
Attributes tab, the Port Dimensions field contains the Simulink.Parameter
object A. For Inport blocks, you specify symbolic dimensions in the Port
Dimensions field.

2 Open the Source Block Parameters dialog box of Inport block In3. In the Signal
Attributes tab, the Port Dimensions field contains the Simulink.Parameter
object B.

3 In the base workspace, select the Simulink.Parameter object Data. In the
Simulink.Parameter dialog box for Data, the Dimension field has the character
vector '[1,C]' , which is equivalent to '[1,5]' because C has a value of 5. The
Value field contains an array with 5 values, so the dimensions of C are consistent
with the dimension of the Data object. The dimensions of the Data object must
always be consistent with the value of the Simulink.Parameter object that is in
the Data object Dimensions field. Data has a Storage class of ImportedExtern.
A Simulink.Parameter object that uses a Simulink.Parameter for symbolic
dimension specification must have a storage class of either ImportedExtern or
ImportedExternPointer.

4 Open the Block Parameters dialog box of the 1-D Lookup Table1 block. The
Table data field contains the Simulink.Parameter, PT. The Breakpoints 1 field
contains the Simulink.Parameter, PB.

5 In the base workspace, view the information in the Simulink.Parameter dialog boxes
for PB and PT. These parameters contain the character vector '[1,D]' in their

14-4

 Implement Dimension Variants for Array Sizes in Generated Code

Dimensions field and are arrays consisting of 15 values. The dimension of D are
consistent with the dimension of the PB and PT parameters because D has a value of
15 .

6 Simulate the model. Simulink propagates the dimensions symbolically in the
diagram. During propagation, Simulink establishes modeling constraints
among symbols. Simulink then checks for consistency with these constraints
based on current numerical assignments. One modeling constraint for
rtwdemo_dimension_variants is that C=A+B. The Diagnostic Viewer produces
a warning for any violations of constraints.

7 Change the dimension specification to a different configuration and simulate the
model again.

Though not shown in this example, you can specify an n-D dimension expression with one
or more of the dimensions being a symbol (for example, '[A,B,C]' or '[1,A,3]').

14-5

14 Variant Systems in Embedded Coder

Generate Code for a Model with Dimension Variants

Once you have verified dimension specifications through model simulation, generate code
for rtwdemo_dimension_variants.

Create a temporary folder for the build and inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

model='rtwdemo_dimension_variants';

rtwbuild(model)

Starting build procedure for model: rtwdemo_dimension_variants

Successful completion of build procedure for model: rtwdemo_dimension_variants

View the generated code. In the rtwdemo_dimension_variants.h file, symbolic
dimensions are in data declarations.

hfile = fullfile(cgDir,'rtwdemo_dimension_variants_ert_rtw',...

 'rtwdemo_dimension_variants.h');

rtwdemodbtype(hfile,'/* External inputs', '/* Real-time', 1, 0);

/* External inputs (root inport signals with auto storage) */

typedef struct {

 real_T In2[A]; /* '<Root>/In2' */

 real_T In3[B]; /* '<Root>/In3' */

} ExtU;

/* External outputs (root outports fed by signals with auto storage) */

typedef struct {

 real_T Out1[A + B]; /* '<Root>/Out1' */

 real_T Out2[A + B]; /* '<Root>/Out2' */

} ExtY;

The rtwdemo_dimension_variants.h file contains data definitions and preprocessor
conditionals that define constraints established among the symbols during simulation.
One of these constraints is that the value of a symbolic dimension must be greater than
1. This file also includes the user-provided header file for any Simulink.Parameter
objects with an ImportedDefine custom storage class.

hfile = fullfile(cgDir,'rtwdemo_dimension_variants_ert_rtw',...

 'rtwdemo_dimension_variants.h');

14-6

 Implement Dimension Variants for Array Sizes in Generated Code

rtwdemodbtype(hfile,'#ifndef A', '/* Macros for accessing', 1, 0);

#ifndef A

#error The variable for the parameter "A" is not defined

#endif

#ifndef B

#error The variable for the parameter "B" is not defined

#endif

#ifndef C

#error The variable for the parameter "C" is not defined

#endif

#ifndef D

#error The variable for the parameter "D" is not defined

#endif

/*

 * Constraints for division operations in dimension variants

 */

#if (1 == 0) || (((A+B) % 1) != 0)

error "The preprocessor definition '1' must not be equal to zero and the division of '(A+B)' by '1' must not have a remainder."

#endif

/*

 * Registered constraints for dimension variants

 */

/* Constraint 'C == (A+B)' registered by:

 * '<Root>/1-D Lookup Table1'

 */

#if C != (A+B)

error "The preprocessor definition 'C' must be equal to '(A+B)'"

#endif

#if A <= 1

error "The preprocessor definition 'A' must be greater than '1'"

#endif

#if B <= 1

error "The preprocessor definition 'B' must be greater than '1'"

#endif

/* Constraint 'D > 1' registered by:

14-7

14 Variant Systems in Embedded Coder

 * '<Root>/1-D Lookup Table1'

 */

#if D <= 1

error "The preprocessor definition 'D' must be greater than '1'"

#endif

/* Constraint 'C > 1' registered by:

 * '<S2>/Assignment'

 */

#if C <= 1

error "The preprocessor definition 'C' must be greater than '1'"

#endif

In the rtwdemo_dimension_variants.c file, symbolic dimensions participate in loop
bound calculations, array size and index offset calculations, and a parameterized utility
function (for example, Lookup Table block) calculation.

cfile = fullfile(cgDir,'rtwdemo_dimension_variants_ert_rtw',...

 'rtwdemo_dimension_variants.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_dimension_variants_step(void)

{

 /* local scratch DWork variables */

 int32_T ForEach_itr;

 int32_T iU;

 real_T rtb_VectorConcatenate[A + B];

 int32_T s2_iter;

 /* Gain: '<Root>/Gain' incorporates:

 * Inport: '<Root>/In2'

 */

 for (iU = 0; iU <= (int32_T)(A - 1); iU++) {

 rtb_VectorConcatenate[iU] = 2.0 * rtU.In2[iU];

 }

 /* End of Gain: '<Root>/Gain' */

 /* Gain: '<Root>/Gain1' incorporates:

 * Inport: '<Root>/In3'

 */

 for (iU = 0; iU <= (int32_T)(B - 1); iU++) {

 rtb_VectorConcatenate[(int32_T)(A + iU)] = 3.0 * rtU.In3[iU];

14-8

 Implement Dimension Variants for Array Sizes in Generated Code

 }

 /* End of Gain: '<Root>/Gain1' */

 for (iU = 0; iU <= (int32_T)(C - 1); iU++) {

 /* Sum: '<Root>/Add' incorporates:

 * Constant: '<Root>/Constant'

 * Lookup_n-D: '<Root>/1-D Lookup Table1'

 */

 rtb_VectorConcatenate[iU] += look1_binlx(Data[iU], PB, PT, (uint32_T)

 ((uint32_T)D - 1U));

 }

 /* Outputs for Iterator SubSystem: '<Root>/For Each Subsystem' incorporates:

 * ForEach: '<S1>/For Each'

 */

 for (ForEach_itr = 0; ForEach_itr < (int32_T)(A + B); ForEach_itr++) {

 /* ForEachSliceAssignment: '<S1>/ImpAsg_InsertedFor_Out1_at_inport_0' incorporates:

 * ForEachSliceSelector: '<S1>/ImpSel_InsertedFor_In1_at_outport_0'

 * MATLAB Function: '<S1>/MATLAB Function'

 */

 /* MATLAB Function 'For Each Subsystem/MATLAB Function': '<S3>:1' */

 /* '<S3>:1:4' y = 2*u; */

 rtY.Out1[ForEach_itr] = 2.0 * rtb_VectorConcatenate[ForEach_itr];

 }

 /* End of Outputs for SubSystem: '<Root>/For Each Subsystem' */

 /* Outputs for Iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:

 * ForIterator: '<S2>/For Iterator'

 */

 /* Constant: '<Root>/Constant1' */

 for (s2_iter = 0; s2_iter < ((int32_T)A); s2_iter++) {

 /* Assignment: '<S2>/Assignment' incorporates:

 * Constant: '<S2>/Constant'

 * Outport: '<Root>/Out2'

 * Product: '<S2>/Product'

 * Selector: '<S2>/Selector'

 */

 if (s2_iter == 0) {

 for (iU = 0; iU <= (int32_T)((int32_T)(A + B) - 1); iU++) {

 rtY.Out2[iU] = rtb_VectorConcatenate[iU];

 }

 }

14-9

14 Variant Systems in Embedded Coder

 rtY.Out2[s2_iter] = rtb_VectorConcatenate[s2_iter] * 2.0;

 /* End of Assignment: '<S2>/Assignment' */

 }

 /* End of Constant: '<Root>/Constant1' */

 /* End of Outputs for SubSystem: '<Root>/For Iterator Subsystem' */

}

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

Code Generation Optimization Considerations

When you create a model with symbolic dimensions, be aware of the following
optimization considerations:

• The code generator reuses buffers only if dimension propagation establishes
equivalence among buffers.

• Two loops with symbolic loop bound calculations are fused together only if they share
equivalent symbolic expression.

• Optimizations do not eliminate a symbolic expression or condition check based on the
current value of a symbolic dimension.

Backward Compatibility

If an existing model uses Simulink.Parameter objects to specify dimensions, it can be
incompatible with dimension variants. Here are two common scenarios:

• Only a subset of blocks accepts symbolic dimension specifications. If a block is not
compatible with symbolic dimensions, it causes an update diagram error.

• Simulink.Parameter objects that you use to define symbolic dimensions or have
symbolic dimensions must have one of the storage classes described in this example.
If these specifications are not met, the build procedure for the model fails during code
generation.

You can address these backward compatibility issues by doing the following:

14-10

 Implement Dimension Variants for Array Sizes in Generated Code

• Turn off dimension variants feature by clearing the Allow symbolic dimension
specification parameter on the All Parameters tab in the Configuration
Parameters dialog box.

• Update Simulink.Parameter objects that define symbolic dimensions or have
symbolic dimension specifications.

• Update the model so that only supported blocks have symbolic dimensions or
propagate symbolic dimensions.

Supported Blocks

For a list of supported blocks, see the Block Support Table. To access the information
in this table, enter showblockdatatypetable at the MATLAB command prompt.
Unsupported blocks (for example, MATLAB Function) can still work in a model
containing symbolic dimensions as long as these blocks do not directly interact with
symbolic dimensions.

In the following cases, supported blocks do not propagate symbolic dimensions.

• For Unit Delay blocks, you specify a Simulink.Signal object that has symbolic
dimensions for the Block Parameters > State Attributes > State name
parameter.

• For Assignment and Selector blocks, you set the Block Parameters > Index Option
parameter to Index vector (dialog). For Selector and Assignment blocks, if you
specify a symbolic dimension for the Index parameter, the code generator does not
honor the symbolic dimension in the generated code.

• For the Sum block, you specify |+ for the Block Parameters > List of signs
parameter, and you set the Block Parameters > Sum over parameter to
Specified dimension.

• For the Product block, you specify a value of 1 for the Block Parameters > Number
of inputs parameter, and you set the Multiply over parameter to Specified
dimensions.

• For the ForEach block, you specify a symbolic dimension for the Partition Width
parameter.

Note that the following modeling patterns are among those modeling patterns that can
cause Simulink to error out:

14-11

14 Variant Systems in Embedded Coder

• For Switch blocks, an input signal or the Threshold parameter has symbolic
dimensions, and you select Allow different data input sizes (Results in
variable-size output signal).

• A Data Store Read block selects elements of a Simulink.Bus signal that has
symbolic dimensions.

• For Lookup Table blocks, on the Block Parameters > Algorithm tab, you select the
parameter Use one input port for all input data.

Limitations

The following products and software capabilities support dimension variants in that
they act on the numeric value of a symbolic dimension. These features do not support
the propagation of symbolic dimensions during model simulation and the preservation of
symbolic dimensions in the generated code.

• Code Replacement for Lookup Tables
• Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL) simulations
• Accelerator and rapid accelerator simulation modes
• Scope and simulation observation (for example, logging, SDI, and so on)
• Model coverage
• Simulink Design Verifier
• Fixed-Point Designer
• Data Dictionary
• Simulink PLC Coder
• HDL Coder

The following do not support dimension variants:

• System Object
• Stateflow
• Physical modeling
• Discrete-event simulation
• Frame data
• MATLAB functions

The following limitations also apply to models that utilize symbolic dimensions.

14-12

 Implement Dimension Variants for Array Sizes in Generated Code

• For simulation, the size of a symbolic dimension can equal 1. For code generation, the
size of a symbolic dimension must be greater than 1.

• If a symbolic dimension is a MATLAB expression that contains an arithmetic
expression and either a relational or logical expression, you must add +0 after the
relational or logical part of the MATLAB expression. If you do not add +0, the model
errors out during simulation because you cannot mix a boolean data type with
integer or double data types. Adding +0 converts the data type of the relational or
logical part of the expression from a boolean to a double.

For example, suppose in the Inport block parameters dialog box, the Port
dimensions parameter has the expression [(C==8)*D+E,3]. The Data type
parameter is set to double. Since C==8 is a relational expression, you must change
the expression to [((C==8)+0)*D+E,3] to prevent the model from producing an
error during simulation.

• Simulink propagates symbolic dimensions for an entire structure or matrix, but not
for a part of a structure or matrix. For example, the Simulink.Parameter P is a 2x3
matrix with symbolic dimensions [Dim,Dim1].

p=Simulink.Parameter(struct(‘A’,[1 2 3;4 5 6]))

p.DataType=’Bus:bo’

bo=Simulink.Bus

bo.Elements(1).Name=’A’

bo.Elements(1).Dimensions=’[Dim,Dim1]’

Dim=Simulink.Parameter(2)

Dim1=Simulink.Parameter(3)

p.CoderInfo.StorageClass=’Custom’

p.CoderInfo.CustomStorageClass=’Define’

Dim.CoderInfo.StorageClass=’Custom’

Dim.CoderInfo.CustomStorageClass=’Define’

Dim1.Coderinfo.StorageClass=’Custom’

Dim1.CoderInfo.CustomStorageClass=’Define’

If you specify p.A for a dimensions parameter, Simulink propagates the symbolic
dimensions [Dim,Dim1]. If you specify p.A(1,:), Simulink propagates the numeric
dimension 3 but not the symbolic dimension, Dim1.

• The MATLAB expression A(:) does not maintain symbolic dimension information.
Use A instead.

• The MATLAB expression P(2:A) does not maintain symbolic dimension information.
Use the Selector block instead.

14-13

14 Variant Systems in Embedded Coder

• The MATLAB expression P(2,:) is not a tunable expression, so it does not maintain
symbolic dimension information.

• Suppose that you set the value of a mask parameter, myMaskParam, by using a field
of a structure or by using a subset of the structures in an array of structures. You
store the structure or array of structures in a Simulink.Parameter object so that
you can use a Simulink.Bus object to apply symbolic dimensions to the structure
fields. Under the mask, you configure a block parameter to use one of the fields that
have symbolic dimensions. The table shows some example cases.

Description Value of mask parameter
(myMaskParam)

Value of block parameter

myStruct is a structure
with field gains, which
uses symbolic dimensions.

myStruct.gains myMaskParam

myStruct is a structure
with field hierarchy
myStruct.subStruct.gains.
The field gains uses
symbolic dimensions.

myStruct.subStruct myMaskParam.gains

myStructs is an array of
structures. Each structure
has a field gains, which
uses symbolic dimensions.

myStructs(2) myMaskParam.gains

In these cases, you cannot generate code from the model. As a workaround, choose one
of these techniques:

• Use the entire structure (myStruct) or array of structures (myStructs) as the
value of the mask parameter. Under the mask, configure the block parameter to
dereference the target field from the mask parameter by using an expression such
as myMaskParam.subStruct.gains.

• Use literal dimensions instead of symbolic dimensions for the target field (gains).

This limitation also applies when you use a field of a structure or a subset of the
structures in an array of structures as the value of a model argument in a Model
block.

14-14

 Implement Dimension Variants for Array Sizes in Generated Code

Related Examples
• “Configure Dimension Variants for S-Function Blocks” on page 14-47

14-15

14 Variant Systems in Embedded Coder

Code Generation for Variant Blocks

The code generator produces code from a Simulink model containing one or more Variant
Subsystem, Variant Source, and Variant Sink blocks. To learn how to create a model
containing variant blocks, see “Create a Simple Variant Model” (Simulink).

Code is generated for different variant choices, the active variant, and the default
variant. To generate code for variants, set the following conditions in the Variant
Subsystem, Variant Source, or Variant Sink block:

• Clear the option Override variant conditions and use the following variant.
• Select the option Analyze all choices during update diagram and generate

preprocessor conditionals.

Code generated for Variant Subsystem blocks is surrounded by C preprocessor
conditionals #if, #else, #elif, and #endif. Code generated for Variant Source
and Variant Sink blocks is surrounded by C preprocessor conditionals #if and
#endif. Therefore, the active variant is selected at compile time and the preprocessor
conditionals determine which sections of the code to execute.

To construct model reference variants and generate preprocessor directives in the
generated code, see the example “Use Model Variants to Generate Code That Uses C
Preprocessor Conditionals”.

To construct variant subsystems and generate preprocessor directives in the generated
code, see the example “Use Subsystem Variants To Generate Code That Uses C
Preprocessor Conditionals”.

To construct models with variant sources and sinks and generate preprocessor directives
in the generated code, see the example “Represent Variant Source and Sink Blocks in
Generated Code” on page 14-37

Restrictions on Variant Subsystem Code Generation

To generate preprocessor conditionals, the types of blocks that you can place within
the child subsystems of a Variant Subsystem block are limited. Connections are not
allowed in the Variant Subsystem block diagram. However, during the code generation
process, one VariantMerge block is placed at the input of each Outport block within
the Variant Subsystem block diagram. All of the child subsystems connect to each of the
VariantMerge blocks.

14-16

 Code Generation for Variant Blocks

In the figure below, the code generation process makes the following connections and
adds VariantMerge blocks to the sldemo_variant_subsystems model.

When compared to a generic Merge block the VariantMerge block can have only one
parameter which is the number of Inputs. The VariantMerge block is used for code
generation in variant subsystems internally, and is not available externally to be used in
models. The number of inputs for VariantMerge is determined and wired as shown in
the figure below.

The child subsystems of the Variant Subsystem block must be atomic subsystems.
Select Treat as atomic unit parameter in the Subsystem block parameters dialog, to
make the subsystems atomic. The VariantMerge blocks are inserted at the outport of
the subsystems if more than one child subsystems are present. If the source block of a
VariantMerge block input is nonvirtual, an error message will be displayed during code
generation. You must make the source block contiguous, by inserting Signal Conversion
blocks inside the variant choices. The signals that enter a Variant Subsystem block must
have the same signal properties (for example, signal dimensions, port width, and storage
class). The VariantMerge block does not support different signal properties because the

14-17

14 Variant Systems in Embedded Coder

input ports and output ports share the same memory. You can use symbolic dimensions
to generate code for a variant subsystem with child subsystems of different output signal
dimensions.

Generated Code Components Not Compiled Conditionally

The following components are not conditionally compiled even if only code for variant
subsystems or models that are conditionally compiled reference them.

• rtModel data structure fields
• #include's of utility files
• Global non-constant parameter structure fields; when the configuration parameter

Optimization > Signals and Parameters > Parameter structure is set to
NonHierarchical

• Global constant parameter structure fields that are referenced by multiple
subsystems activated by different variants

• Parameters that are configured to use an imported, exported, or custom code
generation storage class, and are referenced by multiple subsystems that are
activated by different variants

• Parameters that are configured to use an imported, exported, or custom code
generation storage class, and are used by variant model blocks

Code Generation for Variant Blocks with One Variant Choice

For modeling patterns in which a Root Inport block connects to a Variant block with one
variant choice, Simulink inserts a hidden block combination of a Ground block, Signal
Conversion block, and a Variant Merge block. If the variant choice evaluates to false, this
block combination produces an output of 0.0.

For example, the model Varianttoground contains a Variant Source block with one
variant choice. When the Variant Control SYSCONST_A==6 evaluates to true, the input
to Subsystem is a sine wave. When SYSCONST_A==6 evaluates to false, the input to
Subsystem is 0.0.

14-18

 Code Generation for Variant Blocks

The varianttoground.c file contains this code:

/* Sin: '<Root>/Sine Wave' */

#if SYSCONST_A == 6

 varianttoground_B.VM_Conditional_Signal_Subsystem_0_r64 = sin

 (varianttoground_M->Timing.t[0]);

#endif /* SYSCONST_A == 6 */

 /* End of Sin: '<Root>/Sine Wave' */

 /* SignalConversion: '<Root>/VM_SignalConversion_Subsystem_0' */

#if SYSCONST_A != 6

 varianttoground_B.VM_Conditional_Signal_Subsystem_0_r64 = 0.0;

#endif /* SYSCONST_A != 6 */

 /* End of SignalConversion: '<Root>/VM_SignalConversion_Subsystem_0' */

The comments in the generated code indicate the presence of the hidden signal
conversion block. The code does not contain a comment for the Variant Merge block

14-19

14 Variant Systems in Embedded Coder

because this block does not have associated generated code. The Variant Merge block is
used internally and is not in the Simulink library.

14-20

 Represent Subsystem and Model Variants in Generated Code

Represent Subsystem and Model Variants in Generated Code

In this section...

“Step 1: Represent Variant Choices in Simulink” on page 14-21
“Step 2: Specify Conditions That Control Variant Choice Selection” on page 14-25
“Step 3: Configure Model for Generating Preprocessor Conditionals” on page 14-27
“Step 4: Review Generated Code” on page 14-28
“Limitations” on page 14-31

Required products: Simulink, Embedded Coder, Simulink Coder

Using Simulink, you can create models that are based on a modular design platform
that comprises a fixed common structure with a finite set of variable components. The
variability helps you develop a single, fixed master design with variable components.
For more information, see “What Are Variants and When to Use Them” (Simulink)
(Simulink). When you implement variants in the generated code, you can:

• Reuse generated code from a set of application models that share functionality with
minor variations.

• Share generated code with a third party that activates one of the variants in the code.
• Validate the supported variants for a model and then choose to activate one variant

for a particular application, without regenerating and re-validating the code.
• Generate code for the default variant that is selected when an active variant does not

exist.

Using Embedded Coder, you can generate code from Simulink models containing one or
more variant choices. The generated code contains preprocessor conditionals that control
the activation of each variant choice.

This example shows how to represent variant choices in a Simulink model and then
prepare the model so that those variant choices are represented in generated code.

Step 1: Represent Variant Choices in Simulink

Variant choices are two or more configurations of a component in your model. This
example uses the model rtwdemo_preprocessor_subsys to illustrate how to represent

14-21

14 Variant Systems in Embedded Coder

variant choices inside Variant Subsystem blocks. For other ways to represent variant
choices, see “Options for Representing Variants in Simulink” (Simulink) (Simulink).

1 Open the model rtwdemo_preprocessor_subsys.

open_system('rtwdemo_preprocessor_subsys')

The model contains two Variant Subsystem blocks: LeftController and
RightController.

14-22

 Represent Subsystem and Model Variants in Generated Code

Note: You can only add Inport, Outport, Subsystem, and Model blocks inside a
Variant Subsystem block.

2 Open the LeftController block.

The LeftController block serves as the container for the variant choices. It contains
two variant choices represented using Subsystem blocks Nonlinear and Linear.

14-23

14 Variant Systems in Embedded Coder

The nonlinear controller subsystems implement hysteresis, whereas the linear
controller subsystems act as simple low-pass filters.

The Subsystem blocks have the same number of inports and outports as the
containing Variant Subsystem block.

Variant choices can have different numbers of inports and outports. See “Mapping
Inports and Outports of Variant Choices” (Simulink) (Simulink).

3 Open the Nonlinear block.

14-24

 Represent Subsystem and Model Variants in Generated Code

The Nonlinear block represents one variant choice that Simulink activates when a
condition is satisfied. The Linear block represents another variant choice.

Tip: When you are prototyping variant choices, you can create empty Subsystem
blocks with no inputs or outputs inside a Variant Subsystem block. The empty
subsystem recreates the situation in which that subsystem is inactive without the
need for completely modeling the variant choice.

Step 2: Specify Conditions That Control Variant Choice Selection

You can switch between variant choices by constructing conditional expressions called
variant controls for each variant choice represented in a Variant Subsystem block.
Variant controls determine which variant choice is active, and changing the value of a
variant control causes the active variant choice to switch.

A variant control is a Boolean expression that activates a specific variant choice when it
evaluates to true.

For more information, see “Introduction to Variant Controls” (Simulink) (Simulink).

1 Right-click the LeftController block and select Block Parameters (Subsystem).

14-25

14 Variant Systems in Embedded Coder

The Condition column displays the Boolean expression that when true
activates each variant choice. In this example, these conditions are specified using
Simulink.Variant objects LINEAR and NONLINEAR.

2 Use these commands to specify a variant control using a Simulink.Variant object.

LINEAR = Simulink.Variant;

LINEAR.Condition = 'VSSMODE==0';

NONLINEAR = Simulink.Variant;

NONLINEAR.Condition = 'VSSMODE==1';

Here, VSSMODE is called a variant control variable that can be specified in one of the
ways listed in “Approaches for Specifying Variant Controls” (Simulink) (Simulink).

3 Define the variant control variable VSSMODE.

14-26

 Represent Subsystem and Model Variants in Generated Code

You can define VSSMODE as a scalar variable. However, to generate code, specify
variant control variables as Simulink.Parameter objects. In addition to enabling
the specification of parameter value, Simulink.Parameter objects allow you to
specify other attributes such as data type that are required for generating code.

VSSMODE = Simulink.Parameter;

VSSMODE.Value = 1;

VSSMODE.DataType = 'int32';

VSSMODE.CoderInfo.StorageClass = 'Custom';

VSSMODE.CoderInfo.CustomStorageClass = 'ImportedDefine';

VSSMODE.CoderInfo.CustomAttributes.HeaderFile = 'rtwdemo_importedmacros.h';

Variant control variables defined as Simulink.Parameter objects can have one of
these storage classes.

• Define or ImportedDefine with header file specified
• CompilerFlag

• SystemConstant (AUTOSAR)

• Your own custom storage class that defines data as a macro

You can also convert a scalar variant control variable into a Simulink.Parameter
object. See “Convert Variant Control Variables into Simulink.Parameter Objects”
(Simulink) (Simulink).

Step 3: Configure Model for Generating Preprocessor Conditionals

Code generated for each variant choice is enclosed within C preprocessor conditionals
#if, #else, #elif, and #endif. Therefore, the active variant is selected at compile time
and the preprocessor conditionals determine which sections of the code to execute.

1 In the Simulink editor, select Simulation > Model Configuration Parameters.
2 Select the Code Generation pane, and set System target file to ert.tlc.
3 In the Report pane, select Create code generation report.
4 On the All Parameters tab of the Configuration Parameters dialog box, clear

Ignore custom storage classes and click Apply.
5 In your model, right-click the LeftController block and select Block Parameters

(Subsystem).

14-27

14 Variant Systems in Embedded Coder

6 Select the option Analyze all choices during update diagram and generate
preprocessor conditionals.

When you select this option, Simulink analyzes all variant choices during an update
diagram or simulation. This analysis provides early validation of the code generation
readiness of all variant choices.

7 Clear the option Override variant conditions and use following variant.
8 Build the model.

Step 4: Review Generated Code

The code generation report contains a section dedicated to the subsystems that have
variants controlled by preprocessor conditionals.

1 To open the Code Generation Report click Code > C/C++ Code > Code Generation
Report > Open Model Report.

14-28

 Represent Subsystem and Model Variants in Generated Code

2 Select the Code Variant Report from the left.

14-29

14 Variant Systems in Embedded Coder

In this example, the generated code includes references to the Simulink.Variant
objects LINEAR and NONLINEAR. The code also includes the definitions of macros
corresponding to those variants. The definitions depend on the value of VSSMODE,

14-30

 Represent Subsystem and Model Variants in Generated Code

which is supplied in an external header file rtwdemo_importedmacros.h. The
active variant is determined by using preprocessor conditionals (#if) on the macros
(#define) LINEAR and NONLINEAR.

3 Select the rtwdemo_preprocessor_subsys_types.h file from the left.

This file contains the definitions of macros LINEAR and NONLINEAR.

#ifndef LINEAR

 #define LINEAR (VSSMODE == 0)

#endif

#ifndef NONLINEAR

 #define NONLINEAR (VSSMODE == 1)

#endif

4 Select the rtwdemo_preprocessor_subsys.c file from the left.

In this file, calls to the step and initialization functions of each variant are
conditionally compiled.

 /* Outputs for Atomic SubSystem: '<Root>/LeftController' */

#if LINEAR

 /* Output and update for atomic system: '<S1>/Linear' */

 ...

#elif NONLINEAR

 /* Output and update for atomic system: '<S1>/Nonlinear' */

 ...

#endif

Limitations

• When you are generating code for Model Variants blocks and Variant Subsystem
blocks, the blocks cannot have:

• Mass matrices
• Function call ports
• Outports with constant sample time
• Simscape blocks

• The Model Variants block and its referenced models must have the same number of
inports and outports.

14-31

14 Variant Systems in Embedded Coder

• The port numbers and names for each active child subsystem must belong to a subset
of the port numbers and names of the parent Variant Subsystem block.

Related Examples
• “Define, Configure, and Activate Variants” (Simulink)
• “Variant Subsystems” (Simulink)
• “Model Reference Variants” (Simulink)

More About
• “What Are Variants and When to Use Them” (Simulink)
• “Introduction to Variant Controls” (Simulink)

14-32

 Generate Preprocessor Conditionals for Variant Systems

Generate Preprocessor Conditionals for Variant Systems

In this section...

“Define Variant Controls” on page 14-33
“Configure Model for Generating Preprocessor Conditional Directives” on page 14-34
“Special Considerations for Generating Preprocessor Conditionals” on page 14-35

Define Variant Controls

For variant systems, conditional expressions called variant controls determine which
variant choice is active. This example shows how to define variant controls for generating
code.

1 Open the Model Explorer. Select the base workspace.
2 A variant control can be a condition expression, a Simulink.Variant class (Simulink)

object specifying a condition expression or a Simulink.Parameter object. In the
Model Explorer, select Add > Simulink Parameter. Specify a name for the new
parameter.

3 Use the function Simulink.VariantManager.findVariantControlVars
to find and convert MATLAB variables used in variant control expressions into
Simulink.Parameter objects. For an example, see “Convert Variant Control
Variables into Simulink.Parameter Objects” (Simulink).

4 On the Simulink.Parameter property dialog box, specify the Value and Data
type.

5 Select one of these Storage class values.

• Define

• ImportedDefine(Custom)

• CompilerFlag(Custom)

• A storage class created using the Custom Storage Class Designer. Your storage
class must have the Data initialization parameter set to Macro and the Data
scope parameter set to Imported. See “Use Custom Storage Class Designer” on
page 23-35 for more information.

6 Specify the value of the variant control. If the storage class is
ImportedDefine(Custom), do the following:

14-33

14 Variant Systems in Embedded Coder

a Specify the Header File parameter as an external header file in the Custom
Attributes section of the Simulink.Parameter property dialog box.

b Enter the values of the variant controls in the external header file.

Note: The generated code refers to a variant control as a user-defined macro.
The generated code does not contain the value of the macro. The value of the
variant control determines the active variant in the compiled code.

If the variant control is a CompilerFlag custom storage class, the value of the
variant control is set at compile time. Use the Configuration Parameters
> Code Generation > Custom Code > Additional build information >
Defines parameter to add a list of variant controls (macro definitions) to the
compiler command line. For example, for variant control VSSMODE, in the text
field for the Defines parameter, enter:

-DVSSMODE=1

If you want to modify the value of the variant control after generating a
makefile, use a makefile option when compiling your code. For example, at a
command line outside of MATLAB, enter:

makecommand -f model.mk DEFINES_CUSTOM="-DVSSMODE=1"

Note: You can define the variant controls using Simulink.Parameter object of
enumerated type. This approach provides meaningful names and improves the
readability of the conditions. The generated code includes preprocessor conditionals to
check that the variant condition contains valid values of the enumerated type.

Configure Model for Generating Preprocessor Conditional Directives

1 Open the Configuration Parameters dialog box.
2 Select the Code Generation pane, and set System target file as ert.tlc.
3 In the Report pane, select Create code generation report.
4 On the All Parameters tab, clear “Ignore custom storage classes” (Simulink Coder).

In order to generate preprocessor conditionals, you must use custom storage classes.

14-34

 Generate Preprocessor Conditionals for Variant Systems

5 In the Model Variants block parameter dialog box, select the Generate
preprocessor conditionals parameter option. In the Variant Subsystem, Variant
Source, or Variant Sink block parameter dialog boxes, select the Analyze all
choices during update diagram and generate preprocessor conditionals
option.

6 In both cases, clear the option to Override variant conditions and use following
variant.

7 Generate code.

Special Considerations for Generating Preprocessor Conditionals

• The code generation process checks that the inports and outports of a Model Variants
block are identical (same port numbers and names) to the corresponding inports and
outports of its variants. The build process for simulation does not make this check.
Therefore, if your variant block contains mismatched inports or outports, the code
generation process issues an error.

• The port numbers and names for each child variant subsystem must belong to a
subset of the port numbers and names of the parent Variant Subsystem block.

• The code generation process checks that there is at least one active variant by
using the variant control values stored in the base workspace. The variant control
that evaluates to true becomes the active variant. If none of the variant controls
evaluates to true, the default variant, if specified, becomes the active variant. The
code generation process issues an error if an active variant does not exist.

• Implement the condition expressions of the variant objects such that only one
evaluates to true. The generated code includes a test of the variant objects to
determine that there is only one active variant. If this test fails, your code will not
compile.

• If you comment out child subsystems listed in the Variant Choices table in the
Variant Subsystem block parameter dialog box, the code generator does not generate
code for the commented out subsystems.

• If the sample time for a default variant differs from that of the other variant choices,
the #else preprocessor conditional is not generated for the default variant. Instead,
an #if !(<variant conditions>) is generated.

• For Variant Subsystems, the model_private.h file contains conditional parameter
definitions. For example, if the value of a Constant block is a Simulink.Parameter
with an ImportedDefine custom storage class, and the Constant block is in a
Variant Subsystem, the conditional definition of the Simulink.Parameter is in the
model_private.h file.

14-35

14 Variant Systems in Embedded Coder

Related Examples
• “Create Variant Controls Programmatically” (Simulink)
• “Working with Variant Choices” (Simulink)

14-36

 Represent Variant Source and Sink Blocks in Generated Code

Represent Variant Source and Sink Blocks in Generated Code

In this section...

“Represent Variant Source and Variant Sink blocks in Simulink” on page 14-37
“Specify Conditions That Control Variant Choice Selection” on page 14-42
“Review the Generated Code” on page 14-42
“Generate Code with Zero Active Variant Controls” on page 14-44
“Global Data Guarding Limitation” on page 14-45
“State Logging Limitation” on page 14-45

You can use Variant Source and Variant Sink blocks to perceive multiple
implementations of a model in a single, unified block diagram. Each implementation
depends on conditions that you set for Variant Source and Variant Sink blocks. Simulink
propagates these conditions to upstream and downstream blocks including root input and
root output ports.

You can generate:

• Code from a Simulink model containing Variant Sink and Variant Source blocks.
• Code that contains preprocessor conditionals that control the activation of each

variant choice.
• Preprocessor conditionals that allow for no active variant choice.

Represent Variant Source and Variant Sink blocks in Simulink

This example shows how Variant Source blocks make model elements conditional.

1 From the Simulink Block Library, add 1 Sine Wave Function block, two Add blocks,
three Gain blocks, two Outports, and two Variant Source blocks into a new model.

2 Open the Sine Wave Function block. For the Sine type parameter, select Sample
based. For the Time (t) parameter, select Use simulation time. For the Sample
time parameter, insert a value of 0.2.

3 Make four copies of the Sine Wave Function block.
4 Connect and name the blocks as shown.

14-37

14 Variant Systems in Embedded Coder

5 Insert values of 2, 3, and 4 in the Gain2, Gain3, and Gain4 blocks, respectively.
6 Give the model the name inline_variants_example.
7 Open the Block Parameters dialog box for Variant Source.

14-38

 Represent Variant Source and Sink Blocks in Generated Code

8 In the Variant control column, for Port 1, replace Variant_1 with V==1. For Port
2, replace Variant_2 with V==2.

9 Open the Block Parameters dialog box for Variant Source1.
10 In the Variant control column, replace Variant_1 with W==1. For Port 2, replace

Variant_2 with W==2.
11 In the MATLAB Command Window, to create Simulink.Parameter for the variant

control variables V and W, use these commands:

14-39

14 Variant Systems in Embedded Coder

V = Simulink.Parameter;

V.Value = 1;

V.DataType=’int32’;

V.CoderInfo.StorageClass = 'custom';

V.CoderInfo.CustomStorageClass = 'Define';

V.CoderInfo.CustomAttributes.HeaderFile='inline_importedmacro.h'

W = Simulink.Parameter;

W.Value = 2;

W.DataType=’int32’;

W.CoderInfo.StorageClass = 'custom';

W.CoderInfo.CustomStorageClass = 'Define';

W.CoderInfo.CustomAttributes.HeaderFile='inline_importedmacro.h'

In this example, the variant control variables are Simulink.Parameter objects.
For code generation, if you use Simulink.Variant objects to specify variant
controls, use Simulink.Parameter objects to specify their conditions. If you
use scalar variant control variables to simulate the model, you can convert those
variables into Simulink.Parameter objects. See “Convert Variant Control
Variables into Simulink.Parameter Objects” (Simulink).

Variant control variables defined as Simulink.Parameter objects can have one of
these storage classes:

• Define with header file specified
• ImportedDefine with header file specified
• CompilerFlag

• SystemConstant (AUTOSAR)

• User-defined custom storage class that defines data as a macro in a specified
header file

12 Simulate the model.

14-40

 Represent Variant Source and Sink Blocks in Generated Code

Input port 1 is the active choice for Variant Source because the value of variant
control variable V is 1. Input port 2 is the active choice for Variant Source1
because the value of variant control variable W is 2. The inactive choices are removed
from execution, and their paths are grayed-out in the diagram.

14-41

14 Variant Systems in Embedded Coder

Specify Conditions That Control Variant Choice Selection

You can generate code in which each variant choice is enclosed within C preprocessor
conditionals #if and #endif. The compiler chooses the active variant at compile time
and the preprocessor conditionals determine which sections of the code to execute.

1 In the Simulink editor, select Simulation > Model Configuration Parameters.
2 Select the Code Generation pane, and set System target file to ert.tlc.
3 In the Report pane, select Create code generation report.
4 In your model, open the block parameters dialog box for Variant Source.
5 Select the Analyze all choices during update diagram and generate

preprocessor conditionals parameter. During an update diagram or simulation,
when you select this parameter, Simulink analyzes all variant choices. This analysis
provides early validation of the code generation readiness of variant choices. During
code generation, when you select this parameter, the code generator generates
preprocessor conditionals that control the activation of each variant choice.

6 Clear the Override variant conditions and use the following variant
parameter.

7 Clear the Allow zero active variant controls parameter.
8 Open the Block Parameters dialog box for Variant Source 1. Repeat steps 5

through 7.
9 Build the model. When code generation is complete, the Code Generation Report is

displayed.

Review the Generated Code

1 In the code generation report, select the inline_variants_example.c file.
2 In the inline_variants_example.c file, calls to the

inline_variants_example_step function and the
inline_variants_example_initialize functions are conditionally compiled as
shown:

/* Model step function */

void inline_variants_example_step(void)

{

 real_T rtb_Sine4;

 real_T rtb_VariantMerge_For_Variant_So;

14-42

 Represent Variant Source and Sink Blocks in Generated Code

 /* Sin: '<Root>/Sine1' */

#if V == 1

 rtb_Sine4 = sin((real_T)inline_variants_example_DW.counter * 2.0 *

 3.1415926535897931 / 10.0);

#endif /* V == 1 */

 /* End of Sin: '<Root>/Sine1' */

 /* Sin: '<Root>/Sine2' incorporates:

 * Sin: '<Root>/Sine3'

 * Sum: '<Root>/Add'

 */

#if V == 2

 rtb_Sine4 = sin((real_T)inline_variants_example_DW.counter_i * 2.0 *

 3.1415926535897931 / 10.0) + sin((real_T)

 inline_variants_example_DW.counter_f * 2.0 * 3.1415926535897931 / 10.0);

#endif /* V == 2 */

 /* End of Sin: '<Root>/Sine2' */

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain3'

 */

 inline_variants_example_Y.Out1 = 3.0 * rtb_Sine4;

 /* Gain: '<Root>/Gain2' */

#if W == 1

 rtb_VariantMerge_For_Variant_So = 2.0 * rtb_Sine4;

#endif /* W == 1 */

 /* End of Gain: '<Root>/Gain2' */

 /* Sin: '<Root>/Sine4' incorporates:

 * Sin: '<Root>/Sine5'

 * Sum: '<Root>/Add1'

 */

#if W == 2

14-43

14 Variant Systems in Embedded Coder

 rtb_VariantMerge_For_Variant_So = sin((real_T)

 inline_variants_example_DW.counter_fe * 2.0 * 3.1415926535897931 / 10.0) *

 2.0 + sin((real_T)inline_variants_example_DW.counter_e * 2.0 *

 3.1415926535897931 / 10.0);

#endif /* W == 2 */

 /* End of Sin: '<Root>/Sine4' */

/* Outport: '<Root>/Out2' incorporates:

 * Gain: '<Root>/Gain4'

 */

 inline_variants_example_Y.Out2 = inline_variants_example_P.Gain4_Gain *

 rtb_VariantMerge_For_Variant_So;

...

}

The variables rtb_Sine4 and rtb_VariantMerge_For_Variant_So hold
the input values to the Variant Source blocks. Notice that the code for these
variables is conditional. The variables inline_variants_example_Y.Out1 and
inline_variants_example_Y.Out2 hold the output values of the Variant Source
blocks. Notice that the code for these variables is not conditional.

Generate Code with Zero Active Variant Controls

You can generate code in which blocks connected to the input and the output of a Variant
Source block are conditional.

1 For Variant Source, open the Block Parameters dialog box. Select the parameter
Allow zero active variant controls.

2 For Variant Source 1, open the Block Parameters dialog box. Select the
parameter Allow zero active variant controls.

When you select Allow zero active variant controls parameter, you can generate code
for a model containing Variant Source and Variant Sink blocks even when you specify a
value for a variant control variable that does not allow for an active variant. Choosing
a value for a variant control variable that does not allow for an active variant and not
selecting the Allow zero active variant controls parameter, produces an error.

Generate code for inline_variants_example. Notice in the
inline_variants_example.c file, that the code for the variables

14-44

 Represent Variant Source and Sink Blocks in Generated Code

inline_variants_example_Y.Out1 and inline_variants_example_Y.Out2 is
conditional.

/* Model step function */

void inline_variants_example_step(void)

{

 ...

 #if V == 1 || V == 2

 inline_variants_example_Y.Out1 = 3.0 * rtb_Sine4;

#endif /* V == 1 || V == 2 */

 ...

#if (V == 1 && W == 1) || (V == 2 && W == 1) || W == 2

 inline_variants_example_Y.Out2 = 4.0 * rtb_VariantMerge_For_Variant_So;

#endif /* (V == 1 && W == 1) || (V == 2 && W == 1) || W == 2 */

 ...

Global Data Guarding Limitation

For external ports and most DWork vectors, signals, and states, preprocessor
conditionals (#if and #endif) surround global data variable declarations. For models
in which you enable C API code for global block output signals, global block parameters,
and discrete and continuous states, preprocessor conditionals do not surround global
data variable declarations. For information on the C API, see “Exchange Data Between
Generated and External Code Using C API” (Simulink Coder).

State Logging Limitation

There are some rare cases in which preprocessor conditionals do not surround global
data structures that contain state variable declarations. For models that contain
Variant Source blocks or Variant Sink blocks and also contain blocks that maintain
state information, such as Unit Delay blocks, the exclusion of preprocessor conditionals
surrounding state variable declarations can lead to a mismatch between simulation and
code generation results.

For example, suppose that a model has a Variant Source block with four variant
choices. One of these choices contains blocks with state information. If you simulate

14-45

14 Variant Systems in Embedded Coder

the model with the active variant that is other than the variant choice that contains
state information, there is no logged state data. In the model.h file, the generated
code still initializes these global state variables to 0 because #if and #endif guards
do not surround the state variable declarations. If you create a model.mat file from a
model.exe file, and compare it to the simulation output, the results do not match. For
this example, the simulation output is empty because there is no logged state data. The
model.mat file contains multiple values of 0.

If the active variant is the variant choice containing state information, the results do
match.

Related Examples
• “Define and Configure Variant Sources and Sinks” (Simulink)
• “Variant Condition Propagation with Variant Sources and Sinks” (Simulink)
• “Introduction to Variant Controls” (Simulink)

14-46

 Configure Dimension Variants for S-Function Blocks

Configure Dimension Variants for S-Function Blocks

To configure symbolic dimensions for S-function blocks, you can use the following C/C
++ functions. You can configure S-functions to support forward propagation, backward
propagation, or forward and backward propagation of symbolic dimensions during
simulation.

Many of these functions return the variable SymbDimsId. A SymbDimsId is a unique
integer value. This value corresponds to each symbolic dimension specification that
you create or is the result of a mathematical operation that you perform with symbolic
dimensions.

Note: If you are writing an S-function with symbolic dimensions, you can not use the
%roll directive. You must write an explicit loop.

C/C++ S-Functions Purpose

ssSetSymbolicDimsSupport Specify whether or not an S-function
supports symbolic dimensions.

mdlSetInputPortSymbolicDimensions Specify the symbolic dimensions of an
input port and how those dimensions
propagate forward.

mdlSetOutputPortSymbolicDimensions Specify the symbolic dimensions of an
output port and how those dimensions
propagate backward.

ssRegisterSymbolicDimsExpr Create a SymbDimsId from an
expression string (aExpr). The
expression string must form a valid
syntax in C.

ssRegisterSymbolicDims Create a SymbDimsId from a vector of
SymbDimsIds.

ssRegisterSymbolicDimsString Create a SymbDimsId from an
identifier string (aString).

ssRegisterSymbolicDimsIntValue Create a SymbDimsId from an integer
value (aIntValue)

14-47

14 Variant Systems in Embedded Coder

C/C++ S-Functions Purpose

ssRegisterSymbolicDimsPlus Create a SymbDimsId by adding two
symbolic dimensions.

ssRegisterSymbolicDimsMinus Create a SymbDimsId by subtracting
two symbolic dimensions.

ssRegisterSymbolicDimsMultiply Create a SymbDimsId by multiplying
two symbolic dimensions.

ssRegisterSymbolicDimsDivide Create a SymbDimsId by dividing two
symbolic dimensions.

ssGetNumSymbolicDims Get the number of dimensions for a
SymbDimsId.

ssGetSymbolicDim Get a SymbDimsId from a vector of
SymbDimsIds.

ssSetInputPortSymbolicDimsId Set the precompiled SymbDimsId of an
input port. You can call this function
from inside the mdlInitializeSizes
function.

ssGetCompInputPortSymbolicDimsId Get the compiled SymbDimsId of an
input port.

ssSetCompInputPortSymbolicDimsId Set the compiled SymbDimsId of an
input port.

ssSetOutputPortSymbolicDimsId Set the precompiled SymbDimsId of an
output port. You can call this function
from inside the mdlInitializeSizes
function.

ssGetCompOutputPortSymbolicDimsId Get the compiled SymbDimsId of an
output port.

ssSetCompOutputPortSymbolicDimsId Set the compiled SymbDimsId of an
output port.

ssSetCompDWorkSymbolicDimsId Set the compiled SymbDimsId of
an index of a block’s data type work
(DWork) vector.

14-48

 Configure Dimension Variants for S-Function Blocks

S-Function That Supports Forward Propagation of Symbolic Dimensions

This S-function subtracts the symbolic dimension B from a symbolic input dimension.
It does not support backward propagation of symbolic dimensions because the compiled
symbolic dimensions of the input port are not set. Symbolic dimensions are set for the
output port, so forward propagation occurs.

static void mdlInitializeSizes(SimStruct *S)

{

 // Enable symbolic dimensions for the s-function.

 ssSetSymbolicDimsSupport(S, true);

}

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_INPUT_PORT_SYMBOLIC_DIMENSIONS

static void mdlSetInputPortSymbolicDimensions(SimStruct* S,

 int_T portIndex, SymbDimsId symbDimsId)

{

 assert(0 == portIndex);

 // Set the compiled input symbolic dimension.

 ssSetCompInputPortSymbolicDimsId(S, portIndex, symbDimsId);

 // Register “B” and get its symbolic dimensions id.

 const SymbDimsId symbolIdForB = ssRegisterSymbolicDimsString(S, "B");

 // Subtract “B” from the input symbolic dimension.

 const SymbDimsId outputDimsId =

 ssRegisterSymbolicDimsMinus(S, symbDimsId, symbolIdForB);

 //Set the resulting symbolic dimensions id as the output.

 ssSetCompOutputPortSymbolicDimsId(S, portIndex, outputDimsId);

}

#endif

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_OUTPUT_PORT_SYMBOLIC_DIMENSIONS

static void mdlSetOutputPortSymbolicDimensions(SimStruct *S,

 int_T portIndex, SymbDimsId symbDimsId)

{

 assert(0 == portIndex);

 // The input dimensions are not set, so this S-function only

 // supports forward propagation.

 ssSetCompOutputPortSymbolicDimsId(S, portIndex, symbDimsId);

}

#endif

14-49

14 Variant Systems in Embedded Coder

S-Function That Supports Forward and Backward Propagation of
Symbolic Dimensions

This S-function transposes two symbolic dimensions. It supports forward and backward
propagation of symbolic dimensions because the compiled symbolic dimension of both the
input and output ports are set.

static void mdlInitializeSizes(SimStruct *S)

{

 // Enable symbolic dimensions for the s-function.

 ssSetSymbolicDimsSupport(S, true);

}

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_INPUT_PORT_SYMBOLIC_DIMENSIONS

static void mdlSetInputPortSymbolicDimensions(SimStruct* S,

 int_T portIndex, SymbDimsId symbDimsId)

{

 assert(0 == portIndex);

 ssSetCompInputPortSymbolicDimsId(S, portIndex, symbDimsId);

 assert(2U == ssGetNumSymbolicDims(S, symbDimsId));

 if (SL_INHERIT ==

 ssGetCompOutputPortSymbolicDimsId(S, portIndex)) {

 const SymbDimsId idVec[] = {

 ssGetSymbolicDim(S, symbDimsId, 1),

 ssGetSymbolicDim(S, symbDimsId, 0)};

 // Register the transposed dimensions.

 // Set the output symbolic dimension to the resulting id.

 const SymbDimsId outputDimsId =

 ssRegisterSymbolicDims(S, idVec, 2U);

 ssSetCompOutputPortSymbolicDimsId(S, portIndex,

 outputDimsId);

 }

}

#endif

#if defined(MATLAB_MEX_FILE)

#define MDL_SET_OUTPUT_PORT_SYMBOLIC_DIMENSIONS

static void mdlSetOutputPortSymbolicDimensions(SimStruct *S,

14-50

 Configure Dimension Variants for S-Function Blocks

 int_T portIndex, SymbDimsId symbDimsId)

{

 assert(0 == portIndex);

 ssSetCompOutputPortSymbolicDimsId(S, portIndex, symbDimsId);

 assert(2U == ssGetNumSymbolicDims(S, symbDimsId));

 if (SL_INHERIT ==

 ssGetCompInputPortSymbolicDimsId(S, portIndex)) {

 const SymbDimsId idVec[] = {

 ssGetSymbolicDim(S, symbDimsId, 1),

 ssGetSymbolicDim(S, symbDimsId, 0)};

 const SymbDimsId inputDimsId =

 ssRegisterSymbolicDims(S, idVec, 2U);

 // Register the transposed dimensions.

 // Set the input symbolic dimension to the resulting id.

 ssSetCompInputPortSymbolicDimsId(S, portIndex, inputDimsId);

 }

}

#endif

Related Examples
• “Implement Dimension Variants for Array Sizes in Generated Code” on page 14-2

14-51

14 Variant Systems in Embedded Coder

Generate Code for Variant Subsystem with Child Subsystems of
Different Output Signal Dimensions

In this section...

“Example Model” on page 14-52
“Simulate Model” on page 14-53
“Generate Code” on page 14-54

This example shows how to use symbolic dimensions to generate code with preprocessor
conditionals for a variant subsystem consisting of child subsystems of different output
signal dimensions. The value of the variant control variable determines the active
variant choice and the output signal dimensions. By changing the value of the variant
control variable, you change the active variant and the output signal dimensions in the
generated code.

Example Model

The model slexVariantSymbolicDims contains a Variant Subsystem consisting of
the child subsystems Subsystem and Subsystem1. When the variant control variable
Var has a value of 1, Subsystem is the active variant. When Var has a value of 2,
Subsystem1 is the active variant.

14-52

 Generate Code for Variant Subsystem with Child Subsystems of Different Output Signal Dimensions

Simulate Model

To generate code with preprocessor conditionals, the output signal dimensions of
the child subsystems must be the same during simulation. In this example, double-
clicking the subsystem Activate Variant Choice changes the active variant and the
output signal dimension. When Var equals 1, the output signal dimension of each child
subsystem is 5. When Var equals 2, the output signal dimension of each child subsystem
is 6.

1 Open the example model slexVariantSymbolicDims.
2 From the Display > Signals & Ports menu, select Signal Dimensions.
3 Open the Variant Subsystem Block Parameters dialog box. The Analyze all choices

during update diagram and generate preprocessor conditionals parameter is
selected.

4 Open Subsystem. In the Constant Block Parameters dialog box, the Constant
value parameter is P1.

5 Open Subsystem1. In the Constant Block Parameters dialog box, the Constant
value parameter is P2.

14-53

14 Variant Systems in Embedded Coder

6 Open the base workspace. The Simulink.Parameters P1 and P2 are arrays with
dimensions ‘[1,A]’. The Simulink.Parameter A has a value of 5. Var has a
value of 1.

7 Simulate the model. Subsystem is the active variant with an output signal
dimension of 5.

8 Double-click the masked subsystem ActivateVariant.
9 In the base workspace, Var has a value of 2. P1 and P2 have a dimension of 6. A has

a value of 6.
10 Simulate the model. Subsystem1 is the active variant with an output signal

dimension of 6.

In the base workspace, A has a Storage class of ImportedDefine(Custom). To use
a Simulink.Parameter object for dimension specification, it must have one of these
storage classes:

• Define or ImportedDefine with header file specified
• CompilerFlag

• User-defined custom storage class that defines data as a macro in a specified header
file

In the base workspace, P1 and P2 have a storage class of ImportedExtern. A
Simulink.Parameter object that uses a Simulink.Parameter for symbolic
dimension specification must have a storage class of either ImportedExtern or
ImportedExternPointer.

Generate Code

1 Open the header file slexVariantSymbolicDims_variant_defines.h. The definition of A
is conditional upon the value of Var.

/* Copyright 2016 The MathWorks, Inc. */

// To select variant choice during compile, define Var at compile time,

#ifndef Var

#define Var 1

#endif

#if Var == 1

#define A 5

14-54

 Generate Code for Variant Subsystem with Child Subsystems of Different Output Signal Dimensions

#elif Var == 2

#define A 6

#else

#error "Variant control variable, Var, must be defined as 1 or 2"

#endif

2 Generate code.
3 Open the slexVariantSymbolicDims.h file. The output dimension size is A.

/* External outputs (root outports fed by signals with auto storage) */

typedef struct {

 int32_T Out1[A]; /* '<Root>/Out1' */

} ExternalOutputs_slexVariantSymb;

4 Open the slexVariantSymbolicDims.c file. If Var equals 1, P1 has five values. If
Var equals 2, P2 has six values. In the Configuration Parameters dialog box, on the
Code Generation > Custom Code pane, the Source file parameter contains this
code.

/* user code (top of source file) */

#if Var == 1

int32_T P1[] = { 5, 5, 5, 5, 5 };

#elif Var == 2

int32_T P2[] = { 6, 6, 6, 6, 6, 6 };

#endif

Preprocessor conditionals control the size of A and which array, P1 or P2, is active in
the generated code. By changing the value of Var, you can change the size of A and
the active array.

Related Examples
• “Implement Dimension Variants for Array Sizes in Generated Code” on page 14-2
• “Represent Subsystem and Model Variants in Generated Code” on page 14-21

14-55

15

Timers in Simulink Coder

• “Absolute and Elapsed Time Computation” on page 15-2
• “Access Timers Programmatically” on page 15-5
• “Generate Code for an Elapsed Time Counter” on page 15-9
• “Absolute Time Limitations” on page 15-12

15 Timers in Simulink Coder

Absolute and Elapsed Time Computation

In this section...

“About Timers” on page 15-2
“Timers for Periodic and Asynchronous Tasks” on page 15-3
“Allocation of Timers” on page 15-3
“Integer Timers in Generated Code” on page 15-3
“Elapsed Time Counters in Triggered Subsystems” on page 15-4

About Timers

Certain blocks require the value of either absolute time (that is, the time from the start
of program execution to the present time) or elapsed time (for example, the time elapsed
between two trigger events). Targets that support the real-time model (rtModel) data
structure provide efficient time computation services to blocks that request absolute or
elapsed time. Absolute and elapsed timer features include

• Timers are implemented as unsigned integers in generated code.
• In multirate models, at most one timer is allocated per rate. If no blocks executing

at a given rate require a timer, a timer is not allocated to that rate. This minimizes
memory allocated for timers and significantly reduces overhead involved in
maintaining timers.

• Allocation of elapsed time counters for use of blocks within triggered subsystems is
minimized, further reducing memory usage and overhead.

• S-function and TLC APIs let your S-functions access timers, in simulation and code
generation.

• The word size of the timers is determined by a user-specified maximum counter value,
Application lifespan (days) (Simulink). If you specify this value, timers will not
overflow. For more information, see “Control Memory Allocation for Time Counters”
(Simulink Coder).

See “Absolute Time Limitations” (Simulink Coder) for more information about absolute
time and the restrictions that it imposes.

15-2

 Absolute and Elapsed Time Computation

Timers for Periodic and Asynchronous Tasks

Timing services provided for blocks execute within periodic tasks (that is, tasks running
at the model base rate or subrates).

The code generator also provides timer support for blocks whose execution is
asynchronous with respect to the periodic timing source of the model. See the following
topics:

• “Timers in Asynchronous Tasks” on page 17-44
• “Create a Customized Asynchronous Library” on page 17-47

Allocation of Timers

If you create or maintain an S-Function block that requires absolute or elapsed time
data, it must register the requirement (see “Access Timers Programmatically” on page
15-5). In multirate models, timers are allocated on a per-rate basis. For example,
consider a model structured as follows:

• There are three rates, A, B, and C, in the model.
• No blocks running at rate B require absolute or elapsed time.
• Two blocks running at rate C register a requirement for absolute time.
• One block running at rate A registers a requirement for absolute time.

In this case, two timers are generated, running at rates A and C respectively. The timing
engine updates the timers as the tasks associated with rates A and C execute. Blocks
executing at rates A and C obtain time data from the timers associated with rates A and
C.

Integer Timers in Generated Code

In the generated code, timers for absolute and elapsed time are implemented as unsigned
integers. The default size is 64 bits. This is the amount of memory allocated for a timer
if you specify a value of inf for the Application lifespan (days) (Simulink) parameter.
For an application with a sample rate of 1000 MHz, a 64-bit counter will not overflow
for more than 500 years. See “Timers in Asynchronous Tasks” on page 17-44 and
“Control Memory Allocation for Time Counters” on page 53-11 for more information.

15-3

15 Timers in Simulink Coder

Elapsed Time Counters in Triggered Subsystems

Some blocks, such as the Discrete-Time Integrator block, perform computations requiring
the elapsed time (delta T) since the previous block execution. Blocks requiring elapsed
time data must register the requirement (see “Access Timers Programmatically” on page
15-5). A triggered subsystem then allocates and maintains a single elapsed time
counter if required. This timer functions at the subsystem level, not at the individual
block level. The timer is generated if the triggered subsystem (or a unconditionally
executed subsystem within the triggered subsystem) contains one or more blocks
requiring elapsed time data.

Note: If you are using simplified initialization mode, elapsed time is reset on first
execution after becoming enabled, whether or not the subsystem is configured to reset on
enable. For more information, see “Underspecified initialization detection” (Simulink).

More About
• “Access Timers Programmatically” (Simulink Coder)
• “Generate Code for an Elapsed Time Counter” (Simulink Coder)
• “Optimize Memory Usage for Time Counters” (Simulink Coder)
• “Absolute Time Limitations” (Simulink Coder)

15-4

 Access Timers Programmatically

Access Timers Programmatically

In this section...

“About Timer APIs” on page 15-5
“C API for S-Functions” on page 15-5
“TLC API for Code Generation” on page 15-7

About Timer APIs

This topic describes APIs that let your S-functions take advantage of the efficiencies
offered by absolute and elapsed timers. SimStruct macros are provided for use in
simulation, and TLC functions are provided for inlined code generation. Note that

• To generate and use the new timers as described above, your S-
functions must register the need to use an absolute or elapsed timer
by calling ssSetNeedAbsoluteTime or ssSetNeedElapseTime in
mdlInitializeSampleTime.

• Existing S-functions that read absolute time but do not register by using these macros
continue to operate as expected, but generate less efficient code.

C API for S-Functions

The SimStruct macros described in this topic provide access to absolute and elapsed
timers for S-functions during simulation.

In the functions below, the SimStruct *S argument is a pointer to the simstruct of
the calling S-function.

• void ssSetNeedAbsoluteTime(SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires absolute time data, and allocates an
absolute time counter for the rate at which the S-function executes (if such a counter
has not already been allocated).

• int ssGetNeedAbsoluteTime(SimStruct *S): returns 1 if the S-function has
registered that it requires absolute time.

• double ssGetTaskTime(SimStruct *S, tid): read absolute time for a given
task with task identifier tid. ssGetTaskTime operates transparently, regardless of
whether or not you use the new timer features. ssGetTaskTime is documented in the
SimStruct Functions chapter of the Simulink documentation.

15-5

15 Timers in Simulink Coder

• void ssSetNeedElapseTime(SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires elapsed time data, and allocates an
elapsed time counter for the triggered subsystem in which the S-function executes (if
such a counter has not already been allocated). See also “Elapsed Time Counters in
Triggered Subsystems” on page 15-4.

• int ssGetNeedElapseTime(SimStruct *S): returns 1 if the S-function has
registered that it requires elapsed time.

• void ssGetElapseTime(SimStruct *S, (double *)elapseTime): returns, to
the location pointed to by elapseTime, the value (as a double) of the elapsed time
counter associated with the S-function.

• void ssGetElapseTimeCounterDtype(SimStruct *S, (int *)dtype):
returns the data type of the elapsed time counter associated with the S-function
to the location pointed to by dtype. This function is intended for use with the
ssGetElapseTimeCounter function (see below).

• void ssGetElapseResolution(SimStruct *S, (double *)resolution):
returns the resolution (that is, the sample time) of the elapsed time counter
associated with the S-function to the location pointed to by resolution. This
function is intended for use with the ssGetElapseTimeCounter function (see
below).

• void ssGetElapseTimeCounter(SimStruct *S, (void *)elapseTime): This
function is provided for the use of blocks that require the elapsed time values for
fixed-point computations. ssGetElapseTimeCounter returns, to the location pointed
to by elapseTime, the integer value of the elapsed time counter associated with the
S-function. If the counter size is 64 bits, the value is returned as an array of two 32-
bit words, with the low-order word stored at the lower address.

To determine how to access the returned counter value, obtain the data type of the
counter by calling ssGetElapseTimeCounterDtype, as in the following code:

int *y_dtype;

ssGetElapseTimeCounterDtype(S, y_dtype);

 switch(*y_dtype) {

 case SS_DOUBLE_UINT32:

 {

 uint32_T dataPtr[2];

 ssGetElapseTimeCounter(S, dataPtr);

 }

 break;

 case SS_UINT32:

15-6

 Access Timers Programmatically

 {

 uint32_T dataPtr[1];

 ssGetElapseTimeCounter(S, dataPtr);

 }

 break;

 case SS_UINT16:

 {

 uint16_T dataPtr[1];

 ssGetElapseTimeCounter(S, dataPtr);

 }

 break;

 case SS_UINT8:

 {

 uint8_T dataPtr[1];

 ssGetElapseTimeCounter(S, dataPtr);

 }

 break;

 case SS_DOUBLE:

 {

 real_T dataPtr[1];

 ssGetElapseTimeCounter(S, dataPtr);

 }

 break;

 default:

 ssSetErrorStatus(S, "Invalid data type for elaspe time

 counter");

 break;

}

If you want to use the actual elapsed time, issue a call to the ssGetElapseTime
function to access the elapsed time directly. You do not need to get the counter value
and then calculate the elapsed time.

double *y_elapseTime;

.

.

.

ssGetElapseTime(S, elapseTime)

TLC API for Code Generation

The following TLC functions support elapsed time counters in generated code when you
inline S-functions by writing TLC scripts for them.

15-7

15 Timers in Simulink Coder

• LibGetTaskTimeFromTID(block): Generates code to read the absolute time for the
task in which block executes.

LibGetTaskTimeFromTID is documented with other sample time functions in
the TLC Function Library Reference pages of the Target Language Compiler
documentation.

Note Do not use LibGetT for this purpose. LibGetT always reads the base rate (tid
0) timer. If LibGetT is called for a block executing at a subrate, the wrong timer is
read, causing serious errors.

• LibGetElapseTime(system): Generates code to read the elapsed time counter for
system. (system is the parent system of the calling block.) See “Generate Code for
an Elapsed Time Counter” on page 15-9 for an example of code generated by this
function.

• LibGetElapseTimeCounter(system): Generates code to read the integer
value of the elapsed time counter for system. (system is the parent system
of the calling block.) This function should be used in conjunction with
LibGetElapseTimeCounterDtypeId and LibGetElapseTimeResolution. (See
the discussion of ssGetElapseTimeCounter above.)

• LibGetElapseTimeCounterDtypeId(system): Generates code that returns the
data type of the elapsed time counter for system. (system is the parent system of the
calling block.)

• LibGetElapseTimeResolution(system): Generates code that returns the
resolution of the elapsed time counter for system. (system is the parent system of
the calling block.)

More About
• “Absolute and Elapsed Time Computation” (Simulink Coder)
• “Generate Code for an Elapsed Time Counter” (Simulink Coder)
• “Absolute Time Limitations” (Simulink Coder)

15-8

 Generate Code for an Elapsed Time Counter

Generate Code for an Elapsed Time Counter

This example shows a model that includes a triggered subsystem, Amplifier, consisting
of a Discrete-Time Integrator block that uses an elapsed time counter. The model
ex_elapseTime is in the folder matlab/help/toolbox/rtw/examples.

ex_elapseTime Model

Amplifier Subsystem

Code in the generated header file ex_elapseTime.h for the model uses 64 bits to
implement the timer for the base rate (clockTick0 and clockTickH0).

/*

 * Timing:

 * The following substructure contains information regarding

 * the timing information for the model.

 */

struct {

 time_T taskTime0;

 uint32_T clockTick0;

15-9

15 Timers in Simulink Coder

 uint32_T clockTickH0;

 time_T stepSize0;

 time_T tFinal;

 boolean_T stopRequestedFlag;

} Timing;

The code generator allocates storage for the previous-time value and elapsed-time value
of the Amplifier subsystem (Amplifier_PREV_T) in the D_Work(states) structure
in ex_elapsedTime.h.

/* Block states (auto storage) for system '<Root>' */

typedef struct {

 real_T DiscreteTimeIntegrator_DSTATE;/* '<S1>/Discrete-Time Integrator' */

 int32_T clockTickCounter; /* '<Root>/Pulse Generator' */

 uint32_T Amplifier_ELAPS_T[2]; /* '<Root>/Amplifier' */

 uint32_T Amplifier_PREV_T[2]; /* '<Root>/Amplifier' */

 } DW_ex_elapseTime_T;

The elapsed time computation is performed as follows within the ex_elapseTime_step
function:

 /* Outputs for Triggered SubSystem: '<Root>/Amplifier' incorporates:

 * TriggerPort: '<S1>/Trigger'

 */

 zcEvent = rt_ZCFcn(RISING_ZERO_CROSSING,

 &ex_elapseTime_PrevZCX.Amplifier_Trig_ZCE,

 ((real_T)rtb_PulseGenerator));

 if (zcEvent != NO_ZCEVENT) {

 elapseT_H = ex_elapseTime_M->Timing.clockTickH0 -

 ex_elapseTime_DW.Amplifier_PREV_T[1];

 if (ex_elapseTime_DW.Amplifier_PREV_T[0] >

 ex_elapseTime_M->Timing.clockTick0) {

 elapseT_H--;

 }

 ex_elapseTime_DW.Amplifier_ELAPS_T[0] = ex_elapseTime_M->Timing.clockTick0 -

 ex_elapseTime_DW.Amplifier_PREV_T[0];

 ex_elapseTime_DW.Amplifier_PREV_T[0] = ex_elapseTime_M->Timing.clockTick0;

 ex_elapseTime_DW.Amplifier_ELAPS_T[1] = elapseT_H;

 ex_elapseTime_DW.Amplifier_PREV_T[1] = ex_elapseTime_M->Timing.clockTickH0;

As shown above, the elapsed time is maintained as a state of the triggered subsystem.
The Discrete-Time Integrator block finally performs its output and update computations
using the elapsed time.

15-10

 Generate Code for an Elapsed Time Counter

 /* DiscreteIntegrator: '<S1>/Discrete-Time Integrator' */

 OUTPUT = ex_elapseTime_DW.DiscreteTimeIntegrator_DSTATE;

 /* Update for DiscreteIntegrator: '<S1>/Discrete-Time Integrator' incorporates:

 * Constant: '<Root>/Constant'

 */

 ex_elapseTime_DW.DiscreteTimeIntegrator_DSTATE += 0.3 * (real_T)

 ex_elapseTime_DW.Amplifier_ELAPS_T[0] * 1.5;

More About
• “Absolute and Elapsed Time Computation” (Simulink Coder)
• “Absolute Time Limitations” (Simulink Coder)

15-11

15 Timers in Simulink Coder

Absolute Time Limitations

Absolute time is the time that has elapsed from the beginning of program execution to
the present time, as distinct from elapsed time, the interval between two events. See
“Absolute and Elapsed Time Computation” on page 15-2 for more information.

When you design an application that is intended to run indefinitely, you must take care
when logging time values, or using charts or blocks that depend on absolute time. If the
value of time reaches the largest value that can be represented by the data type used
by the timer to store time, the timer overflows and the logged time or block output is
incorrect.

If your target uses rtModel, you can avoid timer overflow by specifying a value for the
Application life span parameter. See “Integer Timers in Generated Code” on page 15-3
for more information.

The following limitations apply to absolute time:

• If you log time values by opening the Configuration Parameters dialog box and
enabling Data Import/Export > Time parameter, your model uses absolute time.

• Every Stateflow chart that uses time is dependent on absolute time. The only way to
eliminate the dependency is to change the Stateflow chart to not use time.

• The following Simulink blocks depend on absolute time:

• Backlash
• Chirp Signal
• Clock
• Derivative
• Digital Clock
• Discrete-Time Integrator (only when used in triggered subsystems)
• From File
• From Workspace
• Pulse Generator
• Ramp
• Rate Limiter
• Repeating Sequence

15-12

 Absolute Time Limitations

• Signal Generator
• Sine Wave (only when the Sine type parameter is set to Time-based)
• Step
• To File
• To Workspace (only when logging to StructureWithTime format)
• Transport Delay
• Variable Time Delay
• Variable Transport Delay

In addition to the Simulink blocks above, blocks in other blocksets may depend on
absolute time. See the documentation for the blocksets that you use.

More About
• “Absolute and Elapsed Time Computation” (Simulink Coder)

15-13

16

Time-Based Scheduling in Simulink
Coder

16 Time-Based Scheduling in Simulink Coder

Time-Based Scheduling and Code Generation

In this section...

“Sample Time Considerations” on page 16-2
“Tasking Modes” on page 16-2
“Model Execution and Rate Transitions” on page 16-4
“Execution During Simulink Model Simulation” on page 16-5
“Model Execution in Real Time” on page 16-5
“Single-Tasking Versus Multitasking Operation” on page 16-6

Sample Time Considerations

Simulink models run at one or more sample times. The Simulink product provides
considerable flexibility in building multirate systems, that is, systems with more than
one sample time. However, this same flexibility also allows you to construct models for
which the code generator cannot generate real-time code for execution in a multitasking
environment. To make multirate models operate as expected in real time (that is, to give
the right answers), you sometimes must modify your model or instruct the Simulink
engine to modify the model for you. In general, the modifications involve placing Rate
Transition blocks between blocks that have unequal sample times. The following sections
discuss issues you must address to use a multirate model in a multitasking environment.
For a comprehensive discussion of sample times, including rate transitions, see “What Is
Sample Time?” (Simulink), “Sample Times in Subsystems” (Simulink), “Sample Times in
Systems” (Simulink), “Resolve Rate Transitions” (Simulink), and associated topics.

Tasking Modes

There are two execution modes for a fixed-step Simulink model: single-tasking and
multitasking. These modes are available only for fixed-step solvers. To select an
execution mode, use the Treat each discrete rate as a separate task checkbox on
the Solver pane of the Configuration Parameters dialog box. When this parameter is
selected, multitasking execution is applied for a multirate model. When this option is
cleared, single-tasking execution is applied.

Note: A model that is multirate and uses multitasking cannot reference a multirate
model that uses single-tasking.

16-2

 Time-Based Scheduling and Code Generation

Execution of models in a real-time system can be done with the aid of a real-time
operating system, or it can be done on bare-metal target hardware, where the model runs
in the context of an interrupt service routine (ISR).

The fact that a system (such as The Open Group UNIX or Microsoft Windows systems) is
multitasking does not imply that your program can execute in real time. This is because
the program might not preempt other processes when required.

In operating systems (such as PC-DOS) where only one process can exist at a given time,
an interrupt service routine (ISR) must perform the steps of saving the processor context,
executing the model code, collecting data, and restoring the processor context.

Other operating systems, such as POSIX-compliant ones, provide automatic context
switching and task scheduling. This simplifies the operations performed by the ISR. In
this case, the ISR simply enables the model execution task, which is normally blocked.
The next figure illustrates this difference.

16-3

16 Time-Based Scheduling in Simulink Coder

Program execution using a real-time

operating system primitive. See the

Tornado target for an example.

Model Execution and Rate Transitions

To generate code that executes as expected in real time, you (or the Simulink engine)
might need to identify and handle sample rate transitions within the model. In
multitasking mode, by default the Simulink engine flags errors during simulation if
the model contains invalid rate transitions, although you can use the Multitask rate
transition diagnostic to alter this behavior. A similar diagnostic, called Single task
rate transition, exists for single-tasking mode.

16-4

 Time-Based Scheduling and Code Generation

To avoid raising rate transition errors, insert Rate Transition blocks between tasks. You
can request that the Simulink engine handle rate transitions automatically by inserting
hidden Rate Transition blocks. See “Automatic Rate Transition” on page 16-25 for an
explanation of this option.

To understand such problems, first consider how Simulink simulations differ from real-
time programs.

Execution During Simulink Model Simulation

Before the Simulink engine simulates a model, it orders the blocks based upon their
topological dependencies. This includes expanding virtual subsystems into the individual
blocks they contain and flattening the entire model into a single list. Once this step is
complete, each block is executed in order.

The key to this process is the ordering of blocks. A block whose output is directly
dependent on its input (that is, a block with direct feedthrough) cannot execute until the
block driving its input executes.

Some blocks set their outputs based on values acquired in a previous time step or from
initial conditions specified as a block parameter. The output of such a block is determined
by a value stored in memory, which can be updated independently of its input. During
simulation, computations are performed prior to advancing the variable corresponding to
time. This results in computations occurring instantaneously (that is, no computational
delay).

Model Execution in Real Time

A real-time program differs from a Simulink simulation in that the program must
execute the model code synchronously with real time. Every calculation results in some
computational delay. This means the sample intervals cannot be shortened or lengthened
(as they can be in a Simulink simulation), which leads to less efficient execution.

Consider the following timing figure.

16-5

16 Time-Based Scheduling in Simulink Coder

t0 t1 t2

Time

Note the processing inefficiency in the sample interval t1. That interval cannot be
compressed to increase execution speed because, by definition, sample times are clocked
in real time.

You can circumvent this potential inefficiency by using the multitasking mode. The
multitasking mode defines tasks with different priorities to execute parts of the model
code that have different sample rates.

See “Multitasking and Pseudomultitasking Modes” on page 16-12 for a description of
how this works. It is important to understand that section before proceeding here.

Single-Tasking Versus Multitasking Operation

Single-tasking programs require longer sample intervals, because all computations must
be executed within each clock period. This can result in inefficient use of available CPU
time, as shown in the previous figure.

Multitasking mode can improve the efficiency of your program if the model is large and
has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks execute
at a slower rate, multitasking can actually degrade performance. In such a model, the
overhead incurred in task switching can be greater than the time required to execute the
slower blocks. In this case, it is more efficient to execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you might need to
modify your model by adding Rate Transition blocks (or instruct the Simulink engine to
do so) to generate expected results.

For more information about the two modes of execution and examples, see “Modeling for
Single-Tasking Execution” on page 16-8 and “Modeling for Multitasking Execution”
on page 16-12.

16-6

 Time-Based Scheduling and Code Generation

More About
• “What Is Sample Time?” (Simulink)
• “Sample Times in Subsystems” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Configure Time-Based Scheduling” (Simulink Coder)
• “Sample Times in Subsystems” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Resolve Rate Transitions” (Simulink)
• “Handle Rate Transitions” (Simulink Coder)
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Modeling for Single-Tasking Execution” (Simulink Coder)
• “Modeling for Multitasking Execution” (Simulink Coder)
• “Time-Based Scheduling Example Models” (Simulink Coder)

16-7

16 Time-Based Scheduling in Simulink Coder

Modeling for Single-Tasking Execution

Single-Tasking Mode

You can execute model code in a strictly single-tasking manner. While this mode is less
efficient with regard to execution speed, in certain situations, it can simplify your model.

In single-tasking mode, the base sample rate must define a time interval that is long
enough to allow the execution of all blocks within that interval.

The next figure illustrates the inefficiency inherent in single-tasking execution.

t0 t1 t2 t3 t4

Single-tasking system execution requires a base sample rate that is long enough to
execute one step through the entire model.

Build a Program for Single-Tasking Execution

To use single-tasking execution, clear the Treat each discrete rate as a separate task
checkbox on the Solver pane of the Configuration Parameters dialog box. If you select
the checkbox, single-tasking mode is used in the following cases:

• If your model contains one sample time
• If your model contains a continuous and a discrete sample time and the fixed step size

is equal to the discrete sample time

Single-Tasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers operation in both single-tasking and
multitasking modes, as determined by setting of the Treat each discrete rate as a
separate task parameter on the Solver pane.

16-8

 Modeling for Single-Tasking Execution

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has
been forced into the order shown by assigning higher priorities to blocks F, E, and D.
The ordering shown is one possible valid execution ordering for this model. For more
information, see “Simulation Phases in Dynamic Systems” (Simulink).

The execution order is determined by data dependencies between blocks. In a real-
time system, the execution order determines the order in which blocks execute within
a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.

This example considers the execution of the above model when the Treat each discrete
rate as a separate task checkbox is cleared, which indicates the single-tasking mode.

In a single-tasking system, if the Block reduction option on the All Parameters tab is
on, fast-to-slow Rate Transition blocks are optimized out of the model. The default case is
shown (Block reduction on), so block B does not appear in the timing diagrams in this
section. For more information, see “Block reduction” (Simulink).

The following table shows, for each block in the model, the execution order, sample time,
and whether the block has an output or update computation. Block A does not have
discrete states, and accordingly does not have an update computation.

Execution Order and Sample Times (Single-Tasking)

16-9

16 Time-Based Scheduling in Simulink Coder

Blocks
(in Execution Order)

Sample Time
(in Seconds)

Output Update

E 0.1 Y Y
F 0.1 Y Y
D 1 Y Y
A 0.1 Y N
C 1 Y Y

Real-Time Single-Tasking Execution

The next figure shows the scheduling of computations when the generated code is
deployed in a real-time system. The generated program is shown running in real time,
under control of interrupts from a 10 Hz timer.

At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks execute their
output computations; this is followed by update computations for blocks that have states.
Within a given time interval, output and update computations are sequenced in block
execution order.

The fast blocks execute on every tick, at intervals of 0.1 second. Output computations are
followed by update computations.

The system spends some portion of each time interval (labeled “wait”) idling. During
the intervals when only the fast blocks execute, a larger portion of the interval is spent
idling. This illustrates an inherent inefficiency of single-tasking mode.

16-10

 Modeling for Single-Tasking Execution

Simulated Single-Tasking Execution

The next figure shows the execution of the model during the Simulink simulation loop.

Because time is simulated, the placement of ticks represents the iterations of the
simulation loop. Blocks execute in exactly the same order as in the previous figure,
but without the constraint of a real-time clock. Therefore there is no idle time between
simulated sample periods.

More About
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Configure Time-Based Scheduling” (Simulink Coder)
• “Time-Based Scheduling Example Models” (Simulink Coder)

16-11

16 Time-Based Scheduling in Simulink Coder

Modeling for Multitasking Execution

Multitasking and Pseudomultitasking Modes

When periodic tasks execute in a multitasking mode, by default the blocks with the
fastest sample rates are executed by the task with the highest priority, the next fastest
blocks are executed by a task with the next higher priority, and so on. Time available in
between the processing of high-priority tasks is used for processing lower priority tasks.
This results in efficient program execution.

Where tasks are asynchronous rather than periodic, there may not necessarily be
a relationship between sample rates and task priorities; the task with the highest
priority need not have the fastest sample rate. You specify asynchronous task priorities
using Async Interrupt and Task Sync blocks. You can switch the sense of what priority
numbers mean by selecting or deselecting the Solver option Higher priority value
indicates higher task priority.

In multitasking environments (that is, under a real-time operating system), you can
define separate tasks and assign them priorities. For bare-metal target hardware (that
is, no real-time operating system present), you cannot create separate tasks. However,
generated application modules implement what is effectively a multitasking execution
scheme using overlapped interrupts, accompanied by programmatic context switching.

This means an interrupt can occur while another interrupt is currently in progress.
When this happens, the current interrupt is preempted, the floating-point unit (FPU)
context is saved, and the higher priority interrupt executes its higher priority (that is,
faster sample rate) code. Once complete, control is returned to the preempted ISR.

The next figures illustrate how timing of tasks in multirate systems are handled by the
code generator in multitasking, pseudomultitasking, and single-tasking environments.

16-12

 Modeling for Multitasking Execution

Highest Priority

Lowest Priority

Dotted lines with downward pointing
arrows indicate the release of control
to a lower priority task.

Dotted lines with upward pointing
arrows indicate preemption by a
higher priority task.

Vertical arrows indicate sample time hits.

Dark gray areas indicate task execution.

Hashed areas indicate task preemption
by a higher priority task.

Light gray areas indicate task execution
is pending.

rate 3

rate 2

rate 1

t0 t1 t2 t3 t4

The next figure shows how overlapped interrupts are used to implement
pseudomultitasking. In this case, Interrupt 0 does not return until after Interrupts 1, 2,
and 3.

16-13

16 Time-Based Scheduling in Simulink Coder

Highest Priority

Lowest Priority

t0 t1 t2 t3 t4

Interrupt 0
Begins

Interrupt 1 Interrupt 2
Begins

Interrupt 3

Interrupt 3
Ends

Interrupt 2
Ends

Interrupt 0
Ends

Interrupt 1
Ends

Build a Program for Multitasking Execution

To use multitasking execution, select the Treat each discrete rate as a separate
task check box on the Solver pane of the Configuration Parameters dialog box. This
menu is active only if you select Fixed-step as the solver type. Auto mode results in a
multitasking environment if your model has two or more different sample times. A model
with a continuous and a discrete sample time runs in single-tasking mode if the fixed-
step size is equal to the discrete sample time.

Execute Multitasking Models

In cases where the continuous part of a model executes at a rate that is different from
the discrete part, or a model has blocks with different sample rates, the Simulink
engine assigns each block a task identifier (tid) to associate the block with the task that
executes at the block's sample rate.

16-14

 Modeling for Multitasking Execution

You set sample rates and their constraints on the Solver pane of the Configuration
Parameters dialog box. To generate code, select Fixed-step for the solver type. Certain
restrictions apply to the sample rates that you can use:

• The sample rate of a block must be an integer multiple of the base (that is, the fastest)
sample period.

• When Periodic sample time constraint is unconstrained, the base sample
period is determined by the Fixed step size specified on the Solvers pane of the
Configuration parameters dialog box.

• When Periodic sample time constraint is Specified, the base rate fixed-
step size is the first element of the sample time matrix that you specify in the
companion option Sample time properties. The Solver pane from the example
model rtwdemo_mrmtbb shows an example.

• Continuous blocks execute by using an integration algorithm that runs at the base
sample rate. The base sample period is the greatest common denominator of all rates
in the model only when Periodic sample time constraint is set to Unconstrained
and Fixed step size is Auto.

16-15

16 Time-Based Scheduling in Simulink Coder

• The continuous and discrete parts of the model can execute at different rates only if
the discrete part is executed at the same or a slower rate than the continuous part
and is an integer multiple of the base sample rate.

Multitasking Execution

This example examines how a simple multirate model executes in both real time and
simulation, using a fixed-step solver. It considers operation in both single-tasking and
multitasking modes, as determined by setting of the Treat each discrete rate as a
separate task parameter on the Solver pane.

The example model is shown in the next figure. The discussion refers to the six blocks of
the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block) has
been forced into the order shown by assigning higher priorities to blocks F, E, and D.
The ordering shown is one possible valid execution ordering for this model. For more
information, see “Simulation Phases in Dynamic Systems” (Simulink).

The execution order is determined by data dependencies between blocks. In a real-
time system, the execution order determines the order in which blocks execute within
a given time interval or task. This discussion treats the model's execution order as a
given, because it is concerned with the allocation of block computations to tasks, and the
scheduling of task execution.

Note The discussion and timing diagrams in this section are based on the assumption
that the Rate Transition blocks are used in the default (protected/deterministic) mode,
with the Ensure data integrity during data transfer and Ensure deterministic
data transfer (maximum delay) options on.

This example considers the execution of the above model when the solver Tasking mode
is MultiTasking. Block computations are executed under two tasks, prioritized by rate:

16-16

 Modeling for Multitasking Execution

• The slower task, which gets the lower priority, is scheduled to run every second. This
is called the 1 second task.

• The faster task, which gets higher priority, is scheduled to run 10 times per second.
This is called the 0.1 second task. The 0.1 second task can preempt the 1 second task.

The following table shows, for each block in the model, the execution order, the task
under which the block runs, and whether the block has an output or update computation.
Blocks A and B do not have discrete states, and accordingly do not have an update
computation.

Task Allocation of Blocks in Multitasking Execution

Blocks
(in Execution Order)

Task Output Update

E 0.1 second task Y Y
F 0.1 second task Y Y
D The Rate Transition block uses port-

based sample times.
Output runs at the output port sample
time under 0.1 second task.
Update runs at input port sample time
under 1 second task.
For more information on port-based
sample times, see “Sample Times for
Model Referencing” (Simulink).

Y Y

A 0.1 second task Y N
B The Rate Transition block uses port-

based sample times.
Output runs at the output port sample
time under 0.1 second task.
For more information on port-based
sample times, see “Sample Times for
Model Referencing” (Simulink).

Y N

C 1 second task Y Y

16-17

16 Time-Based Scheduling in Simulink Coder

Real-Time Multitasking Execution

The next figure shows the scheduling of computations in MultiTasking solver mode
when the generated code is deployed in a real-time system. The generated program is
shown running in real time, as two tasks under control of interrupts from a 10 Hz timer.

Simulated Multitasking Execution

The next figure shows the Simulink execution of the same model, in MultiTasking
solver mode. In this case, the Simulink engine runs the blocks in one thread of execution,
simulating multitasking. No preemption occurs.

16-18

 Modeling for Multitasking Execution

More About
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Sample Times in Subsystems” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Configure Time-Based Scheduling” (Simulink Coder)
• “Resolve Rate Transitions” (Simulink)
• “Handle Rate Transitions” (Simulink Coder)
• “Time-Based Scheduling Example Models” (Simulink Coder)

16-19

16 Time-Based Scheduling in Simulink Coder

Handle Rate Transitions

Rate Transitions

Two periodic sample rate transitions can exist within a model:

• A faster block driving a slower block
• A slower block driving a faster block

The following sections concern models with periodic sample times with zero offset only.
Other considerations apply to multirate models that involve asynchronous tasks. For
details on how to generate code for asynchronous multitasking, see “Asynchronous
Support” (Simulink Coder).

In multitasking and pseudomultitasking systems, differing sample rates can cause blocks
to be executed in the wrong order. To prevent possible errors in calculated data, you must
control model execution at these transitions. When connecting faster and slower blocks,
you or the Simulink engine must add Rate Transition blocks between them. Fast-to-slow
transitions are illustrated in the next figure.

T = 1s T = 2s

T = 1s
Port-based:

Tin = 1s; Tout = 2s T = 2s

Faster
Block

Slower
Block

Rate TransitionFaster
Block

Slower
Block

becomes

Slow-to-fast transitions are illustrated in the next figure.

16-20

 Handle Rate Transitions

T = 1sT = 2s

T = 1s
Port-based:

Tin = 2s; Tout = 1sT = 2s

Faster
Block

Slower
Block

Rate Transition Faster
Block

Slower
Block

becomes

Note: Although the Rate Transition block offers a superset of the capabilities of the Unit
Delay block (for slow-to-fast transitions) and the Zero-Order Hold block (for fast-to-slow
transitions), you should use the Rate Transition block instead of these blocks.

Data Transfer Problems

Rate Transition blocks deal with issues of data integrity and determinism associated
with data transfer between blocks running at different rates.

• Data integrity: A problem of data integrity exists when the input to a block changes
during the execution of that block. Data integrity problems can be caused by
preemption.

Consider the following scenario:

• A faster block supplies the input to a slower block.
• The slower block reads an input value V1 from the faster block and begins

computations using that value.
• The computations are preempted by another execution of the faster block, which

computes a new output value V2.
• A data integrity problem now arises: when the slower block resumes execution, it

continues its computations, now using the “new” input value V2.

16-21

16 Time-Based Scheduling in Simulink Coder

Such a data transfer is called unprotected. “Faster to Slower Transitions in Real
Time” on page 16-29 shows an unprotected data transfer.

In a protected data transfer, the output V1 of the faster block is held until the slower
block finishes executing.

• Deterministic versus nondeterministic data transfer: In a deterministic data transfer,
the timing of the data transfer is completely predictable, as determined by the sample
rates of the blocks.

The timing of a nondeterministic data transfer depends on the availability of data, the
sample rates of the blocks, and the time at which the receiving block begins to execute
relative to the driving block.

You can use the Rate Transition block to protect data transfers in your application
and make them deterministic. These characteristics are considered desirable in most
applications. However, the Rate Transition block supports flexible options that allow you
to compromise data integrity and determinism in favor of lower latency. The next section
summarizes these options.

Data Transfer Assumptions

When processing data transfers between tasks, the code generator makes these
assumptions:

• Data transitions occur between a single reading task and a single writing task.
• A read or write of a byte-sized variable is atomic.
• When two tasks interact through a data transition, only one of them can preempt the

other.
• For periodic tasks, the faster rate task has higher priority than the slower rate task;

the faster rate task preempts the slower rate task.
• All tasks run on a single processor. Time slicing is not allowed.
• Processes do not crash or restart (especially while data is transferred between tasks).

Rate Transition Block Options

Several parameters of the Rate Transition block are relevant to its use in code generation
for real-time execution, as discussed below. For a complete block description, see Rate
Transition.

16-22

 Handle Rate Transitions

The Rate Transition block handles periodic (fast to slow and slow to fast) and
asynchronous transitions. When inserted between two blocks of differing sample rates,
the Rate Transition block automatically configures its input and output sample rates for
the type of transition; you do not need to specify whether a transition is slow-to-fast or
fast-to-slow (low-to-high or high-to-low priorities for asynchronous tasks).

The critical decision you must make in configuring a Rate Transition block is the choice
of data transfer mechanism to be used between the two rates. Your choice is dictated by
considerations of safety, memory usage, and performance. As the Rate Transition block
parameter dialog box in the next figure shows, the data transfer mechanism is controlled
by two options.

• Ensure data integrity during data transfer: When this option is on, data
transferred between rates maintains its integrity (the data transfer is protected).

16-23

16 Time-Based Scheduling in Simulink Coder

When this option is off, the data might not maintain its integrity (the data transfer is
unprotected). By default, Ensure data integrity during data transfer is on.

• Ensure deterministic data transfer (maximum delay): This option is supported
for periodic tasks with an offset of zero and fast and slow rates that are multiples
of each other. Enable this option for protected data transfers (when Ensure data
integrity during data transfer is on). When this option is on, the Rate Transition
block behaves like a Zero-Order Hold block (for fast to slow transitions) or a Unit
Delay block (for slow to fast transitions). The Rate Transition block controls the
timing of data transfer in a completely predictable way. When this option is off, the
data transfer is nondeterministic. By default, Ensure deterministic data transfer
(maximum delay) is on for transitions between periodic rates with an offset of zero;
for asynchronous transitions, it cannot be selected.

Thus the Rate Transition block offers three modes of operation with respect to data
transfer. In order of level of safety:

• Protected/Deterministic (default): This is the safest mode. The drawback of this
mode is that it introduces deterministic latency into the system for the case of slow-
to-fast periodic rate transitions. For that case, the latency introduced by the Rate
Transition block is one sample period of the slower task. For the case of fast-to-slow
periodic rate transitions, the Rate Transition block introduces no additional latency.

• Protected/NonDeterministic: In this mode, for slow-to-fast periodic rate
transitions, data integrity is protected by double-buffering data transferred between
rates. For fast-to-slow periodic rate transitions, a semaphore flag is used. The blocks
downstream from the Rate Transition block use the latest available data from the
block that drives the Rate Transition block. Maximum latency is less than or equal to
one sample period of the faster task.

The drawbacks of this mode are its nondeterministic timing. The advantage of this
mode is its low latency.

• Unprotected/NonDeterministic: This mode is not recommended for mission-
critical applications. The latency of this mode is the same as for Protected/
NonDeterministic mode, but memory requirements are reduced since neither double-
buffering nor semaphores are required. That is, the Rate Transition block does
nothing in this mode other than to pass signals through; it simply exists to notify
you that a rate transition exists (and can cause generated code to compute incorrect
answers). Selecting this mode, however, generates the least amount of code.

16-24

 Handle Rate Transitions

Note In unprotected mode (Ensure data integrity during data transfer option
off), the Rate Transition block does nothing other than allow the rate transition to
exist in the model.

Rate Transition Blocks and Continuous Time

The sample time at the output port of a Rate Transition block can only be discrete
or fixed in minor time step. This means that when a Rate Transition block inherits
continuous sample time from its destination block, it treats the inherited sample time as
Fixed in Minor Time Step. Therefore, the output function of the Rate Transition block
runs only at major time steps. If the destination block sample time is continuous, Rate
Transition block output sample time is the base rate sample time (if solver is fixed-step),
or zero-order-hold-continuous sample time (if solver is variable-step).

Automatic Rate Transition

The Simulink engine can detect mismatched rate transitions in a multitasking model
during an update diagram and automatically insert Rate Transition blocks to handle
them. To enable this, in the Solver pane of model configuration parameters, select
Automatically handle rate transition for data transfer. The default setting for this
option is off. When you select this option:

• Simulink handles transitions between periodic sample times and asynchronous tasks.
• Simulink inserts hidden Rate Transition blocks in the block diagram.
• The code generator produces code for the Rate Transition blocks that were

automatically inserted. This code is identical to the code generated for Rate
Transition blocks that were inserted manually.

• Automatically inserted Rate Transition blocks operate in protected mode for periodic
tasks and asynchronous tasks. You cannot alter this behavior. For periodic tasks,
automatically inserted Rate Transition blocks operate with the level of determinism
specified by the Deterministic data transfer parameter in the Solver pane.
The default setting is Whenever possible, which enables determinism for data
transfers between periodic sample-times that are related by an integer multiple. For
more information, see “Deterministic data transfer” (Simulink). To use other modes,
you must insert Rate Transition blocks and set their modes manually.

For example, in this model, SineWave2 has a sample time of 2, and SineWave3 has a
sample time of 3.

16-25

16 Time-Based Scheduling in Simulink Coder

When you select Automatically handle rate transition for data transfer, Simulink
inserts a Rate Transition block between each Sine Wave block and the Product block.
The inserted blocks have the parameter values to reconcile the Sine Wave block sample
times.

If the input port and output port data sample rates in a model are not multiples of
each other, Simulink inserts a Rate Transition block whose sample rate is the greatest
common divisor (GCD) of the two rates. If no other block in the model contains this new
rate, an error occurs during simulation. In this case, you must insert a Rate Transition
block manually.

Visualize Inserted Rate Transition Blocks

When you select the Automatically handle rate transition for data transfer option,
Simulink inserts Rate Transition blocks in the paths that have mismatched transition
rates. These blocks are hidden by default. To visualize the inserted blocks, update the
diagram. Badge labels appear in the model and indicate where Simulink inserted Rate
Transition blocks during the compilation phase. For example, in this model, three Rate
Transition blocks were inserted between the two Sine Wave blocks and the Multiplexer
and Integrator when the model compiled. The ZOH and DbBuf badge labels indicate
these blocks.

16-26

 Handle Rate Transitions

You can show or hide badge labels using the Display > Signals and Ports > Hidden
Rate Transition Block Indicators setting.

To configure the hidden Rate Transition blocks, right click on a badge label and click on
Insert rate transition block to make the block visible.

When you make hidden Rate Transition blocks visible:

• You can see the type of Rate Transition block inserted as well as the location in the
model.

• You can set the Initial Conditions of these blocks.

16-27

16 Time-Based Scheduling in Simulink Coder

• You can change block parameters for rate transfer.

Validate the changes to your model by updating your diagram.

Displaying inserted Rate Transition blocks is not compatible with:

• Concurrent execution environment
• Export-function models

To learn more about the types of Rate Transition blocks, see Rate Transition.

Periodic Sample Rate Transitions

These sections describe cases in which Rate Transition blocks are required for periodic
sample rate transitions. The discussion and timing diagrams in these sections are
based on the assumption that the Rate Transition block is used in its default (protected/
deterministic) mode; that is, the Ensure data integrity during data transfer and
Ensure deterministic data transfer (maximum delay) options are both on. These
are the settings used for automatically inserted Rate Transition blocks.

Faster to Slower Transitions in a Simulink Model

In a model where a faster block drives a slower block having direct feedthrough, the
outputs of the faster block are computed first. In simulation intervals where the slower
block does not execute, the simulation progresses more rapidly because there are fewer
blocks to execute. The next figure illustrates this situation.

16-28

 Handle Rate Transitions

T = 2sT = 1s

Faster

Block

Slower

Block Time

t0

T = 1s

t1 t2 t3

T = 2s T = 1s T = 1s T = 2s T = 1s

A Simulink simulation does not execute in real time, which means that it is not bound
by real-time constraints. The simulation waits for, or moves ahead to, whatever tasks
are required to complete simulation flow. The actual time interval between sample time
steps can vary.

Faster to Slower Transitions in Real Time

In models where a faster block drives a slower block, you must compensate for the fact
that execution of the slower block might span more than one execution period of the
faster block. This means that the outputs of the faster block can change before the slower
block has finished computing its outputs. The next figure shows a situation in which this
problem arises (T = sample time). Note that lower priority tasks are preempted by higher
priority tasks before completion.

T = 1s

Faster
Block

T = 2s

Slower
Block

2 Sec
Task

1 Sec
Task

Time

1

2

3

The faster task (T=1s) completes.

Higher priority preemption occurs.

The slower task (T=2s) resumes and its inputs
have changed. This leads to unpredictable results.

1 1

2 23 3

T=2s T=2s

T=1s T=1s T=1s T=1s

In the above figure, the faster block executes a second time before the slower block has
completed execution. This can cause unpredictable results because the input data to the
slow task is changing. Data might not maintain its integrity in this situation.

16-29

16 Time-Based Scheduling in Simulink Coder

To avoid this situation, the Simulink engine must hold the outputs of the 1 second
(faster) block until the 2 second (slower) block finishes executing. The way to accomplish
this is by inserting a Rate Transition block between the 1 second and 2 second blocks.
The input to the slower block does not change during its execution, maintaining data
integrity.

Tin = 1Tout = 2T = 1 s T = 2 s

Faster Block Rate Transition Slower Block

It is assumed that the Rate Transition block is used in its default (protected/
deterministic) mode.

The Rate Transition block executes at the sample rate of the slower block, but with the
priority of the faster block.

2 Sec

Task

1 Sec

Task

Time

T=2s T=2s

T=1s RT T=1s T=1s RT T=1s

t0 t2

t0 t1 t2 t3

When you add a Rate Transition block, the block executes before the 2 second block (its
priority is higher) and its output value is held constant while the 2 second block executes
(it executes at the slower sample rate).

Slower to Faster Transitions in a Simulink Model

In a model where a slower block drives a faster block, the Simulink engine again
computes the output of the driving block first. During sample intervals where only the
faster block executes, the simulation progresses more rapidly.

16-30

 Handle Rate Transitions

The next figure shows the execution sequence.

T = 2s T = 1s

Faster

Block

Slower

Block Time

t0

T = 1s

t1 t2 t3

T = 2s T = 1s T = 2s T = 1s T = 1s

As you can see from the preceding figures, the Simulink engine can simulate models with
multiple sample rates in an efficient manner. However, a Simulink simulation does not
operate in real time.

Slower to Faster Transitions in Real Time

In models where a slower block drives a faster block, the generated code assigns the
faster block a higher priority than the slower block. This means the faster block is
executed before the slower block, which requires special care to avoid incorrect results.

T = 1s

Faster
Block

T = 2s

Block

2 Sec
Task

1 Sec
Task

Time

1

2

The faster block executes a second time prior
to the completion of the slower block.

The faster block executes before the slower block.

1 1 22

T=2s T=2s

T=1s T=1s T=1s T=1s T=1s

t0 t2

t0 t1 t2 t3 t4

This timing diagram illustrates two problems:

• Execution of the slower block is split over more than one faster block interval. In
this case the faster task executes a second time before the slower task has completed

16-31

16 Time-Based Scheduling in Simulink Coder

execution. This means the inputs to the faster task can have incorrect values some of
the time.

• The faster block executes before the slower block (which is backward from the way
a Simulink simulation operates). In this case, the 1 second block executes first; but
the inputs to the faster task have not been computed. This can cause unpredictable
results.

To eliminate these problems, you must insert a Rate Transition block between the slower
and faster blocks.

T = 1s

Faster

Block

T = 2s

Slower

Block

Rate Transition

Tin = 2 Tout = 1

It is assumed that the Rate Transition block is used in its default (protected/
deterministic) mode.

The next figure shows the timing sequence that results with the added Rate Transition
block.

2 Sec
Task

1 Sec
Task

Time

1

3

2

T=2s

T=1s T=1s T=1s

t0 t1 t2 t3

RT
update T=2s

RT
update

1
1

1

RT
output T=1s

RT
output

16-32

 Handle Rate Transitions

Three key points about transitions in this diagram (refer to circled numbers):

1 The Rate Transition block output runs in the 1 second task, but at a slower rate (2
seconds). The output of the Rate Transition block feeds the 1 second task blocks.

2 The Rate Transition update uses the output of the 2 second task to update its
internal state.

3 The Rate Transition output in the 1 second task uses the state of the Rate Transition
that was updated in the 2 second task.

The first problem is alleviated because the Rate Transition block is updating at a slower
rate and at the priority of the slower block. The input to the Rate Transition block (which
is the output of the slower block) is read after the slower block completes executing.

The second problem is alleviated because the Rate Transition block executes at a slower
rate and its output does not change during the computation of the faster block it is
driving. The output portion of a Rate Transition block is executed at the sample rate of
the slower block, but with the priority of the faster block. Since the Rate Transition block
drives the faster block and has effectively the same priority, it is executed before the
faster block.

Note This use of the Rate Transition block changes the model. The output of the slower
block is now delayed by one time step compared to the output without a Rate Transition
block.

More About
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Sample Times in Subsystems” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Modeling for Multitasking Execution” (Simulink Coder)
• “Configure Time-Based Scheduling” (Simulink Coder)
• “Resolve Rate Transitions” (Simulink)
• “Time-Based Scheduling Example Models” (Simulink Coder)

16-33

16 Time-Based Scheduling in Simulink Coder

Configure Time-Based Scheduling

For details about solver options, see “Solver Pane” (Simulink).

Configure Start and Stop Times

The Stop time (Simulink) must be greater than or equal to the Start time (Simulink). If
the stop time is zero, or if the total simulation time (Stop minus Start) is less than zero,
the generated program runs for one step. If the stop time is set to inf, the generated
program runs indefinitely.

When using the GRT or ERT targets, you can override the stop time when running a
generated program from the Microsoft Windows command prompt or UNIX3 command
line. To override the stop time that was set during code generation, use the -tf switch.

model -tf n

The program runs for n seconds. If n = inf, the program runs indefinitely.

Certain blocks have a dependency on absolute time. If you are designing a program that
is intended to run indefinitely (Stop time = inf), and your generated code does not use
the rtModel data structure (that is, it uses simstructs instead), you must not use
these blocks. See “Absolute Time Limitations” on page 15-12 for a list of blocks that can
potentially overflow timers.

If you know how long an application that depends on absolute time needs to run, you can
prevent the timers from overflowing and force the use of optimal word sizes by specifying
the Application lifespan (days) (Simulink) parameter on the Optimization pane. See
“Control Memory Allocation for Time Counters” on page 53-11 for details.

Configure the Solver Type

For code generation, you must configure a model to use a fixed-step solver for all targets
except the S-function and RSim targets. You can configure the S-function and RSim
targets with a fixed-step or variable-step solver.

3. UNIX is a registered trademark of The Open Group in the United States and other countries.

16-34

 Configure Time-Based Scheduling

Configure the Tasking Mode

The code generator supports both single-tasking and multitasking modes for periodic
sample times. See “Time-Based Scheduling and Code Generation” on page 16-2 for
details.

More About
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Sample Times in Subsystems” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Time-Based Scheduling Example Models” (Simulink Coder)

16-35

16 Time-Based Scheduling in Simulink Coder

Time-Based Scheduling Example Models

Optimize Memory Usage for Time Counters

This example shows how to optimize the amount of memory that the code generator
allocates for time counters. The example optimizes the memory that stores elapsed time,
the interval of time between two events.

The code generator represents time counters as unsigned integers. The word size of
time counters is based on the setting of the model configuration parameter Application
lifespan (days), which specifies the expected maximum duration of time the application
runs. You can use this parameter to prevent time counter overflows. The default size is
64 bits.

The number of bits that a time counter uses depends on the setting of the Application
lifespan (days) parameter. For example, if a time counter increments at a rate of 1 kHz,
to avoid an overflow, the counter has the following number of bits:

• Lifespan < 0.25 sec: 8 bits
• Lifespan < 1 min: 16 bits
• Lifespan < 49 days: 32 bits
• Lifespan > 50 days: 64 bits

A 64-bit time counter does not overflow for 590 million years.

Open Example Model

Open the example model rtwdemo_abstime.

16-36

 Time-Based Scheduling Example Models

The model consists of three subsystems SS1, SS2, and SS3. On the Optimization tab,
the Application lifespan (days) parameter is set to the default, which is auto.

The three subsystems contain a discrete-time integrator that requires elapsed time as
input to compute its output value. The subsystems vary as follows:

16-37

16 Time-Based Scheduling in Simulink Coder

• SS1 - Clocked at 1 kHz. Does not require a time counter. Sample time type
parameter for trigger port is set to periodic. Elapsed time is inlined as 0.001.

• SS2 - Clocked at 100 Hz. Requires a time counter. Based on a lifespan of 1 day, a 32-
bit counter stores the elapsed time.

• SS3 - Clocked at 0.5 Hz. Requires a time counter. Based on a lifespan of 1 day, a 16-
bit counter stores the elapsed time.

Simulate the Model

Simulate the model. By default, the model is configured to show sample times in different
colors. Discrete sample times for the three subsystems appear red, green, and blue.
Triggered subsystems are blue-green.

Generate Code and Report

1. Create a temporary folder for the build and inspection process.

2. Configure the model for the code generator to use the GRT system target file and a
lifespan of inf days.

3. Build the model.

Starting build procedure for model: rtwdemo_abstime

Successful completion of build procedure for model: rtwdemo_abstime

Review Generated Code

Open the generated source file rtwdemo_abstime.c.

struct tag_RTM_rtwdemo_abstime_T {

 const char_T *errorStatus;

 /*

 * Timing:

 * The following substructure contains information regarding

 * the timing information for the model.

 */

 struct {

 uint32_T clockTick1;

 uint32_T clockTickH1;

 uint32_T clockTick2;

 uint32_T clockTickH2;

16-38

 Time-Based Scheduling Example Models

 struct {

 uint16_T TID[3];

 uint16_T cLimit[3];

 } TaskCounters;

 } Timing;

};

Four 32-bit unsigned integers, clockTick1 , clockTickH1 , clockTick2 , and
clockTickH2 are counters for storing the elapsed time of subsystems SS2 and SS3.

Enable Optimization and Regenerate Code

1. Reconfigure the model to set the lifespan to 1 day.

2. Build the model.

Starting build procedure for model: rtwdemo_abstime

Successful completion of build procedure for model: rtwdemo_abstime

Review the Regenerated Code

struct tag_RTM_rtwdemo_abstime_T {

 const char_T *errorStatus;

 /*

 * Timing:

 * The following substructure contains information regarding

 * the timing information for the model.

 */

 struct {

 uint32_T clockTick1;

 uint16_T clockTick2;

 struct {

 uint16_T TID[3];

 uint16_T cLimit[3];

 } TaskCounters;

 } Timing;

};

The new setting for the Application lifespan (days) parameter instructs the code
generator to set aside less memory for the time counters. The regenerated code includes:

16-39

16 Time-Based Scheduling in Simulink Coder

• 32-bit unsigned integer, clockTick1, for storing the elapsed time of the task for SS2
• 16-bit unsigned integer, clockTick2, for storing the elapsed time of the task for SS3

Related Information

• “Optimization Pane: General” (Simulink)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Time-Based Scheduling and Code Generation” (Simulink Coder)

Single-Rate Modeling (Bare Board, No OS)

This model shows the code generated for a single-rate discrete-time model configured for
a bare-board target (one with no operating system).

Open Example Model

Open the example model rtwdemo_srbb.

open_system('rtwdemo_srbb')

16-40

 Time-Based Scheduling Example Models

The model uses one sample time. Inport block 1 and Inport block 2 both specify a 1-
second sample time, which is enforced by the Periodic sample time constraint option

16-41

16 Time-Based Scheduling in Simulink Coder

on the Solver configuration page. To view the solver page, double-click the corresponding
yellow button in the model. To display the sample times in the model, double-click the
corresponding yellow button in the model.

This model is configured to display sample-time colors upon diagram update. Red
represents the fastest discrete sample time in the model, green represents the second
fastest, and yellow represents mixed sample times. Click the yellow button in the model
to update the diagram and show sample-time colors.

Multirate Modeling in Single-Tasking Mode (Bare Board, no OS)

This model shows the code generated for a multirate discrete-time model configured for
single-tasking on a bare-board target (one with no operating system).

Open Example Model

Open the example model rtwdemo_mrstbb.

open_system('rtwdemo_mrstbb')

16-42

 Time-Based Scheduling Example Models

16-43

16 Time-Based Scheduling in Simulink Coder

The model contains two sample times. Inport block 1 and Inport block 2 specify 1-second
and 2-second sample times, respectively, which are enforced by the Periodic sample
time constraint option on the Solver configuration page. The solver is set for single-
tasking operation. Rate transition blocks are, therefore, not necessary between blocks
executing at different sample times because preemption will not occur.

The model is configured to display sample-time colors upon diagram update. Red
represents the fastest discrete sample time in the model, green represents the second
fastest, and yellow represents mixed sample times. Double-click the yellow button in the
model to update the diagram and show sample-time colors.

Multirate Modeling in Multitasking Mode (Bare Board, no OS)

This model shows the code generated for a multirate discrete-time model configured for a
multitasking bare-board target (one with no operating system).

Open Example Model

Open the example model rtwdemo_mrmtbb.

open_system('rtwdemo_mrmtbb')

16-44

 Time-Based Scheduling Example Models

16-45

16 Time-Based Scheduling in Simulink Coder

Explore Example Model

The model contains two sample times. Inport block 1 and Inport block 2 specify 1-
second and 2-second sample times, respectively, which are enforced by the Periodic
sample time constraint option on the Solver configuration page. The solver is set
for multitasking operation, which means a rate transition block is required to ensure
that data integrity is enforced when the 1-second task preempts the 2-second task.
Proper rate transitions are always enforced by Simulink and Simulink Coder. This model
specifies an explicit rate transition block. Alternatively, this block could be automatically
inserted by Simulink using the Automatically handle data transfers between tasks
option on the Solver configuration page.

The model is configured to display sample-time colors upon diagram update. Red
represents the fastest discrete sample time in the model, green represents the second
fastest, and yellow represents mixed sample times. Click the yellow button to the right to
update the diagram and show sample-time colors.

Data Transfer Assumptions

Basis of operation for data transfers between tasks:

1 Data transitions occur between a single reading task and a single writing task.
2 A read or write of a byte sized variable is atomic.
3 When two tasks interact through a data transition, only one of them can preempt the

other.
4 For periodic tasks, the faster rate task has higher priority than the slower rate task;

the faster rate task always preempts the slower rate task.
5 All tasks run on a single processor. Time slicing is not allowed.
6 Processes do not crash/restart (especially while data is being transferred between

tasks)

Trade Determinism and Data Integrity to Improve System Performance

This model shows the differences in the operation modes of the Rate Transition block
when used in a multirate, multitasking model. The flexible options for the Rate
Transition block allow you to select the mode that is best suited for your application. You
can trade levels of determinism and data integrity to improve system performance.

16-46

 Time-Based Scheduling Example Models

Rate Transition Block Modes of Operation

Ensure data integrity and determinism (DetAndInteg) : Data is transferred such
that all data bytes for the signal (including all elements of a wide signal) are from the
same time step. Additionally, it is ensured that the relative sample time (delay) from
which the data is transferred from one rate to another is always the same. Only ANSI-C
code is used, no target specific 'critical section' protection is needed.

Ensure integrity (IntegOnly) : Data is transferred such that all data bytes for the
signal (including all elements of a wide signal) are from the same time step. However,
from one transfer of data to the next, the relative sample time (delay) for which the data
is transferred can vary. In this mode, the code to read/write the data is run more often
than in the DetandInt mode. In the worst case, the delay is equivalent to the DetandInt
mode, but the delay can be less which is important is some applications. Also, this mode
support data transfers to/from asynchronous rates which the DetandInt mode cannot
support. Only ANSI-C code is used, no target specific 'critical section' protection is
needed.

No data consistency operations are performed (None) : For this case, the Rate
Transition block does not generated code. This mode is acceptable in some application
where atomic access of scalar data types is guaranteed and when the relative temporal
values of the data is not important. This mode does not introduce any delay.

Data Transfer Assumptions

Basis of operation for data transfers between tasks:

• Data transitions occur between a single reading task and a single writing task.
• A read or write of a byte sized variable is atomic.
• When two tasks interact through a data transition, only one of them can preempt the

other.
• For periodic tasks, the faster rate task has higher priority than the slower rate task;

the faster rate task always preempts the slower rate task.
• All tasks run on a single processor. Time slicing is not allowed.
• Processes do not crash/restart (especially while data is being transferred between

tasks)

Model rtwdemo_ratetrans

open_system('rtwdemo_ratetrans')

16-47

16 Time-Based Scheduling in Simulink Coder

16-48

 Time-Based Scheduling Example Models

Model rtwdemo_ratetrans shows the differences in the operation modes of the
following Rate Transition blocks.

Rate Transition block DetAndIntegF2S

Determinism and data integrity (fast to slow transition):

• The block output is used as a persistent data buffer.
• Data is written to output at slower rate but done during the faster rate context
• Data as seen by the slower rate is always the value when both the faster and slower

rate last executed. Any subsequent steps by the faster rate (and associated data
updates) while the slower rate is running are not seen by the slower rate.

Rate Transition block DetAndIntegS2F

Determinism and data integrity (slow to fast transition):

• Uses two persistent data buffers, an internal buffer and the blocks output.
• The internal buffer is copied to the output at the slower rate but done during the

faster rate context.
• The internal buffer is written at the slower rate and during the slower rate context.
• The data that Fast rate sees is always delayed, i.e. data is from the previous step of

the slow rate code.

Rate Transition block IntegOnlyF2S

Data integrity only (fast to slow transition):

• The block output is used as a persistent data buffer.
• Data is written to buffer during the faster rate context if a flag indicates it not in the

process of being read.
• The flag is set and data is copied from the buffer to output at the slow rate, the flag is

then cleared. This is an additional copy as compared to the deterministic case.
• Data as seen by the slower rate can be from a more recent step of the faster rate than

from when the slower rate and faster rate both executed.

Rate Transition block IntegOnlyS2F

Data integrity only (slow to fast transition):

• Uses two persistent data buffers, both are internal buffers.

16-49

16 Time-Based Scheduling in Simulink Coder

• One of the 2 buffers is always copied to the output at faster rate.
• One of the 2 buffers is written at the slower rate and during the slower rate context,

then the active buffer is switched.
• The data as seen by the faster rate can be more recent than for the deterministic case.

Specifically, when both the slower and faster rate have their hits, the faster rate will
see a previous value from the slower rate. But, subsequent steps for the faster rate
may see an updated value (when the slower rate updates the non-active buffer and
switches the active buffer flag.

Rate Transition block NoneF2S

No code is generated for the Rate Transition block when determinism and data integrity
is waived.

Rate Transition block NoneS2F

No code is generated for the Rate Transition block when determinism and data integrity
is waived.

bdclose('rtwdemo_ratetrans');

More About
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Modeling for Single-Tasking Execution” (Simulink Coder)
• “Modeling for Multitasking Execution” (Simulink Coder)

16-50

17

Event-Based Scheduling in Simulink
Coder

• “Asynchronous Events” on page 17-2
• “Generate Interrupt Service Routines” on page 17-6
• “Spawn and Synchronize Execution of RTOS Task” on page 17-15
• “Pass Asynchronous Events in RTOS as Input To a Referenced Model” on page

17-32
• “Rate Transitions and Asynchronous Blocks” on page 17-39
• “Timers in Asynchronous Tasks” on page 17-44
• “Create a Customized Asynchronous Library” on page 17-47
• “Import Asynchronous Event Data for Simulation” on page 17-56
• “Asynchronous Support Limitations” on page 17-60

17 Event-Based Scheduling in Simulink Coder

Asynchronous Events

Asynchronous Support

Normally, you time models from which you plan to generate code from a periodic
interrupt source (for example, a hardware timer). Blocks in a periodically clocked
single-rate model run at a timer interrupt rate (the base rate of the model). Blocks in a
periodically clocked multirate model run at the base rate or at multiples of that rate.

Many systems must also support execution of blocks in response to events that are
asynchronous with respect to the periodic timing source of the system. For example,
a peripheral device might signal completion of an input operation by generating an
interrupt. The system must service such interrupts, for example, by acquiring data from
the interrupting device.

This chapter explains how to use blocks to model and generate code for asynchronous
event handling, including servicing of hardware-generated interrupts, maintenance of
timers, asynchronous read and write operations, and spawning of asynchronous tasks
under a real-time operating system (RTOS). This block library demonstrates integration
with an example RTOS (VxWorks). Although the blocks target an example RTOS, this
chapter provides source code analysis and other information you can use to develop
blocks that support asynchronous event handling for an alternative target RTOS.4

Block Library for Calls to an Example Real-Time Operating System

The next figure shows the blocks in the vxlib1 block library.

4. VxWorks is a registered trademark of Wind River Systems, Inc.

17-2

 Asynchronous Events

The key blocks in the library are the Async Interrupt and Task Sync blocks. These blocks
are targeted for an example RTOS (VxWorks). You can use them, with modification, to
support your RTOS applications.

Note: You can use the blocks in the vxlib1 (Simulink Coder) library (Async Interrupt
and Task Sync) for simulation and code generation. These blocks provide starting point
examples to help you develop custom blocks for your target environment.

To implement asynchronous support for an RTOS other than the example RTOS, use the
guidelines and example code are provided to help you adapt the vxlib1 library blocks
to target your RTOS. This topic is discussed in “Create a Customized Asynchronous
Library” on page 17-47.

The vxlib1 library includes blocks you can use to

• Generate interrupt-level code — Async Interrupt block
• Spawn an RTOS task that calls a function call subsystem — Task Sync block
• Enable data integrity when transferring data between blocks running as different

tasks — Protected RT block
• Use an unprotected/nondeterministic mode when transferring data between blocks

running as different tasks — Unprotected RT block

The use of protected and unprotected Rate Transition blocks in asynchronous contexts is
discussed in “Rate Transitions and Asynchronous Blocks” on page 17-39. For general
information on rate transitions, see “Time-Based Scheduling and Code Generation” on
page 16-2.

Access the Block Library for RTOS Integration

To access the example RTOS (VxWorks) block library, enter the MATLAB command
vxlib1.

Generate Code Using Library Blocks for RTOS Integration

To generate an example RTOS compatible application from a model containing vxlib1
library blocks, use the following configuration parameter values for your model.

17-3

17 Event-Based Scheduling in Simulink Coder

• Select system target file ert.tlc (requires an Embedded Coder license) from
the browse menu for the Code Generation > System target file parameter
(SystemTargetFile).

• Enable the Code Generation > Generate code only parameter (GenCodeOnly).
• Enable the All Parameters > Generate an example main program parameter

(GenerateSampleERTMain).
• Select VxWorksExample from the menu for the All Parameters > Target

operating system parameter (TargetOS).

Examples and Additional Information

Additional information relevant to the topics in this chapter can be found in

• The rtwdemo_async model, which uses the tornado.tlc system target file and
vxlib1 block library. To open this example, type rtwdemo_async at the MATLAB
command prompt.

• The rtwdemo_async_mdlreftop model, which uses the tornado.tlc
system target file and vxlib1 block library. To open this example, type
rtwdemo_async_mdlreftop at the MATLAB command prompt.

• “Time-Based Scheduling and Code Generation” (Simulink Coder), discusses general
multitasking and rate transition issues for periodic models.

• The Embedded Coder documentation discusses the ert.tlc system target file,
including task execution and scheduling.

• For detailed information about the system calls to the example RTOS (VxWorks)
mentioned in this chapter, see VxWorks system documentation on the Wind River
website.

More About
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Generate Interrupt Service Routines” (Simulink Coder)
• “Spawn and Synchronize Execution of RTOS Task” (Simulink Coder)
• “Pass Asynchronous Events in RTOS as Input To a Referenced Model” (Simulink

Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Import Asynchronous Event Data for Simulation” (Simulink Coder)

17-4

 Asynchronous Events

• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)
• “Create a Customized Asynchronous Library” (Simulink Coder)
• “Asynchronous Support Limitations” (Simulink Coder)

17-5

17 Event-Based Scheduling in Simulink Coder

Generate Interrupt Service Routines

To generate an interrupt service routine (ISR) associated with a specific VME interrupt
level for the example RTOS (VxWorks), use the Async Interrupt block. The Async
Interrupt block enables the specified interrupt level and installs an ISR that calls a
connected function call subsystem.

You can also use the Async Interrupt block in a simulation. It provides an input port that
can be enabled and connected to a simulated interrupt source.

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vxlib1 (Simulink Coder) library. These blocks
provide starting point examples to help you develop custom blocks for your target
environment.

Connecting the Async Interrupt Block

To generate an ISR, connect an output of the Async Interrupt block to the control input of

• A function call subsystem
• The input of a Task Sync block
• The input to a Stateflow chart configured for a function call input event

The next figure shows an Async Interrupt block configured to service two interrupt
sources. The outputs (signal width 2) are connected to two function call subsystems.

17-6

 Generate Interrupt Service Routines

Requirements and Restrictions

Note the following requirements and restrictions:

• The Async Interrupt block supports VME interrupts 1 through 7.
• The Async Interrupt block uses the following system calls to the example RTOS

(VxWorks):

• sysIntEnable

• sysIntDisable

• intConnect

• intLock

• intUnlock

• tickGet

Performance Considerations

Execution of large subsystems at interrupt level can have a significant impact on
interrupt response time for interrupts of equal and lower priority in the system. As
a general rule, it is best to keep ISRs as short as possible. Connect only function call
subsystems that contain a small number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to synchronize the
execution of the function call subsystem to a RTOS task. The Task Sync block is placed

17-7

17 Event-Based Scheduling in Simulink Coder

between the Async Interrupt block and the function call subsystem. The Async Interrupt
block then installs the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately from interrupt
level. The task is then scheduled and run by the example RTOS (VxWorks). See “Spawn
and Synchronize Execution of RTOS Task” on page 17-15 for more information.

Using the Async Interrupt Block in Simulation and Code Generation

This section describes a dual-model approach to the development and implementation
of real-time systems that include ISRs. In this approach, you develop one model that
includes a plant and a controller for simulation, and another model that only includes
the controller for code generation. Using a Simulink library, you can implement changes
to both models simultaneously. The next figure shows how changes made to the plant or
controller, both of which are in a library, are propagated to the models.

Library: Changes made here
affect both models.

Simulink Coder library

Plant Controller

Interrupt
Block

Plant
Model
(for simulation)

Interrupt
Block

(Simulation
input enabled)

Controller

Interrupt
Block

Model
(for code generation)

Controller

Dual-Model Use of Async Interrupt Block for Simulation and Code Generation

A single-model approach is also possible. In this approach, the Plant component of
the model is active only in simulation. During code generation, the Plant components
are effectively switched out of the system and code is generated only for the interrupt
block and controller parts of the model. For an example of this approach, see the
rtwdemo_async model.

17-8

 Generate Interrupt Service Routines

Dual-Model Approach: Simulation

The following block diagram shows a simple model that illustrates the dual-model
approach to modeling. During simulation, the Pulse Generator blocks provide simulated
interrupt signals.

The simulated interrupt signals are routed through the Async Interrupt block's input
port. Upon receiving a simulated interrupt, the block calls the connected subsystem.

During simulation, subsystems connected to Async Interrupt block outputs are executed
in order of their priority in the example RTOS (VxWorks). In the event that two or
more interrupt signals occur simultaneously, the Async Interrupt block executes the
downstream systems in the order specified by their interrupt levels (level 7 gets the
highest priority). The first input element maps to the first output element.

You can also use the Async Interrupt block in a simulation without enabling the
simulation input. In such a case, the Async Interrupt block inherits the base rate of the
model and calls the connected subsystems in order of their priorities in the RTOS. (In
this case, the Async Interrupt block behaves as if all inputs received a 1 simultaneously.)

Dual-Model Approach: Code Generation

In the generated code for the sample model,

• Ground blocks provide input signals to the Environment Controller block

17-9

17 Event-Based Scheduling in Simulink Coder

• The Async Interrupt block does not use its simulation input

The Ground blocks drive control input of the Environment Controller block, so code is
not generated for that signal path. The code generator does not produce code for blocks
that drive the simulation control input to the Environment Controller block because that
path is not selected during code generation. However, the sample times of driving blocks
for the simulation input to the Environment Controller block contribute to the sample
times supported in the generated code. To avoid including unnecessary sample times in
the generated code, use the sample times of the blocks driving the simulation input in the
model where generated code is intended.

Standalone functions are installed as ISRs and the interrupt vector table is as follows:

Offset

192 &isr_num1_vec192()

193 &isr_num2_vec193()

Consider the code generated from this model, assuming that the Async Interrupt block
parameters are configured as shown in the next figure.

17-10

 Generate Interrupt Service Routines

Initialization Code

In the generated code, the Async Interrupt block installs the code in the Subsystem
blocks as interrupt service routines. The interrupt vectors for IRQ1 and IRQ2 are stored
at locations 192 and 193 relative to the base of the interrupt vector table, as specified by
the VME interrupt vector offset(s) parameter.

Installing an ISR requires two RTOS (VxWorks) calls, int_connect and
sysInt_Enable. The Async Interrupt block inserts these calls in the
model_initialize function, as shown in the following code excerpt.
/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Connect and enable ISR function: isr_num1_vec192 */

 if(intConnect(INUM_TO_IVEC(192), isr_num1_vec192, 0) != OK) {

 printf("intConnect failed for ISR 1.\n");

 }

 sysIntEnable(1);

17-11

17 Event-Based Scheduling in Simulink Coder

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Connect and enable ISR function: isr_num2_vec193 */

 if(intConnect(INUM_TO_IVEC(193), isr_num2_vec193, 0) != OK)

 {

 printf("intConnect failed for ISR 2.\n");

 }

 sysIntEnable(2);

The hardware that generates the interrupt is not configured by the Async Interrupt
block. Typically, the interrupt source is a VME I/O board, which generates interrupts for
specific events (for example, end of A/D conversion). The VME interrupt level and vector
are set up in registers or by using jumpers on the board. You can use the mdlStart
routine of a user-written device driver (S-function) to set up the registers and enable
interrupt generation on the board. You must match the interrupt level and vector
specified in the Async Interrupt block dialog to the level and vector set up on the I/O
board.

Generated ISR Code

The actual ISR generated for IRQ1 in the RTOS (VxWorks) is listed below.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

void isr_num1_vec192(void)

{

 int_T lock;

 FP_CONTEXT context;

 /* Use tickGet() as a portable tick counter example.

 A much higher resolution can be achieved with a

 hardware counter */

 Async_Code_M->Timing.clockTick2 = tickGet();

 /* disable interrupts (system is configured as non-ive) */

 lock = intLock();

 /* save floating point context */

 fppSave(&context);

 /* Call the system: <Root>/Subsystem A */

 Count(0, 0);

 /* restore floating point context */

 fppRestore(&context);

17-12

 Generate Interrupt Service Routines

 /* re-enable interrupts */

 intUnlock(lock);

}

There are several features of the ISR that should be noted:

• Because of the setting of the Preemption Flag(s) parameter, this ISR is locked;
that is, it cannot be preempted by a higher priority interrupt. The ISR is locked
and unlocked in the example RTOS (VxWorks) by the int_lock and int_unlock
functions.

• The connected subsystem, Count, is called from within the ISR.
• The Count function executes algorithmic (model) code. Therefore, the floating-point

context is saved and restored across the call to Count.
• The ISR maintains its own absolute time counter, which is distinct from other

periodic base rate or subrate counters in the system. Timing data is maintained for
the use of any blocks executed within the ISR that require absolute or elapsed time.

See “Timers in Asynchronous Tasks” on page 17-44 for details.

Model Termination Code

The model's termination function disables the interrupts in the RTOS (VxWorks):

/* Model terminate function */

void Async_Code_terminate(void)

{

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num1_vec192 */

 sysIntDisable(1);

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num2_vec193 */

 sysIntDisable(2);

}

More About
• “Spawn and Synchronize Execution of RTOS Task” (Simulink Coder)
• “Pass Asynchronous Events in RTOS as Input To a Referenced Model” (Simulink

Coder)
• “Import Asynchronous Event Data for Simulation” (Simulink Coder)

17-13

17 Event-Based Scheduling in Simulink Coder

• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)

17-14

 Spawn and Synchronize Execution of RTOS Task

Spawn and Synchronize Execution of RTOS Task

This example shows how to simulate and generate code for asynchronous events on
a multitasking real-time operating system (VxWorks®). The model shows different
techniques for handling asynchronous events depending on the size of the triggered
subsystems.

About the Example Model

Open the example model rtwdemo_async.

17-15

17 Event-Based Scheduling in Simulink Coder

The model simulates an interrupt source and includes an Async Interrupt block, a Task
Sync block, function-call subsystems Count and Algorithm, and Rate Transition blocks.
The Async Interrupt block creates two Versa Module Eurocard (VME) interrupt service
routines (ISRs) that pass interrupt signals to subsystem Count and the Task Sync block.
You can place an Async Interrupt block between a simulated interrupt source and one of
the following:

17-16

 Spawn and Synchronize Execution of RTOS Task

• Function call subsystem
• Task Sync block
• A Stateflow® chart configured for a function call input event
• A referenced model with an Inport block that connects to one of the preceding model

elements

The Async Interrupt and Task Sync blocks enable the subsystems to execute
asynchronously.

Count represents a simple interrupt service routine (ISR) that executes at interrupt
level. It is best to keep ISRs as simple as possible. This subsystem includes only a
Discrete-Time Integrator block.

Algorithm includes more substance. It includes multiple blocks and produces two
output values. Execution of larger subsystems at interrupt level can significantly impact
response time for interrupts of equal and lower priority in the system. A better solution
for larger subsystems is to use the Task Sync block to represent the ISR for the function-
call subsystem.

The Async Interrupt block generates calls to ISRs. Place the block between a simulated
interrupt source and one of the following:

• Function call subsystem
• Task Sync block
• A Stateflow® chart configured for a function call input event

For each specified interrupt level, the block generates a Versa Module Eurocard (VME)
ISR that executes the connected subsystem, Task Sync block, or chart.

In the example model, the Async Interrupt block is configured for VME interrupts 1
and 2, by using interrupt vector offsets 192 and 193. Interrupt 1 connects directly to
subsystem Count. Interrupt 2 connects to a Task Sync block, which serves as the ISR for
Algorithm. Place a Task Sync block in one of the following locations:

• Between an Async Interrupt block and a function-call subsystem or Stateflow® chart.
• At the output port of a Stateflow® chart that has an event, Output to Simulink,

that you configure as a function call.

In the example model, the Task Sync block is between the Async Interrupt block and
function-call subsystem Algorithm. The Task Sync block is configured with the task
name Task(), a priority of 50, a stack size of 8192, and data transfers of the task

17-17

17 Event-Based Scheduling in Simulink Coder

synchronized with the caller task. The spawned task uses a semaphore to synchronize
task execution. The Async Interrupt block triggers a release of the task semaphore.

Four Rate Transition blocks handle data transfers between ports that operate at
different rates. In two instances, Protected Rate Transition blocks protect data transfers
(prevent them from being preempted and corrupted). In the other two instances,
Unprotected Rate Transition blocks introduce no special behavior. Their presence
informs Simulink® of a rate transition.

The code generated for the Async Interrupt and Task Sync blocks is tailored for the
example RTOS (VxWorks®). However, you can modify the blocks to generate code specific
to your run-time environment.

Data Transfer Assumptions

• Data transfers occur between one reading task and one writing task.
• A read or write operation on a byte-size variable is atomic.
• When two tasks interact, only one can preempt the other.
• For periodic tasks, the task with the faster rate has higher priority than the task with

the slower rate. The task with the faster rate preempts the tasks with slower rates.
• Tasks run on a single processor. Time slicing is not allowed.
• Processes do not stop and restart, especially while data is being transferred between

tasks.

Simulate the Model

Simulate the model. By default, the model is configured to show sample times in different
colors. Discrete sample times for input and output appear red and green, respectively.
Constants are reddish-blue. Asynchronous interrupts and tasks are purple. The Rate
Transition Blocks, which are a hybrid rate (their input and output sample times can
differ), are yellow.

Generate Code and Report

Generate code and a code generation report for the model. Generated code for the Async
Interrupt and Task Sync blocks is for the example RTOS (VxWorks®). However, you can
modify the blocks to generate code for another run-time environment.

1. Create a temporary folder for the build and inspection process.

2. Build the model.

17-18

 Spawn and Synchronize Execution of RTOS Task

Starting build procedure for model: rtwdemo_async

Warning: Simulink Coder: The tornado.tlc target will be removed in a future release.

Wrapping unrecognized make command (angle brackets added)

<make>

in default batch file

Successful completion of code generation for model: rtwdemo_async

Review Initialization Code

Open the generated source file rtwdemo_async.c. The initialization code:

1. Creates and initializes the synchronization semaphore Task0_semaphore.

 *(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemID = semBCreate(SEM_Q_PRIORITY,

 SEM_EMPTY);

 if (rtwdemo_async_DW.SFunction_PWORK.SemID == NULL) {

 printf("semBCreate call failed for block Task0.\n");

 }

2. Spawns task task0 and assigns the task priority 50.

 rtwdemo_async_DW.SFunction_IWORK.TaskID = taskSpawn("Task0",

 50.0,

 VX_FP_TASK,

 8192.0,

 (FUNCPTR)Task0,

 0, 0, 0, 0, 0, 0, 0,0, 0, 0);

 if (rtwdemo_async_DW.SFunction_IWORK.TaskID == ERROR) {

 printf("taskSpawn call failed for block Task0.\n");

 }

 /* End of Start for S-Function (vxtask1): '<S5>/S-Function' */

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Connect and enable ISR function: isr_num1_vec192 */

 if (intConnect(INUM_TO_IVEC(192), isr_num1_vec192, 0) != OK) {

 printf("intConnect failed for ISR 1.\n");

 }

 sysIntEnable(1);

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

17-19

17 Event-Based Scheduling in Simulink Coder

 /* Connect and enable ISR function: isr_num2_vec193 */

 if (intConnect(INUM_TO_IVEC(193), isr_num2_vec193, 0) != OK) {

 printf("intConnect failed for ISR 2.\n");

 }

 sysIntEnable(2);

3. Connects and enables ISR isr_num1_vec192 for interrupt 1 and ISR
isr_num2_vec193 for interrupt 2.

 {

 int32_T i;

 for (i = 0; i < 60; i++) {

 /* InitializeConditions for RateTransition: '<Root>/Protected RT1' */

 rtwdemo_async_DW.ProtectedRT1_Buffer[i] = 0.0;

 /* InitializeConditions for RateTransition: '<Root>/Protected RT2' */

 rtwdemo_async_DW.ProtectedRT2_Buffer[i] = 0.0;

 }

 /* SystemInitialize for S-Function (vxinterrupt1): '<Root>/Async Interrupt' incorporates:

 * SystemInitialize for SubSystem: '<Root>/Count'

 */

 /* System initialize for function-call system: '<Root>/Count' */

 rtwdemo_async_DW.Count_PREV_T = rtwdemo_async_M->Timing.clockTick2;

 /* InitializeConditions for DiscreteIntegrator: '<S2>/Integrator' */

 rtwdemo_async_DW.Integrator_DSTATE_l = 0.0;

 /* SystemInitialize for Outport: '<Root>/Out1' incorporates:

 * SystemInitialize for Outport: '<S2>/Out'

 */

 rtwdemo_async_Y.Out1 = 0.0;

 /* SystemInitialize for S-Function (vxinterrupt1): '<Root>/Async Interrupt' incorporates:

 * SystemInitialize for SubSystem: '<S4>/Subsystem'

 */

 /* System initialize for function-call system: '<S4>/Subsystem' */

 /* SystemInitialize for S-Function (vxtask1): '<S5>/S-Function' incorporates:

 * SystemInitialize for SubSystem: '<Root>/Algorithm'

 */

17-20

 Spawn and Synchronize Execution of RTOS Task

 /* System initialize for function-call system: '<Root>/Algorithm' */

 rtwdemo_async_M->Timing.clockTick4 = rtwdemo_async_M->Timing.clockTick3;

 rtwdemo_async_DW.Algorithm_PREV_T = rtwdemo_async_M->Timing.clockTick4;

 /* InitializeConditions for DiscreteIntegrator: '<S1>/Integrator' */

 rtwdemo_async_DW.Integrator_DSTATE = 0.0;

 /* SystemInitialize for Outport: '<S1>/Out1' */

 memset(&rtwdemo_async_B.Sum[0], 0, 60U * sizeof(real_T));

 /* SystemInitialize for Outport: '<Root>/Out3' incorporates:

 * SystemInitialize for Outport: '<S1>/Out2'

 */

 rtwdemo_async_Y.Out3 = 0.0;

 /* End of SystemInitialize for S-Function (vxtask1): '<S5>/S-Function' */

 /* End of SystemInitialize for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 }

}

/* Model terminate function */

static void rtwdemo_async_terminate(void)

{

 /* Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num1_vec192 */

 sysIntDisable(1);

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num2_vec193 */

 sysIntDisable(2);

 /* End of Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' incorporates:

 * Terminate for SubSystem: '<S4>/Subsystem'

 */

 /* Termination for function-call system: '<S4>/Subsystem' */

 /* Terminate for S-Function (vxtask1): '<S5>/S-Function' */

17-21

17 Event-Based Scheduling in Simulink Coder

 /* VxWorks Task Block: '<S5>/S-Function' (vxtask1) */

 /* Destroy task: Task0 */

 taskDelete(rtwdemo_async_DW.SFunction_IWORK.TaskID);

 /* End of Terminate for S-Function (vxtask1): '<S5>/S-Function' */

 /* End of Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

}

/*==*

 * Start of Classic call interface *

 ==/

void MdlOutputs(int_T tid)

{

 rtwdemo_async_output(tid);

}

void MdlUpdate(int_T tid)

{

 rtwdemo_async_update(tid);

}

void MdlInitializeSizes(void)

{

}

void MdlInitializeSampleTimes(void)

{

}

void MdlInitialize(void)

{

}

void MdlStart(void)

{

 rtwdemo_async_initialize();

}

void MdlTerminate(void)

{

 rtwdemo_async_terminate();

}

17-22

 Spawn and Synchronize Execution of RTOS Task

/* Registration function */

RT_MODEL_rtwdemo_async_T *rtwdemo_async(void)

{

 /* Registration code */

 /* initialize non-finites */

 rt_InitInfAndNaN(sizeof(real_T));

 /* initialize real-time model */

 (void) memset((void *)rtwdemo_async_M, 0,

 sizeof(RT_MODEL_rtwdemo_async_T));

 /* Initialize timing info */

 {

 int_T *mdlTsMap = rtwdemo_async_M->Timing.sampleTimeTaskIDArray;

 mdlTsMap[0] = 0;

 mdlTsMap[1] = 1;

 rtwdemo_async_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);

 rtwdemo_async_M->Timing.sampleTimes =

 (&rtwdemo_async_M->Timing.sampleTimesArray[0]);

 rtwdemo_async_M->Timing.offsetTimes =

 (&rtwdemo_async_M->Timing.offsetTimesArray[0]);

 /* task periods */

 rtwdemo_async_M->Timing.sampleTimes[0] = (0.016666666666666666);

 rtwdemo_async_M->Timing.sampleTimes[1] = (0.05);

 /* task offsets */

 rtwdemo_async_M->Timing.offsetTimes[0] = (0.0);

 rtwdemo_async_M->Timing.offsetTimes[1] = (0.0);

 }

 rtmSetTPtr(rtwdemo_async_M, &rtwdemo_async_M->Timing.tArray[0]);

 {

 int_T *mdlSampleHits = rtwdemo_async_M->Timing.sampleHitArray;

 int_T *mdlPerTaskSampleHits = rtwdemo_async_M->Timing.perTaskSampleHitsArray;

 rtwdemo_async_M->Timing.perTaskSampleHits = (&mdlPerTaskSampleHits[0]);

 mdlSampleHits[0] = 1;

 rtwdemo_async_M->Timing.sampleHits = (&mdlSampleHits[0]);

 }

 rtmSetTFinal(rtwdemo_async_M, 0.5);

 rtwdemo_async_M->Timing.stepSize0 = 0.016666666666666666;

17-23

17 Event-Based Scheduling in Simulink Coder

 rtwdemo_async_M->Timing.stepSize1 = 0.05;

 rtwdemo_async_M->solverInfoPtr = (&rtwdemo_async_M->solverInfo);

 rtwdemo_async_M->Timing.stepSize = (0.016666666666666666);

 rtsiSetFixedStepSize(&rtwdemo_async_M->solverInfo, 0.016666666666666666);

 rtsiSetSolverMode(&rtwdemo_async_M->solverInfo, SOLVER_MODE_MULTITASKING);

 /* block I/O */

 rtwdemo_async_M->blockIO = ((void *) &rtwdemo_async_B);

 (void) memset(((void *) &rtwdemo_async_B), 0,

 sizeof(B_rtwdemo_async_T));

 /* states (dwork) */

 rtwdemo_async_M->dwork = ((void *) &rtwdemo_async_DW);

 (void) memset((void *)&rtwdemo_async_DW, 0,

 sizeof(DW_rtwdemo_async_T));

 /* external inputs */

 rtwdemo_async_M->inputs = (((void*)&rtwdemo_async_U));

 (void)memset((void *)&rtwdemo_async_U, 0, sizeof(ExtU_rtwdemo_async_T));

 /* external outputs */

 rtwdemo_async_M->outputs = (&rtwdemo_async_Y);

 (void) memset((void *)&rtwdemo_async_Y, 0,

 sizeof(ExtY_rtwdemo_async_T));

 /* Initialize Sizes */

 rtwdemo_async_M->Sizes.numContStates = (0);/* Number of continuous states */

 rtwdemo_async_M->Sizes.numY = (3); /* Number of model outputs */

 rtwdemo_async_M->Sizes.numU = (60); /* Number of model inputs */

 rtwdemo_async_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */

 rtwdemo_async_M->Sizes.numSampTimes = (2);/* Number of sample times */

 rtwdemo_async_M->Sizes.numBlocks = (17);/* Number of blocks */

 rtwdemo_async_M->Sizes.numBlockIO = (4);/* Number of block outputs */

 return rtwdemo_async_M;

}

/*==*

 * End of Classic call interface *

 ==/

The order of these operations is important. Before the code generator enables the
interrupt that activates the task, it must spawn the task.

17-24

 Spawn and Synchronize Execution of RTOS Task

Review Task and Task Synchronization Code

In the generated source file rtwdemo_async.c, review the task and task
synchronization code.

The code generator produces the code for function Task0 from the Task Sync block. That
function includes a small amount of interrupt-level code and runs as an RTOS task.

The task waits in an infinite for loop until the system releases a synchronization
semaphore. If the system releases the semaphore, the function updates its task timer and
calls the code generated for the Algorithm subsystem.

In the example model, the Synchronize the data transfer of this task with the
caller task parameter for the Task Sync block is set. This parameter setting updates the
timer associated with the Task Sync block (rtM->Timing.clockTick2) with the value
of the timer that the Async Interrupt block (rtM->Timing.clockTick3) maintains.
As a result, code for blocks within the Algorithm subsystem use timer values that are
based on the time of the most recent interrupt, rather than the most recent activation of
Task0.

{

 /* Wait for semaphore to be released by system: rtwdemo_async/Task Sync */

 for (;;) {

 if (semTake(*(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemID,NO_WAIT) !=

 ERROR) {

 logMsg("Rate for Task Task0() too fast.\n",0,0,0,0,0,0);

#if STOPONOVERRUN

 logMsg("Aborting real-time simulation.\n",0,0,0,0,0,0);

 semGive(stopSem);

 return(ERROR);

#endif

 } else {

 semTake(*(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemID, WAIT_FOREVER);

 }

 /* Use the upstream clock tick counter for this Task. */

 rtwdemo_async_M->Timing.clockTick4 = rtwdemo_async_M->Timing.clockTick3;

 /* Call the system: '<Root>/Algorithm' */

17-25

17 Event-Based Scheduling in Simulink Coder

 {

 {

 int32_T tmp;

 int32_T i;

 /* RateTransition: '<Root>/Protected RT1' */

 tmp = rtwdemo_async_DW.ProtectedRT1_ActiveBufIdx * 60;

 for (i = 0; i < 60; i++) {

 rtwdemo_async_B.ProtectedRT1[i] =

 rtwdemo_async_DW.ProtectedRT1_Buffer[i + tmp];

 }

 /* End of RateTransition: '<Root>/Protected RT1' */

 /* S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* S-Function (vxtask1): '<S5>/S-Function' */

 /* Output and update for function-call system: '<Root>/Algorithm' */

 {

 real_T tmp;

 int32_T i;

 rtwdemo_async_M->Timing.clockTick4 =

 rtwdemo_async_M->Timing.clockTick3;

 rtwdemo_async_DW.Algorithm_ELAPS_T =

 rtwdemo_async_M->Timing.clockTick4 -

 rtwdemo_async_DW.Algorithm_PREV_T;

 rtwdemo_async_DW.Algorithm_PREV_T = rtwdemo_async_M->Timing.clockTick4;

 /* Outport: '<Root>/Out3' incorporates:

 * DiscreteIntegrator: '<S1>/Integrator'

 */

 rtwdemo_async_Y.Out3 = rtwdemo_async_DW.Integrator_DSTATE;

 /* Sum: '<S1>/Sum' incorporates:

 * Constant: '<S1>/Offset'

 */

 rtwdemo_async_B.Sum[0] = rtwdemo_async_B.ProtectedRT1[0] + 1.25;

 /* Sum: '<S1>/Sum1' */

 tmp = rtwdemo_async_B.Sum[0];

 for (i = 0; i < 59; i++) {

 /* Sum: '<S1>/Sum' incorporates:

 * Constant: '<S1>/Offset'

17-26

 Spawn and Synchronize Execution of RTOS Task

 */

 rtwdemo_async_B.Sum[i + 1] = rtwdemo_async_B.ProtectedRT1[i + 1] +

 1.25;

 /* Sum: '<S1>/Sum1' incorporates:

 * Sum: '<S1>/Sum'

 */

 tmp += rtwdemo_async_B.Sum[i + 1];

 }

 /* Update for DiscreteIntegrator: '<S1>/Integrator' incorporates:

 * Sum: '<S1>/Sum1'

 */

 rtwdemo_async_DW.Integrator_DSTATE += 0.016666666666666666 * (real_T)

 rtwdemo_async_DW.Algorithm_ELAPS_T * tmp;

 }

 /* End of Outputs for S-Function (vxtask1): '<S5>/S-Function' */

 /* End of Outputs for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 }

 {

 int32_T i;

 /* Update for RateTransition: '<Root>/Protected RT2' */

 for (i = 0; i < 60; i++) {

 rtwdemo_async_DW.ProtectedRT2_Buffer[i +

 (rtwdemo_async_DW.ProtectedRT2_ActiveBufIdx == 0) * 60] =

 rtwdemo_async_B.Sum[i];

 }

 rtwdemo_async_DW.ProtectedRT2_ActiveBufIdx = (int8_T)

 (rtwdemo_async_DW.ProtectedRT2_ActiveBufIdx == 0);

 /* End of Update for RateTransition: '<Root>/Protected RT2' */

 }

 }

 }

}

The code generator produces code for ISRs isr_num1_vec192 and isr_num2_vec293.
ISR isr_num2_vec192:

17-27

17 Event-Based Scheduling in Simulink Coder

• Disables interrupts.
• Saves floating-point context.
• Calls the code generated for the subsystem that connects to the referenced model

Inport block, which receives the interrupt.
• Restores floating-point context.
• Reenables interrupts.

void isr_num1_vec192(void)

{

 int_T lock;

 FP_CONTEXT context;

 /* Use tickGet() as a portable tick

 counter example. A much higher resolution can

 be achieved with a hardware counter */

 rtwdemo_async_M->Timing.clockTick2 = tickGet();

 /* disable interrupts (system is configured as non-preemptive) */

 lock = intLock();

 /* save floating point context */

 fppSave(&context);

 /* Call the system: '<Root>/Count' */

 {

 /* S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* Output and update for function-call system: '<Root>/Count' */

 rtwdemo_async_DW.Count_ELAPS_T = rtwdemo_async_M->Timing.clockTick2 -

 rtwdemo_async_DW.Count_PREV_T;

 rtwdemo_async_DW.Count_PREV_T = rtwdemo_async_M->Timing.clockTick2;

 /* Outport: '<Root>/Out1' incorporates:

 * DiscreteIntegrator: '<S2>/Integrator'

 */

 rtwdemo_async_Y.Out1 = rtwdemo_async_DW.Integrator_DSTATE_l;

 /* Update for DiscreteIntegrator: '<S2>/Integrator' */

 rtwdemo_async_DW.Integrator_DSTATE_l += 0.016666666666666666 * (real_T)

 rtwdemo_async_DW.Count_ELAPS_T;

 /* End of Outputs for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

17-28

 Spawn and Synchronize Execution of RTOS Task

 }

 /* restore floating point context */

 fppRestore(&context);

 /* re-enable interrupts */

 intUnlock(lock);

}

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

ISR isr_num2_vec293 maintains a timer that stores the tick count at the time that the
interrupt occurs. After updating the timer, the ISR releases the semaphore that activates
Task0.

void isr_num2_vec193(void)

{

 /* Use tickGet() as a portable tick

 counter example. A much higher resolution can

 be achieved with a hardware counter */

 rtwdemo_async_M->Timing.clockTick3 = tickGet();

 /* Call the system: '<S4>/Subsystem' */

 {

 /* S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* Output and update for function-call system: '<S4>/Subsystem' */

 /* S-Function (vxtask1): '<S5>/S-Function' */

 /* VxWorks Task Block: '<S5>/S-Function' (vxtask1) */

 /* Release semaphore for system task: Task0 */

 semGive(*(SEM_ID *)rtwdemo_async_DW.SFunction_PWORK.SemID);

 /* End of Outputs for S-Function (vxtask1): '<S5>/S-Function' */

 /* End of Outputs for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 }

}

/* VxWorks Task Block: '<S5>/S-Function' (vxtask1) */

17-29

17 Event-Based Scheduling in Simulink Coder

Review Task Termination Code

The Task Sync block generates the following termination code.

static void rtwdemo_async_terminate(void)

{

 /* Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num1_vec192 */

 sysIntDisable(1);

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num2_vec193 */

 sysIntDisable(2);

 /* End of Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' incorporates:

 * Terminate for SubSystem: '<S4>/Subsystem'

 */

 /* Termination for function-call system: '<S4>/Subsystem' */

 /* Terminate for S-Function (vxtask1): '<S5>/S-Function' */

 /* VxWorks Task Block: '<S5>/S-Function' (vxtask1) */

 /* Destroy task: Task0 */

 taskDelete(rtwdemo_async_DW.SFunction_IWORK.TaskID);

 /* End of Terminate for S-Function (vxtask1): '<S5>/S-Function' */

 /* End of Terminate for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

}

Related Information

• Async Interrupt (Simulink Coder)
• Task Sync (Simulink Coder)
• “Generate Interrupt Service Routines” (Simulink Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Create a Customized Asynchronous Library” (Simulink Coder)

17-30

 Spawn and Synchronize Execution of RTOS Task

• “Import Asynchronous Event Data for Simulation” (Simulink Coder)
• “Load Data to Root-Level Input Ports” (Simulink)
• “Asynchronous Events” (Simulink Coder)
• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)
• “Asynchronous Support Limitations” (Simulink Coder)

More About
• “Generate Interrupt Service Routines” (Simulink Coder)
• “Pass Asynchronous Events in RTOS as Input To a Referenced Model” (Simulink

Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Import Asynchronous Event Data for Simulation” (Simulink Coder)
• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)

17-31

17 Event-Based Scheduling in Simulink Coder

Pass Asynchronous Events in RTOS as Input To a Referenced Model

This example shows how to simulate and generate code for a model that triggers
asynchronous events in an example RTOS (VxWorks®) that get passed as input to a
referenced model.

Open Example Model

Open the example model rtwdemo_async_mdlreftop.

Warning: Undefined function 'LibraryBrowserCustomizer' for

input arguments of type 'DAStudio.CustomizationManager'.

17-32

 Pass Asynchronous Events in RTOS as Input To a Referenced Model

The model simulates an interrupt source and includes an Async Interrupt block and
referenced model. The Async Interrupt block creates two Versa Module Eurocard (VME)
interrupt service routines (ISRs) that pass interrupt signals to Inport blocks 1 and 2
of the referenced model. You can place an Async Interrupt block between a simulated
interrupt source and one of the following:

• Function call subsystem
• Task Sync block
• A Stateflow® chart configured for a function call input event
• A referenced model with a Inport block that connects to one of the preceding model

elements

In this example model, the Async Interrupt block passes asynchronous events (function-
call trigger signals), Interrupt1 and Interrupt2, to the referenced model through
Inport blocks 1 and 2.

The code generated for the Async Interrupt block is tailored for the example real-time
operating system (VxWorks). However, you can modify the block to generate code specific
to your run-time environment.

Open the referenced model.

The referenced model includes the two Inport blocks that receive the interrupts, each
connected to an Asynchronous Task Specification block, function-call subsystems Count
and Algorithm, and Rate Transition blocks. The Asynchronous Task Specification
block, in combination with a root-level Inport block, allows a reference model to receive
asynchronous function-call input. To use the block:

1 Connect the Asynchronous Task Specification block to the output port of a root-level
Inport block that outputs a function-call trigger.

2 Select the Output function call parameter of the Inport block to specify that it
accepts function-call signals.

3 On the Asynchronous Task Specification parameters dialog box, set the task priority
for the asynchronous task associated with an Inport block. Specify an integer or [].
If you specify an integer, it must match the priority of the interrupt initiated by the
Async Interrupt block in the parent model. If you specify [], the priorities do not have
to match.

The Asynchronous Task Specification block for the higher priority interrupt,
interrupt1, connects to function-call subsystem Count. Count represents a simple
interrupt service routine (ISR). The second Asynchronous Task Specification block

17-33

17 Event-Based Scheduling in Simulink Coder

connects to the subsystem Algorithm, which includes more substance. It includes
multiple blocks and produces two output values. Both subsystems execute at interrupt
level.

For each interrupt level specified for the Async Interrupt block in the parent model, the
block generates a VME ISR that executes the connected subsystem, Task Sync block, or
chart.

In the example top model, the Async Interrupt block is configured for VME interrupts
1 and 2, using interrupt vector offsets 192 and 193. Interrupt 1 is wired to trigger
subsystem Count. Interrupt 2 is wired to trigger subsystem Algorithm.

The Rate Transition blocks handle data transfers between ports that operate at different
rates. In two instances, the blocks protect data transfers (prevent them from being
preempted and corrupted). In the other instance, no special behavior occurs.

Data Transfer Assumptions

• Data transfers occur between one reading task and one writing task.
• A read or write operation on a byte-sized variable is atomic.
• When two tasks interact, only one can preempt the other.
• For periodic tasks, the task with the faster rate has higher priority than the task with

the slower rate. The task with the faster rate preempts the tasks slower rates.
• Tasks run on a single processor. Time slicing is not allowed.
• Processes do not crash and restart, especially while data is being transferred between

tasks.

Simulate the Model

Simulate the model. By default, the model is configured to show sample times in different
colors. Discrete sample times for input and output appear red and green, respectively.
Constants are magenta. Asynchronous interrupts are purple. The Rate Transition
Blocks, which are hybrid (input and output sample times can differ), appear yellow.

Generate Code and Report

Generate code and a code generation report for the model. Async Interrupt block and
Task Sync block generated code is for the example RTOS (VxWorks). However, you can
modify the blocks to generate code for another run-time environment.

1. Create a temporary folder for the build and inspection process.

17-34

 Pass Asynchronous Events in RTOS as Input To a Referenced Model

2. Build the model.

Warning: Simulink Coder: The tornado.tlc target will be removed in a future release.

Wrapping unrecognized make command (angle brackets added)

<make>

in default batch file

Successfully updated the model reference RTW target for model: rtwdemo_async_mdlrefbot

Starting build procedure for model: rtwdemo_async_mdlreftop

Warning: Simulink Coder: The tornado.tlc target will be removed in a future release.

Wrapping unrecognized make command (angle brackets added)

<make>

in default batch file

Successful completion of code generation for model: rtwdemo_async_mdlreftop

Review Initialization Code

Open the generated source file rtwdemo_async_mdlreftop.c. The initialization code
connects and enables ISR isr_num1_vec192 for interrupt 1 and ISR isr_num2_vec193
for interrupt 2.

static void rtwdemo_async_mdlreftop_initialize(void)

{

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Connect and enable ISR function: isr_num1_vec192 */

 if (intConnect(INUM_TO_IVEC(192), isr_num1_vec192, 0) != OK) {

 printf("intConnect failed for ISR 1.\n");

 }

 sysIntEnable(1);

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Connect and enable ISR function: isr_num2_vec193 */

 if (intConnect(INUM_TO_IVEC(193), isr_num2_vec193, 0) != OK) {

 printf("intConnect failed for ISR 2.\n");

 }

 sysIntEnable(2);

 /* SystemInitialize for ModelReference: '<Root>/Model' */

 rtwdemo_async_mdlrefbot_Init(&rtwdemo_async_mdlreftop_Y.Out1);

 /* Enable for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

17-35

17 Event-Based Scheduling in Simulink Coder

 /* Enable for ModelReference: '<Root>/Model' incorporates:

 * Enable for Inport: '<Root>/In1_60hz'

 * Enable for Inport: '<Root>/In2_60_hz'

 * Enable for Inport: '<Root>/In3_60hz'

 */

 rtwdemo_async_mdlrefbot_Interrupt1_Enable();

 rtwdemo_async_mdlrefbot_Interrupt2_Enable();

 /* End of Enable for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

}

Review ISR Code

In the generated source file rtwdemo_async_mdlreftop.c, review the code for ISRs
isr_num1_vec192 and isr_num2_vec293. Each ISR:

• Disables interrupts.
• Saves floating-point context.
• Calls the code generated for the subsystem connected to the referenced model Inport

block that receives the interrupt.
• Restores floating-point context.
• Reenables interrupts.

void isr_num1_vec192(void)

{

 int_T lock;

 FP_CONTEXT context;

 /* disable interrupts (system is configured as non-preemptive) */

 lock = intLock();

 /* save floating point context */

 fppSave(&context);

 /* Call the system: '<Root>/Model' */

 {

 /* S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* ModelReference: '<Root>/Model' incorporates:

 * Inport: '<Root>/In1_60hz'

 * Inport: '<Root>/In2_60_hz'

17-36

 Pass Asynchronous Events in RTOS as Input To a Referenced Model

 * Inport: '<Root>/In3_60hz'

 */

 rtwdemo_async_mdlrefbot_Interrupt1(&rtwdemo_async_mdlreftop_Y.Out1);

 /* End of Outputs for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 }

 /* restore floating point context */

 fppRestore(&context);

 /* re-enable interrupts */

 intUnlock(lock);

}

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

void isr_num2_vec193(void)

{

 FP_CONTEXT context;

 /* save floating point context */

 fppSave(&context);

 /* Call the system: '<Root>/Model' */

 {

 /* S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 /* ModelReference: '<Root>/Model' incorporates:

 * Inport: '<Root>/In1_60hz'

 * Inport: '<Root>/In2_60_hz'

 * Inport: '<Root>/In3_60hz'

 */

 rtwdemo_async_mdlrefbot_Interrupt2();

 /* End of Outputs for S-Function (vxinterrupt1): '<Root>/Async Interrupt' */

 }

 /* restore floating point context */

 fppRestore(&context);

}

Review Task Termination Code

The Task Sync block generates the following termination code.

17-37

17 Event-Based Scheduling in Simulink Coder

static void rtwdemo_async_mdlreftop_terminate(void)

{

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num1_vec192 */

 sysIntDisable(1);

 /* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

 /* Disable interrupt for ISR system: isr_num2_vec193 */

 sysIntDisable(2);

}

Related Information

• Async Interrupt (Simulink Coder)
• Asynchronous Task Specification (Simulink Coder)
• “Generate Interrupt Service Routines” (Simulink Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Create a Customized Asynchronous Library” (Simulink Coder)
• “Import Asynchronous Event Data for Simulation” (Simulink Coder)
• “Load Data to Root-Level Input Ports” (Simulink)
• “Asynchronous Events” (Simulink Coder)
• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)
• “Asynchronous Support Limitations” (Simulink Coder)

More About
• “Generate Interrupt Service Routines” (Simulink Coder)
• “Spawn and Synchronize Execution of RTOS Task” (Simulink Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Import Asynchronous Event Data for Simulation” (Simulink Coder)
• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)

17-38

 Rate Transitions and Asynchronous Blocks

Rate Transitions and Asynchronous Blocks

Because an asynchronous function call subsystem can preempt or be preempted by other
model code, an inconsistency arises when more than one signal element is connected to
an asynchronous block. The issue is that signals passed to and from the function call
subsystem can be in the process of being written to or read from when the preemption
occurs. Thus, some old and some new data is used. This situation can also occur with
scalar signals in some cases. For example, if a signal is a double (8 bytes), the read or
write operation might require two machine instructions. The following sections describe
these issues.

In this section...

“About Rate Transitions and Asynchronous Blocks” on page 17-39
“Handle Rate Transitions for Asynchronous Tasks” on page 17-41
“Handle Multiple Asynchronous Interrupts” on page 17-41

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vxlib1 (Simulink Coder) library. These blocks
provide starting point examples to help you develop custom blocks for your target
environment.

About Rate Transitions and Asynchronous Blocks

The Simulink Rate Transition block is designed to deal with preemption problems
that occur in data transfer between blocks running at different rates. These issues are
discussed in “Time-Based Scheduling and Code Generation” (Simulink Coder).

You can handle rate transition issues automatically by selecting the Automatically
handle data transfers between tasks option on the Solver pane of the Configuration
Parameters dialog box. This saves you from having to manually insert Rate Transition
blocks to avoid invalid rate transitions, including invalid asynchronous-to-periodic and
asynchronous-to-asynchronous rate transitions, in multirate models. For asynchronous
tasks, the Simulink engine configures inserted blocks for data integrity but not
determinism during data transfers.

For asynchronous rate transitions, the Rate Transition block provides data integrity,
but cannot provide determinism. Therefore, when you insert Rate Transition blocks

17-39

17 Event-Based Scheduling in Simulink Coder

explicitly, you must clear the Ensure data determinism check box in the Block
Parameters dialog box.

When you insert a Rate Transition block between two blocks to maintain data integrity
and priorities are assigned to the tasks associated with the blocks, the code generator
assumes that the higher priority task can preempt the lower priority task and the lower
priority task cannot preempt the higher priority task. If the priority associated with task
for either block is not assigned or the priorities of the tasks for both blocks are the same,
the code generator assumes that either task can preempt the other task.

Priorities of periodic tasks are assigned by the Simulink engine, in accordance with the
options specified in the Solver options section of the Solver pane of the Configuration
Parameters dialog box. When the Periodic sample time constraint option field of
Solver options is set to Unconstrained, the model base rate priority is set to 40.
Priorities for subrates then increment or decrement by 1 from the base rate priority,
depending on the setting of the Higher priority value indicates higher task priority
option.

You can assign priorities manually by using the Periodic sample time properties
field. The Simulink engine does not assign a priority to asynchronous blocks. For
example, the priority of a function call subsystem that connects back to an Async
Interrupt block is assigned by the Async Interrupt block.

The Simulink task priority field of the Async Interrupt block specifies a priority level
(required) for every interrupt number entered in the VME interrupt number(s) field.
The priority array sets the priorities of the subsystems connected to each interrupt.

For the Task Sync block, if the example RTOS (VxWorks) is the target, the Higher
priority value indicates higher task priority option should be deselected. The
Simulink task priority field specifies the block priority relative to connected blocks (in
addition to assigning an RTOS priority to the generated task code).

The vxlib1 library provides two types of rate transition blocks as a convenience. These
are simply preconfigured instances of the built-in Simulink Rate Transition block:

• Protected Rate Transition block: Rate Transition block that is configured with the
Ensure data integrity during data transfers on and Ensure deterministic
data transfer off.

• Unprotected Rate Transition block: Rate Transition block that is configured with the
Ensure data integrity during data transfers option off.

17-40

 Rate Transitions and Asynchronous Blocks

Handle Rate Transitions for Asynchronous Tasks

For rate transitions that involve asynchronous tasks, you can maintain data integrity.
However, you cannot achieve determinism. You have the option of using the Rate
Transition block or target-specific rate transition blocks.

Consider the following model, which includes a Rate Transition block.

You can use the Rate Transition block in either of the following modes:

• Maintain data integrity, no determinism
• Unprotected

Alternatively, you can use target-specific rate transition blocks. The following blocks are
available for the example RTOS (VxWorks):

• Protected Rate Transition block (reader)
• Protected Rate Transition block (writer)
• Unprotected Rate Transition block

Handle Multiple Asynchronous Interrupts

Consider the following model, in which two functions trigger the same subsystem.

17-41

17 Event-Based Scheduling in Simulink Coder

The two tasks must have equal priorities. When priorities are the same, the outcome
depends on whether they are firing periodically or asynchronously, and also on a
diagnostic setting. The following table and notes describe these outcomes:

Supported Sample Time and Priority for Function Call Subsystem with Multiple Triggers

Async Priority =
1

Async Priority =
2

Async Priority
Unspecified

Periodic Priority
= 1

Periodic Priority
= 2

Async Priority
= 1

Supported (1)

Async Priority
= 2

Supported (1)

Async Priority
Unspecified

Supported (2)

Periodic
Priority = 1

Supported

Periodic
Priority = 2

Supported

1 Control these outcomes using the Tasks with equal priority option in the
Diagnostics pane of the Configuration Parameters dialog box; set this diagnostic to
none if tasks of equal priority cannot preempt each other in the target system.

2 For this case, the following warning message is issued unconditionally:

The function call subsystem <name> has multiple asynchronous

triggers that do not specify priority. Data integrity will

not be maintained if these triggers can preempt one another.

17-42

 Rate Transitions and Asynchronous Blocks

Empty cells in the above table represent multiple triggers with differing priorities, which
are unsupported.

The code generator provides absolute time management for a function call subsystem
connected to multiple interrupts in the case where timer settings for TriggerA and
TriggerB (time source, resolution) are the same.

Assume that all of the following conditions are true for the model shown above:

• A function call subsystem is triggered by two asynchronous triggers (TriggerA and
TriggerB) having identical priority settings.

• Each trigger sets the source of time and timer attributes by calling the functions
ssSetTimeSource and ssSetAsyncTimerAttributes.

• The triggered subsystem contains a block that needs elapsed or absolute time (for
example, a Discrete Time Integrator).

The asynchronous function call subsystem has one global variable, clockTick# (where #
is the task ID associated with the subsystem). This variable stores absolute time for the
asynchronous task. There are two ways timing can be handled:

• If the time source is set to SS_TIMESOURCE_BASERATE, the code generator produces
timer code in the function call subsystem, updating the clock tick variable from the
base rate clock tick. Data integrity is maintained if the same priority is assigned to
TriggerA and TriggerB.

• If the time source is SS_TIMESOURCE_SELF, generated code for both TriggerA and
TriggerB updates the same clock tick variable from the hardware clock.

The word size of the clock tick variable can be set directly or be established according
to the Application lifespan (days) (Simulink) setting and the timer resolution set
by the TriggerA and TriggerB S-functions (which must be the same). See “Timers in
Asynchronous Tasks” on page 17-44 and “Control Memory Allocation for Time
Counters” on page 53-11 for more information.

More About
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Asynchronous Support Limitations” (Simulink Coder)

17-43

17 Event-Based Scheduling in Simulink Coder

Timers in Asynchronous Tasks

An ISR can set a source for absolute time. This is done with the function
ssSetTimeSource. The function ssSetTimeSource cannot be called before
ssSetOutputPortWidth is called. If this occurs, the program will come to a halt and
generate an error message. ssSetTimeSource has the following three options:

• SS_TIMESOURCE_SELF: Each generated ISR maintains its own absolute time counter,
which is distinct from a periodic base rate or subrate counters in the system. The
counter value and the timer resolution value (specified in the Timer resolution
(seconds) parameter of the Async Interrupt block) are used by downstream blocks to
determine absolute time values required by block computations.

• SS_TIMESOURCE_CALLER: The ISR reads time from a counter maintained by its
caller. Time resolution is thus the same as its caller's resolution.

• SS_TIMESOURCE_BASERATE: The ISR can read absolute time from the model's
periodic base rate. Time resolution is thus the same as its base rate resolution.

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vxlib1 (Simulink Coder) library. These blocks
provide starting point examples to help you develop custom blocks for your target
environment.

By default, the counter is implemented as a 32-bit unsigned integer member
of the Timing substructure of the real-time model structure. For a target that
supports the rtModel data structure, when the time data type is not set by using
ssSetAsyncTimeDataType, the counter word size is determined by the Application
lifespan (days) (Simulink) model parameter. As an example (from ERT target code),

/* Real-time Model Data Structure */

struct _RT_MODEL_elapseTime_exp_Tag {

 const char *errorStatus;

 /*

 * Timing:

 * The following substructure contains information regarding

 * the timing information for the model.

 */

 struct {

 uint32_T clockTick1;

17-44

 Timers in Asynchronous Tasks

 uint32_T clockTick2;

 } Timing;

};

The example omits unused fields in the Timing data structure (a feature of ERT target
code not found in GRT). For a target that supports the rtModel data structure, the
counter word size is determined by the Application lifespan (days) (Simulink) model
parameter.

By default, the vxlib1 library blocks for the example RTOS (VxWorks) set the timer
source to SS_TIMESOURCE_SELF and update their counters by using the system
call tickGet. tickGet returns a timer value maintained by the RTOS kernel. The
maximum word size for the timer is UINT32. The following example shows a generated
call to tickGet.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

void isr_num2_vec193(void)

{

 /* Use tickGet() as a portable tick counter example. A much

 higher resolution can be achieved with a hardware counter */

 rtM->Timing.clockTick2 = tickGet();

. . .

The tickGet call is supplied only as an example. It can (and in many instances should)
be replaced by a timing source that has better resolution. If you are implementing a
custom asynchronous block for an RTOS other than the example RTOS (VxWorks), you
should either generate an equivalent call to the target RTOS, or generate code to read a
timer register on the target hardware.

The default Timer resolution (seconds) parameter of your Async Interrupt block
implementation should be changed to match the resolution of your target's timing source.

The counter is updated at interrupt level. Its value represents the tick value of the
timing source at the most recent execution of the ISR. The rate of this timing source is
unrelated to sample rates in the model. In fact, typically it is faster than the model's base
rate. Select the timer source and set its rate and resolution based on the expected rate of
interrupts to be serviced by the Async Interrupt block.

For an example of timer code generation, see “Async Interrupt Block Implementation” on
page 17-48.

17-45

17 Event-Based Scheduling in Simulink Coder

Related Examples
• “Generate Interrupt Service Routines” on page 17-6
• “Spawn and Synchronize Execution of RTOS Task” on page 17-15
• “Timers in Asynchronous Tasks” on page 17-44
• “Create a Customized Asynchronous Library” on page 17-47
• “Import Asynchronous Event Data for Simulation” on page 17-56

More About
• “Absolute and Elapsed Time Computation” (Simulink Coder)
• “Time-Based Scheduling and Code Generation” (Simulink Coder)
• “Asynchronous Events” (Simulink Coder)
• “Asynchronous Support Limitations” (Simulink Coder)

17-46

 Create a Customized Asynchronous Library

Create a Customized Asynchronous Library

This topic describes how to implement asynchronous blocks for use with your target
RTOS, using the Async Interrupt and Task Sync blocks as a starting point. Rate
Transition blocks are target-independent, so you do not need to develop customized rate
transition blocks. The following sections provide implementation details.

In this section...

“About Implementing Asynchronous Blocks” on page 17-47
“Async Interrupt Block Implementation” on page 17-48
“Task Sync Block Implementation” on page 17-52
“asynclib.tlc Support Library” on page 17-53

Note: The operating system integration techniques that are demonstrated in this section
use one or more blocks the blocks in the vxlib1 (Simulink Coder) library. These blocks
provide starting point examples to help you develop custom blocks for your target
environment.

About Implementing Asynchronous Blocks

You can customize the asynchronous library blocks by modifying the block
implementation. These files are

• The block's underlying S-function MEX-file
• The TLC files that control code generation of the block

In addition, you need to modify the block masks to remove references specific to the
example RTOS (VxWorks) and to incorporate parameters required by your target RTOS.

Custom block implementation is an advanced topic, requiring familiarity with the
Simulink MEX S-function format and API, and with the Target Language Compiler
(TLC). These topics are covered in the following documents:

• Simulink topics “What Is an S-Function?” (Simulink), “Use S-Functions in Models”
(Simulink), “How S-Functions Work” (Simulink), and “Implementing S-Functions”
(Simulink) describe MEX S-functions and the S-function API in general.

17-47

17 Event-Based Scheduling in Simulink Coder

• The “Inlining S-Functions” (Simulink Coder), “Inline C MEX S-Functions” (Simulink
Coder), and “S-Functions and Code Generation” (Simulink Coder) describe how to
create a TLC block implementation for use in code generation.

The following sections discuss the C/C++ and TLC implementations of the asynchronous
library blocks, including required SimStruct macros and functions in the TLC
asynchronous support library (asynclib.tlc).

Async Interrupt Block Implementation

The source files for the Async Interrupt block are located in matlabroot/rtw/c/
tornado/devices (open):

• vxinterrupt1.c: C MEX-file source code, for use in configuration and simulation
• vxinterrupt1.tlc: TLC implementation, for use in code generation
• asynclib.tlc: library of TLC support functions, called by the TLC implementation

of the block. The library calls are summarized in “asynclib.tlc Support Library” on
page 17-53.

C MEX Block Implementation

Most of the code in vxinterrupt1.c performs ordinary functions that are not related to
asynchronous support (for example, obtaining and validating parameters from the block
mask, marking parameters nontunable, and passing parameter data to the model.rtw
file).

The mdlInitializeSizes function uses special SimStruct macros and SS_OPTIONS
settings that are required for asynchronous blocks, as described below.

Note that the following macros cannot be called before ssSetOutputPortWidth is
called:

• ssSetTimeSource

• ssSetAsyncTimerAttributes

• ssSetAsyncTimerResolutionEl

• ssSetAsyncTimerDataType

• ssSetAsyncTimerDataTypeEl

• ssSetAsyncTaskPriorities

• ssSetAsyncTaskPrioritiesEl

17-48

 Create a Customized Asynchronous Library

If one of the above macros is called before ssSetOutputPortWidth, the following error
message appears:

SL_SfcnMustSpecifyPortWidthBfCallSomeMacro {

S-function '%s' in '%<BLOCKFULLPATH>'

must set output port %d width using

ssSetOutputPortWidth before calling macro %s

 }

ssSetAsyncTimerAttributes

ssSetAsyncTimerAttributes declares that the block requires a timer, and sets the
resolution of the timer as specified in the Timer resolution (seconds) parameter.

The function prototype is

ssSetAsyncTimerAttributes(SimStruct *S, double res)

where

• S is a Simstruct pointer.
• res is the Timer resolution (seconds) parameter value.

The following code excerpt shows the call to ssSetAsyncTimerAttributes.

/* Setup Async Timer attributes */

ssSetAsyncTimerAttributes(S,mxGetPr(TICK_RES)[0]);

ssSetAsyncTaskPriorities

ssSetAsyncTaskPriorities sets the Simulink task priority for blocks executing at
each interrupt level, as specified in the block's Simulink task priority field.

The function prototype is

ssSetAsyncTaskPriorities(SimStruct *S, int numISRs,

 int *priorityArray)

where

• S is a SimStruct pointer.
• numISRs is the number of interrupts specified in the VME interrupt number(s)

parameter.
• priorityarray is an integer array containing the interrupt numbers specified in the

VME interrupt number(s) parameter.

17-49

17 Event-Based Scheduling in Simulink Coder

The following code excerpt shows the call to ssSetAsyncTaskPriorities:

/* Setup Async Task Priorities */

 priorityArray = malloc(numISRs*sizeof(int_T));

 for (i=0; i<numISRs; i++) {

 priorityArray[i] = (int_T)(mxGetPr(ISR_PRIORITIES)[i]);

 }

 ssSetAsyncTaskPriorities(S, numISRs, priorityArray);

 free(priorityArray);

 priorityArray = NULL;

}

SS_OPTION Settings

The code excerpt below shows the SS_OPTION settings for vxinterrupt1.c.
SS_OPTION_ASYNCHRONOUS_INTERRUPT should be used when a function call subsystem
is attached to an interrupt. For more information, see the documentation for SS_OPTION
and SS_OPTION_ASYNCHRONOUS in matlabroot/simulink/include/simstruc.h.

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

 SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |

 SS_OPTION_ASYNCHRONOUS_INTERRUPT |

TLC Implementation

This section discusses each function of vxinterrupt1.tlc, with an emphasis on target-
specific features that you will need to change to generate code for your target RTOS.

Generate #include Directives

vxinterrupt1.tlc begins with the statement

%include "vxlib.tlc"

vxlib.tlc is a target-specific file that generates directives to include header files for the
example RTOS (VxWorks). You should replace this with a file that generates includes for
your target RTOS.

BlockInstanceSetup Function

For each connected output of the Async Interrupt block, BlockInstanceSetup defines a
function name for the corresponding ISR in the generated code. The functions names are
of the form

isr_num_vec_offset

17-50

 Create a Customized Asynchronous Library

where num is the ISR number defined in the VME interrupt number(s) block
parameter, and offset is an interrupt table offset defined in the VME interrupt
vector offset(s) block parameter.

In a custom implementation, this naming convention is optional.

The function names are cached for use by the Outputs function, which generates the
actual ISR code.

Outputs Function

Outputs iterates over the connected outputs of the Async Interrupt block. An ISR is
generated for each such output.

The ISR code is cached in the "Functions" section of the generated code. Before
generating the ISR, Outputs does the following:

• Generates a call to the downstream block (cached in a temporary buffer).
• Determines whether the ISR should be locked or not (as specified in the Preemption

Flag(s) block parameter).
• Determines whether the block connected to the Async Interrupt block is a

Task Sync block. (This information is obtained by using the asynclib calls
LibGetFcnCallBlock and LibGetBlockAttribute.) If so,

• The preemption flag for the ISR must be set to 1. An error results otherwise.
• The RTOS (VxWorks) calls to save and restore floating-point context are

generated, unless the user has configured the model for integer-only code
generation.

When generating the ISR code, Outputs calls the asynclib function
LibNeedAsyncCounter to determine whether a timer is required by the connected
subsystem. If so, and if the time source is set to be SS_TIMESOURCE_SELF by
ssSetTimeSource, LibSetAsyncCounter is called to generate an RTOS (VxWorks)
tickGet function call and update the counter. In your implementation, you should
generate either an equivalent call to the target RTOS, or generate code to read the a
timer register on the target hardware.

Start Function

The Start function generates the required RTOS (VxWorks) calls (int_connect and
sysInt_Enable) to connect and enable each ISR. You should replace this with calls to
your target RTOS.

17-51

17 Event-Based Scheduling in Simulink Coder

Terminate Function

The Terminate function generates the call sysIntDisable to disable each ISR. You
should replace this with calls to your target RTOS.

Task Sync Block Implementation

The source files for the Task Sync block are located in matlabroot/rtw/c/tornado/
devices (open). They are

• vxtask1.cpp: MEX-file source code, for use in configuration and simulation.
• vxtask1.tlc: TLC implementation, for use in code generation.
• asynclib.tlc: library of TLC support functions, called by the TLC implementation

of the block. The library calls are summarized in “asynclib.tlc Support Library” on
page 17-53.

C MEX Block Implementation

Like the Async Interrupt block, the Task Sync block sets up a timer, in this case with a
fixed resolution. The priority of the task associated with the block is obtained from the
Simulink task priority parameter. The SS_OPTION settings are the same as those
used for the Async Interrupt block.

ssSetAsyncTimerAttributes(S, 0.01);

priority = (int_T) (*(mxGetPr(PRIORITY)));

ssSetAsyncTaskPriorities(S,1,&priority);

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

 SS_OPTION_ASYNCHRONOUS |

 SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |

}

TLC Implementation

Generate #include Directives

vxtask1.tlc begins with the statement

%include "vxlib.tlc"

vxlib.tlc is a target-specific file that generates directives to include header files for the
example RTOS (VxWorks). You should replace this with a file that generates includes for
your target RTOS.

17-52

 Create a Customized Asynchronous Library

BlockInstanceSetup Function

The BlockInstanceSetup function derives the task name, block name, and other
identifiers used later in code generation. It also checks for and warns about unconnected
block conditions, and generates a storage declaration for a semaphore (stopSem) that is
used in case of interrupt overflow conditions.

Start Function

The Start function generates the required RTOS (VxWorks) calls to define storage for
the semaphore that is used in management of the task spawned by the Task Sync block.
Depending on the value of the CodeFormat TLC variable of the target, either a static
storage declaration or a dynamic memory allocation call is generated. This function also
creates a semaphore (semBCreate) and spawns an RTOS task (taskSpawn). You should
replace these with calls to your target RTOS.

Outputs Function

The Outputs function generates an example RTOS (VxWorks) task that waits for a
semaphore. When it obtains the semaphore, it updates the block's tick timer and calls
the downstream subsystem code, as described in “Spawn and Synchronize Execution of
RTOS Task” on page 17-15. Outputs also generates code (called from interrupt level)
that grants the semaphore.

Terminate Function

The Terminate function generates the example RTOS (VxWorks) call taskDelete to
end execution of the task spawned by the block. You should replace this with calls to your
target RTOS.

Note also that if the target RTOS has dynamically allocated memory associated with the
task, the Terminate function should deallocate the memory.

asynclib.tlc Support Library

asynclib.tlc is a library of TLC functions that support the implementation of
asynchronous blocks. Some functions are specifically designed for use in asynchronous
blocks. For example, LibSetAsyncCounter generates a call to update a timer for an
asynchronous block. Other functions are utilities that return information required
by asynchronous blocks (for example, information about connected function call
subsystems).

17-53

17 Event-Based Scheduling in Simulink Coder

The following table summarizes the public calls in the library. For details, see the library
source code and the vxinterrupt1.tlc and vxtask1.tlc files, which call the library
functions.

Summary of asynclib.tlc Library Functions

Function Description
LibBlockExecuteFcnCall For use by inlined S-functions with function call outputs.

Generates code to execute a function call subsystem.
LibGetBlockAttribute Returns a field value from a block record.
LibGetFcnCallBlock Given an S-Function block and call index, returns the block

record for the downstream function call subsystem block.
LibGetCallerClockTickCounter Provides access to the time counter of an upstream

asynchronous task.
LibGetCallerClockTickCounter-

HighWord

Provides access to the high word of the time counter of an
upstream asynchronous task.

LibManageAsyncCounter Determines whether an asynchronous task needs a counter
and manages its own timer.

LibNeedAsyncCounter If the calling block requires an asynchronous counter,
returns TLC_TRUE, otherwise returns TLC_FALSE.

LibSetAsyncClockTicks Returns code that sets clockTick counters that are to be
maintained by the asynchronous task.

LibSetAsyncCounter Generates code to set the tick value of the block's
asynchronous counter.

LibSetAsyncCounterHighWord Generates code to set the tick value of the high word of the
block's asynchronous counter

More About
• “Asynchronous Events” (Simulink Coder)
• “Generate Interrupt Service Routines” (Simulink Coder)
• “Spawn and Synchronize Execution of RTOS Task” (Simulink Coder)
• “Pass Asynchronous Events in RTOS as Input To a Referenced Model” (Simulink

Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)

17-54

 Create a Customized Asynchronous Library

• “Import Asynchronous Event Data for Simulation” (Simulink Coder)
• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)
• “Asynchronous Support Limitations” (Simulink Coder)

17-55

17 Event-Based Scheduling in Simulink Coder

Import Asynchronous Event Data for Simulation

Capabilities

You can import asynchronous event data into a function-call subsystem via an Inport
block. For standalone fixed-step simulations, you can specify:

• The time points at which each asynchronous event occurs
• The number of asynchronous events at each time point

Input Data Format

You can enter your asynchronous data at the MATLAB command line or on the Data
Import/Export pane of the Configuration Parameters dialog box. In either case, a
number of restrictions apply to the data format.

• The expression for the parameter Data Import/Export > Input must be a comma-
separated list of tables.

• The table corresponding to the input port outputting asynchronous events must be a
column vector containing time values for the asynchronous events.

• The time vector of the asynchronous events must be of double data type and
monotonically increasing.

• All time data must be integer multiples of the model step size.
• To specify multiple function calls at a given time step, you must repeat the time

value accordingly. In other words, if you wish to specify three asynchronous events
at t = 1 and two events at t = 9, then you must list 1 three times and 9 twice in
your time vector. (t = [1 1 1 9 9]')

• The table corresponding to normal data input port can be of any other supported
format.

See “Load Data to Root-Level Input Ports” (Simulink) for more information.

Example

In this model, a function-call subsystem is used to track the total number of
asynchronous events and to multiply a set of inputs by 2.

17-56

 Import Asynchronous Event Data for Simulation

1 To input data via the Configuration Parameters dialog box,

a Select Simulation > Configuration Parameters > Data Import/Export.
b Select the Input parameter.
c For this example, enter the following command in the MATLAB window:

>> t = [1 1 5 9 9 9]', u = [[0:10]' [0:10]']

Alternatively, you can enter the data as t, tu in the Data Import/Export pane:

17-57

17 Event-Based Scheduling in Simulink Coder

Here, t is a column vector containing the times of asynchronous events for Inport
block In1 while tu is a table of input values versus time for Inport block In2.

2 By default, the Time and Output options are selected and the output variables are
named tout and yout.

3 Simulate the model.
4 Display the output by entering [tout yout] at the MATLAB command line and

obtain:

ans =

 0 0 -1

 1 2 2

 2 2 2

 3 2 2

 4 2 2

 5 3 10

 6 3 10

 7 3 10

 8 3 10

 9 6 18

 10 6 18

Here the first column contains the simulation times.

The second column represents the output of Out1 — the total number of
asynchronous events. Since the function-call subsystem is triggered twice at t = 1,

17-58

 Import Asynchronous Event Data for Simulation

the output is 2. It is not called again until t = 5, and so does not increase to 3 until
then. Finally, it is called three times at 9, so it increases to 6.

The third column contains the output of Out2 obtained by multiplying the input
value at each asynchronous event time by 2. At any other time, the output is held at
its previous value

More About
• “Asynchronous Events” (Simulink Coder)
• “Pass Asynchronous Events in RTOS as Input To a Referenced Model” (Simulink

Coder)
• “Load Data to Root-Level Input Ports” (Simulink)
• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)

17-59

17 Event-Based Scheduling in Simulink Coder

Asynchronous Support Limitations

In this section...

“Asynchronous Task Priority” on page 17-60
“Convert an Asynchronous Subsystem into a Model Reference” on page 17-60

Asynchronous Task Priority

The Simulink product does not simulate asynchronous task behavior. Although you can
specify a task priority for an asynchronous task represented in a model with the Task
Sync block, the priority setting is for code generation purposes only and is not honored
during simulation.

Convert an Asynchronous Subsystem into a Model Reference

You can use the Asynchronous Task Specification block to specify an asynchronous
function-call input to a model reference. However, you must convert the Async Interrupt
and Function-Call blocks into a subsystem and then convert the subsystem into a model
reference.

Following is an example with step-by-step instructions for conversion.

1 Convert the Async Interrupt and Count blocks into a subsystem. Select both blocks
and right-click Count. From the menu, select Subsystem & Model Reference >
Create Subsystem from Selection.

17-60

 Asynchronous Support Limitations

2 To prepare for converting the new subsystem to a Model block, set the following
configuration parameters in the top model. Open the Configuration Parameters
dialog box.

• Under Diagnostics, navigate to the Sample Time pane. Then set Multitask rate
transition to error and Multitask conditionally executed subsystem to
error.

• Under Diagnostics, navigate to the Connectivity pane. Set Bus signal treated
as vector, and Invalid function-call connection to error. Also set Context-
dependent inputs to Enable All.

• Under Diagnostics, navigate to the Data Validity pane and set the Multitask
data store option to error.

• On the All Parameters tab, set Underspecified initialization detection to
Simplified.

• If your model is large or complex, run the Model Advisor checks in the folder
“Migrating to Simplified Initialization Mode Overview” (Simulink) and make the
suggested changes.

3 Convert the subsystem to an atomic subsystem. Select Edit > Subsystem
Parameters > Treat as atomic unit.

17-61

17 Event-Based Scheduling in Simulink Coder

4 Convert the subsystem to a Model block. Right-click the subsystem and select
Subsystem & Model Reference > Convert Subsystem to > Referenced Model.
A window opens with a model reference block inside of it.

5 Replace the subsystem in the top model with the new model reference block.

6 Move the Async Interrupt block from the model reference to the top model, before the
model reference block.

17-62

 Asynchronous Support Limitations

7 Insert an Asynchronous Task Specification block in the model reference. Set the
priority of the Asynchronous Task Specification block. (For more information on
setting the priority, see Asynchronous Task Specification (Simulink Coder).)

8 In the model reference, double-click the input port to open its Source Block
Parameters dialog box. Click the Signal Attributes tab and select the Output
function call option. Click OK.

17-63

17 Event-Based Scheduling in Simulink Coder

9 Save your model and then perform Simulation > Update Diagram to verify your
settings.

17-64

 Asynchronous Support Limitations

More About
• “Asynchronous Events” (Simulink Coder)

17-65

18

Scheduling Considerations in
Embedded Coder

• “Use Discrete and Continuous Time” on page 18-2
• “Optimize Multirate Multitasking Execution for RTOS Run-Time Environments” on

page 18-4

18 Scheduling Considerations in Embedded Coder

Use Discrete and Continuous Time

In this section...

“Support for Discrete and Continuous Time Blocks” on page 18-2
“Support for Continuous Solvers” on page 18-2
“Support for Stop Time” on page 18-2

Support for Discrete and Continuous Time Blocks

The ERT target supports code generation for discrete and continuous time blocks. If the
Support: continuous time option is selected on the Code Generation > Interface
pane, you can use these blocks in your models, without restriction.

Note that use of certain blocks is not recommended for production code generation
for embedded systems. The Simulink Block Data Type Support table summarizes
characteristics of blocks in the Simulink and Fixed-Point Designer block libraries,
including whether or not they are recommended for use in production code generation. To
view this table, execute the following command and see the “Code Generation Support”
column of the table that appears:

showblockdatatypetable

Support for Continuous Solvers

The ERT target supports continuous solvers. In the Solver options dialog, you can select
an available solver in the Solver menu. (Note that the solver Type must be fixed-step
for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The required
modifications are described in “Customize System Target Files” (Simulink Coder).

Support for Stop Time

The ERT target supports the stop time for a model. When generating host-based
executables, the stop time value is honored if one of the following is true:

• External mode is selected on the Code Generation > Interface pane

18-2

 Use Discrete and Continuous Time

• MAT-file logging is selected on the All Parameters tab
• Classic call interface is selected on the All Parameters tab

Otherwise, the executable runs indefinitely.

Note: The ERT target provides both generated and static examples of the ert_main.c
file. The ert_main.c file controls the overall model code execution by calling the
model_step function and optionally checking the ErrorStatus/StopRequested
flags to terminate execution. For a custom target, if you provide your own custom static
main.c, you should consider including support for checking these flags.

More About
• “Time-Based Scheduling and Code Generation” on page 16-2
• “Configure Time-Based Scheduling” on page 16-34
• “Sample Times in Subsystems” (Simulink)
• “Sample Times in Systems” (Simulink)

18-3

18 Scheduling Considerations in Embedded Coder

Optimize Multirate Multitasking Execution for RTOS Run-Time
Environments

Using the rtmStepTask macro, run-time environments that employ task management
mechanisms of an real-time operating system (RTOS)—for example, VxWorks—can
improve performance of generated code by eliminating redundant scheduling calls during
the execution of tasks in a multirate, multitasking model, The following sections describe
implementation details.

Use rtmStepTask

The rtmStepTask macro is defined in model.h and its syntax is as follows:
boolean task_ready = rtmStepTask(rtm, idx);

The arguments are:

• rtm: pointer to the real-time model structure (rtM)
• idx: task identifier (tid) of the task whose scheduling counter is to be tested

rtmStepTask returns TRUE if the task's scheduling counter equals zero, indicating that
the task should be scheduled for execution on the current time step. Otherwise, it returns
FALSE.

If your target supports the Generate an example main program parameter, you can
generate calls to rtmStepTask using the TLC function RTMTaskRunsThisBaseStep.

Schedule Code for Real-time Model without an RTOS

To understand the optimization that is available for an RTOS target, consider how the
ERT target schedules tasks for bareboard targets (where RTOS is not present). The
ERT target maintains scheduling counters and event flags for each subrate task. The
scheduling counters are implemented within the real-time model (rtM) data structure as
arrays, indexed on task identifier (tid).

The scheduling counters are updated by the base-rate task. The counters are clock rate
dividers that count up the sample period associated with each subrate task. When a
given subrate counter reaches a value that indicates it has a hit, the sample period for

18-4

 Optimize Multirate Multitasking Execution for RTOS Run-Time Environments

that rate has elapsed and the counter is reset to zero. When this occurs, the subrate task
must be scheduled for execution.

The event flags indicate whether or not a given task is scheduled for execution. For
a multirate, multitasking model, the event flags are maintained by code in the main
program for the model. For each task, the code maintains a task counter. When the
counter reaches 0, indicating that the task's sample period has elapsed, the event flag for
that task is set.

On each time step, the counters and event flags are updated and the base-rate task
executes. Then, the scheduling flags are checked in tid order, and tasks whose event flag
is set is executed. Therefore, tasks are executed in order of priority.

For bareboard targets that cannot rely on an external RTOS, the event flags are
mandatory to allow overlapping task preemption. However, an RTOS target uses the
operating system itself to manage overlapping task preemption, making the maintenance
of the event flags redundant.

Schedule Code for Multirate Multitasking on an RTOS

The following task scheduling code, from ertmainlib.tlc, is designed for multirate
multitasking operation on an example RTOS (VxWorks) target. The example uses the
TLC function RTMTaskRunsThisBaseStep to generate calls to the rtmStepTask
macro. A loop iterates over each subrate task, and rtmStepTask is called for each task.
If rtmStepTask returns TRUE, the RTOS semGive function is called, and the RTOS
schedules the task to run.
%assign ifarg = RTMTaskRunsThisBaseStep("i")

for (i = 1; i < %<FcnNumST>; i++) {

 if (%<ifarg>) {

 semGive(taskSemList[i]);

 if (semTake(taskSemList[i],NO_WAIT) != ERROR) {

 logMsg("Rate for SubRate task %d is too fast.\n",i,0,0,0,0,0);

 semGive(taskSemList[i]);

 }

 }

}

Suppress Redundant Scheduling Calls

Redundant scheduling calls are still generated by default for backward compatibility. To
change this setting and suppress them, add the following TLC variable definition to your
system target file before the %include "codegenentry.tlc" statement:

18-5

18 Scheduling Considerations in Embedded Coder

%assign SuppressSetEventsForThisBaseRateFcn = 1

More About
• “Time-Based Scheduling and Code Generation” on page 16-2
• “Modeling for Multitasking Execution” on page 16-12

18-6

Data, Function, and File Definition

19

Data Representation in Simulink
Coder

• “Access Signal, State, and Parameter Data During Execution” on page 19-3
• “Default Data Structures in the Generated Code” on page 19-16
• “Use the Real-Time Model Data Structure” on page 19-19
• “Use Enumerated Data in Generated Code” on page 19-22
• “Data Stores in Generated Code” on page 19-32
• “Structures in Generated Code Using Data Stores” on page 19-39
• “Specify Single-Precision Data Type for Embedded Application” on page 19-43
• “Block Parameter Representation in the Generated Code” on page 19-47
• “Configure Block Parameter Tunability for Rapid Prototyping” on page 19-56
• “Tune Phase Parameter of Sine Wave Block During Code Execution” on page

19-58
• “Create Tunable Calibration Parameter in the Generated Code” on page 19-60
• “Specify Instance-Specific Parameter Values for Reusable Referenced Model” on page

19-65
• “Parameter Data Types in the Generated Code” on page 19-79
• “Generate Efficient Code by Specifying Data Types for Block Parameters” on page

19-84
• “Reuse Parameter Data in Different Data Type Contexts” on page 19-93
• “Organize Block Parameter Values into Structures in the Generated Code” on page

19-97
• “Switch Between Sets of Parameter Values During Simulation and Code Execution”

on page 19-103
• “Signal Representation in Generated Code” on page 19-112
• “Control Signals and States in Code by Applying Storage Classes” on page 19-123

19 Data Representation in Simulink Coder

• “Design Data Interface by Configuring Inport and Outport Blocks” on page 19-134
• “Group Signals into Structures in the Generated Code Using Buses” on page 19-139
• “Generate Efficient Code for Bus Signals” on page 19-142
• “Maximize Signal Storage Optimization” on page 19-146
• “Control Signal and State Initialization in the Generated Code” on page 19-147
• “Continuous Block State Naming in Generated Code” on page 19-158
• “Discrete Block State Naming in Generated Code” on page 19-160
• “Initialization of Signal, State, and Parameter Data in the Generated Code” on page

19-165
• “Signal Processing with Fixed-Point Data” on page 19-175
• “Optimize Generated Code Using Fixed-Point Data with Simulink®, Stateflow®, and

MATLAB®” on page 19-177
• “Declare Workspace Variables as Tunable Parameters Using the Model Parameter

Configuration Dialog Box” on page 19-178

19-2

 Access Signal, State, and Parameter Data During Execution

Access Signal, State, and Parameter Data During Execution

As you iteratively develop a model, you capture output signal and state data that
model execution generates. You also tune parameter values during execution to observe
the effect on the outputs. You can then base your design decisions upon analysis of
these outputs. To access this signal, state, and parameter data in a rapid prototyping
environment, you can configure the generated code to store the data in addressable
memory.

By default, optimization settings make the generated code more efficient by eliminating
unnecessary signal storage and inlining the numeric values of block parameters. To
generate code that instead allocates addressable memory for this data, you can disable
the optimizations or specify code generation settings for individual data items.

Explore Example Model

Open the example model rtwdemo_basicsc.

rtwdemo_basicsc

19-3

19 Data Representation in Simulink Coder

The model loads numeric MATLAB variables, such as K1, into the base workspace.

In the model, open the block dialog box for the Gain block labeled Gain. The block uses
the variable K1 to set the value of the Gain parameter.

Disable Optimizations

In the model, clear the model configuration parameter Signal storage reuse. When you
clear this optimization and other optimizations such as Eliminate superfluous local
variables (expression folding), the generated code allocates memory for signal lines.
Clearing Signal storage reuse disables most of the other optimizations.

set_param('rtwdemo_basicsc','OptimizeBlockIOStorage','off')

Set the optimization Configuration Parameters > Optimization > Signals and
Parameters > Default parameter behavior to Tunable. When set to Tunable,
this configuration parameter causes the generated code to allocate memory for block
parameters and workspace variables.

set_param('rtwdemo_basicsc','DefaultParameterBehavior','Tunable')

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

In the code generation report, view the file rtwdemo_basicsc.h. This header file
defines a structure type that contains signal data. The structure contains fields that each
represent a signal line in the model. For example, the output signal of the Gain block
labeled Gain appears as the field Gain.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.h');

rtwdemodbtype(file,'/* Block signals (auto storage) */',...

 'B_rtwdemo_basicsc_T;',1,1)

/* Block signals (auto storage) */

typedef struct {

 real32_T Table1; /* '<Root>/Table1' */

 real32_T Gain; /* '<Root>/Gain' */

 real32_T Delay; /* '<Root>/Delay' */

19-4

 Access Signal, State, and Parameter Data During Execution

 real32_T Table2; /* '<Root>/Table2' */

 boolean_T RelOp1; /* '<Root>/RelOp1' */

 boolean_T RelOp2; /* '<Root>/RelOp2' */

 boolean_T LogOp; /* '<Root>/LogOp' */

} B_rtwdemo_basicsc_T;

The file defines a structure type that contains block parameter data. The MATLAB
variable K1 appears as a field of the structure. The other fields of the structure represent
other block parameters and workspace variables from the model, including initial
conditions for signals.

rtwdemodbtype(file,'/* Parameters (auto storage) */',...

 '/* Real-time Model Data Structure */',1,0)

/* Parameters (auto storage) */

struct P_rtwdemo_basicsc_T_ {

 real_T K2; /* Variable: K2

 * Referenced by: '<Root>/Stateflow Chart'

 */

 real32_T LOWER; /* Variable: LOWER

 * Referenced by: '<Root>/Constant2'

 */

 real32_T T1Break[11]; /* Variable: T1Break

 * Referenced by: '<Root>/Table1'

 */

 real32_T T1Data[11]; /* Variable: T1Data

 * Referenced by: '<Root>/Table1'

 */

 real32_T T2Break[3]; /* Variable: T2Break

 * Referenced by: '<Root>/Table2'

 */

 real32_T T2Data[9]; /* Variable: T2Data

 * Referenced by: '<Root>/Table2'

 */

 real32_T UPPER; /* Variable: UPPER

 * Referenced by: '<Root>/Constant1'

 */

 int8_T K1; /* Variable: K1

 * Referenced by: '<Root>/Gain'

 */

 real32_T Delay_InitialCondition; /* Computed Parameter: Delay_InitialCondition

 * Referenced by: '<Root>/Delay'

 */

 uint32_T Table2_maxIndex[2]; /* Computed Parameter: Table2_maxIndex

19-5

19 Data Representation in Simulink Coder

 * Referenced by: '<Root>/Table2'

 */

 boolean_T DataStoreMemory_InitialValue;/* Computed Parameter: DataStoreMemory_InitialValue

 * Referenced by: '<Root>/Data Store Memory'

 */

};

View the file rtwdemo_basicsc_data.c. This source file allocates global memory for a
parameter structure and initializes the field values based on the parameter values in the
model.

View the source file rtwdemo_basicsc.c. The code allocates global memory for a
structure variable that contains signal data.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.c');

rtwdemodbtype(file,'/* Block signals (auto storage) */',...

 'B_rtwdemo_basicsc_T rtwdemo_basicsc_B;',1,1)

/* Block signals (auto storage) */

B_rtwdemo_basicsc_T rtwdemo_basicsc_B;

The code algorithm in the model step function calculates the signal values. It then
assigns these values to the fields of the signal structure. To perform the calculations, the
algorithm uses the parameter values from the fields of the parameter structure.

Exclude Data Items from Optimizations

When you want to select code generation optimizations such as Signal storage reuse,
you can preserve individual data items from the optimizations. The generated code then
allocates addressable memory for the items.

Select the optimizations that you previously cleared.

set_param('rtwdemo_basicsc','OptimizeBlockIOStorage','on')

set_param('rtwdemo_basicsc','LocalBlockOutputs','on')

set_param('rtwdemo_basicsc','DefaultParameterBehavior','Inlined')

Right-click the output of the Gain block labeled Gain and select Properties. In the
Signal Properties dialog box, select Test point.

portHandle = get_param('rtwdemo_basicsc/Gain','PortHandles');

portHandle = portHandle.Outport;

set_param(portHandle,'TestPoint','on')

19-6

 Access Signal, State, and Parameter Data During Execution

Convert the MATLAB variable K1 to a Simulink.Parameter object. With parameter
objects, you can create addressable parameters to tune during execution of the generated
code.

K1 = Simulink.Parameter(K1);

Apply a storage class other than Auto to the parameter object K1. For example, use the
storage class SimulinkGlobal to represent the parameter object as a field of the global
parameter structure.

K1.StorageClass = 'SimulinkGlobal';

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

In the code generation report, view the file rtwdemo_basicsc.h. The structure that
contains signal data now defines only one field, Gain, which represents the test-pointed
output of the Gain block.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.h');

rtwdemodbtype(file,'/* Block signals (auto storage) */',...

 'B_rtwdemo_basicsc_T;',1,1)

/* Block signals (auto storage) */

typedef struct {

 real32_T Gain; /* '<Root>/Gain' */

} B_rtwdemo_basicsc_T;

The structure that contains block parameter data defines one field, K1, which represents
the parameter object K1.

rtwdemodbtype(file,'/* Parameters (auto storage) */',...

 '/* Real-time Model Data Structure */',1,0)

/* Parameters (auto storage) */

struct P_rtwdemo_basicsc_T_ {

 int8_T K1; /* Variable: K1

 * Referenced by: '<Root>/Gain'

 */

};

19-7

19 Data Representation in Simulink Coder

Access Data Through Generated Interfaces

You can configure the generated code to contain extra code and files so that you can
access model data through standardized interfaces. For example, use the C API to log
signal data and tune parameters during execution.

Copy this custom source code into a file named myHandCode.c in your current folder.

#include "myHandHdr.h"

#define paramIdx 0 /* Index of the target parameter,

determined by inspecting the array of structures generated by the C API. */

#define sigIdx 0 /* Index of the target signal,

determined by inspecting the array of structures generated by the C API. */

void tuneFcn(rtwCAPI_ModelMappingInfo *mmi, time_T *tPtr)

{

 /* Take action with the parameter value only at

 the beginning of simulation and at the 5-second mark. */

 if (*tPtr == 0 || *tPtr == 5) {

 /* Local variables to store information extracted from

 the model mapping information (mmi). */

 void** dataAddrMap;

 const rtwCAPI_DataTypeMap *dataTypeMap;

 const rtwCAPI_ModelParameters *params;

 int_T addrIdx;

 uint16_T dTypeIdx;

 uint8_T slDataType;

 /* Use built-in C API macros to extract information. */

 dataAddrMap = rtwCAPI_GetDataAddressMap(mmi);

 dataTypeMap = rtwCAPI_GetDataTypeMap(mmi);

 params = rtwCAPI_GetModelParameters(mmi);

 addrIdx = rtwCAPI_GetModelParameterAddrIdx(params,paramIdx);

 dTypeIdx = rtwCAPI_GetModelParameterDataTypeIdx(params,paramIdx);

 slDataType = rtwCAPI_GetDataTypeSLId(dataTypeMap, dTypeIdx);

 /* Handle data types 'double' and 'int8'. */

 switch (slDataType) {

 case SS_DOUBLE: {

 real_T* dataAddress;

19-8

 Access Signal, State, and Parameter Data During Execution

 dataAddress = dataAddrMap[addrIdx];

 /* At the 5-second mark, increment the parameter value by 1. */

 if (*tPtr == 5) {

 (*dataAddress)++;

 }

 printf("Parameter value is %f\n", *dataAddress);

 break;

 }

 case SS_INT8: {

 int8_T* dataAddress;

 dataAddress = dataAddrMap[addrIdx];

 if (*tPtr == 5) {

 (*dataAddress)++;

 }

 printf("Parameter value is %i\n", *dataAddress);

 break;

 }

 }

 }

}

void logFcn(rtwCAPI_ModelMappingInfo *mmi, time_T *tPtr)

{

 /* Take action with the signal value only when

 the simulation time is an integer value. */

 if (*tPtr-(int_T)*tPtr == 0) {

 /* Local variables to store information extracted from

 the model mapping information (mmi). */

 void** dataAddrMap;

 const rtwCAPI_DataTypeMap *dataTypeMap;

 const rtwCAPI_Signals *sigs;

 int_T addrIdx;

 uint16_T dTypeIdx;

 uint8_T slDataType;

 /* Use built-in C API macros to extract information. */

 dataAddrMap = rtwCAPI_GetDataAddressMap(mmi);

 dataTypeMap = rtwCAPI_GetDataTypeMap(mmi);

 sigs = rtwCAPI_GetSignals(mmi);

 addrIdx = rtwCAPI_GetSignalAddrIdx(sigs,sigIdx);

 dTypeIdx = rtwCAPI_GetSignalDataTypeIdx(sigs,sigIdx);

 slDataType = rtwCAPI_GetDataTypeSLId(dataTypeMap, dTypeIdx);

19-9

19 Data Representation in Simulink Coder

 /* Handle data types 'double' and 'single'. */

 switch (slDataType) {

 case SS_DOUBLE: {

 real_T* dataAddress;

 dataAddress = dataAddrMap[addrIdx];

 printf("Signal value is %f\n", *dataAddress);

 break;

 }

 case SS_SINGLE: {

 real32_T* dataAddress;

 dataAddress = dataAddrMap[addrIdx];

 printf("Signal value is %f\n", *dataAddress);

 break;

 }

 }

 }

}

Copy this custom header code into a file named myHandHdr.h in your current folder.

#include <stdio.h>

#include <string.h>

#include <math.h>

/* Include rtw_modelmap.h for definitions of C API macros. */

#include "rtw_modelmap.h"

#include "builtin_typeid_types.h"

#include "rtwtypes.h"

void tuneFcn(rtwCAPI_ModelMappingInfo *mmi, time_T *tPtr);

void logFcn(rtwCAPI_ModelMappingInfo *mmi, time_T *tPtr);

These files use the C API to access signal and parameter data in the code that you
generate from the example model.

In the model, set Configuration Parameters > Code Generation > Custom Code
> Insert custom C code in generated > Header file to #include "myHandHdr.h".
In the same pane in the Configuration Parameters dialog box, set Additional Build
Information > Source files to myHandCode.c.

set_param('rtwdemo_basicsc','CustomHeaderCode','#include "myHandHdr.h"')

set_param('rtwdemo_basicsc','CustomSource','myHandCode.c')

19-10

 Access Signal, State, and Parameter Data During Execution

Select Configuration Parameters > All Parameters > MAT-file Logging. The
generated executable runs only until the simulation stop time (which you set in the
model configuration parameters).

set_param('rtwdemo_basicsc','MatFileLogging','on')

Select all of the options under Configuration Parameters > Code Generation >
Interface > Generate C API for.

set_param('rtwdemo_basicsc','RTWCAPIParams','on')

set_param('rtwdemo_basicsc','RTWCAPISignals','on')

set_param('rtwdemo_basicsc','RTWCAPIStates','on')

set_param('rtwdemo_basicsc','RTWCAPIRootIO','on')

Load the Custom Code block library.

custcode

Add a System Outputs block to the model.

add_block('custcode/System Outputs','rtwdemo_basicsc/System Outputs')

In the System Outputs block dialog box, set System Outputs Function Execution
Code to this custom code:

19-11

19 Data Representation in Simulink Coder

{

rtwdemo_basicsc_U.input2++;

rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_basicsc_M).mmi);

tuneFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));

}

In the block dialog box, set System Outputs Function Exit Code to this custom code:

{

rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_basicsc_M).mmi);

logFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));

}

Alternatively, to configure the System Outputs block, at the command prompt, use these
commands:

temp.TLCFile = 'custcode';

temp.Location = 'System Outputs Function';

temp.Middle = sprintf(['{\nrtwdemo_basicsc_U.input2++;'...

 '\nrtwCAPI_ModelMappingInfo *MMI = '...

 '&(rtmGetDataMapInfo(rtwdemo_basicsc_M).mmi);'...

 '\ntuneFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));\n}']);

temp.Bottom = sprintf(['{\nrtwCAPI_ModelMappingInfo *MMI = '...

 '&(rtmGetDataMapInfo(rtwdemo_basicsc_M).mmi);'...

 '\nlogFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));\n}']);

set_param('rtwdemo_basicsc/System Outputs','RTWdata',temp)

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

In the code generation report, view the interface file rtwdemo_basicsc_capi.c. This
file initializes the arrays of structures that you can use to interact with data items
through the C API. For example, in the array of structures rtBlockSignals, the first
structure (index 0) describes the test-pointed output signal of the Gain block in the
model.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc_capi.c');

rtwdemodbtype(file,'/* Block output signal information */',...

 '/* Individual block tuning',1,0)

19-12

 Access Signal, State, and Parameter Data During Execution

/* Block output signal information */

static const rtwCAPI_Signals rtBlockSignals[] = {

 /* addrMapIndex, sysNum, blockPath,

 * signalName, portNumber, dataTypeIndex, dimIndex, fxpIndex, sTimeIndex

 */

 { 0, 0, TARGET_STRING("rtwdemo_basicsc/Gain"),

 TARGET_STRING(""), 0, 0, 0, 0, 0 },

 {

 0, 0, (NULL), (NULL), 0, 0, 0, 0, 0

 }

};

The fields of the structure, such as addrMapIndex, indicate indices into other arrays
of structures, such as rtDataAddrMap, that describe the characteristics of the signal.
These characteristics include the address of the signal data (a pointer to the data), the
numeric data type, and the dimensions of the signal.

In the file rtwdemo_basicsc.c, view the code algorithm in the model step function.
The algorithm first executes the custom code that you specified in the System Outputs
block.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.c');

rtwdemodbtype(file,'/* user code (Output function Body) */',...

 '/* Logic: ''<Root>/LogOp'' incorporates:',1,0)

 /* user code (Output function Body) */

 /* System '<Root>' */

 {

 rtwdemo_basicsc_U.input2++;

 rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_basicsc_M).mmi);

 tuneFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));

 }

This custom code first perturbs the input signal input2 by incrementing the value
of the signal each time the step function executes. The code then uses the built-
in macro rtmGetDataMapInfo to extract model mapping information from the
model data structure rtwdemo_basicsc_M. The pointer MMI points to the extracted
mapping information, which allows the custom functions tuneFcn and logFcn
to access the information contained in the arrays of structures that the C API file
rtwdemo_basicsc_capi.c defines.

19-13

19 Data Representation in Simulink Coder

View the custom function tuneFcn in the file myHandCode.c. This function uses the C
API (through the model mapping information mmi) and a pointer to the simulation time
to print the value of the parameter K1 at specific times during code execution. When the
simulation time reaches 5 seconds, the function changes the parameter value in memory.
By using a switch case block, the function can access the parameter data whether the
data type is int8 or double.

View the code algorithm in the model step function again. Near the end of the function,
the algorithm executes the custom code that you specified in the System Outputs block.
This code calls the custom function logFcn.

rtwdemodbtype(file,'/* user code (Output function Trailer) */',...

 '/* Matfile logging */',1,0)

 /* user code (Output function Trailer) */

 /* System '<Root>' */

 {

 rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_basicsc_M).mmi);

 logFcn(MMI, rtmGetTPtr(rtwdemo_basicsc_M));

 }

View the custom function logFcn in the file myHandCode.c. The function uses the C
API to print the value of the test-pointed signal. The function can access the signal data
whether the data type is single or double.

At the command prompt, run the generated executable rtwdemo_bascisc.exe.

system('rtwdemo_basicsc')

The parameter and signal values appear in the Command Window output.

For more information about data interfaces, including the C API, see “Data Exchange
Interfaces” (Simulink Coder).

See Also
Simulink.Parameter | Simulink.Signal

Related Examples
• “Default Data Structures in the Generated Code” on page 19-16

19-14

 Access Signal, State, and Parameter Data During Execution

• “Configure Block Parameter Tunability for Rapid Prototyping” on page 19-56
• “Control Signals and States in Code by Applying Storage Classes” on page 19-123
• “Exchange Data Between Generated and External Code Using C API” (Simulink

Coder)

19-15

19 Data Representation in Simulink Coder

Default Data Structures in the Generated Code

The generated code creates variables to represent model data such as signals, block
parameters, and states. The code generation settings that you choose for a model
determine the default scope of each datum. If the code generator applies a global scope to
a datum, by default the datum appears as a field of a global data structure rather than
a separate global variable. For example, the generated code creates default structures
to contain block output signals, tunable parameters, and constant-valued nontunable
parameters that the code generator cannot inline.

The table shows the most common global data structures in the generated code. The
default name of each structure variable is model_structname. model is the name of the
model. structname is the structure name in the table.

Global data structures generated for a standalone model

Structure Name Data Represented in the Structure

U Data from root Inport blocks
Y Data from root Outport blocks
B Block output signals
ConstB Block outputs that have constant values
P Block parameters
DefaultP Default parameters in the system
ConstP Constant parameters
DW Discrete block states
X Continuous block states
XDot Derivatives of continuous states at each time

step
XDis Status of enabled subsystems
ZCV Zero-crossing signals
PrevZCX Previous zero-crossing signal states
Obj Used by ERT C++ code generation to refer to

referenced model objects

19-16

 Default Data Structures in the Generated Code

The table shows the most common global data structures generated for atomic
subsystems and referenced models. The default name of each structure variable
is model_structname for referenced models and model_subsystem_structname for
subsystems.

Global data structures generated for subsystems and referenced models

Structure Name Data Represented in the Structure

B Block output signals
ConstB Block outputs that have constant values
P Block parameters
DW Discrete block states
MdlRefDW Discrete block states in referenced model
X Continuous states in model reference
XDis Status of enabled subsystems
ZCV Zero-crossing signals
RTM RT_Model structure

If you have an Embedded Coder license, you can control the names of these global
structure variables. For more information, see “Global variables” (Simulink Coder) and
“System-generated identifiers” (Simulink Coder).

You can exclude data from appearing in these structures by using:

• Storage classes. For example, you can use storage classes to represent signals,
tunable parameters, and states as individual global variables. For more information,
see “Control Signals and States in Code by Applying Storage Classes” (Simulink
Coder) and “Block Parameter Representation in the Generated Code” (Simulink
Coder).

• Configuration parameters, such as those on the Optimization > Signals and
Parameters pane in the Configuration Parameters dialog box. You can adjust these
configuration parameters to control the default representation of data. For more
information, see “Optimization Pane: Signals and Parameters” (Simulink).

See Also
“Combine signal/state structures” (Simulink Coder)

19-17

19 Data Representation in Simulink Coder

Related Examples
• “Signal Representation in Generated Code” (Simulink Coder)
• “Block Parameter Representation in the Generated Code” (Simulink Coder)
• “Access Signal, State, and Parameter Data During Execution” on page 19-3

19-18

 Use the Real-Time Model Data Structure

Use the Real-Time Model Data Structure

The code generator uses the real-time model (RT_MODEL) data structure. This structure
is also referred to as the rtModel data structure. You can access rtModel data by using
a set of macros analogous to the ssSetxxx and ssGetxxx macros that S-functions use to
access SimStruct data, including noninlined S-functions compiled by the code generator.

You need to use the set of macros rtmGetxxx and rtmSetxxx to access the real-
time model data structure. The rtModel is an optimized data structure that replaces
SimStruct as the top level data structure for a model. The rtmGetxxx and rtmSetxxx
macros are used in the generated code as well as from the main.c or main.cpp module.
If you are customizing main.c or main.cpp (either a static file or a generated file), you
need to use rtmGetxxx and rtmSetxxx instead of the ssSetxxx and ssGetxxx macros.

Usage of rtmGetxxx and rtmSetxxx macros is the same as for the ssSetxxx and
ssGetxxx versions, except that you replace SimStruct S by real-time model data
structure rtM. The following table lists rtmGetxxx and rtmSetxxx macros that are used
in grt_main.c and grt_main.cpp.

Macros for Accessing the Real-Time Model Data Structure

rtm Macro Syntax Description
rtmGetdX(rtm) Get the derivatives of block continuous states
rtmGetOffsetTimePtr(RT_MDL rtM) Return the pointer to vector that stores sample

time offsets of the model associated with rtM
rtmGetNumSampleTimes(RT_MDL rtM) Get the number of sample times that a block has
rtmGetPerTaskSampleHitsPtr(RT_MDL) Return a pointer to NumSampleTime ×

NumSampleTime matrix
rtmGetRTWExtModeInfo(RT_MDL rtM) Return an external mode information data

structure of the model (used internally for
external mode)

rtmGetRTWLogInfo(RT_MDL) Return a data structure used by code generator
logging (internal use only)

rtmGetRTWRTModelMethodsInfo(RT_MDL) Return a data structure of real-time model
methods information (internal use only)

rtmGetRTWSolverInfo(RT_MDL) Return data structure containing solver
information of the model (internal use only)

19-19

19 Data Representation in Simulink Coder

rtm Macro Syntax Description
rtmGetSampleHitPtr(RT_MDL) Return a pointer to Sample Hit flag vector
rtmGetSampleTime(RT_MDL rtM, int TID) Get task sample time
rtmGetSampleTimePtr(RT_MDL rtM) Get pointer to a task sample time
rtmGetSampleTimeTaskIDPtr(RT_MDL rtM) Get pointer to a task ID
rtmGetSimTimeStep(RT_MDL) Return simulation step type ID

(MINOR_TIME_STEP, MAJOR_TIME_STEP)
rtmGetStepSize(RT_MDL) Return the fundamental step size of the model
rtmGetT(RT_MDL,t) Get the current simulation time
rtmSetT(RT_MDL,t) Set the time of the next sample hit
rtmGetTaskTime(RT_MDL,tid) Get the current time for the current task
rtmGetTFinal(RT_MDL) Get the simulation stop time
rtmSetTFinal(RT_MDL,finalT) Set the simulation stop time
rtmGetTimingData(RT_MDL) Return a data structure used by timing engine of

the model (internal use only)
rtmGetTPtr(RT_MDL) Return a pointer to the current time
rtmGetTStart(RT_MDL) Get the simulation start time
rtmIsContinuousTask(rtm) Determine whether a task is continuous
rtmIsMajorTimeStep(rtm) Determine whether the simulation is in a major

step
rtmIsSampleHit(RT_MDL,tid) Determine whether the sample time is hit
rtmGetErrorStatus(rtm) Get the current error status
rtmSetErrorStatus(rtm,val) Set the current error status
rtmGetErrorStatusPointer(rtm) Return a pointer to the current error status
rtmGetStopRequested(rtm) Return whether a stop is requested
rtmGetBlockIO(rtm) Get the block I/O data structure
rtmSetBlockIO(rtm,val) Set the block I/O data structure
rtmGetContStates(rtm) Get the continuous states data structure
rtmSetContStates(rtm,val) Set the continuous states data structure

19-20

 Use the Real-Time Model Data Structure

rtm Macro Syntax Description
rtmGetDefaultParam(rtm) Get the default parameters data structure
rtmSetDefaultParam(rtm,val) Set the default parameters data structure
rtmGetPrevZCSigState(rtm) Get the previous zero-crossing signal state data

structure
rtmSetPrevZCSigState(rtm,val) Set the previous zero-crossing signal state data

structure
rtmGetRootDWork(rtm) Get the DWork data structure
rtmSetRootDWork(rtm,val) Set the DWork data structure
rtmGetU(rtm) Get the root inputs data structure (when root

inputs are passed as part of the model data
structure)

rtmSetU(rtm,val) Set the root inputs data structure (when root
inputs are passed as part of the model data
structure)

rtmGetY(rtm) Get the root outputs data structure (when root
outputs are passed as part of the model data
structure)

rtmSetY(rtm,val) Set the root outputs data structure (when root
outputs are passed as part of the model data
structure)

For additional details on usage, see “SimStruct Macros and Functions Listed by Usage”
(Simulink).

Related Examples
• “SimStruct Macros and Functions Listed by Usage” (Simulink)
• “Compare System Target File Support” (Simulink Coder)

19-21

19 Data Representation in Simulink Coder

Use Enumerated Data in Generated Code

In this section...

“Enumerated Data Types” on page 19-22
“Specify Integer Data Type for Enumeration” on page 19-22
“Customize Enumerated Data Type” on page 19-24
“Control Enumerated Type Implementation in Generated Code” on page 19-28
“Type Casting for Enumerations” on page 19-29
“Enumerated Type Limitations” on page 19-30

Enumerated Data Types

Enumerated data is data that is restricted to a finite set of values. An enumerated data
type is a MATLAB class that defines a set of enumerated values. Each enumerated
value consists of an enumerated name and an underlying integer which the software
uses internally and in generated code. The following is a MATLAB class definition for
an enumerated data type named BasicColors, which is used in the examples in this
section.

classdef BasicColors < Simulink.IntEnumType

 enumeration

 Red(0)

 Yellow(1)

 Blue(2)

 end

end

For basic information about enumerated data types and their use in Simulink models,
see “Use Enumerated Data in Simulink Models” (Simulink). For information about
enumerated data types in Stateflow charts, see “Define Enumerated Data in a Chart”
(Stateflow).

Specify Integer Data Type for Enumeration

When you specify a data type for your enumeration, you can:

• Control the size of enumerated data types in the generated code by specifying a
superclass.

19-22

 Use Enumerated Data in Generated Code

• Reduce RAM/ROM usage.
• Improve code portability.
• Improve integration with legacy code.

You can specify any of these integer data types:

• int8

• uint8

• int16

• uint16

• int32

• Simulink.IntEnumType. Specify values in the range of the signed integer for your
hardware platform.

Use a Class Definition in a MATLAB File

To specify an integer data type size, derive your enumeration class from the integer data
type.

classdef Colors < int8

 enumeration

 Red(0)

 Green(1)

 Blue(2)

 end

end

The code generator generates this code:

typedef int8_T Colors;

#define Red ((Colors)0)

#define Green ((Colors)1)

#define Blue ((Colors)2)

Use the Function Simulink.defineIntEnumType

To specify an integer data type size, specify the name-value pair StorageType as the
integer data type.

Simulink.defineIntEnumType('Colors',{'Red','Green','Blue'},...

[0;1;2],'StorageType','int8')

19-23

19 Data Representation in Simulink Coder

The code generator generates this code:

typedef int8_T Colors;

#define Red ((Colors)0)

#define Green ((Colors)1)

#define Blue ((Colors)2)

Customize Enumerated Data Type

When you generate code from a model that uses enumerated data, you can implement
these static methods to customize the behavior of the type during simulation and in
generated code:

• getDefaultValue — Specifies the default value of the enumerated data type.
• getDescription — Specifies a description of the enumerated data type.
• getHeaderFile — Specifies a header file where the type is defined for generated

code.
• getDataScope — Specifies whether generated code exports or imports the

enumerated data type definition to or from a separate header file.
• addClassNameToEnumNames — Specifies whether the class name becomes a prefix in

generated code.

The first of these methods, getDefaultValue, is relevant to both simulation and code
generation, and is described in “Specify a Default Enumerated Value” (Simulink). The
other methods are relevant only to code generation. To customize the behavior of an
enumerated type, include a version of the method in the methods(Static) section
of the enumeration class definition. If you do not want to customize the type, omit the
methods(Static) section. The table summarizes the methods and the data to supply
for each one.

Static Method Purpose Default Value Without
Implementing Method

Custom Return Value

getDefaultValue Specifies the default
enumeration member
for the class.

First member
specified in the
enumeration
definition

A character vector
containing the name
of an enumeration
member in the class
(see “Instantiate
Enumerations”
(Simulink)).

19-24

 Use Enumerated Data in Generated Code

Static Method Purpose Default Value Without
Implementing Method

Custom Return Value

getDescription Specifies a description
of the enumeration
class.

'' A character vector
containing the
description of the type.

getHeaderFile Specifies the
name of a header
file. The method
getDataScope

determines the
significance of the file.

'' A character vector
containing the name
of the header file
that defines the
enumerated type.

By default, the
generated #include
directive uses the
preprocessor delimiter
" instead of < and
>. To generate the
directive #include
<myTypes.h>,
specify the custom
return value as
'<myTypes.h>'.

getDataScope Specifies whether
generated code
exports or imports
the definition of the
enumerated data
type. Use the method
getHeaderFile to
specify the generated
or included header file
that defines the type.

'Auto' One of: 'Auto',
'Exported', or
'Imported'.

addClassNameToEnumNamesSpecifies whether to
prefix the class name
in generated code.

false true or false.

19-25

19 Data Representation in Simulink Coder

Specify a Description

To specify a description for an enumerated data type, include this method in the
methods(Static) section of the enumeration class:

function retVal = getDescription()

% GETDESCRIPTION Optional description of the data type.

 retVal = 'description';

end

Substitute a MATLAB character vector for description. The generated code that
defines the enumerated type includes the specified description.

Import Type Definition in Generated Code

To prevent generated code from defining an enumerated data type, which allows
you to provide the definition in an external file, include these methods in the
methods(Static) section of the enumeration class:
 function retVal = getHeaderFile()

 % GETHEADERFILE Specifies the file that defines this type in generated code.

 % The method getDataScope determines the significance of the specified file.

 retVal = 'imported_enum_type.h';

 end

 function retVal = getDataScope()

 % GETDATASCOPE Specifies whether generated code imports or exports this type.

 % Return one of:

 % 'Auto': define type in model_types.h, or import if header file specified

 % 'Exported': define type in a generated header file

 % 'Imported': import type definition from specified header file

 % If you do not define this method, DataScope is 'Auto' by default.

 retVal = 'Imported';

 end

Instead of defining the type in model_types.h, which is the default behavior, generated
code imports the definition from the specified header file using a #include statement
like:
#include "imported_enum_type.h"

Generating code does not create the imported header file. You must provide the header
file, using the file name specified by the method getHeaderFile, that defines the
enumerated data type.

To create a Simulink enumeration that corresponds to your existing C-code enumeration,
use the Simulink.importExternalCTypes function.

19-26

 Use Enumerated Data in Generated Code

Export Type Definition in Generated Code

To generate a separate header file that defines an enumerated data type, include these
methods in the methods(Static) section of the enumeration class:
 function retVal = getDataScope()

 % GETDATASCOPE Specifies whether generated code imports or exports this type.

 % Return one of:

 % 'Auto': define type in model_types.h, or import if header file specified

 % 'Exported': define type in a generated header file

 % 'Imported': import type definition from specified header file

 % If you do not define this method, DataScope is 'Auto' by default.

 retVal = 'Exported';

 end

 function retVal = getHeaderFile()

 % GETHEADERFILE Specifies the file that defines this type in generated code.

 % The method getDataScope determines the significance of the specified file.

 retVal = 'exported_enum_type.h';

 end

Generated code exports the enumerated type definition to the generated header file
exported_enum_type.h.

Add Prefixes To Class Names

By default, enumerated values in generated code have the same names that they have in
the enumeration class definition. Alternatively, your code can prefix every enumerated
value in an enumeration class with the name of the class. You can use this technique
to prevent identifier conflicts or to improve the readability of the code. To specify class
name prefixing, include this method in the methods(Static) section of an enumeration
class:
 function retVal = addClassNameToEnumNames()

 % ADDCLASSNAMETOENUMNAMES Specifies whether to add the class name

 % as a prefix to enumeration member names in generated code.

 % Return true or false.

 % If you do not define this method, no prefix is added.

 retVal = true;

 end

Specify the return value as true to enable class name prefixing or as false to suppress
prefixing. If you specify true, each enumerated value in the class appears in generated
code as EnumTypeName_EnumName. For the example enumeration class BasicColors in
“Enumerated Data Types” on page 19-22, the data type definition in generated code
might look like this:
#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_

#define _DEFINED_TYPEDEF_FOR_BasicColors_

19-27

19 Data Representation in Simulink Coder

typedef enum {

 BasicColors_Red = 0, /* Default value */

 BasicColors_Yellow = 1,

 BasicColors_Blue = 2,

} BasicColors;

#endif

The enumeration class name BasicColors appears as a prefix for each of the
enumerated names.

Control Enumerated Type Implementation in Generated Code

Suppose that you define an enumerated type BasicColors. You can specify that the
generated code implement the type definition using:

• An enum block. The native integer type of your hardware is the underlying integer
type for the enumeration members.

• A typedef statement and a series of #define macros. The typedef statement bases
the enumerated type name on a specific integer data type, such as int8. The macros
associate the enumeration members with the underlying integer values.

Implement Enumerated Type Using enum Block

To implement the type definition using an enum block:

• In Simulink, define the enumerated type using a classdef block in a script file.
Derive the enumeration from the type Simulink.IntEnumType.

• Alternatively, use the function Simulink.defineIntEnumType. Do not specify the
property StorageType.

When you generate code, the type definition appears in an enum block.

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_

#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {

 Red = 0, /* Default value */

 Yellow,

 Blue,

} BasicColors;

19-28

 Use Enumerated Data in Generated Code

#endif

Implement Enumerated Type Using a Specific Integer Type

To implement the type definition using a typedef statement and #define macros:

• In Simulink, define the enumerated type using a classdef block in a script file.
Derive the enumeration from a specific integer type such as int8.

• Alternatively, use the function Simulink.defineIntEnumType. Specify the
property StorageType using a specific integer type such as int8.

When you generate code, the type definition appears as a typedef statement and a
series of #define macros.

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_

#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef int8_T BasicColors;

#define Red ((BasicColors)0) /* Default value */

#define Yellow ((BasicColors)1)

#define Blue ((BasicColors)2)

#endif

By default, the generated file model_types.h contains enumerated type definitions.

Type Casting for Enumerations

Safe Casting

A Simulink Data Type Conversion block accepts a signal of integer type. The block
converts the input to one of the underlying values of an enumerated type.

If the input value does not match any of the underlying values of the enumerated type
values, Simulink inserts a safe cast to replace the input value with the enumerated type
default value.

Enable and Disable Safe Casting

You can enable or disable safe casting for enumerations during code generation for a
Simulink Data Type Conversion block or a Stateflow block.

19-29

19 Data Representation in Simulink Coder

To control safe casting, enable or disable the Saturate on integer overflow block
parameter. The parameter works as follows:

• Enabled: Simulink replaces a nonmatching input value with the default value of the
enumerated values during simulation. The software generates a safe cast function
during code generation.

• Disabled: For a nonmatching input value, Simulink generates an error during
simulation. The software omits the safe cast function during code generation. In this
case, the code is more efficient. However, the code may be more vulnerable to run-
time errors.

Safe Cast Function in Generated Code

This example shows how the safe cast function int32_T
ET08_safe_cast_to_BasicColors for the enumeration BasicColors appears in
generated code when generated for 32-bit hardware.

static int32_T ET08_safe_cast_to_BasicColors(int32_T input)

{

 int32_T output;

 /* Initialize output value to default value for BasicColors (Red) */

 output = 0;

 if ((input >= 0) && (input <= 2)) {

 /* Set output value to input value if it is a member of BasicColors */

 output = input;

 }

 return output;

}

Through this function, the enumerated type’s default value is used if the input value does
not match one of underlying values of the enumerated type’s values.

If the block’s Saturate on integer overflow parameter is disabled, this function does
not appear in generated code.

Enumerated Type Limitations

• Generated code does not support logging enumerated data.

See Also
enumeration | Simulink.data.getEnumTypeInfo |
Simulink.defineIntEnumType

19-30

 Use Enumerated Data in Generated Code

Related Examples
• “Use Enumerated Data in Simulink Models” (Simulink)
• “Simulink Enumerations” (Simulink)
• “Exchange Structured and Enumerated Data Between Generated and External

Code” on page 21-28

19-31

19 Data Representation in Simulink Coder

Data Stores in Generated Code
In this section...

“About Data Stores” on page 19-32
“Generate Code for Data Store Memory Blocks” on page 19-32
“Storage Classes for Data Store Memory Blocks” on page 19-33
“Data Store Buffering in Generated Code” on page 19-35

About Data Stores

A data store contains data that is accessible in a model hierarchy at or below the level in
which the data store is defined. Data stores can allow subsystems and referenced models
to share data without having to use I/O ports to pass the data from level to level. See
“Data Stores with Data Store Memory Blocks” (Simulink) for information about data
stores in Simulink. This section provides additional information about data store code
generation.

Generate Code for Data Store Memory Blocks

To control the code generated for a Data Store Memory block, apply a storage class to
the data store. You can associate a Data Store Memory block with a signal object that
you store in a workspace or data dictionary, and control code generation for the block by
applying the storage class to the object:

1 Instantiate the desired signal object.
2 Set the object's CoderInfo.StorageClass property to indicate the desired storage

class.
3 Open the block dialog box for the Data Store Memory block that you want to

associate with the signal object.
4 Enter the name of the signal object in the Data store name field.
5 Select Data store name must resolve to Simulink signal object.
6 Do not set the storage class field to a value other than Auto (the default).
7 Click OK or Apply.

Note When a Data Store Memory block is associated with a signal object, the
mapping between the Data store name and the signal object name must be one-

19-32

 Data Stores in Generated Code

to-one. If two or more identically named entities map to the same signal object, the
name conflict is flagged as an error at code generation time. See “Resolve Conflicts in
Configuration of Signal Objects” on page 19-131 for more information.

Storage Classes for Data Store Memory Blocks

You can control how Data Store Memory blocks in your model are stored and represented
in the generated code by assigning storage classes and type qualifiers. You do this in
almost exactly the same way you assign storage classes and type qualifiers for block
states.

Data Store Memory blocks, like block states, have Auto storage class by default, and
their memory is stored within the DWork vector. The symbolic name of the storage
location is based on the data store name.

You can generate code from multiple Data Store Memory blocks that have the same data
store name, subject to the following restriction: at most one of the identically named
blocks can have a storage class other than Auto. An error is reported if this condition is
not met.

For blocks with Auto storage class, the code generator produces a unique symbolic name
for each block to avoid name clashes. For Data Store Memory blocks with storage classes
other than Auto, the generated code uses the data store name as the symbol.

In the following model, a Data Store Write block writes to memory declared by the Data
Store Memory block myData:

To control the storage declaration for a Data Store Memory block, use the Code
Generation > Signal object class and Code Generation > Storage class drop-
down lists of the Data Store Memory block dialog box. Set Signal object class to
Simulink.Signal (the default), and choose a storage class from the Storage class
drop-down list. The next figure shows the Data Store Memory block dialog box for the
preceding model.

19-33

19 Data Representation in Simulink Coder

Data Store Memory blocks are nonvirtual because code is generated for their
initialization in .c and .cpp files and their declarations in header files. The following
table shows how the code generated for the Data Store Memory block in the preceding
model differs for different settings of Code Generation > Storage class. The table
gives the variable declarations and MdlOutputs code generated for the myData block.

Storage Class Declaration Code
Auto or SimulinkGlobal In model.h

typedef struct

D_Work_tag

{

 real_T myData;

}

D_Work;

model_DWork.myData =

 rtb_SineWave;

19-34

 Data Stores in Generated Code

Storage Class Declaration Code
In model.c or model.cpp
/* Block states (auto storage) */

D_Work model_DWork;

ExportedGlobal In model.c or model.cpp
/* Exported block states */

real_T myData;

In model.h
extern real_T myData;

myData = rtb_SineWave;

ImportedExtern In model_private.h
extern real_T myData;

myData = rtb_SineWave;

ImportedExternPointer In model_private.h
extern real_T *myData;

(*myData) = rtb_SineWave;

For information about applying storage classes, see “Control Signals and States in Code
by Applying Storage Classes” (Simulink Coder).

Data Store Buffering in Generated Code

A Data Store Read block is a nonvirtual block that copies the value of the data store to its
output buffer when it executes. Since the value is buffered, downstream blocks connected
to the output of the data store read utilize the same value, even if a Data Store Write
block updates the data store in between execution of two of the downstream blocks.

The next figure shows a model that uses blocks whose priorities have been modified to
achieve a particular order of execution:

19-35

19 Data Representation in Simulink Coder

The following execution order applies:

1 The block Data Store Read buffers the current value of the data store A at its output.
2 The block Abs1 uses the buffered output of Data Store Read.
3 The block Data Store Write updates the data store.
4 The block Abs uses the buffered output of Data Store Read.

Because the output of Data Store Read is a buffer, both Abs and Abs1 use the same
value: the value of the data store at the time that Data Store Read executes.

19-36

 Data Stores in Generated Code

The next figure shows another example:

In this example, the following execution order applies:

1 The block Data Store Read buffers the current value of the data store A at its output.
2 Atomic Subsystem executes.
3 The Sum block adds the output of Atomic Subsystem to the output of Data Store

Read.

Simulink assumes that Atomic Subsystem might update the data store, so Simulink
buffers the data store. Atomic Subsystem executes after Data Store Read buffers its

19-37

19 Data Representation in Simulink Coder

output, and the buffer provides a way for the Sum block to use the value of the data store
as it was when Data Store Read executed.

In some cases, the code generator determines that it can optimize away the output buffer
for a Data Store Read block, and the generated code refers to the data store directly,
rather than a buffered value of it. The next figure shows an example:

In the generated code, the argument of the fabs() function is the data store A rather
than a buffered value.

Related Examples
• “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
• “Structures in Generated Code Using Data Stores” on page 19-39
• “When to Use a Data Store” (Simulink)
• “Generate Code That Dereferences Data from a Literal Memory Address” on page

23-83

19-38

 Structures in Generated Code Using Data Stores

Structures in Generated Code Using Data Stores

If you use more than one data store to provide global access to multiple signals in
generated code, you can combine the signals into a single structure variable by using one
data store. This combination of signal data can help you integrate the code generated
from a model with other existing code that requires the data in a structure format.

This example shows how to store several model signals in a structure in generated code
using a single data store. To store multiple signals in a data store, you configure the
data store to accept a composite signal, such as a nonvirtual bus signal or an array of
nonvirtual bus signals.

Explore Example Model

1 Open the example model ex_bus_struct_in_code.

The model contains three subsystems that perform calculations on the inputs from
the top level of the model. In each subsystem, a Data Store Memory block stores an
intermediate calculated signal.

2 Generate code with the model. In the code generation report, view the file
ex_bus_struct_in_code.c. The code defines a global variable for each data store.

real_T BioBTURate;

real_T CoalBTURate;

real_T GasBTURate;

Suppose that you want to integrate code generated from the example model with other
existing code. Suppose also that the existing code requires access to all of the data from
the three data stores in a single structure variable. You can use a data store to assemble
all of the target data in a structure in generated code.

Configure Data Store

Configure a data store to contain multiple signals by creating a bus type to use as the
data type of the data store. Define the bus type using the same hierarchy of elements as
the structure that you want to appear in generated code.

1 Open the Bus Editor tool.

buseditor

19-39

19 Data Representation in Simulink Coder

2 Define a new bus type Raw_BTU_Rate with one element for each of the three target
signals. Name the elements BioBTU, GasBTU, and CoalBTU.

3 At the top level of the example model, add a Data Store Memory block.
4 In the block dialog box, set Data store name to Raw_BTU_Data. Click Apply.
5 On the Signal Attributes tab, set Data type to Bus: Raw_BTU_Rate.
6 Under Code Generation, set Storage class to ExportedGlobal.

Write to Data Store Elements

To write to a specific element of a data store, use a Data Store Write block. On the
Element Assignment tab in the dialog box, you can specify to write to a single element,
a collection of elements, or the entire contents of a data store.

1 Open the Biomass Calc subsystem.
2 Delete the Data Store Memory block BioBTURate.
3 In the block dialog box for the Data Store Write block, set Data store name to

Raw_BTU_Data.
4 On the Element Assignment tab, under Signals in the bus, expand the contents

of the data store Raw_BTU_Data. Click the element BioBTU, and then click Select.
Click OK.

19-40

 Structures in Generated Code Using Data Stores

5 Modify the Gas Calc and Coal Calc subsystems similarly.

• Delete the Data Store Memory block in each subsystem.
• In each Data Store Write block dialog box, set Data store name to

Raw_BTU_Data.
• In the Gas Calc subsystem, use the Data Store Write block to write to the

data store element GasBTU. In the Coal Calc subsystem, write to the element
CoalBTU.

19-41

19 Data Representation in Simulink Coder

Generate Code with Data Store Structure

1 Generate code for the example model.
2 In the code generation report, view the file ex_bus_struct_in_code_types.h.

The code defines a structure that corresponds to the bus type Raw_BTU_Rate.

typedef struct {

 real_T BioBTU;

 real_T GasBTU;

 real_T CoalBTU;

} Raw_BTU_Rate;

3 View the file ex_bus_struct_in_code.c. The code represents the data store with
a global variable Raw_BTU_Data of the structure type Raw_BTU_Rate. In the model
step function, the code assigns the data from the calculated signals to the fields of
the global variable Raw_BTU_Data.

See Also
Simulink.Bus | Data Store Write | Data Store Memory | Data Store Read

Related Examples
• “Data Stores with Buses and Arrays of Buses” (Simulink)
• “Access Data Stores with Simulink Blocks” (Simulink)
• “When to Use a Data Store” (Simulink)
• “About Data Stores” on page 19-32

19-42

 Specify Single-Precision Data Type for Embedded Application

Specify Single-Precision Data Type for Embedded Application

When you want code that uses only single precision, such as when you are targeting
a single-precision processor, you can use model configuration parameters and block
parameters to prevent the introduction of double in the model.

To design and validate a single-precision model, see “Validate a Floating-Point
Embedded Model” (Simulink). If you have Fixed-Point Designer, you can use the Single
Precision Converter app (see “Single-Precision Design for Simulink” (Fixed-Point
Designer)).

Use single Data Type as Default for Underspecified Types

This example shows how to avoid introducing a double-precision data type in code
generated for a single-precision hardware target.

If you specify an inherited data type for signals, but data type propagation rules cannot
determine data types for the signals, the signal data types default to double. You can
use a model configuration parameter to specify the default data type as single.

Explore Example Model

Open the example model rtwdemo_underspecified_datatype.

model = 'rtwdemo_underspecified_datatype';

open_system(model);

19-43

19 Data Representation in Simulink Coder

The root inports In2, In3, and In4 specify Inherit: Auto for the Data type block
parameter. The downstream blocks also use inherited data types.

Generate Code with double as Default Data Type

The model starts with the configuration parameter System target file set to ert.tlc,
which requires Embedded Coder. Set System target file to grt.tlc instead.

set_param(model,'SystemTargetFile','grt.tlc')

Generate code from the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_underspecified_datatype

Successful completion of build procedure for model: rtwdemo_underspecified_datatype

19-44

 Specify Single-Precision Data Type for Embedded Application

In the code generation report, view the file rtwdemo_underspecified_datatype.h.
The code uses the double data type to define the variables In2, In3, and In4 because
the Inport data types are underspecified in the model.

cfile = fullfile('rtwdemo_underspecified_datatype_grt_rtw',...

 'rtwdemo_underspecified_datatype.h');

rtwdemodbtype(cfile,...

 '/* External inputs (root inport signals with auto storage) */',...

 '/* External outputs (root outports fed by signals with auto storage) */', 1, 0);

/* External inputs (root inport signals with auto storage) */

typedef struct {

 int8_T In1; /* '<Root>/In1' */

 real_T In2; /* '<Root>/In2' */

 real_T In3; /* '<Root>/In3' */

 real_T In4; /* '<Root>/In4' */

} ExtU_rtwdemo_underspecified_d_T;

Generate Code with single as Default Data Type

Open the Configuration Parameters dialog box. On the Optimization pane, select
single in the Default for underspecified data type drop-down list.

Alternatively, enable the optimization at the command prompt.

set_param(model, 'DefaultUnderspecifiedDataType', 'single');

Generate code from the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_underspecified_datatype

Successful completion of build procedure for model: rtwdemo_underspecified_datatype

In the code generation report, view the file rtwdemo_underspecified_datatype.h.
The code uses the single data type to define the variables In2, In3, and In4.

rtwdemodbtype(cfile,...

 '/* External inputs (root inport signals with auto storage) */',...

 '/* External outputs (root outports fed by signals with auto storage) */', 1, 0);

/* External inputs (root inport signals with auto storage) */

typedef struct {

19-45

19 Data Representation in Simulink Coder

 int8_T In1; /* '<Root>/In1' */

 real32_T In2; /* '<Root>/In2' */

 real32_T In3; /* '<Root>/In3' */

 real32_T In4; /* '<Root>/In4' */

} ExtU_rtwdemo_underspecified_d_T;

Related Examples
• “Default for underspecified data type” (Simulink)
• “Subnormal Number Performance” on page 53-18
• “Standard math library” (Simulink Coder)
• “Data Type Replacement” on page 21-36
• “About Data Types in Simulink” (Simulink)

19-46

 Block Parameter Representation in the Generated Code

Block Parameter Representation in the Generated Code

Blocks have numeric parameters that determine how they calculate output values. For
example, a Gain block has a Gain parameter. A Discrete Transfer Fcn has multiple
parameters that represent the coefficients.

When you generate code from a model, block parameters can appear in the code as
inlined numbers, formal parameters of functions, or global variables. Control parameter
representation so that you can tune parameter values during algorithm execution,
integrate the generated code with your handwritten code, and improve execution of the
generated code.

For information about setting block parameter values in a model, see “Set Block
Parameter Values” (Simulink).

Default Parameter Representation

You can control whether, by default, block parameters appear in the generated code as:

• Tunable fields of a global structure that contains parameter data. For example, if the
value of the Gain parameter of a Gain block is 5.2, the generated code algorithm can
appear as input = myModel_P.myGainBlock_Gain * output; where the field
myModel_P.myGainBlock_Gain is initialized to 5.2.

Use this configuration to enable you to change parameter data during execution for
experimentation and rapid prototyping.

• Inlined numeric constants whose values you cannot change during execution. For
example, the generated code algorithm can appear as input = 5.2 * output;.

Use this configuration to optimize the generated code for production. See “Inline
Numeric Values of Block Parameters” on page 53-43.

Configure Parameters as Tunable by Default

When you set Configuration Parameters > Optimization > Signals and
Parameters > Default parameter behavior (see “Default parameter behavior”
(Simulink)) to Tunable (the default when you use a GRT-based system target file such
as grt.tlc), the generated code allocates memory to represent block parameters.
Therefore, you can tune the block parameter values during code execution.

19-47

19 Data Representation in Simulink Coder

If you use numeric expressions, such as 3.57 or 5/2, to specify block parameter values in
the model, each block parameter appears in the generated code as a tunable field of the
global parameters structure (for example, model_P). The code generator initializes each
field by using the corresponding block parameter value from the model.

Workspace variables are variables that you use to specify block parameter
values in a model. Workspace variables include numeric MATLAB variables and
Simulink.Parameter objects that you store in a workspace, such as the base
workspace, or in a data dictionary.

When you set Default parameter behavior to Tunable, workspace variables that
use the storage class Auto appear in the generated code as tunable fields of the global
parameters structure. If you use such a variable to specify multiple block parameter
values, the variable appears as a single field of the global parameters structure. The code
does not create multiple fields to represent the block parameters. Therefore, tuning the
field value during code execution changes the mathematical behavior of the model in
the same way as tuning the value of the MATLAB variable or parameter object during
simulation.

For more information about the default global structures in the generated code that store
signal, state, and parameter data, see “Default Data Structures in the Generated Code”
on page 19-16.

To configure block parameter tunability for rapid prototyping, see “Configure Block
Parameter Tunability for Rapid Prototyping” on page 19-56.

Configure Parameters as Inlined by Default

When you set Default parameter behavior to Inlined (the default when you use an
ERT-based system target file such as ert.tlc), the generated code algorithm inlines the
numeric values of block parameters. Therefore, you cannot tune the block parameters
during code execution. Workspace variables that use the storage class Auto, such as
numeric MATLAB variables, also appear in the generated code as inlined constants.

However, the code cannot represent some parameters, such as arrays, as inlined
constants. These parameters appear as fields of a global structure that contains constant-
valued, nontunable parameters. The structure uses the const type qualifier.

The code generator pools equivalent parameter values into a single field of the const
structure instead of creating multiple fields. For example, if two Gain blocks use the
nonscalar value [2 5 7] for the value of the Gain parameter, the code generator creates

19-48

 Block Parameter Representation in the Generated Code

a single structure field to store that value, and shares the field between the lines of
code for each block. This pooling reduces the memory consumption of the structure and
facilitates code reuse (see “Shared Constant Parameters for Code Reuse” on page 3-24).

If you have an Embedded Coder license, you can generate scalar inlined parameters
as macros instead of literal numbers to improve code readability. See “Generate scalar
inlined parameters as” (Simulink Coder).

Override Default Parameter Behavior by Creating Global Variables in the
Generated Code

You can control the code generated for a block parameter by applying a storage class
or custom storage class to a Simulink.Parameter object. Use the parameter object to
set the value of one or more block parameters in a model. By using this technique, you
override the setting of Default parameter behavior for individual block parameters.
For example, you can use this technique to import or export the corresponding generated
variable to or from the generated code.

Choose from these built-in storage classes:

• Auto: The default storage class. Control the parameter tunability in the generated
code by setting the model configuration parameter Default parameter behavior.

• SimulinkGlobal: Store the parameter object as a field of the generated global
parameters structure, model_P, as if you set Default parameter behavior to
Tunable. You can tune the parameter during code execution.

• ExportedGlobal: Export the declaration and definition of the parameter from the
generated code as an individual global variable. You can tune the variable value
during execution and use it in your custom code.

• ImportedExtern: Import the definition of the parameter from your custom code.
• ImportedExternPointer: Import a pointer to the parameter from your custom code.

For each of the storage classes, the table shows the declaration and the code generated
for the workspace variable, gainParam, in the example model, param_examp. The
numeric value of gainParam is 15.23.

19-49

19 Data Representation in Simulink Coder

Storage
Class

Declaration Definition Algorithmic Code

Auto (with
Default
parameter
behavior
set to
Inlined)

None, because the
parameter is inlined

None, because the
parameter is inlined

outSig = 15.23 * inSig;

SimulinkGlobalIn model.h
struct P_param_examp_T_ {

 real_T gainParam;

};

extern P_param_examp_T param_examp_P;

In model_data.c
P_param_examp_T param_examp_P = {

 15.23

};

 outSig =

 param_examp_P.gainParam *

 inSig;

ExportedGlobalIn model.h
extern real_T gainParam;

In model.c
real_T gainParam = 15.23;

 outSig =

 gainParam * inSig;

ImportedExternIn model_private.h
extern real_T gainParam;

None, because the
parameter is imported

outSig =

 gainParam * inSig;

ImportedExternPointerIn model_private.h
extern real_T *gainParam;

None, because the
parameter is imported

outSig =

 *gainParam * inSig;

For an example of how to use a storage class to control the code generated for a block
parameter, see “Create Tunable Calibration Parameter in the Generated Code” on page
19-60.

If you have an Embedded Coder license, you can use and create custom storage classes
for greater control over parameter representation. See “Introduction to Custom Storage
Classes” on page 23-2.

19-50

 Block Parameter Representation in the Generated Code

Parameter Object Configuration Quick Reference Diagram

This diagram shows the code generation and storage class options that control the
representation of parameter objects in the generated code.

Preservation of Expressions

You can specify block parameter values as expressions that use Simulink.Parameter
objects or workspace variables. For example, you can use the expression 5 *
gainParam. See “Use MATLAB Functions and Custom Functions” (Simulink).

A tunable workspace variable is a Simulink.Parameter object or workspace variable
that appears tunable in the generated code. For example, an object or variable is tunable
if you apply a storage class other than Auto or if you set Default parameter behavior
to Tunable.

An expression that contains one or more tunable workspace variables, model arguments,
or tunable mask parameters is called a tunable expression. The expression is tunable
because the code generator attempts to preserve the expression in the code. Because the
code generator preserves the expression, you can change the values of the parameter
data during code execution.

Expression with Tunable Parameter Objects

This example shows how the code generator preserves an expression that you use to set
the value of a block parameter.

Consider the model ex_tunable_expressions.

19-51

19 Data Representation in Simulink Coder

The variables myTunable and myOtherTunable are Simulink.Parameter objects that
use these property values.

Parameter Object Name StorageClass Property Value Property

myTunable ExportedGlobal 0.75

myOtherTunable ExportedGlobal 2.0

The generated code represents the tunable parameter objects myTunable and
myOtherTunable as individual global variables. The algorithm preserves the expression
myTunable + myOtherTunable.

ex_tunable_expressions_Y.Out1 = (myTunable + myOtherTunable) *

ex_tunable_expressions_U.In1;

Loss of Parameter Tunability

A block parameter, MATLAB variable, or Simulink.Parameter object is tunable if
it appears in the generated code as data stored in memory, such as a global variable.
For example, when you apply the storage class ExportedGlobal to a parameter object,
the parameter object appears tunable in the generated code. When you set Default
parameter behavior to Tunable, MATLAB variables and parameter objects appear
tunable in the generated code. By definition, model arguments also appear tunable.

Under certain conditions, the code generator cannot maintain tunability of a parameter,
variable, object, or expression. In this case, the code generator inlines the numeric value,
preventing you from changing the value during code execution.

19-52

 Block Parameter Representation in the Generated Code

To detect these conditions in your model, set the model configuration parameter Detect
loss of tunability (see “Detect loss of tunability” (Simulink)) to warning or error.

Tunable Expression Limitations

The code generator reduces certain expressions to an inlined numeric value in the
generated code. For example, in “Expression with Tunable Parameter Objects” on page
19-51, you used the expression myTunable + myOtherTunable to set the value of a
block parameter. If you instead use the expression myTunable ^ myOtherTunable, the
code generator:

1 Evaluates the numeric value of the expression by using the values of the parameter
objects. In this case, the expression value is myTunablemyOtherTunable = 0.752.0 = 0.5625.

2 Inlines the expression value in the generated code algorithm. In this case, the
calculation appears in the code as ex_tunable_expressions_Y.Out1 = 0.5625
* ex_tunable_expressions_U.In1;.

The code generator removes the tunability of myTunable and myOtherTunable.

To avoid loss of tunability due to unsupported expressions, observe these guidelines:

• Expressions involving complex (i) workspace variables or parameter objects are not
supported.

• Certain operators and functions cause the code generator to reduce expressions
and remove tunability. To determine whether an operator or function causes loss of
tunability, use the information in this table.

Category Operators or Functions

1 + - .* ./ < > <= >= == ~= & |

2 * /

3 abs, acos, asin, atan, atan2, boolean, ceil, cos, cosh, exp,
floor, log, log10, sign, sin, sinh, sqrt, tan, tanh, single,
int8, int16, int32, uint8, uint16, uint32

4 : .^ ^ [] {} . \ .\ ' .' , ;

• Use operators from category 1 without loss of tunability.
• Use operators from category 2 in expressions as long as at least one operand is

a scalar. For example, scalar/scalar and scalar/matrix operand combinations are
supported, but matrix/matrix combinations are not supported.

19-53

19 Data Representation in Simulink Coder

• You can use tunable workspace variables as arguments for the functions in
category 3. If you use other functions, the code generator removes the tunability of
the arguments.

• The operators in category 4 are not supported.
• The Fcn and If blocks do not support tunable expressions for code generation or in

referenced models.
• You can specify any data type for the Simulink.Parameter objects or workspace

variables that makeup expressions. As long as the data type of these variables and
objects and the data type of the corresponding block parameters are the same or
double, the code generator can preserve tunability.

Linear Block Parameter Tunability

These blocks have a Realization parameter that affects the tunability of their numeric
parameters:

• Transfer Fcn
• State-Space
• Discrete State-Space

To set the Realization parameter, you must use the command prompt:

set_param(gcb,'Realization','auto')

For the Realization parameter, you can choose these options:

• general: The block's numeric parameters appear tunable in the generated code.
• sparse: The generated code represents the block’s parameters as transformed values

that increase efficiency. The parameters are not tunable.
• auto: The default. If one or more of the block’s parameters are tunable (for example,

because you use a tunable parameter object to set a parameter value), then the block
uses the general realization. Otherwise, the block uses the sparse realization.

To tune the parameter values of one of these blocks during an external mode
simulation, the block must use the general realization.

See Also
Simulink.Parameter

19-54

 Block Parameter Representation in the Generated Code

Related Examples
• “Configure Block Parameter Tunability for Rapid Prototyping” on page 19-56
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11
• “Switch Between Sets of Parameter Values During Simulation and Code Execution”

on page 19-103
• “Set Block Parameter Values” (Simulink)
• “Inline Numeric Values of Block Parameters” on page 53-43
• “Default Data Structures in the Generated Code” (Simulink Coder)

19-55

19 Data Representation in Simulink Coder

Configure Block Parameter Tunability for Rapid Prototyping

As you iteratively develop a model, to experiment with block parameter values (for
example, the Gain parameter of a Gain block), you can tune the values during simulation
or execution of the generated code. You can then observe the effect on signal values, and
base your design decisions on analysis of these outputs. To access parameter data, you
can configure the generated code to store the data in addressable global memory.

Optimization settings can make the generated code more efficient by inlining the
numeric values of block parameters. To generate code that instead allocates addressable
memory for parameters, you can disable the optimizations for all block parameters.
Regardless of the settings that you use for the optimizations, you can also specify code
generation settings for individual block parameters.

Goal Considerations and More Information

Configure parameters as
tunable by default

To prevent block parameter inlining in the generated code, and
instead store parameter values in global memory, set the model
configuration parameter Default parameter behavior to Tunable.
Each block parameter appears in the generated code as a field of a
global structure.

For more information about Default parameter behavior, see
“Default parameter behavior” (Simulink). For an example, see “Access
Signal, State, and Parameter Data During Execution” (Simulink
Coder).

Create separate global
variables

When you set Default parameter behavior to Tunable, block
parameters appear in the generated code as fields of a structure
whose name you cannot explicitly specify. To instead store parameter
data in separate global variables whose names, file placement,
and other characteristics you can control, apply storage classes to
Simulink.Parameter objects. See “Create Tunable Calibration
Parameter in the Generated Code” on page 19-60.

Tune parameters during
external mode simulation

When you generate code and an external executable from a model,
you can simulate the model in external mode to communicate with
the running executable. You can tune parameters and monitor signals
during the simulation. However, in this simulation mode, tunability
limitations that apply to code generation also apply to the simulation.
For information about the code generation limitations, see “Loss of
Parameter Tunability” on page 19-52.

19-56

 Configure Block Parameter Tunability for Rapid Prototyping

Goal Considerations and More Information

For information about external mode, see “Set Up and Use Host/
Target Communication Channel” (Simulink Coder).

Tune parameters with
Simulink Real-Time

If you have Simulink Real-Time, you can tune parameters and
monitor signals during execution of your real-time application.
Make parameters observable by using storage classes and the model
configuration parameter Default parameter behavior. See “Tunable
Block Parameters and MATLAB Variables” (Simulink Real-Time).

Related Examples
• “Deploy Algorithm Model for Real-Time Rapid Prototyping” on page 48-2
• “Access Signal, State, and Parameter Data During Execution” on page 19-3
• “Block Parameter Representation in the Generated Code” on page 19-47
• “Create Tunable Calibration Parameter in the Generated Code” on page 19-60
• “Switch Between Sets of Parameter Values During Simulation and Code Execution”

on page 19-103

19-57

19 Data Representation in Simulink Coder

Tune Phase Parameter of Sine Wave Block During Code Execution

Under certain conditions, you cannot configure the Phase parameter of a Sine Wave
block to appear in the generated code as a tunable global variable (for more information,
see the block reference page). This example shows how to generate code so that you can
tune the phase during execution.

Create the model ex_phase_tunable:

open_system('ex_phase_tunable')

Set Default parameter behavior to Tunable so that the parameters of the Sine Wave
block appear in the generated code as tunable fields of the global parameter structure.

set_param('ex_phase_tunable','DefaultParameterBehavior','Tunable')

Generate code from the model.

rtwbuild('ex_phase_tunable')

Starting build procedure for model: ex_phase_tunable

Successful completion of code generation for model: ex_phase_tunable

In the code generation report, view the file ex_phase_tunable.c. The code algorithm
in the model step function calculates the Sine Wave block output. The parameters of the
block, including Phase, appear in the code as tunable structure fields.

file = fullfile('ex_phase_tunable_grt_rtw','ex_phase_tunable.c');

rtwdemodbtype(file,'/* Outport: ''<Root>/Out1'' incorporates:',...

 'ex_phase_tunable_P.SineWave_Bias;',1,1)

 /* Outport: '<Root>/Out1' incorporates:

 * DigitalClock: '<Root>/Digital Clock'

 * Sin: '<Root>/Sine Wave'

 */

 ex_phase_tunable_Y.Out1 = sin(ex_phase_tunable_P.SineWave_Freq *

 (((ex_phase_tunable_M->Timing.clockTick1+

19-58

 Tune Phase Parameter of Sine Wave Block During Code Execution

 ex_phase_tunable_M->Timing.clockTickH1* 4294967296.0)) * 1.0) +

 ex_phase_tunable_P.SineWave_Phase) * ex_phase_tunable_P.SineWave_Amp +

 ex_phase_tunable_P.SineWave_Bias;

During code execution, you can assign new values to the structure field that corresponds
to the Phase parameter.

Related Examples
• “Configure Block Parameter Tunability for Rapid Prototyping” on page 19-56

19-59

19 Data Representation in Simulink Coder

Create Tunable Calibration Parameter in the Generated Code

A calibration parameter is a value stored in global memory that an algorithm reads for
use in calculations but does not write to. Calibration parameters are tunable because
you can change the stored value during algorithm execution. You create calibration
parameters so that you can:

• Determine an optimal parameter value by tuning the parameter and monitoring
signal values during execution.

• Efficiently adapt an algorithm to different execution conditions by overwriting the
parameter value stored in memory. For example, you can use the same control
algorithm for multiple vehicles of different masses by storing different parameter
values in each vehicle’s engine control unit.

In Simulink, create a Simulink.Parameter object to represent a calibration parameter.
You use the parameter object to set block parameter values, such as the Gain parameter
of a Gain block. To control the representation of the parameter object in the generated
code, you apply a storage class or custom storage class to the object.

To make block parameters accessible in the generated code by default, for example
for rapid prototyping, set Default parameter behavior (see “Default parameter
behavior” (Simulink)) to Tunable. See “Configure Block Parameter Tunability for Rapid
Prototyping” on page 19-56.

Represent Block Parameter as Tunable Global Variable

This example shows how to create tunable parameter data by representing a block
parameter as a global variable in the generated code.

Configure Block Parameter by Using Parameter Object

Open the example model rtwdemo_paraminline.

rtwdemo_paraminline

19-60

 Create Tunable Calibration Parameter in the Generated Code

In the G1 block dialog box, change Gain from 2 to myGainParam. Click Apply.

Click the action button next to the Gain parameter value. Select Create Variable.

In the Create New Data block dialog box, set Value to Simulink.Parameter(2). Click
Create. A Simulink.Parameter object myGainParam stores the parameter value, 2, in
the base workspace.

In the myGainParam dialog box, set Storage class to ExportedGlobal and click OK.
This storage class causes the parameter object to appear in the generated code as a
tunable global variable.

Alternatively, to create the parameter object and configure the model, use these
commands at the command prompt:

set_param('rtwdemo_paraminline/G1','Gain','myGainParam')

myGainParam = Simulink.Parameter(2);

myGainParam.CoderInfo.StorageClass = 'ExportedGlobal';

Generate and Inspect Code

Generate code from the model.

19-61

19 Data Representation in Simulink Coder

rtwbuild('rtwdemo_paraminline')

Starting build procedure for model: rtwdemo_paraminline

Successful completion of build procedure for model: rtwdemo_paraminline

The generated file rtwdemo_paraminline.h contains an extern declaration of the
global variable myGainParam. You can include (#include) this header file so that your
code can read and write the value of the variable during execution.

file = fullfile('rtwdemo_paraminline_grt_rtw','rtwdemo_paraminline.h');

rtwdemodbtype(file,'extern real_T myGainParam;','extern real_T myGainParam;',1,1)

extern real_T myGainParam; /* Variable: myGainParam

The file rtwdemo_paraminline.c allocates memory for and initializes myGainParam.

file = fullfile('rtwdemo_paraminline_grt_rtw','rtwdemo_paraminline.c');

rtwdemodbtype(file,'/* Exported block parameters */','real_T myGainParam = 2.0;',1,1)

/* Exported block parameters */

real_T myGainParam = 2.0; /* Variable: myGainParam

The generated code algorithm in the model step function uses myGainParam for
calculations.

rtwdemodbtype(file,'/* Model step function */','/* Model initialize function */',1,0)

/* Model step function */

void rtwdemo_paraminline_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/G1'

 * Inport: '<Root>/In1'

 * Sum: '<Root>/Sum'

 */

 rtwdemo_paraminline_Y.Out1 = myGainParam * rtwdemo_paraminline_U.In1 + 150.0;

}

Configure Accessibility of Signal Data

When you tune the value of a parameter during algorithm execution, you monitor or
capture output signal values to analyze the effect of the tuning. To represent signals in

19-62

 Create Tunable Calibration Parameter in the Generated Code

the generated code as accessible data, you can use techniques such as test points and
storage classes. See “Signal Representation in Generated Code” on page 19-112.

Programmatic Interfaces for Tuning Parameters

You can configure the generated code to include:

• A C application programming interface (API) for tuning parameters independent of
external mode. The generated code includes extra code so that you can write your
own code to access parameter values. See “Exchange Data Between Generated and
External Code Using C API” (Simulink Coder).

• A Target Language Compiler API for tuning parameters independently of external
mode. See “Parameter Functions” (Simulink Coder).

Set Tunable Parameter Minimum and Maximum Values

It is a best practice to specify minimum and maximum values for tunable parameters.

You can specify these minimum and maximum values:

• In the block dialog box that uses the parameter object. Use this technique to store the
minimum and maximum information in the model.

• By using the properties of a Simulink.Parameter object that you use to set the
parameter value. Use this technique to store the minimum and maximum information
outside the model.

For more information, see “Specify Minimum and Maximum Values for Block
Parameters” (Simulink).

Considerations for Other Modeling Goals

Goal Considerations and More Information

Apply storage type qualifiers
such as const and volatile

The storage type qualifier const can protect the integrity of
parameter data and enable compilers to optimize machine code. If
necessary, you can also use volatile to prevent compilers from
eliminating storage for parameter data. If you have Embedded
Coder, to generate storage type qualifiers, use custom storage
classes. See “Type Qualifiers” on page 13-15.

19-63

19 Data Representation in Simulink Coder

Goal Considerations and More Information

Generate ASAP2 description You can generate an a2l file that uses the ASAP2 standard to
describe your calibration parameters. For more information, see
“Define ASAP2 Information for Parameters and Signals” on page
44-3.

Generate AUTOSAR (arxml)
description

If you have an Embedded Coder license, you can generate an
arxml file that describes calibration parameters used by models
that you configure for the AUTOSAR standard. See “Model
AUTOSAR Calibration Parameters and Lookup Tables”.

Store lookup table data for
calibration

To store lookup table data for calibration according to the
ASAP2 or AUTOSAR standards (for example, STD_AXIS,
COM_AXIS, or CURVE), you can use Simulink.LookupTable
and Simulink.Breakpoint objects in lookup table blocks.
However, some limitations apply. See Simulink.LookupTable.

To work around the limitations of Simulink.LookupTable and
Simulink.Breakpoint objects, use Simulink.Parameter
and AUTOSAR.Parameter objects instead. See “Define ASAP2
Information for Parameters and Signals” on page 44-3
and “Configure STD_AXIS and COM_AXIS Lookup Tables for
AUTOSAR Measurement and Calibration”.

Use pragmas to store
parameter data in specific
memory locations

If you have an Embedded Coder license, to generate code that
includes custom pragmas, use custom storage classes and memory
sections. See “Control Data and Function Placement in Memory by
Inserting Pragmas” on page 27-2.

See Also
Simulink.LookupTable | Simulink.Breakpoint | Simulink.Parameter

Related Examples
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11
• “Reuse Parameter Data in Different Data Type Contexts” on page 19-93
• “Block Parameter Representation in the Generated Code” on page 19-47
• “Access Structured Data Through a Pointer That External Code Defines” on page

23-27

19-64

 Specify Instance-Specific Parameter Values for Reusable Referenced Model

Specify Instance-Specific Parameter Values for Reusable
Referenced Model

When you use model referencing to break a large system into components, each
component is a separate model. You can reuse a component by referring to it with
multiple Model blocks. Each Model block is an instance of the component. You can then
configure a block parameter (such as the Gain parameter of a Gain block) to use either
the same value or a different value for each instance of the component. To use different
values, create and use a model argument to set the value of the block parameter.

When you generate code from a model hierarchy that uses model arguments, the
arguments appear in the code as formal parameters of the referenced model entry-
point functions, such as the output (step) function. The generated code then passes
the instance-specific parameter values, which you specify in each Model block, to the
corresponding function calls.

Whether you use or don’t use model arguments, you can use storage classes to configure
block parameters to appear in the generated code as tunable global variables. You can
also use storage classes to generate tunable model argument values, which the generated
code stores in memory and passes to the function calls. You can then change the values
during execution.

Pass Parameter Data to Referenced Model Entry-Point Functions as
Arguments

Configure a referenced model to accept parameter data through formal parameters of the
generated model entry-point function. This technique enables you to specify a different
parameter value for each instance (Model block) of the referenced model.

Configure Referenced Model to Use Model Arguments

Create the model ex_arg_code_ref. This model represents a reusable algorithm.

open_system('ex_arg_code_ref')

19-65

19 Data Representation in Simulink Coder

In the Inport block dialog box, on the Signal Attributes tab, set Data type to single.
Due to data type inheritance, the other signals in the model use the same data type.

set_param('ex_arg_code_ref/In1','OutDataTypeStr','single')

In the Model Explorer Model Hierarchy pane, expand the node ex_arg_code_ref and
select Model Workspace.

Select Add > Simulink Parameter twice. Two Simulink.Parameter objects appear in
the Contents pane.

Rename the objects as gainArg and coeffArg.

Set the Value property of the objects. For example, set them to 3.17 and 1.05,
respectively.

modelWorkspace = get_param('ex_arg_code_ref','ModelWorkspace');

assignin(modelWorkspace,'gainArg',Simulink.Parameter(3.17));

assignin(modelWorkspace,'coeffArg',Simulink.Parameter(1.05));

In the Contents pane, for coeffArg and gainArg, select the check box in the
Argument column.

set_param('ex_arg_code_ref','ParameterArgumentNames','coeffArg,gainArg')

19-66

 Specify Instance-Specific Parameter Values for Reusable Referenced Model

In the ex_arg_code_ref model, in the Gain block dialog box, set Gain to gainArg.

set_param('ex_arg_code_ref/Gain','Gain','gainArg')

In the Discrete Filter block dialog box, set Numerator to coeffArg.

set_param('ex_arg_code_ref/Discrete Filter','Numerator','coeffArg')

Save the ex_arg_code_ref model.

save_system('ex_arg_code_ref')

Specify Instance-Specific Parameter Values in Model Blocks

Create the model ex_arg_code_ref. This model uses multiple instances (Model blocks)
of the reusable algorithm.

open_system('ex_arg_code')

19-67

19 Data Representation in Simulink Coder

Open the upper Model block dialog box.

Under Model arguments, set coeffArg and gainArg to 0.98 and 2.98.

set_param('ex_arg_code/Model','ParameterArgumentValues',...

 struct('coeffArg','0.98','gainArg','2.98'))

In the other Model block dialog box, set coeffArg and gainArg to 1.11 and 3.34.

set_param('ex_arg_code/Model1','ParameterArgumentValues',...

 struct('coeffArg','1.11','gainArg','3.34'))

Generate code from the top model.

rtwbuild('ex_arg_code')

The file ex_arg_code_ref.c defines the referenced model entry-point function,
ex_arg_code_ref. The function has two formal parameters, rtp_coeffArg and
rtp_gainArg, that correspond to the model arguments, coeffArg and gainArg. The
formal parameters use the data type real32_T, which corresponds to the data type
single in Simulink.

/* Output and update for referenced model: 'ex_arg_code_ref' */

void ex_arg_code_ref(const real32_T *rtu_In1, real32_T *rty_Out1,

19-68

 Specify Instance-Specific Parameter Values for Reusable Referenced Model

 DW_ex_arg_code_ref_f_T *localDW, real32_T rtp_coeffArg,

 real32_T rtp_gainArg)

The file ex_arg_code.c contains the definition of the top model entry-point function,
ex_arg_code. This function calls the referenced model entry-point function,
ex_arg_code_ref, and uses the model argument values that you specified (such as
1.11 and 3.34) as the values of rtp_coeffArg and rtp_gainArg.

 /* ModelReference: '<Root>/Model' incorporates:

 * Inport: '<Root>/In1'

 * Outport: '<Root>/Out1'

 */

 ex_arg_code_ref(&ex_arg_code_U.In1, &ex_arg_code_Y.Out1,

 &(ex_arg_code_DW.Model_DWORK1.rtdw), 0.98F, 2.98F);

 /* ModelReference: '<Root>/Model1' incorporates:

 * Inport: '<Root>/In1'

 * Outport: '<Root>/Out2'

 */

 ex_arg_code_ref(&ex_arg_code_U.In1, &ex_arg_code_Y.Out2,

 &(ex_arg_code_DW.Model1_DWORK1.rtdw), 1.11F, 3.34F);

The formal parameters use the data type real32_T (single) because:

1 The block parameters in ex_arg_code_ref determine their data types through
internal rules. For example, in the Gain block dialog box, on the Parameter
Attributes tab, Parameter data type is set to Inherit: Inherit via
internal rule (the default). In this case, the internal rule chooses the same data
type as the input and output signals, single.

2 The model arguments in the model workspace use context-sensitive data typing
because the value of the DataType property is set to auto (the default). With this
setting, the model arguments use the same data type as the block parameters,
single.

3 The formal parameters in the generated code use the same data type as the model
arguments, single.

Generate Tunable Argument Values

You can configure the instance-specific values in the Model blocks to appear in the
generated code as tunable global variables. This technique enables you to store the
parameter values for each instance in memory and to tune the values during code
execution.

19-69

19 Data Representation in Simulink Coder

View the contents of the ex_arg_code_ref model workspace in Model Explorer.

Copy gainArg and coeffArg from the ex_arg_code_ref model workspace to the base
workspace.

Rename gainArg as gainForInst1. Rename coeffArg as coeffForInst1.

gainForInst1 = getVariable(modelWorkspace,'gainArg');

gainForInst1 = copy(gainForInst1);

coeffForInst1 = getVariable(modelWorkspace,'coeffArg');

coeffForInst1 = copy(coeffForInst1);

Copy gainForInst1 and coeffForInst1 as gainForInst2 and coeffForInst2.

gainForInst2 = copy(gainForInst1);

coeffForInst2 = copy(coeffForInst1);

Set the instance-specific parameter values by using the Value property of the parameter
objects in the base workspace.

gainForInst1.Value = 2.98;

coeffForInst1.Value = 0.98;

gainForInst2.Value = 3.34;

coeffForInst2.Value = 1.11;

For the new parameter objects, set StorageClass to ExportedGlobal. This setting
causes the parameter objects to appear in the generated code as tunable global variables.

gainForInst1.StorageClass = 'ExportedGlobal';

coeffForInst1.StorageClass = 'ExportedGlobal';

gainForInst2.StorageClass = 'ExportedGlobal';

coeffForInst2.StorageClass = 'ExportedGlobal';

In the top model, ex_arg_code, open the upper Model block dialog box.

Set coeffArg to coeffForInst1 and gainArg to gainForInst1.

set_param('ex_arg_code/Model','ParameterArgumentValues',...

 struct('coeffArg','coeffForInst1','gainArg','gainForInst1'))

19-70

 Specify Instance-Specific Parameter Values for Reusable Referenced Model

In the other Model block dialog box, set coeffArg to coeffForInst2 and gainArg to
gainForInst2.

set_param('ex_arg_code/Model1','ParameterArgumentValues',...

 struct('coeffArg','coeffForInst2','gainArg','gainForInst2'))

Generate code from the top model.

rtwbuild('ex_arg_code')

The file ex_arg_code.c defines the global variables that correspond to the parameter
objects in the base workspace.

/* Exported block parameters */

real32_T coeffForInst1 = 0.98F; /* Variable: coeffForInst1

 * Referenced by: '<Root>/Model'

 */

real32_T coeffForInst2 = 1.11F; /* Variable: coeffForInst2

 * Referenced by: '<Root>/Model1'

 */

real32_T gainForInst1 = 2.98F; /* Variable: gainForInst1

 * Referenced by: '<Root>/Model'

 */

real32_T gainForInst2 = 3.34F; /* Variable: gainForInst2

 * Referenced by: '<Root>/Model1'

19-71

19 Data Representation in Simulink Coder

 */

In each call to ex_arg_code_ref, the top model algorithm uses the global variables to
set the values of the formal parameters.

 /* ModelReference: '<Root>/Model' incorporates:

 * Inport: '<Root>/In1'

 * Outport: '<Root>/Out1'

 */

 ex_arg_code_ref(&ex_arg_code_U.In1, &ex_arg_code_Y.Out1,

 &(ex_arg_code_DW.Model_DWORK1.rtdw), coeffForInst1,

 gainForInst1);

 /* ModelReference: '<Root>/Model1' incorporates:

 * Inport: '<Root>/In1'

 * Outport: '<Root>/Out2'

 */

 ex_arg_code_ref(&ex_arg_code_U.In1, &ex_arg_code_Y.Out2,

 &(ex_arg_code_DW.Model1_DWORK1.rtdw), coeffForInst2,

 gainForInst2);

The global variables in the generated code use the data type real32_T (single)
because:

1 The parameter objects in the base workspace use context-sensitive data typing
because the DataType property is set to auto (the default). With this setting,
the parameter objects in the base workspace use the same data type as the model
arguments, single.

2 The global variables in the generated code use the same data type as the parameter
objects in the base workspace.

Group Multiple Model Arguments into Single Structure

Use the Model Explorer to copy gainArg and coeffArg from the ex_arg_code_ref
model workspace into the base workspace.

temp = getVariable(modelWorkspace,'gainArg');

gainArg = copy(temp);

temp = getVariable(modelWorkspace,'coeffArg');

coeffArg = copy(temp);

At the command prompt, combine these two parameter objects into a structure,
structArg.

19-72

 Specify Instance-Specific Parameter Values for Reusable Referenced Model

structArg = Simulink.Parameter(struct('gain',gainArg.Value,...

 'coeff',coeffArg.Value));

Use the Model Explorer to move structArg into the model workspace.

assignin(modelWorkspace,'structArg',copy(structArg));

clear structArg gainArg coeffArg

In the Contents pane, configure structArg as the only model argument.

set_param('ex_arg_code_ref','ParameterArgumentNames','structArg')

In the ex_arg_code_ref model, set the Gain parameter of the Gain block to
structArg.gain.

set_param('ex_arg_code_ref/Gain','Gain','structArg.gain')

In the Discrete Filter block dialog box, set Numerator to structArg.coeff.

set_param('ex_arg_code_ref/Discrete Filter',...

 'Numerator','structArg.coeff')

At the command prompt, combine the four parameter objects in the base workspace
into two structures. Each structure stores the parameter values for one instance of
ex_arg_code_ref.

structForInst1 = Simulink.Parameter(struct('gain',gainForInst1.Value,...

 'coeff',coeffForInst1.Value));

structForInst2 = Simulink.Parameter(struct('gain',gainForInst2.Value,...

 'coeff',coeffForInst2.Value));

Apply the storage class ExportedGlobal to the parameter objects.

19-73

19 Data Representation in Simulink Coder

structForInst1.StorageClass = 'ExportedGlobal';

structForInst2.StorageClass = 'ExportedGlobal';

In the top model, in the upper Model block dialog box, set structArg to
structForInst1.

set_param('ex_arg_code/Model','ParameterArgumentValues',...

 struct('structArg','structForInst1'))

In the other Model block dialog box, set structArg to structForInst2.

set_param('ex_arg_code/Model1','ParameterArgumentValues',...

 struct('structArg','structForInst2'))

Use the function Simulink.Bus.createObject to create a Simulink.Bus object. The
hierarchy of elements in the object matches the hierarchy of the structure fields. The
default name of the object is slBus1.

Simulink.Bus.createObject(structForInst1.Value);

Rename the bus object as myParamStructType by copying it.

myParamStructType = copy(slBus1);

Set the data type of the parameter objects in the base workspace by using the bus object.

19-74

 Specify Instance-Specific Parameter Values for Reusable Referenced Model

structForInst1.DataType = 'Bus: myParamStructType';

structForInst2.DataType = 'Bus: myParamStructType';

Use the Model Explorer to view the contents of the ex_arg_code_ref model workspace.

For the parameter object structArg, set DataType to Bus: myParamStructType.

temp = getVariable(modelWorkspace,'structArg');

temp = copy(temp);

temp.DataType = 'Bus: myParamStructType';

assignin(modelWorkspace,'structArg',copy(temp));

Save the ex_arg_code_ref model.

save_system('ex_arg_code_ref')

When you use structures to group parameter values, you cannot take advantage of
context-sensitive data typing to control the data types of the fields of the structures (for
example, the fields of structForInst1). However, you can use the properties of the bus
object to control the field data types.

Set the data type of the elements in the bus object to single. The corresponding fields in
the structures (such as structForInst1 and structArg) use the same data type.

myParamStructType.Elements(1).DataType = 'single';

myParamStructType.Elements(2).DataType = 'single';

Generate code from the top model, ex_arg_code.

rtwbuild('ex_arg_code')

The file ex_arg_code_types.h defines the structure type myParamStructType, which
corresponds to the Simulink.Bus object.

19-75

19 Data Representation in Simulink Coder

typedef struct {

 real32_T gain;

 real32_T coeff;

} myParamStructType;

In the file ex_arg_code_ref.c, the referenced model entry-point function has a formal
parameter, rtp_structArg, that correspond to the model argument structArg.

/* Output and update for referenced model: 'ex_arg_code_ref' */

void ex_arg_code_ref(const real32_T *rtu_In1, real32_T *rty_Out1,

 DW_ex_arg_code_ref_f_T *localDW, const myParamStructType

 *rtp_structArg)

The file ex_arg_code.c defines the global structure variables that correspond to the
parameter objects in the base workspace.

/* Exported block parameters */

myParamStructType structForInst1 = {

 2.98F,

 0.98F

} ; /* Variable: structForInst1

 * Referenced by: '<Root>/Model'

 */

myParamStructType structForInst2 = {

 3.34F,

 1.11F

} ; /* Variable: structForInst2

 * Referenced by: '<Root>/Model1'

 */

The top model algorithm in the file ex_arg_code.c passes the addresses of the
structure variables to the referenced model entry-point function.

 /* ModelReference: '<Root>/Model' incorporates:

 * Inport: '<Root>/In1'

 * Outport: '<Root>/Out1'

 */

 ex_arg_code_ref(&ex_arg_code_U.In1, &ex_arg_code_Y.Out1,

 &(ex_arg_code_DW.Model_DWORK1.rtdw), &structForInst1);

 /* ModelReference: '<Root>/Model1' incorporates:

 * Inport: '<Root>/In1'

 * Outport: '<Root>/Out2'

 */

19-76

 Specify Instance-Specific Parameter Values for Reusable Referenced Model

 ex_arg_code_ref(&ex_arg_code_U.In1, &ex_arg_code_Y.Out2,

 &(ex_arg_code_DW.Model1_DWORK1.rtdw), &structForInst2);

Control Data Types of Model Arguments and Argument Values

When you use model arguments, you can apply a data type to:

• The block parameters that use the arguments (for certain blocks, such as those in the
Discrete library).

• The arguments in the referenced model workspace.
• The argument values that you specify in Model blocks.

To generate efficient code by eliminating unnecessary typecasts and C shifts, consider
using inherited and context-sensitive data typing to match the data types.

• In the model workspace, use a MATLAB variable whose data type is double or a
parameter object whose DataType property is set to auto. In this case, the variable
or object uses the same data type as the block parameter.

• When you set the argument values in Model blocks, take advantage of context-
sensitive data typing. To set an argument value, use an untyped value.

• A literal number such as 15.23. Do not use a typed expression such as
single(15.23).

• A MATLAB variable whose data type is double.
• A Simulink.Parameter object whose DataType property is set to auto.

In these cases, the number, variable, or object uses the same data type as the
model argument in the referenced model workspace. If you also configure the model
argument to use context-sensitive data typing, you can control the data types of the
block parameter, the argument, and the argument value by specifying the type only
for the block parameter.

For basic information about controlling parameter data types, see “Parameter Data
Types in the Generated Code” on page 19-79.

Use Model Argument in Different Data Type Contexts

If you use a model argument to set multiple block parameter values, and the data types
of the block parameters differ, you cannot use context-sensitive data typing (double or
auto) for the argument in the model workspace. You must explicitly specify a data type

19-77

19 Data Representation in Simulink Coder

for the argument. For example, if the argument in the model workspace is a parameter
object (such as Simulink.Parameter), set the DataType property to a value other than
auto. For more information about this situation, see “Reuse Parameter Data in Different
Data Type Contexts” on page 19-93.

In this case, you can continue to take advantage of context-sensitive data typing to
control the data type of the argument values that you specify in Model blocks. Each
argument value uses the data type that you specify for the corresponding argument in
the model workspace.

Related Examples
• “Code Generation of Referenced Models” on page 5-2
• “Block Parameter Representation in the Generated Code” on page 19-47
• “Parameterize Instances of a Reusable Referenced Model” (Simulink)
• “Organize Block Parameter Values into Structures in the Generated Code” on page

19-97
• “Parameter Data Types in the Generated Code” on page 19-79

19-78

 Parameter Data Types in the Generated Code

Parameter Data Types in the Generated Code

The data type of a block parameter (such as the Gain parameter of a Gain block),
numeric MATLAB variable, or Simulink.Parameter object determines the data type
that the corresponding entity in the generated code uses (for example, a global variable
or an argument of a function). To generate more efficient code, you can match parameter
data types with signal data types or store parameters in smaller data types.

For basic information about setting block parameter data types in a model, see “Control
Block Parameter Data Types” (Simulink).

Significance of Parameter Data Types

The data type that a block parameter, MATLAB variable, or parameter object uses
determines the data type that the generated code uses to store the parameter value in
memory. For example:

• If you set the model configuration parameter Default parameter behavior (see
“Default parameter behavior” (Simulink)) to Tunable, the Gain parameter of a
Gain block appears in the generated code as a field of a global structure that stores
parameter data. If you apply the data type single to the block parameter in the
model, the structure field uses the corresponding data type (real32_T).

• If you apply the storage class ExportedGlobal to a Simulink.Parameter object,
the object appears in the generated code as a separate global variable. If you set the
DataType property of the object to int8, the global variable in the code uses the
corresponding data type (int8_T).

• If you configure a Simulink.Parameter object in a model workspace as a model
argument, the object appears in the generated code as a formal parameter of a model
entry-point function, such as the step function. The DataType property of the object
determines the data type of the formal parameter.

Other than determining the data type that the generated code uses to store parameter
values in memory, the data type of a parameter, variable, or object can also:

• Cause the block to cast the value of the parameter prior to code generation. The cast
can result in overflow, underflow, or quantization.

• Cause the generated code to include extra code, for example saturation code.

19-79

19 Data Representation in Simulink Coder

Parameter Data Type Mismatch

When the data types of block parameters, workspace variables, and signals differ, blocks
can use typecasts to reconcile the data type mismatches. These typecasts can cause the
generated code algorithm, including the model step function, to include explicit casts
to reconcile mismatches in storage data type and C bit shifts to reconcile mismatches in
fixed-point scaling.

Parameter data type mismatches can occur when:

• The data type that you specify for a MATLAB variable or parameter object
(Simulink.Parameter) differs from the data type of a block parameter. The block
parameter typecasts the value of the variable or object.

• The data type that you specify for an initial value differs from the data type of the
initialized signal or state.

• The data type that you specify for a block parameter differs from the data type of the
signal or signals that the parameter operates on. Some blocks typecast the parameter
to perform the operation. For example, the Gain block performs this typecast.

If you configure a variable or object to use bias or fractional fixed-point slope, the block
parameter cannot perform the typecast. In this case, you must match the data type of the
variable or parameter object with the data type of the block parameter. Use one of these
techniques:

• Use context-sensitive data typing for the variable or parameter object. For a MATLAB
variable, use a double number to set the value of the variable. For a parameter
object, set the DataType property to auto.

• Use a Simulink.AliasType or Simulink.NumericType object to set the data type
of the block parameter and the data type of a parameter object.

Use this technique when you cannot rely on context-sensitive data typing, for
example, when you use the field of a structure to set the value of the block parameter.

• Manually specify the same data type for the block parameter and the variable or
parameter object.

Use this technique to reduce the dependence of the model on inherited and context-
sensitive data types and on external variables and objects.

For blocks that access parameter data through pointer or reference in the generated code,
if you specify a different data type of the workspace variable and block parameter, the

19-80

 Parameter Data Types in the Generated Code

generated code implicitly casts the data type of the variable to the data type of the block
parameter. Note, that an implicit cast requires a data copy which could significantly
increase RAM consumption and slow down code execution speed for large data sets. For
example, Lookup Table blocks often access large vectors or matrices through pointer or
reference in the generated code.

For information about matching parameter data types when you use model arguments,
see “Control Data Types of Model Arguments and Argument Values” on page 19-77.

Detect Downcast and Loss of Precision due to Data Type Mismatches

You can configure diagnostic configuration parameters to detect unintentional data type
mismatches that result in quantization and loss of parameter precision. See “Model
Configuration Parameters: Data Validity Diagnostics” (Simulink).

Considerations for Other Modeling Patterns

When you use specific modeling patterns and constructs such as fixed-point data types,
parameter structures, and lookup table objects, use different techniques to control
parameter data types.

• “Tunable Parameters and Best-Precision Fixed-Point Scaling” on page 19-81
• “Control Data Types of Structure Fields” on page 19-82
• “Control Data Types of Lookup Table Objects” on page 19-82

Tunable Parameters and Best-Precision Fixed-Point Scaling

To apply best-precision fixed-point scaling to a tunable block parameter or parameter
object, you can use the Fixed-Point Tool to autoscale an entire system or use the Data
Type Assistant to configure individual parameters or objects. See “Calculate Best-
Precision Fixed-Point Scaling for Tunable Block Parameters” (Simulink).

If a tunable parameter uses best-precision fixed-point scaling, Simulink chooses a data
type based on the minimum and maximum values that you specify for the parameter.
You can specify these values in the block dialog box that uses the parameter or in the
properties of a Simulink.Parameter object.

If you do not specify a minimum or maximum, Simulink chooses a data type based on the
value of the parameter. The chosen scaling might restrict the range of possible tuning
values. Therefore, it is a best practice to specify minimum and maximum values for each
tunable parameter.

19-81

19 Data Representation in Simulink Coder

A tunable parameter can use best-precision scaling even if you do not specify it in the
parameter data type. For example, the Gain block can choose a best-precision scaling
if the Parameter data type in the block dialog box is set to Inherit: Inherit via
internal rule. This setting is the default for the block.

Control Data Types of Structure Fields

When you use a structure as the value of a block parameter (for example to initialize
a bus signal), or when you organize multiple block parameter values into a single
structure, you can create a Simulink.Bus object to use as the data type of a
Simulink.Parameter object. You can then control the data types of individual fields in
the structure. See “Control Field Data Types and Characteristics by Creating Parameter
Object” (Simulink) and “Control Data Types of Initial Condition Structure Fields”
(Simulink).

Control Data Types of Lookup Table Objects

When you use Simulink.LookupTable and Simulink.Breakpoint objects to store table
and breakpoint data for a lookup table block, to control the data types of the table and
breakpoint data, use one of these techniques:

• Set the Value property of the embedded Simulink.lookuptable.Table and
Simulink.lookuptable.Breakpoint objects by using untyped expressions such as
[1 2 3], which returns a double vector. To control the data type, set the DataType
property to a value other than auto.

Use this technique to separate the value of the table or breakpoint data from the data
type, which can improve readability and understanding of your design. You can then
use a Simulink.NumericType or Simulink.AliasType object to:

• Customize the name of the data type in the generated code.
• Match the data type of the table or breakpoint data with the data type of a signal

in the model.
• Set the Value property of the embedded objects by using typed expressions such as

single([1 2 3]). To use a fixed-point data type, set the Value property with an fi
object.

Set the DataType property of the embedded objects to the default value, auto. The
table and breakpoint data then acquire the data type that you use to set the Value
property.

19-82

 Parameter Data Types in the Generated Code

Use this technique to store the data type information in the Value property,
which can simplify the way you interact with the Simulink.LookupTable and
Simulink.Breakpoint objects. You can leave the DataType property at the default
value.

When you later change the breakpoint or table data in the Value property, preserve
the data type information by using a typed expression. Alternatively, if you use a
command at the command prompt or a script to change the data, to avoid using a
typed expression, use subscripted assignment, (:).

myLUTObject.Table.Value(:) = [4 5 6];

When you change the data stored in the Value property, if you do not use a typed
expression or subscripted assignment, you lose the data type information.

When blocks in a subsystem use Simulink.LookupTable or Simulink.Breakpoint
objects, you cannot set data type override (see “Control Fixed-Point Instrumentation and
Data Type Override” (Simulink)) only on the subsystem. Instead, set data type override
on the entire model.

Related Examples
• “Generate Efficient Code by Specifying Data Types for Block Parameters” on page

19-84
• “Reuse Parameter Data in Different Data Type Contexts” on page 19-93
• “Data Types Supported by Simulink” (Simulink)
• “Control Signal Data Types” (Simulink)
• “Block Parameter Representation in the Generated Code” on page 19-47

19-83

19 Data Representation in Simulink Coder

Generate Efficient Code by Specifying Data Types for Block
Parameters

To generate more efficient code, match the data types of block parameters (such as the
Gain parameter of a Gain block) with signal data types. Alternatively, you can store
parameters in smaller data types.

Eliminate Unnecessary Typecasts and Shifts by Matching Data Types

These examples show how to generate efficient code by configuring a block parameter to
use the same data type as a signal that the block operates on.

Store Data Type Information in Model

Open the example model rtwdemo_basicsc.

rtwdemo_basicsc

19-84

 Generate Efficient Code by Specifying Data Types for Block Parameters

Open the Gain block dialog box. The input signal of this block uses the data type
single.

View the Parameter Attributes tab. Parameter data type is set to Inherit: Same
as input. The Gain parameter of this block uses the same data type as the input
signal.

At the command prompt, convert the numeric variable K1 to a Simulink.Parameter
object.

K1 = Simulink.Parameter(2);

Configure K1 to appear in the generated code as a global variable by applying the storage
class ExportedGlobal.

K1.CoderInfo.StorageClass = 'ExportedGlobal';

On the Main tab, click the action button next to the value of the Gain parameter.
Select Open Variable. The value of the Data type property is auto, which means the
parameter object acquires its data type from the block parameters that use the object.

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

The generated file rtwdemo_basicsc.c defines the global variable K1 by using the data
type real32_T, which corresponds to the data type single in Simulink.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.c');

rtwdemodbtype(file,'/* Exported block parameters */','real32_T K1 = 2.0F;',1,1)

/* Exported block parameters */

real32_T K1 = 2.0F; /* Variable: K1

The generated code algorithm in the model step function uses K1 directly without
typecasting.

rtwdemodbtype(file,' rtwdemo_basicsc_DW.X = K1',...

19-85

19 Data Representation in Simulink Coder

 ' rtCP_Table1_bp01Data, rtCP_Table1_tableData,',1,1)

 rtwdemo_basicsc_DW.X = K1 * look1_iflf_binlx(rtwdemo_basicsc_U.input2,

 rtCP_Table1_bp01Data, rtCP_Table1_tableData, 10U);

In the Gain block dialog box, on the Parameter Attributes tab, you can optionally set
Parameter data type to Inherit: Inherit via internal rule (the default). In
this case, the block parameter chooses the same data type as the input signal (single).
However, when you use Inherit: Inherit via internal rule, under other
circumstances (for example, when you use fixed-point data types) the block parameter
might choose a different data type.

Store Data Type Information in Parameter Object

When you use a Simulink.Parameter object to export or import parameter data
from the generated code to your custom code, for example by applying the storage
class ImportedExtern, you can specify data type information in the parameter
object. To match the data type of the parameter object with a signal data type, create a
Simulink.NumericType or Simulink.AliasType object. You can strictly control the
data type that the parameter object uses in the generated code, eliminating the risk that
Simulink chooses a different data type when you make changes to the model.

At the command prompt, create a Simulink.NumericType object that represents the
data type single.

myType = Simulink.NumericType;

myType.DataTypeMode = 'Single';

Use this data type object as the data type of the parameter object.

K1.DataType = 'myType';

Use the data type object to set the output data type of the Inport block named In2. Due
to data type propagation, the input signal of the Gain block also uses this data type.

set_param('rtwdemo_basicsc/In2','OutDataTypeStr','myType')

In the Gain block dialog box, on the Parameter Attributes tab, set Parameter data
type to Inherit: Inherit from 'Gain'.

set_param('rtwdemo_basicsc/Gain','ParamDataTypeStr','Inherit: Inherit from ''Gain''')

19-86

 Generate Efficient Code by Specifying Data Types for Block Parameters

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

The global variable K1 continues to use the data type real32_T.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.c');

rtwdemodbtype(file,'/* Exported block parameters */','real32_T K1 = 2.0F;',1,1)

/* Exported block parameters */

real32_T K1 = 2.0F; /* Variable: K1

Reduce Memory Consumption by Storing Parameter Value in Small Data
Type

When you use a parameter object (for example, Simulink.Parameter) to set block
parameter values, you can configure the object to appear in the generated code as a
tunable global variable. By default, the parameter object and the corresponding global
variable typically uses the same data type as the signal or signals on which the block
operates. For example, if the input signal of a Gain block uses the data type int16, the
parameter object typically use the same data type. To reduce the amount of memory that
this variable consumes, specify that the variable use a smaller integer data type such as
int8.

Store Parameter Value in Integer Data Type

Open the example model rtwdemo_basicsc.

rtwdemo_basicsc

19-87

19 Data Representation in Simulink Coder

In the model, select Display > Signals and Ports > Port Data Types. Many of the
signals in the model use the data type single.

Open the Gain block dialog box. The block uses the MATLAB variable K1, which is in the
base workspace, to set the value of the Gain parameter. The value of the variable is 2.

At the command prompt, convert K1 into a Simulink.Parameter object. Configure the
object to appear in the generated code as a global variable by applying the storage class
ExportedGlobal.

K1 = Simulink.Parameter(2);

K1.CoderInfo.StorageClass = 'ExportedGlobal';

Configure the parameter object to use the data type int8.

K1.DataType = 'int8';

In the Gain block dialog box, on the Parameter Attributes tab, set Parameter data
type to Inherit: Inherit from 'Gain'. With this setting, the Gain parameter of
the block inherits the int8 data type from the parameter object.

19-88

 Generate Efficient Code by Specifying Data Types for Block Parameters

set_param('rtwdemo_basicsc/Gain','ParamDataTypeStr',...

 'Inherit: Inherit from ''Gain''')

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

The generated file rtwdemo_basicsc.c defines the global variable K1 by using the data
type int8_T, which corresponds to the data type int8 in Simulink.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.c');

rtwdemodbtype(file,'/* Exported block parameters */','int8_T K1 = 2;',1,1)

/* Exported block parameters */

int8_T K1 = 2; /* Variable: K1

The code algorithm in the model step function uses K1 to calculate the output of the
Gain block. The algorithm casts K1 to the data type real32_T (single) because the
signals involved in the calculation use the data type real32_T.

rtwdemodbtype(file,' rtwdemo_basicsc_DW.X =','10U);',1,1)

 rtwdemo_basicsc_DW.X = (real32_T)K1 * look1_iflf_binlx

 (rtwdemo_basicsc_U.input2, rtCP_Table1_bp01Data, rtCP_Table1_tableData,

 10U);

Store Fixed-Point Parameter Value in Smaller Integer Data Type

Suppose you configure the signals in your model to use fixed-point data types. You
want a gain parameter to appear in the generated code as a tunable global variable.
You know the range of real-world values that you expect the parameter to assume
(for example, between 0 and 4). If you can meet your application requirements despite
reduced precision, you can reduce memory consumption by configuring the parameter to
use a different data type than the input and output signals of the block.

Open the example model fxpdemo_direct_form2.

fxpdemo_direct_form2

19-89

19 Data Representation in Simulink Coder

Update the model diagram. Signals in this model use signed fixed-point data types with a
word length of 16 and binary-point-only scaling.

Open the Gain5 block dialog box. The Gain parameter is set to 1.85. Suppose you want
to configure this parameter.

Set Gain to myGainParam and click Apply.

Click the action button next to the parameter value. Select Create Variable.

In the Create New Data dialog box, set Value to Simulink.Parameter(1.85) and
click Create. The Simulink.Parameter object myGainParam appears in the base
workspace.

19-90

 Generate Efficient Code by Specifying Data Types for Block Parameters

In the myGainParam property dialog box, set Storage class to ExportedGlobal and
click OK. With this setting, myGainParam appears in the generated code as a global
variable.

In the block dialog box, on the Parameter Attributes tab, set Parameter minimum to
0 and Parameter maximum to 4.

Set Parameter data type to fixdt(0,8) and click Apply.

Click the Show Data Type Assistant button. The Data Type Assistant shows that the
expression fixdt(0,8) specifies an unsigned fixed-point data type with a word length
of 8 and best-precision scaling. When you simulate or generate code, the block parameter
chooses a fraction length (scaling) that enables the data type to represent values between
the parameter minimum and maximum (0 and 4) with the best possible precision.

In the Data Type Assistant, set Scaling to Binary point. Click Calculate Best-
Precision Scaling, Fixed-point details, and Refresh Details. The information under
Fixed-point details shows that a fraction length of 5 can represent the parameter
values with a precision of 0.03125.

Set Scaling back to Best precision and click OK. In this example, when you simulate
or generate code, the block parameter chooses a fraction length of 5.

You can use these commands at the command prompt to create the object and configure
the block:

myGainParam = Simulink.Parameter(1.85);

myGainParam.CoderInfo.StorageClass = 'ExportedGlobal';

set_param('fxpdemo_direct_form2/Gain5','Gain','myGainParam')

set_param('fxpdemo_direct_form2/Gain5','ParamMin','0','ParamMax','4')

set_param('fxpdemo_direct_form2/Gain5','ParamDataTypeStr','fixdt(0,8)')

Configure the model to produce a code generation report. To reduce clutter in the
Command Window, clear the configuration parameter Verbose build.

set_param('fxpdemo_direct_form2','GenerateReport','on',...

 'LaunchReport','on','RTWVerbose','off')

Generate code from the model.

rtwbuild('fxpdemo_direct_form2')

Starting build procedure for model: fxpdemo_direct_form2

19-91

19 Data Representation in Simulink Coder

Code generation utilizes device specific information (e.g., microprocessor word sizes) to reproduce a bit true representation of the diagram. This information is not specified in this model, it can be specified using the Hardware Implementation parameters on the All Parameters tab of the Configuration Parameters dialog box. Code generation will use the host settings for the target.

Successful completion of build procedure for model: fxpdemo_direct_form2

The generated file fxpdemo_direct_form2.c defines the global variable myGainParam
by using the data type uint8_T, which corresponds to the specified word length, 8. The
code initializes the variable by using an integer value that, given the fraction length of 5,
represents the real-world parameter value 1.85.

file = fullfile('fxpdemo_direct_form2_grt_rtw','fxpdemo_direct_form2.c');

rtwdemodbtype(file,'/* Exported block parameters */','uint8_T myGainParam = 59U;',1,1)

/* Exported block parameters */

uint8_T myGainParam = 59U; /* Variable: myGainParam

The code algorithm uses myGainParam to calculate the output of the Gain5 block. The
algorithm uses a C shift to scale the result of the calculation.

rtwdemodbtype(file,'/* Gain: ''<Root>/Gain5'' */',...

'/* Gain: ''<Root>/Gain'' incorporates:',1,0)

 /* Gain: '<Root>/Gain5' */

 fxpdemo_direct_form2_B.Gain5 = (int16_T)(myGainParam *

 fxpdemo_direct_form2_B.UnitDelay1 >> 5);

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Parameter Data Types in the Generated Code” on page 19-79
• “Reuse Parameter Data in Different Data Type Contexts” on page 19-93

19-92

 Reuse Parameter Data in Different Data Type Contexts

Reuse Parameter Data in Different Data Type Contexts
When you use a Simulink.Parameter object or a numeric MATLAB variable to set two
or more block parameter values, if the block parameters have different data types, you
must explicitly specify the data type of the object or variable. For example, you cannot
leave the data type of the parameter object at the default value, auto.

Create and Configure Example Model

Create the model ex_paramdt_contexts.

ex_paramdt_contexts

Set these block parameter values:

• In1 block: Data type: single
• In2 block: Data type: int8

In the block labeled Gain - single, set these parameter values:

• Gain: myGainParam
• Output data type: Inherit: Same as input
• Parameter data type: Inherit: Same as input

In the block labeled Gain - int8, set these parameter values:

• Gain: myGainParam
• Output data type: Inherit: Same as input

19-93

19 Data Representation in Simulink Coder

• Parameter data type: Inherit: Same as input

You can use these commands to set the parameter values:

set_param('ex_paramdt_contexts/In1','OutDataTypeStr','single')

set_param('ex_paramdt_contexts/In2','OutDataTypeStr','int8')

set_param('ex_paramdt_contexts/Gain - single','Gain','myGainParam',...

 'OutDataTypeStr','Inherit: Same as input',...

 'ParamDataTypeStr','Inherit: Same as input')

set_param('ex_paramdt_contexts/Gain - int8','Gain','myGainParam',...

 'OutDataTypeStr','Inherit: Same as input',...

 'ParamDataTypeStr','Inherit: Same as input')

Create a Simulink.Parameter object named myGainParam in the base workspace.
Configure the object to appear in the generated code as a global variable by applying the
storage class ExportedGlobal. Configure the object to use the data type int8.

myGainParam = Simulink.Parameter(3);

myGainParam.CoderInfo.StorageClass = 'ExportedGlobal';

myGainParam.DataType = 'int8';

In this model, you use the parameter object myGainParam to set two block parameter
values. The block parameters inherit different data types from the input signals (single
or int8). To use myGainParam in these different data type contexts, explicitly specify the
data type of the parameter object by setting the DataType property to int8.

Match Parameter Object Data Type with Signal Data Type

Optionally, use a Simulink.NumericType or Simulink.AliasType object to set the
parameter object data type and one of the signal data types. This technique eliminates
unnecessary typecasts and shifts in the generated code due to a mismatch between the
parameter object data type and the signal data type.

Create a Simulink.NumericType object to represent the data type int8.

sharedType_int8 = fixdt('int8');

Use this data type object to set:

• The data type of the parameter object. Set the DataType property to
sharedType_int8.

• The data type of the int8 signal. Use the Data type parameter in the Inport block
dialog box.

19-94

 Reuse Parameter Data in Different Data Type Contexts

myGainParam.DataType = 'sharedType_int8';

set_param('ex_paramdt_contexts/In2','OutDataTypeStr','sharedType_int8')

The parameter object and the signal use the data type int8. To change this data type,
adjust the properties of the data type object sharedType_int8.

Generate and Inspect Code

Generate code from the model.

rtwbuild('ex_paramdt_contexts')

Starting build procedure for model: ex_paramdt_contexts

Successful completion of build procedure for model: ex_paramdt_contexts

The generated file ex_paramdt_contexts.c defines the global variable myGainParam
by using the data type int8_T, which corresponds to the data type int8 in Simulink.

file = fullfile('ex_paramdt_contexts_grt_rtw','ex_paramdt_contexts.c');

rtwdemodbtype(file,'/* Exported block parameters */','int8_T myGainParam = 3;',1,1)

/* Exported block parameters */

int8_T myGainParam = 3; /* Variable: myGainParam

The generated code algorithm in the model step function uses myGainParam to calculate
the outputs of the two Gain blocks. In the case of the Gain block whose input signal
uses the data type single, the code algorithm casts myGainParam to the data type
real32_T, which corresponds to the data type single in Simulink.

rtwdemodbtype(file,'/* Model step function */',...

 '/* Model initialize function */',1,0)

/* Model step function */

void ex_paramdt_contexts_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain - single'

 * Inport: '<Root>/In1'

 */

 ex_paramdt_contexts_Y.Out1 = (real32_T)myGainParam * ex_paramdt_contexts_U.In1;

 /* Outport: '<Root>/Out2' incorporates:

 * Gain: '<Root>/Gain - int8'

19-95

19 Data Representation in Simulink Coder

 * Inport: '<Root>/In2'

 */

 ex_paramdt_contexts_Y.Out2 = (int8_T)(myGainParam * ex_paramdt_contexts_U.In2);

}

Related Examples
• “Parameter Data Types in the Generated Code” on page 19-79
• “Generate Efficient Code by Specifying Data Types for Block Parameters” on page

19-84
• “Block Parameter Representation in the Generated Code” on page 19-47

19-96

 Organize Block Parameter Values into Structures in the Generated Code

Organize Block Parameter Values into Structures in the Generated
Code

In C code, you use structures to store data in contiguous locations in memory. With
structures, you can organize data in the code by using meaningful names. Each structure
acts as a namespace, so you can reuse a name to represent multiple data items. Similar
to arrays, structures enable you to write code that efficiently transfers and operates on
large amounts of data by using pointers.

When you configure the generated code to store block parameter values in memory, for
example by applying storage classes to Simulink.Parameter objects or by creating
model arguments, you can organize the parameter data into structures in the generated
code.

• Create a parameter structure in Simulink. Use each field of the structure to set a
block parameter value. Optionally, use a Simulink.Bus object as the data type of
the structure. The generated code creates a structure type definition and a structure
variable. Use this technique to finely control the data types and order of the fields.

• If you have an Embedded Coder license, apply a custom storage class, such as the
built-in custom storage class Struct, to multiple Simulink.Parameter objects. Use
this technique to avoid the effort of creating the structure in Simulink and to organize
both signal and parameter data into a single structure. See “Organize Parameter
Data into a Structure by Using the Struct Custom Storage Class” on page 23-8.

When you use this technique, to create a nested structure instead of a flat structure,
you must create your own custom storage class by writing TLC code. Consider
creating a parameter structure in Simulink instead.

Creating Tunable Parameter Structures

When you create a structure in Simulink, you can configure the generated code to define
and initialize a corresponding structure variable or to reuse a structure variable from
your existing C code. Use this technique to share a structure of parameter data with your
existing code or to generate parameter data whose values you can change (tune) during
code execution.

1 Store the structure in a Simulink.Parameter object.
2 Apply a storage class other than Auto to the parameter object.

19-97

19 Data Representation in Simulink Coder

3 Use the fields of the structure to set block parameter values in your model.

The numeric fields of the structure are tunable in the generated code. However, if
any field contains a nontunable entity, such as a multidimensional array, none of the
structure fields are tunable.

You cannot declare individual substructures or fields within a parameter structure as
tunable. You cannot use a Simulink.Parameter object as the value of a structure field.
Instead, you must store the entire structure in the parameter object.

The fields of parameter structures do not support context-sensitive data typing. However,
to match the data type of a field with the data type of another data item in a model, you
can use a bus object and a data type object.

1 Use a Simulink.Bus object as the data type of the structure.
2 Use a Simulink.AliasType or Simulink.NumericType object as the data type of

the element in the bus object and as the data type of the target data item.

Control Name and File Placement of Structure Type Definition

When you generate code from a model that uses a tunable parameter structure, by
default the code generator creates a struct type definition that has a generated
name such as struct_z98c0D2qc4btL. You can control this type name to improve
code readability and integrate the generated code with your own code. Create a
Simulink.Bus object and use it as the data type of the Simulink.Parameter object
that stores the structure.

To control the file placement of the generated struct type definition, use the
HeaderFile and DataScope properties of the bus object. Use this technique to:

• Export the type definition to a header file that you can include in your custom code.
• Import the type definition from your custom code.

To generate a bus object that represents a struct type defined by your code, use the
Simulink.importExternalCTypes function.

Structures of Parameters

Create a structure in the generated code. The structure stores parameter data.

19-98

 Organize Block Parameter Values into Structures in the Generated Code

C Construct

typedef struct {

 double G1;

 double G2;

} myStructType;

myStructType myStruct = {

 2.0,

 -2.0

} ;

Procedure

At the command prompt, create a structure named myStruct with two fields.

myStruct.G1 = 2;

myStruct.G2 = -2;

Store the structure in a Simulink.Parameter object.

myStruct = Simulink.Parameter(myStruct);

Apply the storage class ExportedGlobal so that the structure appears in the generated
code as a global variable.

myStruct.CoderInfo.StorageClass = 'ExportedGlobal';

Open the example model rtwdemo_paraminline.

rtwdemo_paraminline

19-99

19 Data Representation in Simulink Coder

In the G1 block dialog box, set Gain to myStruct.G1.

set_param('rtwdemo_paraminline/G1','Gain','myStruct.G1')

In the G2 block dialog box, set Gain to myStruct.G2.

set_param('rtwdemo_paraminline/G2','Gain','myStruct.G2')

Results

Generate code from the model.

rtwbuild('rtwdemo_paraminline')

Starting build procedure for model: rtwdemo_paraminline

Successful completion of build procedure for model: rtwdemo_paraminline

The generated header file rtwdemo_paraminline_types.h defines a structure type
with a randomized name.

file = fullfile('rtwdemo_paraminline_grt_rtw',...

 'rtwdemo_paraminline_types.h');

19-100

 Organize Block Parameter Values into Structures in the Generated Code

rtwdemodbtype(file,'typedef struct {','} struct_6h72eH5WFuEIyQr5YrdGuB;',...

 1,1)

typedef struct {

 real_T G1;

 real_T G2;

} struct_6h72eH5WFuEIyQr5YrdGuB;

The source file rtwdemo_paraminline.c defines and initializes the structure variable
myStruct.

file = fullfile('rtwdemo_paraminline_grt_rtw','rtwdemo_paraminline.c');

rtwdemodbtype(file,'struct_6h72eH5WFuEIyQr5YrdGuB myStruct',...

 '/* Variable: myStruct',1,1)

struct_6h72eH5WFuEIyQr5YrdGuB myStruct = {

 2.0,

 -2.0

} ; /* Variable: myStruct

Specify Name of Structure Type

Optionally, specify a name to use for the structure type definition (struct).

Create a Simulink.Bus object that represents the structure type.

Simulink.Bus.createObject(myStruct.Value);

The default name of the object is slBus1. Change the name by copying the object into a
new MATLAB variable.

myStructType = slBus1.copy;

Use the bus object as the data type of the parameter object.

myStruct.DataType = 'Bus: myStructType';

Generate code from the model.

rtwbuild('rtwdemo_paraminline')

Starting build procedure for model: rtwdemo_paraminline

Successful completion of build procedure for model: rtwdemo_paraminline

19-101

19 Data Representation in Simulink Coder

The code generates the definition of the structure type myStructType and uses this type
to define the global variable myStruct.

rtwdemodbtype(file,'myStructType myStruct = {','/* Variable: myStruct',...

 1,1)

myStructType myStruct = {

 2.0,

 -2.0

} ; /* Variable: myStruct

Structure Padding

By default, the code generator does not explicitly add padding fields to structure types.
Structure types can appear in the generated code through, for example, the default data
structures (see “Default Data Structures in the Generated Code” (Simulink Coder)),
Simulink.Bus objects, and parameter structures that you use in a model.

However, when you use a code replacement library with Embedded Coder, you can
specify data alignment (including structure padding) as part of the replacement library.
For more information, see “Provide Data Alignment Specifications for Compilers” on page
51-135.

Related Examples
• “Migration to Structure Parameters” (Simulink)
• “Create Tunable Calibration Parameter in the Generated Code” on page 19-60
• “Block Parameter Representation in the Generated Code” on page 19-47
• “Specify Instance-Specific Parameter Values for Reusable Referenced Model” on

page 19-65
• “Organize Related Block Parameter Definitions in Structures” (Simulink)
• “Access Structured Data Through a Pointer That External Code Defines” on page

23-27
• “Exchange Structured and Enumerated Data Between Generated and External

Code” on page 21-28

19-102

 Switch Between Sets of Parameter Values During Simulation and Code Execution

Switch Between Sets of Parameter Values During Simulation and
Code Execution

To store multiple independent sets of values for the same block parameters, you can use
an array of structures. To switch between the parameter sets, create a variable that acts
as an index into the array, and change the value of the variable. You can change the
value of the variable during simulation and, if the variable is tunable, during execution of
the generated code.

Explore Example Model

Open this example model:

open_system('sldemo_fuelsys_dd_controller')

This model represents the fueling system of a gasoline engine. The output of the model is
the rate of fuel flow to the engine.

Navigate to the switchable_compensation nested subsystem.

open_system(['sldemo_fuelsys_dd_controller/fuel_calc/',...

 'switchable_compensation'])

19-103

19 Data Representation in Simulink Coder

This subsystem corrects and filters noise out of the fuel rate signal. The subsystem uses
different filter coefficients based on the fueling mode, which the control logic changes
based on sensor failures in the engine. For example, the control algorithm activates the
low_mode subsystem during normal operation. It activates the rich_mode subsystem in
response to sensor failure.

Open the low_mode subsystem.

open_system(['sldemo_fuelsys_dd_controller/fuel_calc/',...

 'switchable_compensation/low_mode'])

19-104

 Switch Between Sets of Parameter Values During Simulation and Code Execution

The Discrete Filter block filters the fuel rate signal. In the block dialog box, the
Numerator parameter sets the numerator coefficients of the filter.

The sibling subsystem rich_mode also contains a Discrete Filter block, which uses
different coefficients.

Update the model diagram to display the signal data types. The input and output signals
of the block use the single-precision, floating-point data type single.

In the lower-left corner of the model, click the data dictionary badge. The data dictionary
for this model, sldemo_fuelsys_dd_controller.sldd, opens in the Model Explorer.

In the Contents pane, view the properties of the Simulink.NumericType objects, such
as s16En15. All of these objects currently represent the single-precision, floating-point
data type single. The model uses these objects to set signal data types, including the
input and output signals of the Discrete Filter blocks.

Suppose that during simulation and execution of the generated code, you want each of
these subsystems to switch between different numerator coefficients based on a variable
whose value you control.

Store Parameter Values in Array of Structures

Store the existing set of numerator coefficients in a Simulink.Parameter object whose
value is a structure. Each field of the structure stores the coefficients for one of the
Discrete Filter blocks.

lowBlock = ['sldemo_fuelsys_dd_controller/fuel_calc/'...

 'switchable_compensation/low_mode/Discrete Filter'];

19-105

19 Data Representation in Simulink Coder

richBlock = ['sldemo_fuelsys_dd_controller/fuel_calc/'...

 'switchable_compensation/rich_mode/Discrete Filter'];

params.lowNumerator = eval(get_param(lowBlock,'Numerator'));

params.richNumerator = eval(get_param(richBlock,'Numerator'));

params = Simulink.Parameter(params);

Copy the value of params into a temporary variable. Modify the field values in this
temporary structure, and assign the modified structure as the second element of params.

temp = params.Value;

temp.lowNumerator = params.Value.lowNumerator * 2;

temp.richNumerator = params.Value.richNumerator * 2;

params.Value(2) = temp;

clear temp

The value of params is an array of two structures. Each structure stores one set of filter
coefficients.

Create Variable to Switch Between Parameter Sets

Create a Simulink.Parameter object named Ctrl.

Ctrl = Simulink.Parameter(2);

Ctrl.DataType = 'uint8';

In the low_mode subsystem, in the Discrete Filter block dialog box, set the Numerator
parameter to the expression params(Ctrl).lowNumerator.

set_param(lowBlock,'Numerator','params(Ctrl).lowNumerator');

In the Discrete Filter block in the rich_mode subsystem, set the value of the
Numerator parameter to params(Ctrl).richNumerator.

set_param(richBlock,'Numerator','params(Ctrl).richNumerator');

The expressions select one of the structures in params by using the variable Ctrl. The
expressions then dereference one of the fields in the structure. The field value sets the
values of the numerator coefficients.

To switch between the sets of coefficients, you change the value of Ctrl to the
corresponding index in the array of structures.

Use Bus Object as Data Type of Array of Structures

Optionally, create a Simulink.Bus object to use as the data type of the array of
structures. You can:

19-106

 Switch Between Sets of Parameter Values During Simulation and Code Execution

• Control the shape of the structures.
• For each field, control characteristics such as data type and physical units.
• Control the name of the struct type in the generated code.

Use the function Simulink.Bus.createObject to create the object and rename the
object as paramsType.

Simulink.Bus.createObject(params.Value)

paramsType = slBus1;

clear slBus1

You can use the Simulink.NumericType objects from the data dictionary to control the
data types of the structure fields. In the bus object, use the name of a data type object to
set the DataType property of each element.

paramsType.Elements(1).DataType = 's16En15';

paramsType.Elements(2).DataType = 's16En7';

Use the bus object as the data type of the array of structures.

params.DataType = 'Bus: paramsType';

Use Enumerated Type for Switching Variable

Optionally, use an enumerated type as the data type of the switching variable. You can
associate each of the parameter sets with a meaningful name and restrict the allowed
values of the switching variable.

Create an enumerated type named FilterCoeffs. Create an enumeration member for
each of the structures in params. Set the underlying integer value of each enumeration
member to the corresponding index in params.

Simulink.defineIntEnumType('FilterCoeffs',{'Weak','Aggressive'},[1 2])

Use the enumerated type as the data type of the switching variable. Set the value of the
variable to Aggressive, which corresponds to the index 2.

Ctrl.Value = FilterCoeffs.Aggressive;

Add New Objects to Data Dictionary

Add the objects that you created to the data dictionary
sldemo_fuelsys_dd_controller.sldd.

19-107

19 Data Representation in Simulink Coder

dictObj = Simulink.data.dictionary.open('sldemo_fuelsys_dd_controller.sldd');

sectObj = getSection(dictObj,'Design Data');

addEntry(sectObj,'Ctrl',Ctrl)

addEntry(sectObj,'params',params)

addEntry(sectObj,'paramsType',paramsType)

You can also store enumerated types in data dictionaries. However, you cannot
import the enumerated type in this case because you cannot save changes to
sldemo_fuelsys_dd_controller.sldd. For more information about storing
enumerated types in data dictionaries, see “Enumerations in Data Dictionary”
(Simulink).

Switch Between Parameter Sets During Simulation

Open the example model sldemo_fuelsys_dd, which references the controller model
sldemo_fuelsys_dd_controller.

open_system('sldemo_fuelsys_dd')

Set the simulation stop time to Inf so that you can interact with the model during
simulation.

19-108

 Switch Between Sets of Parameter Values During Simulation and Code Execution

Begin a simulation run and open the Scope block dialog box. The scope shows that the
fuel flow rate (the fuel signal) oscillates with significant amplitude during normal
operation of the engine.

In the Model Explorer, view the contents of the data dictionary
sldemo_fuelsys_dd_controller.sldd. Set the value of Ctrl to
FilterCoeffs.Weak.

Update the sldemo_fuelsys_dd model diagram. The scope shows that the amplitude of
the fuel rate oscillations decreases due to the less aggressive filter coefficients.

Stop the simulation.

Generate and Inspect Code

If you have Simulink Coder software, you can generate code that enables you to switch
between the parameter sets during code execution.

In the Model Explorer, view the contents of the data dictionary
sldemo_fuelsys_dd_controller.sldd. In the Contents pane, set Column View to
Storage Class.

Use the StorageClass column to apply the storage class ExportedGlobal to params so
that the array of structures appears as a tunable global variable in the generated code.
Apply the same storage class to Ctrl so that you can change the value of the switching
variable during code execution.

Alternatively, to configure the objects, use these commands:

tempEntryObj = getEntry(sectObj,'params');

params = getValue(tempEntryObj);

params.StorageClass = 'ExportedGlobal';

setValue(tempEntryObj,params);

tempEntryObj = getEntry(sectObj,'Ctrl');

Ctrl = getValue(tempEntryObj);

Ctrl.StorageClass = 'ExportedGlobal';

setValue(tempEntryObj,Ctrl);

Generate code from the controller model.

rtwbuild('sldemo_fuelsys_dd_controller')

Starting build procedure for model: sldemo_fuelsys_dd_controller

19-109

19 Data Representation in Simulink Coder

Successful completion of code generation for model: sldemo_fuelsys_dd_controller

In the code generation report, view the header file
sldemo_fuelsys_dd_controller_types.h. The code defines the enumerated data
type FilterCoeffs.

file = fullfile('sldemo_fuelsys_dd_controller_ert_rtw',...

 'sldemo_fuelsys_dd_controller_types.h');

rtwdemodbtype(file,'#ifndef DEFINED_TYPEDEF_FOR_FilterCoeffs_',...

 '/* Forward declaration for rtModel */',1,0)

#ifndef DEFINED_TYPEDEF_FOR_FilterCoeffs_

#define DEFINED_TYPEDEF_FOR_FilterCoeffs_

typedef enum {

 Weak = 1, /* Default value */

 Aggressive

} FilterCoeffs;

#endif

The code also defines the structure type paramsType, which corresponds to the
Simulink.Bus object. The fields use the single-precision, floating-point data type from
the model.

rtwdemodbtype(file,'#ifndef DEFINED_TYPEDEF_FOR_paramsType_',...

 '#ifndef DEFINED_TYPEDEF_FOR_FilterCoeffs_',1,0)

#ifndef DEFINED_TYPEDEF_FOR_paramsType_

#define DEFINED_TYPEDEF_FOR_paramsType_

typedef struct {

 real32_T lowNumerator[2];

 real32_T richNumerator[2];

} paramsType;

#endif

View the source file sldemo_fuelsys_dd_controller.c. The code uses the
enumerated type to define the switching variable Ctrl.

file = fullfile('sldemo_fuelsys_dd_controller_ert_rtw',...

 'sldemo_fuelsys_dd_controller.c');

19-110

 Switch Between Sets of Parameter Values During Simulation and Code Execution

rtwdemodbtype(file,'FilterCoeffs Ctrl = Aggressive;',...

 '/* Block signals (auto storage) */',1,0)

FilterCoeffs Ctrl = Aggressive; /* Variable: Ctrl

 * Referenced by:

 * '<S12>/Discrete Filter'

 * '<S13>/Discrete Filter'

 */

The code also defines the array of structures params.

rtwdemodbtype(file,'/* Exported block parameters */',...

 '/* Variable: params',1,1)

/* Exported block parameters */

paramsType params[2] = { {

 { 8.7696F, -8.5104F },

 { 0.0F, 0.2592F }

 }, { { 17.5392F, -17.0208F },

 { 0.0F, 0.5184F }

 } } ; /* Variable: params

The code algorithm in the model step function uses the switching variable to index into
the array of structures.

To switch between the parameter sets stored in the array of structures, change the value
of Ctrl during code execution.

Related Examples
• “Tune and Experiment with Block Parameter Values” (Simulink)
• “Block Parameter Representation in the Generated Code” (Simulink Coder)
• “Organize Related Block Parameter Definitions in Structures” (Simulink)
• “Access Structured Data Through a Pointer That External Code Defines” on page

23-27

19-111

19 Data Representation in Simulink Coder

Signal Representation in Generated Code

In this section...

“Signal Storage Concepts” on page 19-113
“Signals with Auto Storage Class” on page 19-115
“Signals with Test Points” on page 19-117
“Symbolic Naming Conventions for Signals” on page 19-118
“Summary of Signal Storage Class Options” on page 19-119
“Interfaces for Monitoring Signals” on page 19-120
“Share Data Between Code Generated from Simulink, Stateflow, and MATLAB” on page
19-120

The code generator offers a number of options that let you control how signals in your
model are stored and represented in the generated code.

• Control whether signal storage is declared in global memory space or locally in
functions (that is, in stack variables).

• Control the allocation of stack space when using local storage.
• Declare signals as test points to store them in unique memory locations
• Reduce memory usage by instructing the code generator to store signals in reusable

buffers.
• Control whether or not signals declared in generated code are interfaceable (visible) to

externally written code. You can also specify that signals are to be stored in locations
declared by externally written code.

• Preserve the symbolic names of signals in generated code by using signal labels.

The discussion in the following sections refers to code generated from signal_examp,
the model shown in the next figure.

19-112

 Signal Representation in Generated Code

signal_examp Model

Signal Storage Concepts

This section discusses structures and concepts you must understand to choose the best
signal storage options for your application:

• The global block I/O data structure model_B
• The concept of signal storage classes as used by the code generator

Global Block I/O Structure

By default, the code generator attempts to optimize memory usage by sharing signal
memory and using local variables.

However, under a number of circumstances you should place signals in global memory.
For example,

• You might want a signal to be stored in a structure that is visible to externally
written code.

• The number and/or size of signals in your model might exceed the stack space
available for local variables.

In such cases, it is possible to override the default behavior and store selected signals in
a model-specific global block I/O data structure. The global block I/O structure is called
model_B (in earlier versions this was called rtB).

The following code shows how model_B is defined and declared in code generated
(with signal storage optimizations off) from the signal_examp model shown in the
signal_examp Model figure.

19-113

19 Data Representation in Simulink Coder

(in signal_examp.h)

/* Block signals (auto storage) */

extern B_signal_examp_T signal_examp_B;

(in signal_examp.c)

/* Block signals (auto storage) */

B_signal_examp_T signal_examp_B;

Field names for signals stored in model_B are generated according to the rules described
in “Symbolic Naming Conventions for Signals” on page 19-118.

In certain cases, the code generator places signals in the block I/O structure, even when
you specify the storage class for the signal object as Auto or if you enable the option
to reuse the signal. This override occurs when the values of these signals need to be
persistent across time step. In such cases, the only way to represent these signals locally
in generated code is to change the semantics of your Simulink model.

Signal Storage Class

The storage class property of a signal specifies how the product declares and stores the
signal. In some cases this specification is qualified by more options.

In the context of the code generator, the term “storage class” is not synonymous with the
term storage class specifier, as used in the C language.

Default Storage Class

Auto is the default storage class and is the storage class you should use for signals that
you do not need to interface to external code. Signals with Auto storage class can be
stored in local and/or shared variables or in a global data structure. The form of storage
depends on the Signal storage reuse, Reuse local block outputs, and Enable local
block outputs options, and on available stack space. See “Signals with Auto Storage
Class” on page 19-115 for a full description of code generation options for signals with
Auto storage class.

Explicitly Assigned Storage Classes

Signals with storage classes other than Auto are stored either as members of an
appropriate global data structure, such as model_B or model_U, or in unstructured
global variables, independent of the global data structures. These storage classes are for
signals that you want to monitor and/or interface to external code.

19-114

 Signal Representation in Generated Code

The Signal storage reuse, Enable local block outputs, Reuse local block outputs,
and Eliminate superfluous local variables (expression folding) optimizations do
not apply to signals with storage classes other than Auto.

Use the Signal Properties dialog box to assign these storage classes to signals:

• SimulinkGlobal: The signal is stored as a field of a global data structure such as the
block I/O structure. Signals with SimulinkGlobal storage class must have unique
signal names. See “Control Signals and States in Code by Applying Storage Classes”
on page 19-123 for more information.

• ExportedGlobal: The signal is stored in a global variable, independent of the global
data structures. model.h exports the variable. Signals with ExportedGlobal
storage class must have unique signal names. See “Control Signals and States in Code
by Applying Storage Classes” on page 19-123 for more information.

• ImportedExtern: model_private.h declares the signal as an extern variable.
Your code must supply the variable definition. Signals with ImportedExtern storage
class must have unique signal names. See “Control Signals and States in Code by
Applying Storage Classes” on page 19-123 for more information.

• ImportedExternPointer: model_private.h declares the signal as an
extern pointer. Your code must define a valid pointer variable. Signals with
ImportedExtern storage class must have unique signal names. See “Control
Signals and States in Code by Applying Storage Classes” on page 19-123 for more
information.

Signals with Auto Storage Class

Options are available for signals with Auto storage class:

• Signal storage reuse
• Enable local block outputs
• Reuse local block outputs
• Eliminate superfluous local variables (expression folding)

Use these options to control signal memory reuse and choose local or global (model_B)
storage for signals. These options are on the All Parameters tab of the Configuration
Parameters dialog box.

These options interact. When the Signal storage reuse option is selected,

19-115

19 Data Representation in Simulink Coder

• The Reuse local block outputs option is enabled and selected, and signal memory
is reused whenever possible, reducing stack size where signals are being buffered in
local variables.

• The Enable local block outputs option is enabled and selected. This parameter
lets you choose whether reusable signal variables are declared as local variables in
functions or as members of model_B.

• The Eliminate superfluous local variables (expression folding) is enabled and
selected, and block computations collapse into single expressions.

The following code examples illustrate the effects of the Signal storage reuse, Enable
local block outputs, and Reuse local block outputs options. The examples were
generated from the signal_examp model (see figure signal_examp Model). For clarity in
showing the individual Gain and Sum block computation, expression folding is off in this
example.

This code example shows signal storage optimization, with Signal storage reuse,
Enable local block outputs, and Reuse local block outputs selected. The local
variable rtb_gainSig holds the outputs of the Sum and Gain blocks.
/* Model step function */

void signal_examp_step(void)

{

 real_T rtb_gainSig;

 /* Sum: '<Root>/Sum' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Root>/In1'

 */

 rtb_gainSig = signal_examp_U.In1 + signal_examp_P.Constant_Value;

 /* Gain: '<Root>/Gain' */

 rtb_gainSig *= signal_examp_P.Gain_Gain;

 /* Outport: '<Root>/Out1' */

 signal_examp_Y.Out1 = rtb_gainSig;

}

This example shows the code with Signal storage reuse cleared. The global variable
signal_example_B.sumSig holds the output of the Sum block.
/* Model step function */

void signal_examp_step(void)

{

 /* Sum: '<Root>/Sum' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Root>/In1'

 */

19-116

 Signal Representation in Generated Code

 signal_examp_B.sumSig = signal_examp_P.Constant_Value + signal_examp_U.In1;

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 */

 signal_examp_Y.Out1 = signal_examp_P.Gain_Gain * signal_examp_B.sumSig;

}

In large models, disabling Signal storage reuse can significantly increase RAM and
ROM usage. Therefore, this approach is not recommended for code deployment; however
it can be useful in rapid prototyping environments.

The following table summarizes the possible combinations of the Signal storage reuse /
Reuse block outputs and Enable local block outputs options.

Signal storage reuse and
Reuse local block outputs ON

Signal storage reuse OFF
(Reuse local block outputs
disabled)

Enable local block outputs
ON

Reuse signals in local
memory (fully optimized)

N/A

Enable local block outputs
OFF

Reuse signals in model_B
structure

Individual signal storage in
model_B structure

Signals with Test Points

A test point is a signal that is stored in a unique location that other signals cannot share
or reuse. See “Test Points” (Simulink) for information about including test points in your
model.

When you generate code for models that include test points, the build process allocates
a separate memory buffer for each test point. Test points are stored as members of an
appropriate global data structure such as model_B or model_U.

Declaring a signal as a test point disables the following options for that signal. This can
lead to increased code and data size. You do not lose the benefits of optimized storage for
other signals in your model.

• Signal storage reuse
• Enable local block outputs
• Reuse local block outputs

19-117

19 Data Representation in Simulink Coder

• Eliminate superfluous local variables (expression folding)

For an example of storage declarations and code generated for a test point, see
“Summary of Signal Storage Class Options” on page 19-119.

If you have an Embedded Coder license, you can specify that the build process ignore
test points in the model, allowing optimal buffer allocation, using the “Ignore test point
signals” (Simulink Coder) parameter. Ignoring test points facilitates transitioning from
prototyping to deployment and avoids accidental degradation of generated code due
to workflow artifacts. For more information, see “Ignore test point signals” (Simulink
Coder).

Symbolic Naming Conventions for Signals

When signals have a storage class other than Auto, the code generator preserves
symbolic information about the signals or their originating blocks in the generated code.

For labeled signals, field names in model_B derive from the signal names. In the
following example, the field names model_B.sumSig and model_B.gainSig are
derived from the corresponding labeled signals in the signal_examp model (shown in
figure signal_examp Model).

/* Block signals (auto storage) */

typedef struct _BlockIO_signal_examp {

 real_T sumSig; /* '<Root>/Add' */

 real_T gainSig; /* '<Root>/Gain' */

} BlockIO_signal_examp;

When you clear the Signal storage reuse optimization, sumSig is not part of model_B,
and a local variable is used for it instead. For unlabeled signals, model_B field names are
derived from the name of the source block or subsystem.

The components of a generated signal label are

• The root model name, followed by
• The name of the generating signal object, followed by
• Unique name-mangling text (if required)

The number of characters that a signal label can have is limited by the Maximum
identifier length parameter specified on the Symbols pane of the Configuration

19-118

 Signal Representation in Generated Code

Parameters dialog box. See “Construction of Generated Identifiers” (Simulink Coder) for
more detail.

When a signal has Auto storage class, the build process controls generation of variable or
field names without regard to signal labels.

Summary of Signal Storage Class Options

The next table shows, for each signal storage class option, the variable declaration and
the code generated for Sum (sumSig) and Gain (gainSig) block outputs of the model
shown in figure signal_examp Model.

Storage Class Declaration Code
Auto

(with Signal storage reuse
optimizations on)

In model.c or model.cpp
real_T rtb_sumSig;

rtb_sumSig = signal_examp_U.In1 +

 signal_examp_P.Constant_Value;

rtb_sumSig *=

 signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_sumSig;

Test point (for sumSig only) In model.h
typedef struct

_BlockIO_signal_examp

{

 real_T sumSig;

}

BlockIO_signal_examp;

In model.c or model.cpp
BlockIO_signal_examp

signal_examp_B;

real_T rtb_gainSig;

signal_examp_B.sumSig =

 signal_examp_U.In1 +

 signal_examp_P.Constant_Value;

rtb_gainSig =

 signal_examp_B.sumSig *

 signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

ExportedGlobal (for
sumSig only)

In model.h
extern real_T sumSig;

In model.c or model.cpp
real_T sumSig;

real_T rtb_gainSig;

sumSig = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

rtb_gainSig = sumSig *

 signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

ImportedExtern In model_private.h
extern real_T sumSig;

In model.c or model.cpp
real_T rtb_gainSig;

sumSig = signal_examp_U.In1 +

signal_examp_P.Constant_Value;

rtb_gainSig = sumSig *

 signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

19-119

19 Data Representation in Simulink Coder

Storage Class Declaration Code
ImportedExternPointer In model_private.h

extern real_T *sumSig;

In model.c or model.cpp
real_T rtb_gainSig;

(*sumSig) = signal_examp_U.In1 +

 signal_examp_P.Constant_Value;

rtb_gainSig = (*sumSig) *

 signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

Interfaces for Monitoring Signals

The code generator includes

• Support for developing a Target Language Compiler API for monitoring signals and
states independent of external mode. See “Input Signal Functions” (Simulink Coder)
and “Output Signal Functions” (Simulink Coder).

• A C application program interface (API) for monitoring signals and states
independent of external mode. See “Exchange Data Between Generated and External
Code Using C API” (Simulink Coder) for information.

• An interface for exporting ASAP2 files, which you customize to use signal objects. For
details, see “Export ASAP2 File for Data Measurement and Calibration” (Simulink
Coder).

Share Data Between Code Generated from Simulink, Stateflow, and
MATLAB

Stateflow and MATLAB Coder can fully define their data definitions, or they can inherit
them from Simulink. Data definition capabilities include:

• Inheriting input/output data types and sizes from Simulink.
• Parameterized data types and sizes. That is, data type and size may be specified

as a function of another data's type and size, e.g., type(y)=type(u) and
size(y)=size(u).

• Inferred output size and type from Simulink via signal attribute back propagation.
• Parameter scoped data, which allows referencing Simulink parameters in Stateflow

and MATLAB.

Open Example Model

Open the example model rtwdemo_dynamicio.

19-120

 Signal Representation in Generated Code

open_system('rtwdemo_dynamicio')

Instructions

1 Compile the model (Simulation > Update Diagram) and note the displayed signal
types and sizes.

2 Change the data type and/or size of the Constant block and recompile the model.
Note that the attributes of the signals automatically adapt to the Constant block
specification.

3 Generate and inspect code using the blue buttons in the model. Note that K is shared
by the Gain and sfVerticalSum block.

Notes

• The data type and size of all Stateflow and MATLAB data is inherited from Simulink.
• The Gain block and the Stateflow chart sfVerticalSum share the Simulink parameter

K, which is defined in the MATLAB workspace as a Simulink.Parameter with
SimulinkGlobal storage class (i.e., rtP.K in the generated code).

Related Examples
• “Control Signals and States in Code by Applying Storage Classes” on page 19-123

19-121

19 Data Representation in Simulink Coder

• “Control Signal and State Initialization in the Generated Code” (Simulink Coder)
• “Maximize Signal Storage Optimization” (Simulink Coder)
• “Default Data Structures in the Generated Code” (Simulink Coder)
• “Storage Classes for Signals Used with Model Blocks” (Simulink Coder)
• “Control Signal Data Types” (Simulink)

19-122

 Control Signals and States in Code by Applying Storage Classes

Control Signals and States in Code by Applying Storage Classes

Signals and block states appear in the generated code as variables. For basic information
about signal representation in the generated code, see “Signal Representation in
Generated Code” on page 19-112. For basic information about state representation, see
“Discrete Block State Naming in Generated Code” (Simulink Coder) and “Continuous
Block State Naming in Generated Code” (Simulink Coder).

In a model, you can assign each signal and state a storage class to determine the variable
scope in the generated code. You can use storage classes to monitor signal and state data
during execution and interface signals and states to externally written code.

To specify storage classes for signals and states, you can use signal objects, which
you store in a workspace or data dictionary. Signal objects are objects of the class
Simulink.Signal. If you create your own data class package, signal objects are also
objects of the subclass of Simulink.Signal that your package defines. For basic
information about data objects, see “Data Objects” (Simulink).

You can apply storage classes directly to signal lines and block states by using the Signal
Properties dialog box or the State Attributes tab of a block dialog box. This technique
does not require you to store a signal object in a workspace.

You can interface test points and other signals that are stored as members of model_B,
or of another global data structure such as model_U, to your code. To do this, your code
must know the address of the global data structure where the data is stored, and other
information. This information is not automatically exported. The code generator provides
C/C++ and Target Language Compiler APIs that give your code access to model_B and
other data structures. See “Interfaces for Monitoring Signals” on page 19-120 for more
information.

If you have an Embedded Coder license, you can use and create custom storage classes
to represent more complex data such as structures and macros. You can also use
custom storage classes to export data declarations to specific generated files. For more
information, see “Introduction to Custom Storage Classes” on page 23-2 and
“Simulink Package Custom Storage Classes” on page 23-5.

In this section...

“Storage Classes for Signals and States” on page 19-124
“Use Model Data Editor to Configure Data Interface” on page 19-127
“Signal Objects for Code Generation” on page 19-128

19-123

19 Data Representation in Simulink Coder

In this section...

“Create and Configure Signal Object for Code Generation” on page 19-128
“Programmatically Create and Configure Signal Object for Code Generation” on page
19-129
“Apply Storage Classes Directly to Signal Lines, Block States, and Outport Blocks” on
page 19-129
“Programmatically Apply Storage Classes Directly to Signals, States, and Outport
Blocks” on page 19-130
“Resolve Conflicts in Configuration of Signal Objects” on page 19-131

Storage Classes for Signals and States

To control the code generated for signals and states, use storage class. For example, you
can import or export the corresponding variable to or from the code.

You can choose from these built-in storage classes:

• Auto, which is the default storage class. The code generator determines signal or
state storage based on optimization settings such as configuration parameters.

• SimulinkGlobal. The generated code contains a structured global variable for
signals and another structured global variable for states that use this storage class.
Each signal or state appears as a field of the appropriate structure.

• ExportedGlobal. Export the signal or state as a unique global variable in the
generated code. The code contains an extern declaration for the variable.

• ImportedExtern. Import the signal or state as a unique global variable in the
generated code. Your code must provide the variable definition.

• ImportedExternPointer. Import the signal or state as a unique global pointer
variable in the generated code. Your code must provide the pointer variable definition.

Storage Classes for Signal Lines

To control the code generated for signals that use Auto storage class, on the All
Parameters tab of the Configuration Parameters dialog box, adjust these options:

• Signal storage reuse
• Reuse block outputs
• Enable local block outputs

19-124

 Control Signals and States in Code by Applying Storage Classes

• Eliminate superfluous local variables (expression folding)

These configuration parameters determine, for example, whether a signal appears in the
code as a local variable or whether expression folding eliminates the signal altogether.

To customize the code generation for an individual signal, specify a storage class other
than Auto. For each of the storage classes, the table shows the variable declaration and
the code generated for the Inport signal, inSig, of the example model signal_examp.

Storage Class Declaration and Definition Code
Auto (with storage
optimizations on)

In signal_examp.h

typedef struct {

 real_T inSig;

} ExtU_signal_examp_T;

extern ExtU_signal_examp_T signal_examp_U;

Gain1Sig =

 signal_examp_P.Gain_Gain *

 signal_examp_U.inSig;

SimulinkGlobal In signal_examp.h

typedef struct {

 real_T inSig;

} ExtU_signal_examp_T;

extern ExtU_signal_examp_T signal_examp_U;

Gain1Sig =

 signal_examp_P.Gain_Gain *

 signal_examp_U.inSig;

ExportedGlobal In signal_examp.c

real_T inSig;

In signal_examp.h

extern real_T inSig;

Gain1Sig = inSig *

 signal_examp_P.Gain_Gain;

ImportedExtern In signal_examp_private.h

extern real_T inSig;

Gain1Sig = inSig *

 signal_examp_P.Gain_Gain;

ImportedExternPointer In signal_examp_private.h Gain1Sig = (*inSig) *

 signal_examp_P.Gain_Gain;

19-125

19 Data Representation in Simulink Coder

Storage Class Declaration and Definition Code
extern real_T *inSig;

Storage Classes for Block States

Use the Auto storage class for states that you do not need to interface to external code.
States with Auto storage class are typically stored as fields of the DWork structure in the
generated code.

You can assign a symbolic name to states that use the Auto storage class. If you do not
supply a state name, the code generator produces one, as described in “Discrete Block
State Naming in Generated Code” on page 19-160.

States with SimulinkGlobal storage class are stored as fields of the DWork structure.

Block states with storage classes other than Auto or SimulinkGlobal are stored in
unstructured global variables, independent of the Dwork vector. Use these storage
classes for states that you want to interface to external code.

For each of the storage classes, the table shows the variable declaration and initialization
code generated for the Unit Delay block state in the example model state_examp. The
block state name is specified as udx. The initial value is 0.

Storage Class Declaration and Definition Initialization Code
Auto In state_examp.h

typedef struct

{

 real_T udx;

 }

DW_state_examp_T;

state_examp_DW.udx = 0.0;

SimulinkGlobal In state_examp.h

typedef struct

{

 real_T udx;

 }

DW_state_examp_T;

state_examp_DW.udx = 0.0;

19-126

 Control Signals and States in Code by Applying Storage Classes

Storage Class Declaration and Definition Initialization Code
ExportedGlobal In state_examp.c

real_T udx;

In state_examp.h

extern real_T udx;

udx = 0.0;

ImportedExtern In state_examp_private.h

extern real_T udx;

udx = 0.0;

ImportedExternPointer In state_examp_private.h

extern real_T *udx;

*udx = state_examp_U.In1;

Use Model Data Editor to Configure Data Interface

Use the Model Data Editor to apply storage classes to Inport and Outport blocks, signal
lines, and Data Store Memory blocks. Use this technique to apply the storage classes
without locating the blocks and signals in the model and to configure the data interface of
the model by using a single list.

To open the Model Data Editor, select View > Model Data. For information about using
the Model Data Editor, see “Configure Data Properties by Using a Table” (Simulink). For
an example that shows how to apply storage classes to Inport and Outport blocks, see
“Design Data Interface by Configuring Inport and Outport Blocks” on page 19-134.

• For an Inport block, the Model Data Editor applies the storage class to the output
signal of the block, not to the block itself.

• You can use the Model Data Editor to apply a storage class directly to a root-level
Outport block or to the input signal that drives the block.

• To store the storage class specification in the Outport block, use the Inports/
Outports tab in the Model Data Editor. When you use this technique, the
specification remains after you delete the input signal that drives the block. Use
this technique to configure the model interface before you develop the internal
algorithm.

• To store the specification in the input signal that drives the block, use the Signals
tab in the Model Data Editor or use the Signal Properties dialog box. Use this
technique to use the custom storage class Reusable (Embedded Coder). To use

19-127

19 Data Representation in Simulink Coder

this custom storage class, you associate the signal line with a Simulink.Signal
object in a workspace or data dictionary instead of storing the specification in the
signal line.

Signal Objects for Code Generation

To specify code generation options for a signal or state in a model by using a data object:

1 Create a signal data object, which is an object of the class Simulink.Signal or of a
subclass of Simulink.Signal.

2 Specify code generation options by modifying the CoderInfo property of the signal
object.

3 Associate the signal object with a signal or state in a model diagram. For example, in
a Signal Properties dialog box, or on the State Attributes tab of a block dialog box,
specify the object name as the name of the target signal or state.

4 Generate code and build your target executable.

Signal objects have a property CoderInfo that contains an object of the class
Simulink.CoderInfo. You can use the properties of the Simulink.CoderInfo object
to specify code generation options for the target model signal or state.

For basic information about signal objects, including how to create them, see “Data
Objects” (Simulink).

Create and Configure Signal Object for Code Generation

To control the code generation of a signal by creating a signal object, you can use Model
Explorer.

1 In the Model Explorer Model Hierarchy pane, select a workspace to contain the
signal object. For example, selectBase Workspace.

2
Click Add Signal .

A Simulink.Signal object named Sig appears in the base workspace.
3 In the Contents pane, change the name of the signal object to a meaningful name.

For example, name the object mySignal or myState.
4 Select the signal object in the Contents pane. In the Dialog pane, in the Storage

class drop-down list, select a storage class such as ExportedGlobal. Click Apply.

19-128

 Control Signals and States in Code by Applying Storage Classes

5 Open the Signal Properties dialog box for a signal in a model, or open the State
Attributes tab of a block dialog box. Specify Signal name or State name as
mySignal or myState and click Apply.

6 Select the check box next to Signal name must resolve to Simulink signal
object or State name must resolve to Simulink signal object. Click OK.

7 Generate code.

Programmatically Create and Configure Signal Object for Code
Generation

At the command prompt, you can control the code generation of a signal by creating a
signal object.

1 Create a Simulink.Signal object named mySignal or myState in the base
workspace.

mySignal = Simulink.Signal;

2 Specify a storage class for the object. For example, specify the storage class
ExportedGlobal.

mySignal.StorageClass = 'ExportedGlobal';

The StorageClass property is a property of the Simulink.CoderInfo object that
resides in the CoderInfo property of the signal object. However, you can use the
preceding syntax to access the storage class property. You can also explicitly access
the property by using the syntax mySignal.CoderInfo.StorageClass.

3 Open the Signal Properties dialog box for a signal in a model, or open the State
Attributes tab of a block dialog box. Specify Signal name or State name as
mySignal or myState and click Apply.

4 Select the check box next to Signal name must resolve to Simulink signal
object or State name must resolve to Simulink signal object. Click OK.

5 Generate code.

Apply Storage Classes Directly to Signal Lines, Block States, and Outport
Blocks

Through dialog boxes, you can apply storage classes directly to signal lines and block
states. You do not need a data object that you store in a workspace or data dictionary.

19-129

19 Data Representation in Simulink Coder

However, if you specify a storage class for a signal or state with this technique, you
cannot use a signal object in a workspace to specify other characteristics of the signal or
state, such as data type.

To apply a storage class directly to a signal line, use the Signal Properties dialog box. For
a block state, use the State Attributes tab in the block dialog box.

1 Open the Code Generation tab in a Signal Properties dialog box, or the State
Attributes tab in a block dialog box.

2 Specify a name in the Signal name box or the State name box. Click Apply.
3 In the Storage class drop-down list , select a storage class.

To apply a storage class directly to an Outport block, use the Model Data Editor. You
can also use the Model Data Editor to apply custom storage classes to signals through a
list that you can sort, group, and filter. See “Use Model Data Editor to Configure Data
Interface” on page 19-127.

Programmatically Apply Storage Classes Directly to Signals, States, and
Outport Blocks

To programmatically apply storage classes to signal lines and block states,
use the function set_param. You can apply a storage class without creating a
Simulink.Signal object in a workspace or data dictionary. The storage class
specification is saved in the model file.

However, you can use this technique to specify only a storage class for the object. You
must specify other signal or state characteristics, such as data type, in the source
block dialog box. You cannot use a signal object in a workspace to specify these other
characteristics.

This example shows how to programmatically apply a storage class to a signal line.

1 Open the example model rtwdemo_secondOrderSystem.

rtwdemo_secondOrderSystem

2 Get a handle to the output of the block named Force: f(t).

portHandles = get_param('rtwdemo_secondOrderSystem/Force: f(t)','PortHandles');

outportHandle = portHandles.Outport;

19-130

 Control Signals and States in Code by Applying Storage Classes

3 Set the name of the corresponding signal to ForceSignal.

set_param(outportHandle,'Name','ForceSignal')

4 Set the storage class of the signal to ExportedGlobal.

set_param(outportHandle,'StorageClass','ExportedGlobal')

5 Generate code from the model. The code declares and defines a global variable
ForceSignal to represent the signal.

To apply a storage class directly to an Outport block, using the function set_param,
specify the block parameter SignalName to name the signal that the block represents.
Use the parameter StorageClass to specify a storage class.

To apply a storage class to a block state, using the function set_param, specify
the block parameter StateIdentifier to name the state. Use the parameter
StateStorageClass to specify a storage class.

To apply a storage class to a data store that you define by using a Data Store Memory
block, use the block parameter StateStorageClass. You do not need to specify a state
name because the data store already has a name.

To programmatically apply a custom storage class to a signal, state, Outport block,
or data store, use embedded signal objects. Custom storage classes do not affect
the generated code unless you use a system target file based on ert.tlc, which
requires Embedded Coder. You can also use this technique to set storage classes. See
“Programmatically Apply Custom Storage Classes Directly to Signals, States, and
Outport Blocks Using Embedded Signal Objects” on page 23-63.

Resolve Conflicts in Configuration of Signal Objects

If a signal is defined in the Signal Properties dialog box and a signal object of the same
name is defined by using the command line or in the Model Explorer, the potential exists
for ambiguity when the Simulink engine attempts to resolve the symbol representing
the signal name. One way to resolve the ambiguity is to specify that a signal resolve to
a Simulink data object. Select the Signal name must resolve to Simulink signal
object option in the Signal Properties dialog box. You cannot specify the Storage class
property on the Code Generation tab in the Signal Properties dialog box.

19-131

19 Data Representation in Simulink Coder

As the preceding figure shows, the Storage class menu is disabled because it is up to the
SinSig Simulink.Signal object to specify its own storage class.

The signal and signal objects SinSig both have SimulinkGlobal storage class.
Therefore, SinSig resolves to the signal object SinSig.

Note The rules for compatibility between block states/signal objects are identical to those
given for signals/signal objects.

Related Examples
• “Access Signal, State, and Parameter Data During Execution” on page 19-3
• “Design Data Interface by Configuring Inport and Outport Blocks” on page

19-134
• “Maximize Signal Storage Optimization” (Simulink Coder)

19-132

 Control Signals and States in Code by Applying Storage Classes

• “Group Signals into Structures in the Generated Code Using Buses” on page
19-139

• “Control Signal Data Types” (Simulink)
• “Signal Representation in Generated Code” (Simulink Coder)
• “Storage Classes for Signals Used with Model Blocks” (Simulink Coder)
• “Control Signal and State Initialization in the Generated Code” (Simulink Coder)
• “Default Data Structures in the Generated Code” (Simulink Coder)
• “Virtualized Output Ports Optimization” on page 55-17

19-133

19 Data Representation in Simulink Coder

Design Data Interface by Configuring Inport and Outport Blocks

The data interface of a model is the means by which the model exchanges data (for
example, signal values) with other, external models or systems. Customize the data
interface of a model to:

• Enable integration of the generated code with your own code.
• Improve traceability and readability of the code.

At the top level of a model, Inport and Outport blocks represent the input and output
signals of the model. To customize the data interface in the generated code, configure
these blocks. Early in the design process, when a model can contain unconnected Inport
and Outport blocks, use this technique to specify the interface before developing the
internal algorithm.

When you apply storage classes to Inport and Outport blocks, each block appears in
the generated code as a field of a global structure or as a separate global variable that
the generated algorithm references directly. If you have Embedded Coder, you can
use function prototype control instead of storage classes to pass data into and out of
the model step function as formal parameters. See “Control Generation of Function
Prototypes”.

Design Data Interface

Open the example model rtwdemo_basicsc.

open_system('rtwdemo_basicsc')

19-134

 Design Data Interface by Configuring Inport and Outport Blocks

In the model, select View > Model Data.

In the Model Data Editor, select the Inports/Outports tab. Each row in the table
represents an Inport or Outport block.

Name the output signal of the Outport block labeled Out1. Set Signal Name to
output_sig.

For each of the Inport blocks, set Data Type to single or to a different data type. Due
to the data type inheritance settings that the other blocks in the model use by default,
downstream signals use the same or a similar data type.

Optionally, configure other design attributes such as Min and Max (minimum and
maximum values).

Set the Change View drop-down list to Code.

For the Outport block and all of the Inport blocks, set Storage Class to
ExportedGlobal. To configure all of the blocks at once, select all of the rows in the
table.

19-135

19 Data Representation in Simulink Coder

To configure the blocks and signals, you can use these commands at the command
prompt.

temp = Simulink.Signal;

temp.StorageClass = 'ExportedGlobal';

portHandles = get_param('rtwdemo_basicsc/In1','portHandles');

outPortHandle = portHandles.Outport;

set_param(outPortHandle,'SignalObject',temp);

portHandles = get_param('rtwdemo_basicsc/In2','portHandles');

outPortHandle = portHandles.Outport;

set_param(outPortHandle,'SignalObject',temp);

portHandles = get_param('rtwdemo_basicsc/In3','portHandles');

outPortHandle = portHandles.Outport;

set_param(outPortHandle,'SignalObject',temp);

portHandles = get_param('rtwdemo_basicsc/In4','portHandles');

outPortHandle = portHandles.Outport;

set_param(outPortHandle,'SignalObject',temp);

set_param('rtwdemo_basicsc/Out1','SignalName','output_sig',...

 'SignalObject',temp)

Generate code from the model.

rtwbuild('rtwdemo_basicsc');

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

View the generated file rtwdemo_basicsc.c. Because you applied the storage class
ExportedGlobal to the Inport and Outport blocks, the code creates separate global
variables that represent the inputs and the output.

file = fullfile('rtwdemo_basicsc_grt_rtw','rtwdemo_basicsc.c');

rtwdemodbtype(file,'/* Exported block signals */','real32_T output_sig;',1,1)

/* Exported block signals */

real32_T input1; /* '<Root>/In1' */

real32_T input2; /* '<Root>/In2' */

real32_T input3; /* '<Root>/In3' */

real32_T input4; /* '<Root>/In4' */

19-136

 Design Data Interface by Configuring Inport and Outport Blocks

real32_T output_sig; /* '<Root>/Out1' */

The generated algorithm in the model step function directly references these global
variables to calculate and store the output signal value, output_sig.

While you use the Model Data Editor to configure the interface of a system, consider
using the interface display to view the system inputs and outputs (Inport and Outport
blocks) at a high level. See “Configure Data Interface for Component” (Simulink).

Route Signal Data to Multiple Outputs

You can route a single signal to multiple Outport blocks and apply a different storage
class to each Outport. For example, use this technique to send signal data to a custom
function (such as a device driver) and to a global variable that your custom algorithmic
code can use:

1 Branch the target signal line to each Outport block.
2 For more efficient code, set the storage class of the target signal line to Auto (the

default). Optimizations can then eliminate the signal line from the generated code.
3 Use the Model Data Editor to apply the custom storage class GetSet to one Outport

block and ExportToFile to the other Outport block. Apply a signal name to each
block.

open_system('ex_route_sig')

Limitations

You cannot apply a storage class to an Outport block if the input to the block has a
variable size. Instead, apply the storage class to the signal line.

Related Examples
• “Analyze the Generated Code Interface” on page 35-21

19-137

19 Data Representation in Simulink Coder

• “Trace Connections Using Interface Display” (Simulink)
• “Interface Design” (Simulink)
• “Signal Representation in Generated Code” on page 19-112
• “Configure Generated Code According to Interface Control Document” on page

23-112
• “Control Generation of Function Prototypes” on page 26-2
• “Configure Data Properties by Using a Table” (Simulink)
• “Conform to Coding Standards by Replacing and Renaming Data Types” on page

21-22

19-138

 Group Signals into Structures in the Generated Code Using Buses

Group Signals into Structures in the Generated Code Using Buses

Buses in a model represent multiple signals as a single signal line. You can use
nonvirtual buses to create signal structures in the generated code.

You can generate flat and nested structures. See “Structures of Signals” on page 13-87.

For basic information about buses in models, see “Buses” (Simulink).

Import or Export Structure Variable and Definition

This example shows how to export the definition of a bus type and the declaration of a
nonvirtual bus signal in generated code. You can control the bus type definition and the
bus signal declaration in the generated code independently of each other.

Explore Example Model

1 Open the model rtwdemo_slbus.

The model creates a Simulink.Bus object BusObject in the base workspace.
2 Update the model diagram to display thick lines for composite signals, including

buses.

The bus signal S1 uses the bus type that BusObject defines.

Control Scope of Bus Type

To control code generated for a bus type that a Simulink.Bus object defines, adjust the
code generation settings for the object.

The generated code represents nonvirtual bus types with struct definitions. The
struct definitions contain fields corresponding to the elements of the bus.

1 At the command prompt, specify the DataScope property of BusObject as
'Exported'.

BusObject.DataScope = 'Exported';

2 Specify the HeaderFile property of the object as 'myBusTypeHdr.h'.

BusObject.HeaderFile = 'myBusTypeHdr.h';

19-139

19 Data Representation in Simulink Coder

Control Scope of Bus Signal

You can use a Simulink.Signal object to control code generated for signals in a model,
including composite signals such as buses. To control code generated for a nonvirtual bus
signal, apply a storage class to the bus.

1 View the model in the Simulink Editor.
2 In the signal properties dialog box for the bus signal S1, select the option Signal

name must resolve to Simulink.Signal object.
3 At the command prompt, create a Simulink.Signal object to represent the bus

signal S1. Specify the data type of the object as BusObject.

S1 = Simulink.Signal;

S1.DataType = 'Bus: BusObject';

4 Specify the storage class of the object as ExportedGlobal.

S1.StorageClass = 'ExportedGlobal';

For more information about applying storage classes to signals, see “Control Signals and
States in Code by Applying Storage Classes” on page 19-123.

Generate and Inspect Code

1 In the Simulink Editor, double-click the blue box labeled Generate Code Using
Simulink Coder.

2 In the code generation report, view the generated file myBusTypeHdr.h. The code in
the header file represents the bus type BusObject with a struct definition.

 typedef struct {

 real_T temperature;

 real_T heat;

 real_T pressure[20];

 } BusObject;

3 View the file rtwdemo_slbus.c. The code exports the declaration of the signal S1
and uses the structure type BusObject in the declaration.

/* Exported block signals */

BusObject S1;

19-140

 Group Signals into Structures in the Generated Code Using Buses

Generate Code That Reuses struct Types from Existing C Code

If your existing C code exchanges data through structures, you can generate code that
packages and accesses signal data according to the existing struct type definitions.
This technique enables you to match interfaces between the bodies of code and to compile
the code into a single application. For an example, see “Exchange Structured and
Enumerated Data Between Generated and External Code” on page 21-28.

Arrays of Structures

You can further package multiple consistent bus signals into an array of buses. The array
of buses appears in the generated code as an array of structures. To create arrays of
buses, see “Combine Buses into an Array of Buses” (Simulink).

Structure Padding

By default, the code generator does not explicitly add padding fields to structure types.
Structure types can appear in the generated code through, for example, the default data
structures (see “Default Data Structures in the Generated Code” (Simulink Coder)),
Simulink.Bus objects, and parameter structures that you use in a model.

However, when you use a code replacement library with Embedded Coder, you can
specify data alignment (including structure padding) as part of the replacement library.
For more information, see “Provide Data Alignment Specifications for Compilers” on page
51-135.

See Also
Simulink.Bus | Simulink.Signal

Related Examples
• “Generate Efficient Code for Bus Signals” on page 19-142
• “Specify Sample Times for Signal Elements” (Simulink)
• “Signal Representation in Generated Code” on page 19-112
• “Control Signals and States in Code by Applying Storage Classes” on page 19-123
• “Buses” (Simulink)
• “Exchange Structured and Enumerated Data Between Generated and External

Code” on page 21-28

19-141

19 Data Representation in Simulink Coder

Generate Efficient Code for Bus Signals

In this section...

“Code Efficiency for Bus Signals” on page 19-142
“Set Bus Diagnostics” on page 19-143
“Optimize Virtual and Nonvirtual Buses” on page 19-143

In a model, you use bus signals to package multiple signals together into a single
signal line. You can create virtual or nonvirtual bus signals. The representation in the
generated code depends on:

• For a virtual bus, the generated code appears as if the bus did not exist.
• Generated code for a nonvirtual bus represents the bus data with a structure. When

you want to trace the correspondence between the model and the code, the use
of a structure in the generated code can be helpful. To generate structures using
nonvirtual bus signals, see “Group Signals into Structures in the Generated Code
Using Buses” on page 19-139.

For general information about buses, see and “Virtual and Nonvirtual Buses” (Simulink).

To generate efficient code from models that contain bus signals, eliminate unnecessary
data copies by following best practices as you construct the model.

Code Efficiency for Bus Signals

When you use buses in a model for which you intend to generate code:

• Setting bus diagnostic configuration parameters can make model development easier.
• The bus implementation techniques, and the choice of a nonvirtual or virtual bus, can

influence the speed, size, and clarity of the generated code.
• Some useful bus implementation techniques are not immediately obvious.

When you work with buses, these guidelines help you to improve the results. The
guidelines describe techniques to:

• Simplify the layout of the model.
• Increase the efficiency of generated code.
• Define data structures for function (subsystem) interfaces.

19-142

 Generate Efficient Code for Bus Signals

• Define data structures that match existing data structures in external C code.

There are some trade-offs among speed, size, and clarity. For example, the code for
nonvirtual buses is easier to read because the buses appear in the code as structures,
but the code for virtual buses is faster because virtual buses do not require copying
signal data. Apply some of the guidelines based on where you are in the application
development process.

Set Bus Diagnostics

Simulink provides diagnostics that you can use to optimize bus usage. Set the following
values on the Configuration Parameters > Diagnostics > Connectivity pane.

Optimize Virtual and Nonvirtual Buses

Virtual buses are graphical conveniences that do not affect generated code. As a result,
the code generation engine is able to fully optimize the signals in the bus. Use virtual
buses rather than nonvirtual buses wherever possible. You can convert between virtual
and nonvirtual buses by using Signal Conversion blocks. In some cases, Simulink
automatically converts a virtual bus to a nonvirtual bus when required. For example, a
Stateflow chart converts an input virtual bus to a nonvirtual bus.

To bundle function-call signals, you must use a virtual bus.

You must use nonvirtual buses for:

• Nonauto storage classes
• Generating a specific structure from the bus
• Root-level Inport or Outport blocks when the bus has mixed data types

19-143

19 Data Representation in Simulink Coder

Avoid Nonlocal Nested Buses in Nonvirtual Buses

Buses can contain subordinate buses. To generate efficient code, set the storage classes of
subordinate buses to Auto. Setting the storage class to Auto eliminates:

• Allocation of redundant memory for the subordinate bus signal and for the parent bus
signal

• Additional copy operations (copying data to the subordinate bus, and then copying
from the subordinate bus to the final bus)

This model contains nonvirtual bus signals. The subordinate bus signals Sub_Bus_1 and
Sub_Bus_2 use the storage class Auto.

The generated code algorithm efficiently assigns the input signal data to the bus signals.

void ex_nonvirtual_buses_step(void)

{

 Nonvirtual_In_One.SimpleBus_1.A1 = A1;

 Nonvirtual_In_One.SimpleBus_1.A2 = A2;

 Nonvirtual_In_One.SimpleBus_2.A3 = A3;

 Nonvirtual_In_One.SimpleBus_2.A4 = A4;

 Nonvirtual_In_One.A5 = A5;

}

See Also
Simulink.Bus

19-144

 Generate Efficient Code for Bus Signals

Related Examples
• “Group Signals into Structures in the Generated Code Using Buses” on page 19-139
• “Specify Sample Times for Signal Elements” (Simulink)

19-145

19 Data Representation in Simulink Coder

Maximize Signal Storage Optimization

The value of the “Maximum stack size (bytes)” (Simulink) parameter, on the
Optimization > Signals and Parameters pane of the Configuration Parameters dialog
box constrains the use of stack space used by local block output variables. The command-
line equivalent for this parameter is MaxStackSize. If the accumulated size of variables
in local memory exceeds MaxStackSize, the product places subsequent local variables in
global memory space.

If it is important that you maximize potential for signal storage optimization, then set
MaxStackSize to accommodate the size and number of signals in your model. This
minimizes overflow into global memory space and maximizes use of local memory. Local
variables offer more optimization potential through mechanisms such as expression
folding and buffer reuse. See “Customize Stack Space Allocation” (Simulink Coder) for
more information.

Related Examples
• “Customize Stack Space Allocation” (Simulink Coder)
• “Signal Representation in Generated Code” (Simulink Coder)

19-146

 Control Signal and State Initialization in the Generated Code

Control Signal and State Initialization in the Generated Code
To initialize signals and discrete states with custom values for simulation and code
generation, you can use signal objects and block parameters. Data initialization increases
application reliability and is a requirement of safety critical applications. Initializing
signals for both simulation and code generation can expedite transitions between phases
of Model-Based Design.

For basic information about specifying initial values for signals and discrete states in a
model, see “Initialize Signals and Discrete States” (Simulink).

Signal and State Initialization in the Generated Code

The initialization behavior for code generation is the same as that for model simulation
with the following exceptions:

• RSim executables can use the Data Import/Export pane of the Configuration
Parameters dialog box to load input values from MAT-files. GRT and ERT executables
cannot load input values from MAT-files.

• The initial value for a block output signal or root level input or output signal can be
overwritten by an external (calling) program.

• Setting the initial value for persistent signals is relevant if the value is used or viewed
by an external application.

When you generate code, initialization statements are placed in model.c or model.cpp
in the model's initialize code.

For example, consider the model rtwdemo_sigobj_iv.

19-147

19 Data Representation in Simulink Coder

If you create and initialize signal objects in the base workspace, the code generator
places initialization code for the signals in the file rtwdemo_sigobj_iv.c under the
rtwdemo_sigobj_iv_initialize function, as shown below.
 /* Model initialize function */

 void rtwdemo_sigobj_iv_initialize(void)

 {

 .

 .

 .

 /* exported global signals */

 S3 = -3.0;

 S2 = -2.0;

 .

 .

 .

/* exported global states */

X1 = 0.0;

X2 = 0.0;

/* external inputs */

S1 = -4.5;

 .

 .

 .

The following code shows the initialization code for the enabled subsystem's Unit Delay
block state X1 and output signal S2.
void MdlStart(void) {

 .

 .

 .

 /* InitializeConditions for UnitDelay: '<S2>/Unit Delay' */

 X1 = aa1;

 /* Start for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */

 /* virtual outports code */

 /* (Virtual) Outport Block: '<S2>/Out1' */

 S2 = aa2;

}

For an enabled subsystem, the initial value is also used as a reset value if the
subsystem's Outport block parameter Output when disabled is set to reset. The
following code from rtwdemo_sigobj_iv.c shows the assignment statement for S3 as it
appears in the model output function rtwdemo_sigobj_iv_output.
/* Model output function */

static void rtwdemo_sigobj_iv_output(void)

19-148

 Control Signal and State Initialization in the Generated Code

{

 .

 .

 .

 /* Disable for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */

 /* (Virtual) Outport Block: '<S2>/Out1' */

 S2 = aa2;

Generate Tunable Initial Conditions

You can represent initial conditions for signals and states by creating tunable global
variables in the generated code. These variables allow you to restart an application by
using initial conditions that are stored in memory.

If you set Configuration Parameters > Optimization > Signals and Parameters >
Default parameter behavior to Tunable, initial conditions appear as tunable fields of
the global parameters structure.

Whether you set Default parameter behavior to Tunable or Inlined, you can use a
tunable parameter to specify the InitialValue property of a signal object or the Initial
condition parameter of a block. For basic information about tunable parameters, see
“Block Parameter Representation in the Generated Code” (Simulink Coder).

This example shows how to use tunable parameters to specify initial conditions for
signals and states.

Explore Example Model

Open the example model rtwdemo_sigobj_iv. The signal S2 uses a Simulink.Signal
object in the base workspace.

19-149

19 Data Representation in Simulink Coder

Double-click the Simulink.Signal object S2 to view its properties. The Initial value
property is set to aa2. The object uses the variable aa2 to specify an initial condition
for the signal S2. The Storage class property is set to ExportedGlobal. To use a
Simulink.Signal object to initialize a signal, the signal object must use a storage class
other than Auto or SimulinkGlobal.

On the Optimization > Signals and Parameters pane in the Configuration
Parameters dialog box, click Configure. The variable aa2 is a tunable parameter that
uses the storage class ExportedGlobal.

In the model, open the Enabled Subsystem. In the Outport block dialog box, the
parameter Output when disabled is set to reset. When the subsystem becomes
disabled, the output signal S2 resets to the initial value aa2.

Open the Unit Delay block dialog box. On the State Attributes tab, the State name box
is set to X1.

Open the Enable block dialog box. The parameter States when enabling is set to
reset. When the subsystem transitions from a disabled state to an enabled state, it
resets internal block states, such as X1, to their initial values.

19-150

 Control Signal and State Initialization in the Generated Code

In the base workspace, double-click the Simulink.Signal object X1 to view its
properties. The Initial value property is set to aa1.

Double-click the Simulink.Parameter object aa1 to view its properties. The Storage
class property is set to ExportedGlobal. You can generate tunable initial conditions
for block states by using tunable parameters such as aa1 and Simulink.Signal objects
such as X1.

Generate and Inspect Code

Generate code with the example model.

Starting build procedure for model: rtwdemo_sigobj_iv

Successful completion of build procedure for model: rtwdemo_sigobj_iv

In the code generation report, view the file rtwdemo_sigobj_iv.c. The code uses global
variables to represent the block state X1 and the signal S2.

/* Exported block states */

real_T X1; /* '<S2>/Unit Delay' */

/* Exported block signals */

real_T S1; /* '<Root>/In1' */

real_T S3; /* '<Root>/Signal Conversion' */

real_T S2; /* '<S2>/Unit Delay' */

The code uses global variables to represent the tunable parameters aa1 and aa2.

/* Exported block parameters */

real_T aa1 = -2.5; /* Variable: aa1

real_T aa2 = -2.0; /* Variable: aa2

The model initialization function uses the tunable parameter aa1 to initialize the state
X1. The function also uses the tunable parameter aa2 to initialize the signal S2.

 /* SystemInitialize for Enabled SubSystem: '<Root>/Enabled Subsystem (state X1 inside)' */

 /* InitializeConditions for UnitDelay: '<S2>/Unit Delay' */

 X1 = aa1;

 /* SystemInitialize for Outport: '<S2>/Out1' */

 S2 = aa2;

19-151

19 Data Representation in Simulink Coder

In the model step function, when the Enabled Subsystem transitions from a disabled
state to an enabled state, the Unit Delay block state X1 resets to its initial value.

 if (rtb_PulseGenerator > 0) {

 if (!rtwdemo_sigobj_iv_DW.EnabledSubsystemstateX1inside_M) {

 /* InitializeConditions for UnitDelay: '<S2>/Unit Delay' */

 X1 = aa1;

 rtwdemo_sigobj_iv_DW.EnabledSubsystemstateX1inside_M = true;

 }

If the Enabled Subsystem becomes disabled during code execution, the algorithm uses
the tunable initial condition aa2 to set the value of the signal S2.

 } else {

 if (rtwdemo_sigobj_iv_DW.EnabledSubsystemstateX1inside_M) {

 /* Disable for Outport: '<S2>/Out1' */

 S2 = aa2;

 rtwdemo_sigobj_iv_DW.EnabledSubsystemstateX1inside_M = false;

 }

 }

Generate Tunable Initial Condition Structure for Bus Signal

When you use a MATLAB® structure to specify initialization values for the signal
elements in a bus, you can create a tunable global structure in the generated code.

If you set Configuration Parameters > Optimization > Signals and Parameters
> Default parameter behavior to Tunable, the initial condition appears as a tunable
substructure of the global parameters structure.

Whether you set Default parameter behavior to Tunable or Inlined, you can specify
the initial condition by using a tunable Simulink.Parameter object whose value is
a structure. If you apply a storage class other than Auto to the parameter object, the
structure is tunable in the generated code.

To generate efficient code by avoiding data type mismatches between the structure and
the bus signal, use either:

19-152

 Control Signal and State Initialization in the Generated Code

• Typed expressions to specify the values of the structure fields. Match the data type of
each field with the data type of the corresponding signal element.

• A Simulink.Bus object to control the data types of the structure fields and the signal
elements.

For basic information about using structures to initialize bus signals, and to decide how
to control field data types, see “Specify Initial Conditions for Bus Signals” (Simulink).

Generate Tunable Initial Condition Structure

This example shows how to use a tunable structure parameter to initialize a virtual bus
signal.

Open the example model rtwdemo_tunable_init_struct.

In the Inport block dialog boxes, open the Signal Attributes tab. Each Inport uses a
different output data type.

Open the Bus Creator block dialog box. The block output is a virtual bus.

In the Configuration Parameters dialog box, open the Optimization > Signals and
Parameters pane. The configuration parameter Default parameter behavior is set
to Tunable. By default, block parameters, including initial conditions, appear in the
generated code as tunable fields of the global parameters structure.

Open the Unit Delay block dialog box. Set Initial condition to a structure that specifies
an initial condition for each of the three signal elements. To generate efficient code,

19-153

19 Data Representation in Simulink Coder

match the data types of the structure fields with the data types of the corresponding
signal elements.

set_param('rtwdemo_tunable_init_struct/Unit Delay','InitialCondition',...

'struct(''thermocpl'',15.23,''magFlow'',uint32(79),''posSwitch'',false)')

Generate code from the example model.

Starting build procedure for model: rtwdemo_tunable_init_struct

Successful completion of build procedure for model: rtwdemo_tunable_init_struct

In the code generation report, view the file rtwdemo_tunable_init_struct_types.h.
The code defines a structure type whose fields use the data types that you specified in the
struct expression.

#ifndef DEFINED_TYPEDEF_FOR_struct_mqGi1jsItE0G7cf1bNqMu_

#define DEFINED_TYPEDEF_FOR_struct_mqGi1jsItE0G7cf1bNqMu_

typedef struct {

 real_T thermocpl;

 uint32_T magFlow;

 boolean_T posSwitch;

} struct_mqGi1jsItE0G7cf1bNqMu;

View the file rtwdemo_tunable_init_struct.h. The struct type definition of the
global parameters structure contains a substructure, UnitDelay_InitialCondition,
which represents the Initial condition parameter of the Unit Delay block.

struct P_rtwdemo_tunable_init_struct_T_ {

 struct_mqGi1jsItE0G7cf1bNqMu UnitDelay_InitialCondition;/* Mask Parameter: UnitDelay_InitialCondition

View the file rtwdemo_tunable_init_struct_data.c. This source file
allocates memory for the global parameters structure. The substructure
UnitDelay_InitialCondition appears.

/* Block parameters (auto storage) */

P_rtwdemo_tunable_init_struct_T rtwdemo_tunable_init_struct_P = {

 {

 15.23,

 79U,

 0

 }, /* Mask Parameter: UnitDelay_InitialCondition

19-154

 Control Signal and State Initialization in the Generated Code

View the file rtwdemo_tunable_init_struct.c. The model initialization function
uses the fields of the substructure to initialize the block states.

 /* InitializeConditions for UnitDelay: '<Root>/Unit Delay' */

 rtwdemo_tunable_init_struct_DW.UnitDelay_1_DSTATE =

 rtwdemo_tunable_init_struct_P.UnitDelay_InitialCondition.thermocpl;

 rtwdemo_tunable_init_struct_DW.UnitDelay_2_DSTATE =

 rtwdemo_tunable_init_struct_P.UnitDelay_InitialCondition.magFlow;

 rtwdemo_tunable_init_struct_DW.UnitDelay_3_DSTATE =

 rtwdemo_tunable_init_struct_P.UnitDelay_InitialCondition.posSwitch;

Use Bus Object to Specify Data Types

If you create a bus object, you can use it to specify the data type of the bus signal and the
tunable initial condition structure. Before code generation, the Simulink.Parameter
object casts the values of the structure fields to the data types of the signal elements. For
basic information about creating bus objects and using them in models, see “When to Use
Bus Objects” (Simulink).

Open the example model rtwdemo_init_struct_busobj.

In the base workspace, double-click the Simulink.Bus object ComponentData. The
object defines three signal elements: thermocpl, magFlow, and posSwitch. The
elements each use a different data type.

Open the block dialog box for the Inport block DataIn. The output data type is set to
Bus: ComponentData.

19-155

19 Data Representation in Simulink Coder

Create the tunable structure parameter initStruct. You can specify the field values
by using untyped expressions. To improve readability, specify the field posSwitch
with a Boolean value. Specify the DataType property of the parameter object as 'Bus:
ComponentData'.

initStruct = struct(...

 'thermocpl',15.23,...

 'magFlow',79,...

 'posSwitch',false ...

);

initStruct = Simulink.Parameter(initStruct);

initStruct.StorageClass = 'ExportedGlobal';

initStruct.DataType = 'Bus: ComponentData';

In the Unit Delay block dialog box, specify Initial condition as initStruct.

Generate code from the example model.

Starting build procedure for model: rtwdemo_init_struct_busobj

Successful completion of build procedure for model: rtwdemo_init_struct_busobj

In the code generation report, view the file rtwdemo_init_struct_busobj_types.h.
The code creates a structure type ComponentData whose fields use the data types in the
bus object.

#ifndef DEFINED_TYPEDEF_FOR_ComponentData_

#define DEFINED_TYPEDEF_FOR_ComponentData_

typedef struct {

 real_T thermocpl;

 uint32_T magFlow;

 boolean_T posSwitch;

} ComponentData;

View the file rtwdemo_init_struct_busobj.c. The code creates a global variable to
represent the tunable parameter object initStruct.

/* Exported block parameters */

ComponentData initStruct = {

 15.23,

 79U,

19-156

 Control Signal and State Initialization in the Generated Code

 0

} ; /* Variable: initStruct

The model initialization function uses the structure fields to initialize the block states.

 /* InitializeConditions for UnitDelay: '<Root>/Unit Delay' */

 rtwdemo_init_struct_busobj_DW.UnitDelay_1_DSTATE = initStruct.thermocpl;

 rtwdemo_init_struct_busobj_DW.UnitDelay_2_DSTATE = initStruct.magFlow;

 rtwdemo_init_struct_busobj_DW.UnitDelay_3_DSTATE = initStruct.posSwitch;

To change the data type of any of the three signal elements, specify the new type in the
bus object. The signal element in the model uses the new type. Before simulation and
code generation, the parameter object initStruct casts the corresponding structure
field to the new type.

See Also
State Reader | State Writer

Related Examples
• “Initialization Behavior Summary for Signal Objects” (Simulink)
• “Specify Initial Conditions for Bus Signals” (Simulink)
• “Control Signals and States in Code by Applying Storage Classes” on page 19-123
• “Generate Code That Responds to Initialize, Reset, and Terminate Events” on page

9-2
• “Block Parameter Representation in the Generated Code” (Simulink Coder)
• “Signal Representation in Generated Code” on page 19-112
• “Initialization of Signal, State, and Parameter Data in the Generated Code” on page

19-165
• “Remove Initialization Code” on page 56-3

19-157

19 Data Representation in Simulink Coder

Continuous Block State Naming in Generated Code

In this section...

“Default Block State Naming Convention” on page 19-158
“Define User Block State Names” on page 19-159

To determine the variable or field name generated for a continuous block state, do one of
the following:

• Use a default name created by the code generator.
• In the block parameter dialog box, in the State name field, specify a name.

These names apply to the following continuous blocks:

• Integrator
• Integrator Limited
• Second-Order Integrator
• Second-Order Integrator Limited
• PID Controller
• PID Controller (2DOF)
• State Space
• Transfer Fcn
• Variable Time Delay
• Variable Transport Delay
• Zero-Pole

To name states for other types of blocks, see “Discrete Block State Naming in Generated
Code” on page 19-160.

Default Block State Naming Convention

If you do not define a symbolic name for a block state, the code generator uses the
following default naming convention:

Name#_CSTATE

19-158

 Continuous Block State Naming in Generated Code

• Name is the name of the block type, such as Integrator. If you edit the block type
name displayed in the model, the code generator uses that name in the identifier.

• # is a unique ID number (#) assigned by the code generator if multiple instances of
the same block type appear in the model. The ID number is appended to Name.

• _CSTATE is a suffix that is appended to the name and ID number.

For example, if you do not specify a state name for an Integrator block, the code
generator creates the identifier:

 rtX.Integrator_CSTATE = rtP.Integrator_IC;

If you specify, in the State Name field, 'myintegratorblockname' for an Integrator
block, the code generator creates this identifier:

 rtX.myintegratorblockname = rtP.Integrator_IC;

Define User Block State Names

In the block parameters dialog box, you can define your own symbolic name for a block
state.

1 In your model, double-click the block.
2 At the bottom of the block parameters dialog box, in the State Name field, enter the

name that you want to use for the state.
3 Click OK or Apply to accept the value.
4 Generate code and examine it to see the new identifier name.

Related Examples
• “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
• “Discrete Block State Naming in Generated Code” on page 19-160

19-159

19 Data Representation in Simulink Coder

Discrete Block State Naming in Generated Code

In this section...

“Default Block State Naming Convention” on page 19-161
“Define User Block State Names” on page 19-162

To determine the variable or field name generated for a block's state, you can:

• Use a default name generated by the code generator
• Define a symbolic name by using the State name field of the State Attributes tab in

a block dialog box

To name states for certain continuous blocks, see “Continuous Block State Naming in
Generated Code” on page 19-158.

For certain discrete block types, you can control how block states in your model are
stored and represented in the generated code. In a block dialog box, using the State
Attributes tab, you can:

• Assign symbolic names to block states in generated code.
• Control whether states declared in generated code are interfaceable (visible) to

externally written code.
• Specify that states be stored in locations declared by externally written code.

Discrete blocks that you can control how block states are stored and represented in the
generated code are:

• Discrete Filter
• Discrete PID Controller
• Discrete PID Controller (2DOF)
• Discrete State-Space
• Discrete-Time Integrator
• Discrete Transfer Fcn
• Discrete Zero-Pole
• Memory
• Unit Delay

19-160

 Discrete Block State Naming in Generated Code

• Delay

These blocks require persistent memory to store values representing the state of the
block between consecutive time intervals. By default, such values are stored in a data
type work vector. This vector is usually referred to as the DWork vector. It is represented
in generated code as model_DWork, a global data structure.

If you want to interface a block state to your handwritten code, you can specify that
the state is stored to a location other than the DWork vector. You do this by assigning a
storage class to the block state.

Default Block State Naming Convention

If you do not define a symbolic name for a block state, the code generator uses the
following default naming convention:

BlockType#_DSTATE

where

• BlockType is the name of the block type (for example, Discrete_Filter). If you edit
the block type name displayed in the model, the code generator uses that name in the
identifier.

• # is a unique ID number (#) assigned by the code generator if multiple instances of
the same block type appear in the model. The ID number is appended to BlockType.

• _DSTATE is a suffix that is appended to the block type and ID number.

For example, consider the model shown in the next figure.

Model with Two Discrete Filter Block States

19-161

19 Data Representation in Simulink Coder

Examine the code generated for the states of the two Discrete Filter blocks. Assume that:

• Neither blocks state has a user-defined name.
• The upper Discrete Filter block has Auto storage class (and is therefore stored in the

DWork vector).
• The lower Discrete Filter block has ExportedGlobal storage class.

The states of the two Discrete Filter blocks are stored in DWork vectors, initialized as
shown in the code:

/* data type work */

disc_filt_states_M->Work.dwork = ((void *)

&disc_filt_states_DWork);

 (void)memset((char_T *) &disc_filt_states_DWork, 0,

 sizeof(D_Work_disc_filt_states));

 {

 int_T i;

 real_T *dwork_ptr = (real_T *)

&disc_filt_states_DWork.DiscFilt_DSTATE;

 for (i = 0; i < 2; i++) {

 dwork_ptr[i] = 0.0;

 }

 }

Define User Block State Names

Using the State Attributes tab of a block dialog box, you can define your own symbolic
name for a block state:

1 In your block diagram, double-click the desired block. This action opens the block
dialog box, containing two or more tab, which includes State Attributes.

2 Click the State Attributes tab.
3 Enter the symbolic name in the State name field. For example, enter the state

name Top_filter.
4 Click Apply.

19-162

 Discrete Block State Naming in Generated Code

5 Click OK.

The following state initialization code was generated from the example model shown
in “Default Block State Naming Convention” on page 19-161, under the following
conditions:

19-163

19 Data Representation in Simulink Coder

• The upper Discrete Filter block has the state name Top_filter, and Auto storage
class (and is therefore stored in the DWork vector).

• The lower Discrete Filter block has the state name Lower_filter, and storage class
ExportedGlobal.

Top_filter is placed in the Dwork vector.

/* data type work */

 disc_filt_states_M->Work.dwork = ((void *)

&disc_filt_states_DWork);

 (void)memset((char_T *) &disc_filt_states_DWork, 0,

 sizeof(D_Work_disc_filt_states));

 disc_filt_states_DWork.Top_filter = 0.0;

 /* exported global states */

 Lower_filter = 0.0;

Related Examples
• “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
• “Continuous Block State Naming in Generated Code” on page 19-158

19-164

 Initialization of Signal, State, and Parameter Data in the Generated Code

Initialization of Signal, State, and Parameter Data in the
Generated Code

Signal lines, block parameters, and block states in a model can appear in the generated
code as data, for example, as global variables. By default, the code initializes this data
before execution of the primary algorithm. To match the numerics of simulation in
Simulink, the code generator chooses the initial values based on specifications that you
make in the model.

By understanding how the generated code initializes data, you can:

• Model a system that reinitializes states during execution, which means that the
application can restart the entire system.

• Store initial values in memory as variables, which can persist between execution
runs. You can then overwrite these values before starting or restarting a system.

• Generate efficient code by eliminating storage for invariant initial values and by
preventing the generation of code that unnecessarily or redundantly initializes data.

For basic information about initializing signals and states in a model, see “Initialize
Signals and Discrete States” (Simulink) and “Load State Information” (Simulink).

Static Initialization and Dynamic Initialization

To initialize a data item such as a global variable, an application can use either static or
dynamic initialization.

• Static initialization occurs in the same statement that defines (allocates memory for)
the variable. The initialization does not occur inside a function definition.

The code can be more efficient because none of the generated model functions execute
initialization statements.

• Dynamic initialization occurs inside a function. For each model or nonvirtual
subsystem, the code generator typically creates one or more functions that are
dedicated to initialization.

The generated code or your code can restart a system by calling the initialization
function or functions at any time during execution.

19-165

19 Data Representation in Simulink Coder

Real-World Ground Initialization Requiring Nonzero Bit Pattern

Each data item has a real-world ground value. This value can depend on the data type
of the item. For example, for a signal whose data type is double or int8, the real-world
ground value is zero. For an enumeration, the ground value is the default enumeration
member.

For some kinds of data, to represent a real-world ground value, a computer stores zero in
memory (all bits zero). However, for some other data, a computer stores a nonzero value
in memory. This data includes, for example:

• Fixed-point data with bias. The code initializes such a data item to the stored integer
value that, given the scaling and bias, represents real-world zero.

• An enumeration whose default member maps to an integer value other than zero. For
example, if the default member is High with an underlying integer value of 3, the
code initializes such a data item to High.

Initialization of Signal and State Data

In a model, you can control signal and state initial values through block parameters.
For example, to set the initial value of a Unit Delay block, you use the Initial
condition parameter. In some cases, you can also use the InitialValue property of a
Simulink.Signal object. For most of these block parameters, the default value is 0.

You can also initialize states by using State Writer blocks in Initialize Function
subsystems and the Initial states model configuration parameter.

By default, the generated code dynamically initializes signal and state data (and other
data, such as the model error status) in the generated initialization function. The
function, named model_initialize by default, performs signal and state initialization
operations in this order:

1 Initializes all of the signal and state data in the default generated structures, such
as the DWork structure, to a stored value of zero.

2 Initializes additional signal and state data that are not in the default generated
structures to the relevant real-world ground value.

This initialization applies only to data that meet both of these criteria:

• The generated code defines (allocates memory for) the data.

19-166

 Initialization of Signal, State, and Parameter Data in the Generated Code

• The data use a storage class other than Auto (the default storage class) or
SimulinkGlobal.

For example, the code applies this operation to data items that use the storage class
ExportedGlobal.

3 Initializes each signal and state to the real-world value that the model specifies, for
example, through the Initial condition parameter of a Unit Delay block.

4 Initializes each state to the real-world value that you assign by using a State Writer
block. The function performs this initialization only if you use an Initialize Function
subsystem in the model.

5 Initializes each state to the real-world value that you specify with the configuration
parameter Initial states.

After this initialization function executes, each data item has the last real-world value
that the function assigned. For example, if you use a State Writer block to initialize a
block state to 5 while also using the Initial states configuration parameter to initialize
the same state to 10, the state ultimately uses 10 as an initial value.

memset for Bulk Initialization

To initialize signal or state data items that have contiguous storage to a stored value of
zero, the generated code can call memset in an initialization function. Data items that
have contiguous storage include the DWork structure, arrays, or data items that use a
multiword data type.

If your application requires it, you can prevent the generated code from using memset
for initializing floating-point data to stored zero. See “Use memset to initialize floats and
doubles to 0.0” (Simulink).

Tunable Initial Values

You can configure the way that tunable block parameters, such as the Gain parameter
of a Gain block, appear in the generated code. Most block parameters that set initial
values (for example, Initial condition) are tunable. For example, the configuration
parameter Default parameter behavior can determine whether the initial values
appear in the generated code as inlined constants or as tunable global data. You can also
use parameter objects and storage classes to control the representation of these initial
values.

19-167

19 Data Representation in Simulink Coder

For tunable initial values, in the model initialization function, the right-hand side of the
assignment statement is a global variable, structure field, or other data whose value you
can change in memory.

To make initial values tunable in the generated code, see “Control Signal and State
Initialization in the Generated Code” on page 19-147.

Initialization of Parameter Data

The generated code statically initializes parameter data to the values that you specify in
Simulink. For example, these model elements appear in the generated code as parameter
data:

• Tunable block parameters, such as the Gain parameter of a Gain block, when you set
Default parameter behavior to Tunable. Each parameter appears as a field of a
dedicated global structure.

• Some tunable block parameters when you set Default parameter behavior to
Inlined. When the code generator cannot inline the value of a parameter as a literal
number, the parameter appears as a field of a dedicated global const structure.

• Simulink.Parameter objects to which you apply a storage class or custom
storage class that has an exported data scope. For example, the built-in storage
class ExportedGlobal has an exported data scope, but the storage class
ImportedExtern does not.

Data Initialization in the Generated Code

This example shows how the generated code initializes signal, state, and parameter data.

Explore Example Model

Open the example model, rtwdemo_rtwintro.

open_system('rtwdemo_rtwintro')

19-168

 Initialization of Signal, State, and Parameter Data in the Generated Code

In the Unit Delay block, the Initial condition parameter is set to 0, the default, which
means the initial value of the block state is zero.

Set Initial condition to a nonzero number, for example, 5.

set_param('rtwdemo_rtwintro/X','InitialCondition','5')

Inspect the State Attributes tab. The block state is named X.

Set Code generation storage class to ExportedGlobal. When you choose this
setting, the block state appears in the generated code as a separate global variable.

set_param('rtwdemo_rtwintro/X','StateStorageClass','ExportedGlobal')

In the model, open the Amplifier subsystem, which is a triggered subsystem.

19-169

19 Data Representation in Simulink Coder

In the subsystem, in the Outport block, inspect the Initial output parameter. The value
is 0, the default. This subsystem output requires an initial value because the subsystem
executes conditionally. Leave the initial value at the default.

In the model, clear Configuration Parameters > All Parameters > Signal storage
reuse. When you clear this setting, signal lines appear in the generated code as fields of
a generated structure whose purpose is to store signal data. This representation of the
signals makes it easier to see how the code generator initializes data.

set_param('rtwdemo_rtwintro','OptimizeBlockIOStorage','off')

In the model, inspect the configuration parameter Configuration Parameters >
Optimization > Signals and Parameters > Default parameter behavior. The
configuration parameter is set to Inlined, which means block parameters, including
initial values, appear in the generated code as inlined literals or as const data.

In the model, inspect the Constant block labeled INC. The Constant value parameter of
the block is set to INC. INC is a MATLAB variable in the base workspace.

At the command prompt, convert INC to a Simulink.Parameter object and apply the
storage class ExportedGlobal. With these settings, the generated code defines INC as a
global variable. Concerning initialization, INC is an item of parameter data.

INC = Simulink.Parameter(INC);

INC.StorageClass = 'ExportedGlobal';

Generate and Inspect Code

Generate code from the model.

rtwbuild('rtwdemo_rtwintro');

Starting build procedure for model: rtwdemo_rtwintro

Successful completion of build procedure for model: rtwdemo_rtwintro

In the generated file rtwdemo_rtwintro.c, outside the definition of any function, the
code statically initializes the parameter data INC. The value of INC is 1.

file = fullfile('rtwdemo_rtwintro_grt_rtw','rtwdemo_rtwintro.c');

rtwdemodbtype(file,'/* Exported block parameters */','uint8_T INC = 1U;',1,1)

/* Exported block parameters */

uint8_T INC = 1U; /* Variable: INC

19-170

 Initialization of Signal, State, and Parameter Data in the Generated Code

In the same file, inspect the definition of the rtwdemo_rtwintro_initialize function.
First, the function uses memset to initialize all of the internal signals in the model to a
stored value of 0.

rtwdemodbtype(file,'/* block I/O */','sizeof(B_rtwdemo_rtwintro_T));',1,1)

 /* block I/O */

 (void) memset(((void *) &rtwdemo_rtwintro_B), 0,

 sizeof(B_rtwdemo_rtwintro_T));

The function then initializes the Unit Delay state, X, to the appropriate ground value. In
this case, the ground value is zero.

rtwdemodbtype(file,'/* exported global states */','X = 0U;',1,1)

 /* exported global states */

 X = 0U;

The function also initializes other data, including the root-level inputs and outputs
(Inport and Outport blocks), to the appropriate ground values.

rtwdemodbtype(file,'/* external inputs */','Amplifier_Trig_ZCE = POS_ZCSIG;',1,1)

 /* external inputs */

 rtwdemo_rtwintro_U.Input = 0;

 /* external outputs */

 rtwdemo_rtwintro_Y.Output = 0;

 rtwdemo_rtwintro_PrevZCX.Amplifier_Trig_ZCE = POS_ZCSIG;

The function then initializes X to the value that you specified in the Initial condition
block parameter.

rtwdemodbtype(file,'/* InitializeConditions for UnitDelay: ''<Root>/X'' */',...

 'X = 5U;',1,1)

 /* InitializeConditions for UnitDelay: '<Root>/X' */

 X = 5U;

Finally, the function initializes the output of the Amplifier subsystem.

rtwdemodbtype(file,'SystemInitialize for Triggered SubSystem',...

 'End of SystemInitialize for SubSystem',1,1)

19-171

19 Data Representation in Simulink Coder

 /* SystemInitialize for Triggered SubSystem: '<Root>/Amplifier' */

 /* SystemInitialize for Outport: '<Root>/Output' incorporates:

 * SystemInitialize for Outport: '<S1>/Out'

 */

 rtwdemo_rtwintro_Y.Output = 0;

Inspect Difference Between Stored Value and Real-World Value

For some data, even if the real-world initial value is zero, a computer stores a nonzero
value in memory. To observe this difference, apply a slope-bias fixed-point data type to
the block state, X. To run this example, you must have Fixed-Point Designer™.

In the Switch block that feeds the Unit Delay block, on the Signal Attributes tab, set
Output data type to fixdt(1,16,1,3). This expression represents a fixed-point data
type with a slope of 1 and a bias of 3.

set_param('rtwdemo_rtwintro/Switch','OutDataTypeStr',...

 'fixdt(1,16,1,3)')

In the Sum block, on the Signal Attributes tab, clear Require all inputs to have the
same data type.

set_param('rtwdemo_rtwintro/Sum','InputSameDT','off')

To prevent compilation errors on different platforms, select the model configuration
parameter Generate code only. This setting causes the model to generate only code.

set_param('rtwdemo_rtwintro','GenCodeOnly','on')

Generate code from the model.

rtwbuild('rtwdemo_rtwintro')

Starting build procedure for model: rtwdemo_rtwintro

Successful completion of code generation for model: rtwdemo_rtwintro

The model initialization function first initializes X to the appropriate real-world ground
value, 0. Due to the slope-bias data type, which has bias 3, this real-world value
corresponds to a stored value of -3.

rtwdemodbtype(file,'/* exported global states */','X = -3;',1,1)

 /* exported global states */

19-172

 Initialization of Signal, State, and Parameter Data in the Generated Code

 X = -3;

The function then initializes X to the real-world initial value that you specified in the
Initial condition block parameter, 5. This real-world value corresponds to a stored
value of 2.

rtwdemodbtype(file,'/* InitializeConditions for UnitDelay: ''<Root>/X'' */',...

 'X = 2;',1,1)

 /* InitializeConditions for UnitDelay: '<Root>/X' */

 X = 2;

Modeling Goals

Goal More Information

Explicitly model
initialization
behavior by using
blocks

You can explicitly model initialization and reset behavior by
using Initialize Function and Reset Function subsystems. In the
subsystems, use State Writer blocks to calculate and assign an
initial value for a state dynamically. The corresponding code appears
in the model initialization function.

For more information, see “Generate Code That Responds to
Initialize, Reset, and Terminate Events” on page 9-2.

Prevent
generation of code
that explicitly
initializes data to
zero

If your application environment already initializes global variables
to zero, for more efficient code, you can prevent the generation of
statements that explicitly initialize global variables to zero. This
optimization applies only to signals and states whose initial values
are stored in memory as zero. For example, the code generator does
not apply the optimization to:

• Data for which you specify a nonzero initial value by using a
block parameter.

• Data whose real-world initial value is zero but whose
corresponding stored value is not zero.

• Enumerated data whose default member maps to a nonzero
integer.

The optimization requires Embedded Coder. For more information,
see “Remove Initialization Code” on page 56-3.

19-173

19 Data Representation in Simulink Coder

Goal More Information

Generate code
that imports
data from your
handwritten code

You can generate code that reuses (imports) data that your
handwritten code defines. For example, you can apply the storage
class ImportedExtern to a signal line, block state, or parameter
object. For imported data:

• The generated code does not initialize parameter data. Your code
must initialize imported parameter data.

• The generated initialization functions dynamically initialize
signal and state data. Your code does not need to initialize
imported signal or state data.

Unlike data that the generated code allocates, the code does not
initialize imported signal or state data to a stored value of zero.
Instead, the code immediately initializes the data to the real-
world value that you specify in Simulink.

To prevent initialization of signal, state, or parameter data by the
generated code, you can create a custom storage class and apply
it to the data items. In the Custom Storage Class Designer, in the
definition of your custom storage class, set Data initialization to
None.

For more information about integrating the generated code with
external code, see “What Is External Code Integration?” on page
39-3. For information about custom storage classes, see
“Introduction to Custom Storage Classes” on page 23-2.

See Also
model_initialize

Related Examples
• “Signal Representation in Generated Code” on page 19-112

19-174

 Signal Processing with Fixed-Point Data

Signal Processing with Fixed-Point Data

This model shows a fixed-point version of an acoustic noise canceller.

19-175

19 Data Representation in Simulink Coder

More About
• “Fixed Point” (Simulink)
• “Acoustic Noise Cancellation (LMS)” (DSP System Toolbox)

19-176

 Optimize Generated Code Using Fixed-Point Data with Simulink®, Stateflow®, and MATLAB®

Optimize Generated Code Using Fixed-Point Data with Simulink®,
Stateflow®, and MATLAB®

This model shows fixed-point code generation in Simulink®, Stateflow®, and MATLAB®.

open_system ('rtwdemo_fixpt1');

More About
• “Fixed Point” (Simulink)

19-177

19 Data Representation in Simulink Coder

Declare Workspace Variables as Tunable Parameters Using the
Model Parameter Configuration Dialog Box

You can use the Model Parameter Configuration dialog box to declare numeric MATLAB
variables in the base workspace as tunable parameters. You can select code generation
options, such as storage class, for each tunable parameter.

However, it is a best practice to instead use parameter objects to declare tunable
parameters. Do not use the Model Parameter Configuration dialog box to select
parameter objects in the base workspace. To use parameter objects, instead of the Model
Parameter Configuration dialog box, to declare tunable parameters, see “Override
Default Parameter Behavior by Creating Global Variables in the Generated Code” on
page 19-49.

Note You cannot use the Model Parameter Configuration dialog box to declare tunable
parameters for a referenced model. Use Simulink.Parameter objects instead.

Declare Existing Workspace Variables as Tunable Parameters

Use the Model Parameter Configuration dialog box to declare existing workspace
variables as tunable parameters for a model.

1 In the Configuration Parameters dialog box, on the Optimization > Signals and
Parameters pane, click Configure.

2 In the Model Parameter Configuration dialog box, under Source list, select a
method to populate the list of available workspace variables.

• Select MATLAB workspace to view all of the numeric variables that are defined
in the base workspace.

• Select Referenced workspace variables to view only the numeric variables
in the base workspace that the model uses. Selecting this option begins a diagram
update and a search for used variables, which can take time for a large model.

3 In the Model Parameter Configuration dialog box, under Source list, select one or
more workspace variables.

4 Click Add to table. The variables appear as tunable parameters under Global
(tunable) parameters, and appear in italic font under Source list.

19-178

 Declare Workspace Variables as Tunable Parameters Using the Model Parameter Configuration Dialog Box

5 Optionally, select a parameter under Global (tunable) parameters, and adjust the
code generation settings for the parameter. For more information about adjusting
the code generation options for tunable parameters, see “Set Tunable Parameter
Code Generation Options” on page 19-179

6 Click OK to apply your selection of tunable parameters and close the dialog box.

Declare New Tunable Parameters

Use the Model Parameter Configuration dialog box to declare new tunable parameters.
You can use this technique to declare the names of tunable parameters, and to adjust
their code generation settings, before you create the corresponding workspace variables.

1 In the Configuration Parameters dialog box, on the Optimization > Signals and
Parameters pane, click Configure.

2 In the Model Parameter Configuration dialog box, under Global (tunable)
parameters, click New.

3 Under the Name column, specify a name for the new tunable parameter.
4 Optionally, adjust the code generation settings for the new parameter. For more

information about adjusting the code generation options for tunable parameters, see
“Set Tunable Parameter Code Generation Options” on page 19-179

5 Click OK to apply your changes and close the dialog box.

Set Tunable Parameter Code Generation Options

To set the properties of tunable parameters listed under Global (tunable) parameters
in the Model Parameter Configuration dialog box, select a parameter and specify a
storage class and, optionally, a storage type qualifier.

Property Description

Storage class Select one of the following to use for code generation:

• SimulinkGlobal (Auto)

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

For more information about tunable parameter storage
classes, see “Override Default Parameter Behavior by

19-179

19 Data Representation in Simulink Coder

Property Description

Creating Global Variables in the Generated Code” on
page 19-49.

Storage type qualifier For variables with a storage class other than
SimulinkGlobal (Auto), you can add a qualifier
(such as const or volatile) to the generated storage
declaration. To do so, you can select a predefined
qualifier from the list, or add qualifiers not in the list
by typing them in. The code generator does not check
the storage type qualifier for validity, and includes the
qualifier text in the generated code without checking
syntax .

Programmatically Declare Workspace Variables as Tunable Parameters

Tune Parameters from the Command Line

When parameters are MATLAB workspace variables, the Model Parameter
Configuration dialog box is the recommended way to see or set the properties of tunable
parameters. In addition to that dialog box, you can also use MATLAB get_param and
set_param commands.

Note You can also use Simulink.Parameter objects for tunable parameters. See “Block
Parameter Representation in the Generated Code” (Simulink Coder) for details.

The following commands return the tunable parameters and corresponding properties:

• get_param(gcs,'TunableVars')

• get_param(gcs,'TunableVarsStorageClass')

• get_param(gcs,'TunableVarsTypeQualifier')

The following commands declare tunable parameters or set corresponding properties:

• set_param(gcs,'TunableVars',str)

The argument str (character vector) is a comma-separated list of variable names.
• set_param(gcs,'TunableVarsStorageClass',str)

19-180

 Declare Workspace Variables as Tunable Parameters Using the Model Parameter Configuration Dialog Box

The argument str (character vector) is a comma-separated list of storage class
settings.

The valid storage class settings are

• Auto

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

• set_param(gcs,'TunableVarsTypeQualifier',str)

The argument str (character vector) is a comma-separated list of storage type
qualifiers.

The following example declares the variable k1 to be tunable, with storage class
ExportedGlobal and type qualifier const. The number of variables and number of
specified storage class settings must match. If you specify multiple variables and storage
class settings, separate them with a comma.

set_param(gcs,'TunableVars','k1')

set_param(gcs,'TunableVarsStorageClass','ExportedGlobal')

set_param(gcs,'TunableVarsTypeQualifier','const')

19-181

20

Data Definition and Declaration
Management in Embedded Coder

• “Overview of Data Objects” on page 20-2
• “Place Global Data Declarations and Definitions in Separate Files” on page 20-3

20 Data Definition and Declaration Management in Embedded Coder

Overview of Data Objects

Data objects include the parameters and signals that the source code uses, and a
description of their properties. Data objects appear in the middle pane of the Model
Explorer. They also appear in the MATLAB workspace. You can control the property
values for each data object, thereby determining how each parameter and signal is
defined and declared in generated code.

Simulink uses a hierarchy of terms that are drawn from object-oriented programming.
For details, see “Data Objects” (Simulink). The sketch below summarizes this hierarchy.

Package

Class Class. . .

P = Property

PV = Property Value
PV

PP P P

PV PV PV

You can use the Simulink.Parameter class to declare a data object for a parameter,
where Simulink is the package name and Parameter is the class name. Likewise, an
instance of a Simulink.Signal class, creates a data object for a signal. Signal data
objects have a different set of properties than a parameter data objects. When you create
a data object, you specify a value for each of the properties, which defines that object.
For more information, see Simulink.Parameter class (Simulink) and Simulink.Signal
(Simulink).

Related Examples
• “Create Data Objects for Code Generation with Data Object Wizard” on page

24-2
• “Place Global Data Declarations and Definitions in Separate Files” on page

20-3

20-2

 Place Global Data Declarations and Definitions in Separate Files

Place Global Data Declarations and Definitions in Separate Files

These examples show how to control the file placement of data items (signals,
parameters, and states) to which you apply storage classes and custom storage classes.

Place Multiple Data Items in Single File by Default

By default, the declarations and definitions generated for individual data items typically
appear in the model source file. This example shows how to modularize the code by
placing these global data in a separate file.

Open the example model rtwdemo_basicsc.

open_system('rtwdemo_basicsc')

The model creates numeric variables in the base workspace. Blocks in the model use
these variables to set parameter values (such as the Gain parameter of a Gain block).
Some of the signals and block states in the model have explicit names, such as input1.

20-3

20 Data Definition and Declaration Management in Embedded Coder

1 Select Code > Data Objects > Data Object Wizard.
2 In the Data Object Wizard, click Find. The Data Object Wizard proposes the

creation of Simulink.Parameter objects to replace the workspace variables and the
creation of Simulink.Signal objects to represent the named signals and states.

3 Click Select All and Create. The Data Object Wizard creates the data objects in the
base workspace. You can use these objects to specify code generation settings for the
corresponding signals, parameters, and states in the model.

4 In the Model Explorer Model Hierarchy pane, select Base Workspace.
5 In the Contents pane, set Column View to Storage Class.
6 For all of the data objects, use the StorageClass column to apply the custom storage

class Default. With this custom storage class, each data object appears in the
generated code as a separate global variable.

7 In the model, set Configuration Parameters > Code Generation > System
target file to ert.tlc. With this setting, the code generator honors custom storage
classes such as Default.

8 Specify that global data items be defined in a separate file. Set Configuration
Parameters > Code Generation > Code Placement > Data definition to Data
defined in a single separate source file. Accept the default for Data
definition filename, global.c.

9 Specify that data be declared in a separate file. Set Data declaration to Data
declared in a single separate header file and accept the default for
Data declaration filename, global.h. Then, click Apply.

10 Generate code from the model. Notice that the code generation report lists global.c
and global.h files.

11 Inspect the code generation report. Notice that:

• The global data are defined and, for parameters, initialized in global.c.
• The file rtwdemo_basicsc.c includes (#include) rtwdemo_basicsc.h.
• The file rtwdemo_basicsc.h includes global.h.

Place Each Data Item in Individual File

In the previous example, you place global data in a separate definition file and a
declaration file. You name the files global.c and global.h. You can override this
specification and place each individual data item in its own file. In this example, move
the output signal to a file named outputsig.c. Keep the other data defined in
global.c.

20-4

 Place Global Data Declarations and Definitions in Separate Files

1 In your current folder, delete the slprj subfolder.
2 In the Model Explorer, display the base workspace and select the output signal

object. The Simulink.Signal properties appear in the right pane.
3 In the Code generation options section, set Storage class to ExportToFile. Set

HeaderFile to outputsig.h and DefinitionFile to outputsig.c. Click Apply.
4 Generate code from the model. The code generation report still lists global.c and

global.h, but adds outputsig.c and outputsig.h.
5 Inspect the new files. The output signal is defined in outputsig.c. Other data are

still defined in global.c.

See Also
Simulink.Parameter | Simulink.Signal

Related Examples
• “Manage Placement of Data Definitions and Declarations” on page 36-100
• “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
• “Block Parameter Representation in the Generated Code” (Simulink Coder)
• “Data Objects” (Simulink)

20-5

21

Data Types in Embedded Coder

• “What Are User-Defined Data Types?” on page 21-2
• “Control File Placement of User-Defined Types” on page 21-6
• “Create and Apply User-Defined Data Types” on page 21-9
• “Create Data Type Alias in the Generated Code” on page 21-12
• “Create a Named Fixed-Point Data Type in the Generated Code” on page 21-18
• “Conform to Coding Standards by Replacing and Renaming Data Types” on page

21-22
• “Exchange Structured and Enumerated Data Between Generated and External Code”

on page 21-28
• “Data Type Replacement” on page 21-36
• “Specify Boolean and Data Type Limit Identifiers” on page 21-43

21 Data Types in Embedded Coder

What Are User-Defined Data Types?

User-defined data types are objects of the following data type classes.

• Simulink.AliasType

• Simulink.NumericType

You can apply user-defined data types to achieve the following objectives in the
generated code.

• Specify custom data type names for individual block parameters and signals by
creating aliases of the built-in Simulink types. You can configure the aliases to appear
in the block diagram and in generated code. For more information, see “Create Data
Type Alias in the Generated Code” on page 21-12.

• Map your own data type definitions to the built-in data types, and specify that your
data types are to be used in generated code. For more information, see “Data Type
Replacement” on page 21-36.

• Optionally, generate #include directives to import header files that contain your
data type definitions. This technique allows you to use legacy data types in generated
code.

In general, code generated from user-defined data objects conforms to the properties and
attributes of the objects as defined for use in simulation. When generating code from
user-defined data objects, the name of the object is the name of the data type that is used
in the generated code. For Simulink.NumericType objects whose IsAlias property is
false or 0, the name of the functionally equivalent built-in or fixed-point Simulink data
type is used instead.

• To create your own data type as an alias of a built-in data type and share the type
between data items in a model, you can use a Simulink.AliasType object or a
Simulink.NumericType object. For a Simulink.NumericType object, set the
IsAlias property to true.

To create an alias of an enumerated data type, you must use a Simulink.AliasType
object.

• To share a numeric data type such as single, int16, or a fixed-point data type
without renaming the type, use a Simulink.NumericType object and set IsAlias
to false (the default).

21-2

 What Are User-Defined Data Types?

Define Abstract Numeric Types and Rename Types

This model shows user-defined types, consisting of numeric and alias types. Numeric
types allow you to define abstract numeric types, which is particularly useful for fixed-
point types. Alias types allow you to rename types, which allows you create a relationship
for types.

Explore Example Model

Open the example model.

open_system('rtwdemo_udt')

Key Features of User-Defined Types

• Displayed and propagated on signal lines
• Used to parameterize a model by type (e.g., In1 specifies its Output data type as

ENG_SPEED)
• Types with a common ancestor can be mixed, whereby the common ancestor is

propagated (e.g., output of Sum1)
• Intrinsically supported by the Simulink Model Explorer
• Include an optional header file attribute that is ideal for importing legacy types

(ignored for GRT targets)
• Types used in the generated code (ignored for GRT targets)

21-3

21 Data Types in Embedded Coder

Instructions

1 Inspect the user-defined types in the Model Explorer by double-clicking the first
yellow button below.

2 Inspect the replacement data type mapping by double-clicking the second yellow
button below.

3 Compile the diagram to display the types in this model (Simulation > Update
Diagram or Ctrl+D).

4 Generate code with the blue button below and inspect model files to see how user-
defined types appear in the generated code.

5 Modify the attributes of ENG_SPEED and ENG_SPEED_OFFSET and repeat steps 1-4.

Notes

• User-defined types are a feature of Simulink that facilitate parameterization of
the data types in a model. Embedded Coder preserves alias data type names (e.g.,
ENG_SPEED) in the generated code, whereas Simulink Coder implements user-define
types as their base type (e.g., real32_T).

• Embedded Coder also enables you to replace the built-in data types with user-defined
data types in the generated code.

Rename Data Type Object

To rename a data type object after you create it (for example, to rename an alias when
coding standards change or when you encounter a naming conflict), you can allow
Simulink to rename the object and correct all of the references to the object that appear
in a model or models. In the Model Explorer, right-click the variable and select Rename
All. For more information, see “Rename Variable” (Simulink).

Enumerations and Structures

To generate Simulink representations of custom struct and enum data types that
your C code defines, use the Simulink.importExternalCTypes function to create
corresponding Simulink.Bus objects and enumeration classes.

Related Examples
• “Unit Specification in Simulink Models” (Simulink)

21-4

 What Are User-Defined Data Types?

• “Create Data Type Alias in the Generated Code” on page 21-12
• “Data Type Replacement” on page 21-36
• “Group Signals into Structures in the Generated Code Using Buses” on page 19-139
• “Data Objects” (Simulink)

21-5

21 Data Types in Embedded Coder

Control File Placement of User-Defined Types

In this section...

“Data Scope and Header File” on page 21-6
“Macro Guards” on page 21-7

When you use data type objects such as Simulink.AliasType to specify data types for
signals and block parameters, the code generated from the model defines the types with
typedef statements. To ease integration of the generated code with other existing code,
you can control the file placement of the typedef statements by adjusting the properties
of the objects.

Data Scope and Header File

To control the file placement of a typedef statement in generated code, set the
DataScope and HeaderFile properties of the data type object according to the table.

• typename is the name of the custom data type.
• filename is the name of a header file.
• model is the name of the model.

Goal Specify DataScope as Specify HeaderFile as

Export type definition to
model_types.h

Auto Empty

Import type definition
from a header file that you
create, filename.h

Auto or Imported filename.h

Export type definition to
a generated header file,
filename.h

Exported filename.h

Import type definition
from a header file that you
create, typename.h

Imported Empty

Export type definition to
a generated header file,
typename.h

Exported Empty

21-6

 Control File Placement of User-Defined Types

When you import a data type definition, the generated model code creates an #include
directive for your header file in place of a typedef statement. You must supply the
header file that contains the typedef statement.

By default, the generated #include directives use the preprocessor delimiter " instead
of < and >. To generate the directive #include <myTypes.h>, specify the HeaderFile
property as <myTypes.h>.

Data Type Replacement

If you use Data Type Replacement to replace a built-in Simulink data type with your own
data type in generated code, typedef statements and #include directives appear in
rtwtypes.h instead of model_types.h.

Macro Guards

When you export one or more data type definitions to a generated header file, the file
contains a file-level macro guard of the form RTW_HEADER_filename_h.

Suppose you use several Simulink.AliasType objects: mySingleAlias,
myDoubleAlias, and myIntAlias with these properties:

• DataScope set to Exported
• HeaderFile set to myTypes.h

When you generate code, the guarded file myTypes.h contains the typedef statements:

#ifndef RTW_HEADER_myTypes_h_

#define RTW_HEADER_myTypes_h_

#include "rtwtypes.h"

typedef real_T myDoubleAlias;

typedef real32_T mySingleAlias;

typedef int16_T myIntAlias;

#endif

When you export data type definitions to model_types.h, the file contains a macro
guard of the form _DEFINED_TYPEDEF_FOR_typename_ for each typedef statement.
Suppose you use a Simulink.AliasType object mySingleAlias with these properties:

• DataScope set to Auto

21-7

21 Data Types in Embedded Coder

• HeaderFile not specified

When you generate code, the file model_types.h contains the guarded typedef
statement:

#ifndef _DEFINED_TYPEDEF_FOR_mySingleAlias_

#define _DEFINED_TYPEDEF_FOR_mySingleAlias_

typedef real32_T mySingleAlias;

#endif

See Also
Simulink.AliasType | Simulink.Bus | Simulink.NumericType

Related Examples
• “Create Data Type Alias in the Generated Code” on page 21-12
• “Data Type Replacement” on page 21-36
• “What Are User-Defined Data Types?” on page 21-2

21-8

 Create and Apply User-Defined Data Types

Create and Apply User-Defined Data Types

This example shows how to create user-defined data types and specify them for data
objects.

1 Open the Model Explorer and create Simulink.Signal and Simulink.Parameter
objects in the base workspace.

2 Click Add > Simulink.AliasType to create a data type object.
3 Name the object and set its Base type to int32 and Header file to

myDataTypes.h.

21-9

21 Data Types in Embedded Coder

4 Select the data object for which you want to specify the user-defined data type. Click
its Data Type field and from the drop down select Refresh data types.

This action updates the data type list with the user-defined data type you created.
5 Select the user-defined data type.

21-10

 Create and Apply User-Defined Data Types

See Also
Simulink.AliasType | Simulink.importExternalCTypes

Related Examples
• “Create Data Type Alias in the Generated Code” on page 21-12
• “Data Objects” (Simulink)
• “Parameter Data Types in the Generated Code” on page 19-79
• “Data Type Replacement” on page 21-36
• “Create a Named Fixed-Point Data Type in the Generated Code” on page 21-18

21-11

21 Data Types in Embedded Coder

Create Data Type Alias in the Generated Code

You can create your own data type in code that a model generates by using an alias
of an existing type. You can use the alias to specify parameter and signal data types
throughout a model diagram and in generated code.

You can use an alias for the built-in Simulink data types, custom enumerated types that
you create, and fixed-point data types that you create. To create a data type alias, you
use an object of the class Simulink.AliasType.

You can also rename a built-in Simulink type in code generated from a model without
using a data type alias in the model diagram. For more information, see “Data Type
Replacement”.

Export Type Definition

When you integrate code generated from a model with code from other sources, your
model code can create an exported typedef statement. Therefore, all of the integrated
code can use the type. This example shows how to export the definition of a data type to a
generated header file.

Create a Simulink.AliasType object named mySingleAlias that acts as an alias for
the built-in data type single.

mySingleAlias = Simulink.AliasType('single')

mySingleAlias =

 AliasType with properties:

 Description: ''

 DataScope: 'Auto'

 HeaderFile: ''

 BaseType: 'single'

Configure the object to export its definition to a header file called myHdrFile.h.

mySingleAlias.DataScope = 'Exported';

mySingleAlias.HeaderFile = 'myHdrFile.h';

Open the model rtwdemo_basicsc.

21-12

 Create Data Type Alias in the Generated Code

open_system('rtwdemo_basicsc')

Inspect the parameters of the Inport block labeled In1. On the Signal Attributes tab,
Data type is set to single.

Set Data type to the alias mySingleAlias.

set_param('rtwdemo_basicsc/In1','OutDataTypeStr','mySingleAlias')

In the model, set Configuration Parameters > Code Generation > System target
file to ert.tlc. With this setting, the code generator honors data type aliases such as
mySingleAlias.

set_param('rtwdemo_basicsc','SystemTargetFile','ert.tlc')

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

21-13

21 Data Types in Embedded Coder

In the code generation report, view the file rtwdemo_basicsc_types.h. The code
creates a #include directive for the generated file myHdrFile.h.

file = fullfile('rtwdemo_basicsc_ert_rtw','rtwdemo_basicsc_types.h');

rtwdemodbtype(file,'#include "myHdrFile.h"',...

 '#include "myHdrFile.h"',1,1)

#include "myHdrFile.h"

View the file myHdrFile.h. The code uses the identifier mySingleAlias as an alias for
the data type real32_T. By default, generated code represents the Simulink data type
single by using the identifier real32_T.

The code also provides a macro guard of the form RTW_HEADER_filename_h_. When you
export a data type definition to integrate generated code with code from other sources,
you can use macro guards of this form to prevent identifier clashes.

file = fullfile('rtwdemo_basicsc_ert_rtw','myHdrFile.h');

rtwdemodbtype(file,'#ifndef RTW_HEADER_myHdrFile_h_',...

 '/* RTW_HEADER_myHdrFile_h_ */',1,1)

#ifndef RTW_HEADER_myHdrFile_h_

#define RTW_HEADER_myHdrFile_h_

#include "rtwtypes.h"

typedef real32_T mySingleAlias;

typedef creal32_T cmySingleAlias;

View the file rtwdemo_basicsc.h. The code uses the data type alias mySingleAlias
to define the structure field input1, which corresponds to the Inport block labeled In1.

file = fullfile('rtwdemo_basicsc_ert_rtw','rtwdemo_basicsc.h');

rtwdemodbtype(file,'/* External inputs (root inport signals with auto storage) */',...

 '} ExtU_rtwdemo_basicsc_T;',1,1)

/* External inputs (root inport signals with auto storage) */

typedef struct {

 mySingleAlias input1; /* '<Root>/In1' */

 real32_T input2; /* '<Root>/In2' */

 real32_T input3; /* '<Root>/In3' */

 real32_T input4; /* '<Root>/In4' */

21-14

 Create Data Type Alias in the Generated Code

} ExtU_rtwdemo_basicsc_T;

Import Type Definition

When you integrate code generated from a model with code from other sources, to avoid
redundant typedef statements, you can import a data type definition to the model code.
This example shows how to import your own definition of a data type from a header file
that you create.

Use a text editor to create a header file to import. Name the file myImportedHdrFile.h.
Place it in your working folder. Copy the following code into the file.

#ifndef HEADER_myImportedHdrFile_h_

#define HEADER_myImportedHdrFile_h_

typedef float myTypeAlias;

#endif

The code uses the identifier myTypeAlias to create an alias for the data type float.
The code also uses a macro guard of the form HEADER_filename_h. When you import
a data type definition to integrate generated code with code from other sources, you can
use macro guards of this form to prevent identifier clashes.

At the command prompt, create a Simulink.AliasType object named myTypeAlias
that creates an alias for the built-in type single. The Simulink data type single
corresponds to the data type float in generated code.

myTypeAlias = Simulink.AliasType('single')

myTypeAlias =

 AliasType with properties:

 Description: ''

 DataScope: 'Auto'

 HeaderFile: ''

 BaseType: 'single'

Configure the object so that generated code imports the type definition from the header
file myImportedHdrFile.h.

21-15

21 Data Types in Embedded Coder

myTypeAlias.DataScope = 'Imported';

myTypeAlias.HeaderFile = 'myImportedHdrFile.h';

Open the model rtwdemo_basicsc.

open_system('rtwdemo_basicsc')

Inspect the parameters of the Inport block labeled In1. On the Signal Attributes tab,
Data type is set to single.

Set Data type to the alias myTypeAlias.

set_param('rtwdemo_basicsc/In1','OutDataTypeStr','myTypeAlias')

In the model, set Configuration Parameters > Code Generation > System target
file to ert.tlc. With this setting, the code generator honors data type aliases such as
myTypeAlias.

set_param('rtwdemo_basicsc','SystemTargetFile','ert.tlc')

Generate code from the model.

rtwbuild('rtwdemo_basicsc')

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

In the code generation report, view the file rtwdemo_basicsc_types.h. The code
creates a #include directive for your header file myImportedHdrFile.h.

file = fullfile('rtwdemo_basicsc_ert_rtw','rtwdemo_basicsc_types.h');

rtwdemodbtype(file,'#include "myImportedHdrFile.h',...

 '/* Forward declaration for rtModel */',1,0)

#include "myImportedHdrFile.h"

View the file rtwdemo_basicsc.h. The code uses the data type alias myTypeAlias to
define the structure field input1, which corresponds to the Inport block labeled In1.

file = fullfile('rtwdemo_basicsc_ert_rtw','rtwdemo_basicsc.h');

rtwdemodbtype(file,'/* External inputs (root inport signals with auto storage) */',...

 '} ExtU_rtwdemo_basicsc_T;',1,1)

21-16

 Create Data Type Alias in the Generated Code

/* External inputs (root inport signals with auto storage) */

typedef struct {

 myTypeAlias input1; /* '<Root>/In1' */

 real32_T input2; /* '<Root>/In2' */

 real32_T input3; /* '<Root>/In3' */

 real32_T input4; /* '<Root>/In4' */

} ExtU_rtwdemo_basicsc_T;

Display Base Data Types and Aliases on Model Diagram

When you display signal data types on the model diagram by selecting Display >
Signals and Ports > Port Data Types, by default, the diagram displays aliases
instead of base data types (such as int16). To display the base types, choose an option
for Display > Signals and Ports > Port Data Type Display Format. For more
information, see “Port Data Types” (Simulink).

See Also
Simulink.AliasType | Simulink.importExternalCTypes |
Simulink.NumericType

Related Examples
• “Conform to Coding Standards by Replacing and Renaming Data Types” on page

21-22
• “Create and Apply User-Defined Data Types” on page 21-9
• “Data Type Replacement” on page 21-36
• “Use single Data Type as Default for Underspecified Types” on page 19-43
• “Create a Named Fixed-Point Data Type in the Generated Code” on page 21-18
• “What Are User-Defined Data Types?” on page 21-2
• “Group Signals into Structures in the Generated Code Using Buses” on page 19-139
• “Data Objects” (Simulink)

21-17

21 Data Types in Embedded Coder

Create a Named Fixed-Point Data Type in the Generated Code

This example shows how to create and name a fixed-point data type in generated code.
You can use the name of the type to specify parameter and signal data types throughout
a model and in generated code.

The example model rtwdemo_fixpt1 uses fixed-point data types. So that you can more
easily see the fixed-point data type in the generated code, in this example, you create a
Simulink.Parameter object that appears in the code as a global variable.

Create a Simulink.AliasType object that defines a fixed-point data type. Name the
object myFixType. The generated code uses the name of the object as a data type.

myFixType = Simulink.AliasType('fixdt(1,16,4)');

Open the model rtwdemo_fixpt1.

open_system('rtwdemo_fixpt1')

21-18

 Create a Named Fixed-Point Data Type in the Generated Code

Inspect the parameters of the Gain block. For example, open the block dialog box.

Set the value of the Gain parameter to myKParam.

Click the action button next to the parameter value. Select Create Variable.

In the Create New Data dialog box, set Value to Simulink.Parameter(8). Click
Create. A Simulink.Parameter object named myKParam appears in the base
workspace. The object stores the real-world value 8, which the Gain block uses for the
value of the Gain parameter.

21-19

21 Data Types in Embedded Coder

In the Simulink.Parameter property dialog box, set Storage class to
ExportedGlobal. Click OK. With this setting, myKParam appears in the generated code
as a separate global variable.

In the block dialog box, on the Signal Attributes tab, set Output data type to
myFixType.

On the Parameter Attributes tab, set Parameter data type to myFixType.

Alternatively, you can use these commands at the command prompt to configure the
block and create the object:

set_param('rtwdemo_fixpt1/Gain','Gain','myKParam','OutDataTypeStr','myFixType',...

 'ParamDataTypeStr','myFixType')

myKParam = Simulink.Parameter(8);

myKParam.StorageClass = 'ExportedGlobal';

Inspect the parameters of the Data Type Conversion block labeled Conversion. Set
Output data type to myFixType.

set_param('rtwdemo_fixpt1/Conversion','OutDataTypeStr','myFixType')

In the model, set Configuration Parameters > Code Generation > System target
file to ert.tlc. With this setting, the code generator honors data type aliases such as
myFixType.

set_param('rtwdemo_fixpt1','SystemTargetFile','ert.tlc')

Select the configuration parameter Generate code only.

set_param('rtwdemo_fixpt1','GenCodeOnly','on')

Generate code from the model.

rtwbuild('rtwdemo_fixpt1')

Starting build procedure for model: rtwdemo_fixpt1

Successful completion of code generation for model: rtwdemo_fixpt1

In the code generation report, view the file rtwdemo_fixpt1_types.h. The code defines
the type myFixType based on an integer type of the specified word length (16).

file = fullfile('rtwdemo_fixpt1_ert_rtw','rtwdemo_fixpt1_types.h');

rtwdemodbtype(file,'#ifndef DEFINED_TYPEDEF_FOR_myFixType_',...

 '/* Forward declaration for rtModel */',1,0)

21-20

 Create a Named Fixed-Point Data Type in the Generated Code

#ifndef DEFINED_TYPEDEF_FOR_myFixType_

#define DEFINED_TYPEDEF_FOR_myFixType_

typedef int16_T myFixType;

typedef cint16_T cmyFixType;

#endif

View the file rtwdemo_fixpt1.c. The code uses the type myFixType, which is an alias
of the integer type int16, to define the variable myKParam.

file = fullfile('rtwdemo_fixpt1_ert_rtw','rtwdemo_fixpt1.c');

rtwdemodbtype(file,'myFixType myKParam = 128;','myFixType myKParam = 128;',1,1)

myFixType myKParam = 128; /* Variable: myKParam

The stored integer value 128 of myKParam is not the same as the real-world value
8 because of the scaling that the fixed-point data type myFixType specifies. For
more information, see “Scaling” (Fixed-Point Designer) in the Fixed-Point Designer
documentation.

The line of code that represents the Gain block applies a right bit shift corresponding to
the fraction length specified by myFixType.

rtwdemodbtype(file,...

 'rtwdemo_fixpt1_Y.Out1 = (myFixType)(myKParam * rtb_Conversion >> 4);',...

 'rtwdemo_fixpt1_Y.Out1 = (myFixType)(myKParam * rtb_Conversion >> 4);',1,1)

 rtwdemo_fixpt1_Y.Out1 = (myFixType)(myKParam * rtb_Conversion >> 4);

See Also
fixdt | Simulink.NumericType

Related Examples
• “Air-Fuel Ratio Control System with Fixed-Point Data” (Simulink Coder)
• “Create and Apply User-Defined Data Types” on page 21-9
• “What Are User-Defined Data Types?” on page 21-2
• “Data Objects” (Simulink)

21-21

21 Data Types in Embedded Coder

Conform to Coding Standards by Replacing and Renaming Data
Types

By default, the generated code uses Simulink Coder data type aliases such as real_T
and int32_T. The code uses these aliases to define global and local variables. If your
coding standards require that you use other data type aliases, including aliases that your
existing code defines, you can:

• Configure data type replacement for the entire model.
• Configure individual data items (such as signals, parameters, and states) to use

specific data type aliases.

For basic information about controlling data types in a model, see “Control Signal Data
Types” (Simulink).

Inspect Custom C Code

Save this custom C code into a file named my_types.h in your current folder. This file
represents a header file in your existing code that defines custom data type aliases by
using typedef statements.

#include <stdbool.h>

typedef double my_dblPrecision;

typedef short my_int16;

typedef bool my_bool;

Explore Example Model and Default Generated Code

1 Open the example model ex_data_type_replacement.

open_system(fullfile(docroot,'toolbox','ecoder','examples',...

'ex_data_type_replacement'))

2 Right-click one of the named signal lines, such as temp, and select Properties.
3 In the Signal Properties dialog box, select the Code Generation tab.

For the named signals, Storage class is set to ExportedGlobal. With this setting,
the signal lines appear in the generated code as separate global variables.

4 Update the block diagram.

21-22

 Conform to Coding Standards by Replacing and Renaming Data Types

The signals in the model use a mix of the data types int16, double, and boolean.
5 Generate code from the model.
6 In the code generation report, inspect the shared utility file rtwtypes.h. The code

uses typedef statements to rename the primitive C data types by using standard
Simulink Coder aliases. For example, the code renames the primitive type double
by using the alias real_T.

typedef double real_T;

7 Inspect the file ex_data_type_replacement.c. The code uses the Simulink Coder
data type aliases to declare and define variables. For example, the code uses the
data types real_T, int16_T, and boolean_T to define the global variables flowIn,
temp, and intlk.

real_T flowIn; /* '<Root>/In3' */

int16_T temp; /* '<Root>/Add2' */

boolean_T intlk; /* '<S1>/Compare' */

The model step function defines local variables by using the same data type aliases.

real_T rtb_Add;

real_T rtb_FilterCoefficient;

Reuse Custom Data Type Definitions

1 At the command prompt, create a Simulink.AliasType object for each data type
alias that your custom code defines.

Simulink.importExternalCTypes('my_types.h');

In the base workspace, the Simulink.importExternalCTypes function creates
the objects my_dblPrecision, my_int16, and my_bool.

For each object, the function sets the DataScope property to 'Imported' and the
HeaderFile property to 'my_types.h'. With these settings, the code generator
does not create a typedef statement for each object, but instead the generated code
reuses the statements from my_types.h by including (#include) the file.

2 In the model, in the Configuration Parameters dialog box, on the Code Generation
> Data Type Replacement pane, select Replace data type names in the
generated code.

21-23

21 Data Types in Embedded Coder

3 Specify the options in the Replacement Name column according to the table.

Simulink Name Replacement Name

double my_dblPrecision

int16 my_int16

boolean my_bool

4 Generate code from the model.
5 In the code generation report, inspect the file rtwtypes.h. Now, the code uses an

#include directive to import the contents of the custom header file my_types.h,
which contains the custom data type aliases.

#include "my_types.h" /* User defined replacement datatype for int16_T real_T boolean_T */

6 Inspect the file ex_data_type_replacement.c. The code uses the custom data
type aliases my_dblPrecision, my_int16, and my_bool to define the global
variables such as flowIn, temp, and intlk.

my_dblPrecision flowIn; /* '<Root>/In3' */

my_int16 temp; /* '<Root>/Add2' */

my_bool intlk; /* '<S1>/Compare' */

The model step function defines local variables by using the custom data type
aliases.

my_dblPrecision rtb_Add;

my_dblPrecision rtb_FilterCoefficient;

Create Meaningful Data Type Aliases for Individual Data Items

Suppose your coding standards require that important data items use a data type whose
name indicates the real-world significance. You can create more Simulink.AliasType
objects to represent these custom data type aliases. Use the objects to set the data types
of data items in the model.

1 In the model, set these block parameters.

Block Parameter Parameter Value

In3 Data type flow_T

Flow Setpoint Output data type flow_T

21-24

 Conform to Coding Standards by Replacing and Renaming Data Types

Block Parameter Parameter Value

Add2 Output data type diffTemp_T

Flow Controller Sum output ctrl_T

With these settings, some of the named signals, such as temp and flowIn, use data
types that evoke real-world quantities, such as liquid flow rate and temperature.

2 At the command prompt, create Simulink.AliasType objects to represent these
new custom data type aliases.

flow_T = Simulink.AliasType('double');

diffTemp_T = Simulink.AliasType('int16');

ctrl_T = Simulink.AliasType('double');

In the model, the signals flowIn and flowSetPt use the primitive data type
double, so the data type alias flow_T maps to double.

3 Update the block diagram.

Due to data type inheritance, other signals also use the custom data type aliases.
For example, in the Add block dialog box, on the Signal Attributes tab, the
Output data type parameter is set to the default value, Inherit: Inherit via
internal rule. The internal rule chooses the same data type that the block inputs
use, flow_T.

4 Generate code from the model.
5 The file ex_data_type_replacement_types.h defines the new data types

flow_T, diffTemp_T, and ctrl_T as aliases of my_dblPrecision and my_int16.

typedef my_dblPrecision flow_T;

typedef my_int16 diffTemp_T;

typedef my_dblPrecision ctrl_T;

6 In the file ex_data_type_replacement.c, the code defines global variables by
using the new type names.

flow_T flowIn; /* '<Root>/In3' */

flow_T flowSetPt; /* '<Root>/Flow Setpoint' */

ctrl_T flowCtrl; /* '<Root>/Interlock' */

diffTemp_T temp; /* '<Root>/Add2' */

7 For blocks that do not use the new data types, the corresponding generated code
continues to use the replacement types that you specified earlier. For example, in the

21-25

21 Data Types in Embedded Coder

file ex_data_type_replacement.h, the blocks In1 and In2 appear as structure
fields that use the replacement type my_int16.

/* External inputs (root inport signals with auto storage) */

typedef struct {

 my_int16 In1; /* '<Root>/In1' */

 my_int16 In2; /* '<Root>/In2' */

} ExtU_ex_data_type_replacement_T;

Create Single Point of Definition for Primitive Types

The custom data type aliases flow_T and ctrl_T map to the primitive data
type double. If you want to change this underlying data type from double to
single (float), you must remember to modify the BaseType property of both
Simulink.AliasType objects.

To more easily make this change, you can create a Simulink.NumericType object and
configure both Simulink.AliasType objects to refer to it. Then, you need to modify only
the Simulink.NumericType object. A Simulink.NumericType object enables you to
share a data type without creating a data type alias.

1 At the command prompt, create a Simulink.NumericType object to represent the
primitive data type single.

sharedType = Simulink.NumericType;

sharedType.DataTypeMode = 'Single';

2 Configure the Simulink.AliasType objects flow_T and ctrl_T to acquire an
underlying data type from this new object.

flow_T.BaseType = 'sharedType';

ctrl_T.BaseType = 'sharedType';

3 In the model, select Display > Signals and Ports > Port Data Type Display
Format > Base and Alias Types (see “Port Data Types” (Simulink)). Update the
block diagram.

The data type indicators in the model show that the aliases flow_T and ctrl_T
map to the primitive type single. To change this underlying primitive type, you
can modify the DataTypeMode property of the Simulink.NumericType object,
sharedType.

By default, the Simulink.NumericType object does not cause another typedef
statement to appear in the generated code.

21-26

 Conform to Coding Standards by Replacing and Renaming Data Types

If you generate code from the model while the Simulink.NumericType object
represents the data type single, the generated code maps flow_T and ctrl_T to
the default Simulink Coder data type alias real32_T, which maps to the C data type
float. You can replace real32_T in the same way that you replaced real_T, int16_T,
and boolean_T (Configuration Parameters > Code Generation > Data Type
Replacement).

Permanently Store Data Type Objects

The Simulink.NumericType and Simulink.AliasType objects in the base workspace
do not persist if you end your current MATLAB session. To permanently store these
objects, consider migrating your model to a data dictionary. See “Migrate Models to Use
Simulink Data Dictionary” (Simulink).

Create and Maintain Objects Corresponding to Multiple C typedef
Statements

To create Simulink.AliasType objects for a large number of typedef statements in
your external C code, consider using the Simulink.importExternalCTypes function.

Related Examples
• “Control Code Style” on page 36-36
• “Unit Specification in Simulink Models” (Simulink)
• “Design Data Interface by Configuring Inport and Outport Blocks” on page 19-134
• “Choose an External Code Integration Workflow” on page 39-4
• “Data Type Replacement” on page 21-36
• “Create Data Type Alias in the Generated Code” on page 21-12
• “Control File Placement of User-Defined Types” on page 21-6

21-27

21 Data Types in Embedded Coder

Exchange Structured and Enumerated Data Between Generated
and External Code

This example shows how to generate code that exchanges data with some external,
handwritten code. You construct and configure a model to match data types with the
external code and to avoid duplicating type definitions and memory allocation (definition
of global variables). You then compile the generated code together with the external code
into a single application.

Inspect External Code

Create the file ex_cc_algorithm.c in your current folder.

#include "ex_cc_algorithm.h"

inSigs_T inSigs;

float_32 my_alg(void)

{

 if (inSigs.err == TMP_HI) {

 return 27.5;

 }

 else if (inSigs.err == TMP_LO) {

 return inSigs.sig1 * calPrms.cal3;

 }

 else {

 return inSigs.sig2 * calPrms.cal3;

 }

}

The C code defines a function, my_alg, that uses global structure variables such as
inSigs and calPrms. The code also allocates memory for inSigs.

Create the file ex_cc_algorithm.h in your current folder.

#ifndef ex_cc_algorithm_h

#define ex_cc_algorithm_h

typedef float float_32;

21-28

 Exchange Structured and Enumerated Data Between Generated and External Code

typedef enum {

 TMP_HI = 0,

 TMP_LO,

 NORM,

} err_T;

typedef struct inSigs_tag {

 err_T err;

 float_32 sig1;

 float_32 sig2;

} inSigs_T;

typedef struct calPrms_tag {

 float_32 cal1;

 float_32 cal2;

 float_32 cal3;

} calPrms_T;

extern calPrms_T calPrms;

extern inSigs_T inSigs;

float_32 my_alg(void);

#endif

The file defines float_32 as an alias of the C data type float. The file also defines an
enumerated data type and two structure types.

The function my_alg is designed to calculate a return value by using the fields of
inSigs and calPrms, which are global structure variables of the types inSigs_T and
calPrms_T. The function requires another algorithm to supply the signal data that
inSigs stores.

This code allocates memory for inSigs, but not for calPrms. You must create a model
whose generated code:

• Defines and initializes calPrms.
• Calculates values for the fields of inSigs.
• Reuses the type definitions (such as err_T and float_32) that the external code

defines.

21-29

21 Data Types in Embedded Coder

Create Simulink Model

So that you can create enumerated and structured data in the Simulink model, first
create Simulink representations of the data types that the external code defines. Store
the Simulink types in a new data dictionary named ex_cc_integ.sldd.

Simulink.importExternalCTypes('ex_cc_algorithm.h',...

 'DataDictionary','ex_cc_integ.sldd');

The data dictionary appears in your current folder.

In your current folder, double-click the file to inspect the dictionary contents in the Model
Explorer. The Simulink.importExternalCTypes function creates Simulink.Bus,
Simulink.AliasType, and Simulink.data.dictionary.EnumTypeDefinition
objects that correspond to the custom C data types from ex_cc_algorithm.h.

Create a new, empty model named ex_struct_enum_integ.

Link the model to the data dictionary. In the model, select File > Model Properties >
Link to Data Dictionary.

Add algorithmic blocks that calculate the fields of inSigs.

21-30

 Exchange Structured and Enumerated Data Between Generated and External Code

Now that you have the basic algorithmic model, you must:

• Organize the output signals into a structure variable named inSigs.
• Create the structure variable calPrms.
• Include ex_cc_algorithm.c in the build process that compiles the code after code

generation.

21-31

21 Data Types in Embedded Coder

Configure Generated Code to Write Outputs to Existing Structure Variable

Add a Bus Creator block near the existing Outport blocks.

In the Bus Creator block, set these parameters:

• Number of inputs to 3
• Output data type to Bus: inSigs_T
• Output as nonvirtual bus to selected

Delete the three existing Outport blocks (but not the signals that enter the blocks).

Connect the three remaining signal lines to the inputs of the Bus Creator block.

Add an Outport block after the Bus Creator block. Connect the output of the Bus Creator
to the Outport.

In the Outport block, set the Data type parameter to Bus: inSigs_T.

In the model, select View > Model Data.

On the Inports/Outports tab, for the Inport blocks labeled In2 and In3, change Data
Type from Inherit: auto to float_32.

Change the Change View drop-down list from Design to Code.

For the Outport block, set Signal Name to inSigs.

Set Storage Class to ImportFromFile.

Set Header File to ex_cc_algorithm.h.

Inspect the Signals tab.

In the model, select the output signal of the Multiport Switch block.

In the Model Data Editor, for the selected signal, set Name to err.

Set the name of the output signal of the Gain block to sig1. Set the name of the output
signal of the Gain1 block to sig2.

When you finish, the model stores output signal data (such as the signals err and sig1)
in the fields of a structure variable named inSigs.

21-32

 Exchange Structured and Enumerated Data Between Generated and External Code

Because you set Storage Class to ImportFromFile, the generated code does not
allocate memory for inSigs.

Configure Model to Generate Parameter Data

In the Model Explorer Model Hierarchy pane, under the dictionary node ex_cc_integ,
select the Design Data node.

In the Contents pane, select the Simulink.Bus object calPrms_T.

In the Dialog pane (the right pane), click Launch Bus Editor.

21-33

21 Data Types in Embedded Coder

In the Bus Editor, in the left pane, select calPrms_T.

On the toolbar, click the Create/Edit a Simulink.Parameter Object from a Bus
Object button.

In the MATLAB Editor, copy the generated MATLAB code and run the code at the
command prompt. The code creates a Simulink.Parameter object in the base
workspace.

At the command prompt, set the field values in the parameter object. For the fields cal1
and cal2, use the same values as the Gain blocks in the model. For cal3, use a nonzero
number such as 15.2299995.

calPrms_T_Param.Value.cal1 = 13.8900013;

calPrms_T_Param.Value.cal2 = 0.9983001;

calPrms_T_Param.Value.cal3 = 15.2299995;

In the Model Explorer Model Hierarchy pane, select Base Workspace.

Move the parameter object from the base workspace to the Design Data section of the
data dictionary.

With the data dictionary selected, in the Contents pane, rename the parameter object as
calPrms.

In the right pane, set Storage class to ExportedGlobal.

Save the changes that you made to the dictionary.

In the Model Data Editor, select the Parameters tab.

For the Gain block, replace the value 13.8900013 with calPrms.cal1.

In the other Gain block, use calPrms.cal2.

Generate, Compile, and Inspect Code

Configure the model to include ex_cc_algorithm.c in the build process. Set
Configuration Parameters > Code Generation > Custom Code > Additional build
information > Source files to ex_cc_algorithm.c.

Generate code from the model.

21-34

 Exchange Structured and Enumerated Data Between Generated and External Code

Inspect the generated file ex_struct_enum_integ.c. The file defines and initializes
calPrms.

/* Exported block parameters */

calPrms_T calPrms = {

 13.8900013F,

 0.998300076F,

 15.23F

} ; /* Variable: calPrms

The generated algorithm in the model step function defines a local variable for buffering
the value of the signal err.

err_T rtb_err;

The algorithm then calculates and stores data in the fields of inSig.

inSigs.err = rtb_err;

inSigs.sig1 = (rtU.In2 + rtDW.DiscreteTimeIntegrator_DSTATE) * calPrms.cal1;

inSigs.sig2 = calPrms.cal2 * rtDW.DiscreteTimeIntegrator_DSTATE;

Replace Data Type Names Throughout Model

To generate code that uses float_32 instead of the default, real32_T, instead of
manually specifying the data types of block output signals and bus elements, you can use
data type replacement (Configuration Parameters > Code Generation > Data Type
Replacement). For more information, see “Conform to Coding Standards by Replacing
and Renaming Data Types” on page 21-22.

See Also
Simulink.importExternalCTypes

Related Examples
• “Exchange Data Between External C/C++ Code and Simulink Model or Generated

Code” (Simulink Coder)
• “What Are User-Defined Data Types?” on page 21-2
• “Use Enumerated Data in Generated Code” on page 19-22
• “Group Signals into Structures in the Generated Code Using Buses” on page 19-139

21-35

21 Data Types in Embedded Coder

Data Type Replacement

In this section...

“Replace Built-In Data Types” on page 21-36
“Programmatically Replace Built-In Data Types” on page 21-40
“Data Type Replacement Limitations” on page 21-41

When you generate code for a model, you can replace the default Simulink Coder data
type names, such as real_T and boolean_T, with your own custom names. The model
code creates typedef statements to define your replacement names. It uses your
replacement names instead of the default type names to, for example, define variables
and functions.

You can specify many-to-one data type replacement to replace multiple built-in data
types with one name in the generated code. For example, you can replace the built-in
data types uint8 and boolean with a single data type name that you specify.

In generated code, data type replacement uses the replacements that you specify instead
of the default Simulink Coder data type names. If you want to create custom data type
names for individual block parameters and signals in generated code and in a block
diagram, see “Create Data Type Alias in the Generated Code” on page 21-12.

Replace Built-In Data Types

To configure replacement data type names:

1 In the Configuration Parameters dialog box, select Code Generation > Data
Type Replacement and Replace data type names in the generated code.
The Data type names table lists each Simulink built-in data type name with the
corresponding code generation name.

21-36

 Data Type Replacement

2 Specify the Replacement Name column with values that replace the default names
in the Code Generation Name column. Specify one of these options:

• The name of a Simulink.AliasType object that is in the base workspace or a
data dictionary. When you use a Simulink.AliasType object, you can replace a
data type name with the name of the object.

Set the BaseType property of the object to the corresponding Simulink
Name data type. Set the DataScope property of the object to Auto (default)
or Imported. If you want to use your own header file to define replacement
names, set the HeaderFile property of the object to the header file name and set
DataScope to Imported.

• The data type name from the Simulink Name column. This name replaces
the data type name in the generated code. Using the Simulink Name, you can
replace data types except real_T and real32_T. To specify replacement names
for boolean_T, int_T, uint_T, and char_T, see the following table.

• The name of a Simulink.NumericType object that is in the base workspace or a
data dictionary. When you use a Simulink.NumericType object, you can define
replacement names for real_T, real32_T, and boolean_T.

21-37

21 Data Types in Embedded Coder

Set the DataTypeMode property of the object to the corresponding data type
name from the Simulink Name column.

Specify the Replacement Name for a Data Type

To replace the Code
Generation Name

Specify a
Simulink.AliasType

object with BaseType

Specify the
corresponding Simulink
Name

Specify a
Simulink.NumericType

object with
DataTypeMode

real_T double – Double

real32_T single – Single

int32_T int32 int32 –
int16_T int16 int16 –
int8_T int8 int8 –
uint32_T uint32 uint32 –
uint16_T uint16 uint16 –
uint8_T uint8 uint8 –
boolean_T uint8 or int8 or

intn*

uint8 or int8 or
intn*

Boolean

int_T intn* intn* –
uint_T uintn* uintn* –
char_T intn* intn* –

* Replace n with the number of bits displayed in the Configuration Parameters
dialog box Hardware Implementation pane in either Number of bits: int or
Number of bits: char, depending on the data type that you want to replace.

Note: The boolean_T BaseType must promote to a signed int.

Suppose that in the base workspace you define these replacement data types as
Simulink.AliasType objects.

Replacement Name Description

FLOAT64 64-bit floating point

21-38

 Data Type Replacement

Replacement Name Description

FLOAT32 32-bit floating point
S32 32-bit integer
S16 16-bit integer
S8 8-bit integer
U32 Unsigned 32-bit integer
U16 Unsigned 16-bit integer
U8 Unsigned 8-bit integer
CHAR Character data

You can specify data type replacements with a one-to-one replacement mapping as
shown.

You can also apply a many-to-one data type replacement mapping. For example, you can
replace these data types:

• int32 and int with the name S32.

21-39

21 Data Types in Embedded Coder

• uint32 and uint with the name U32.
• uint8 and boolean with the name U8.

Note: Many-to-one data type replacement does not support the char (char_T) built-in
data type. Use char only in one-to-one data type replacements.

Programmatically Replace Built-In Data Types

To programmatically replace the built-in data type names for your model, adjust the
ReplacementTypes model parameter, which is a structure. This example code shows
how to modify the ReplacementTypes parameter to replace the built-in data type
names int8, uint8, and boolean with the custom data type names my_T_S8, my_T_U8,
and my_T_BOOL.

model = bdroot;

cs = getActiveConfigSet(model);

set_param(cs,'EnableUserReplacementTypes','on');

struc = get_param(cs,'ReplacementTypes');

struc.int8 = 'my_T_S8';

21-40

 Data Type Replacement

struc.uint8 = 'my_T_U8';

struc.boolean = 'my_T_BOOL';

set_param(cs,'ReplacementTypes',struc);

Data Type Replacement Limitations

When you select the model configuration parameter Replace data type names in the
generated code on the Code Generation > Data Type Replacement pane of the
Configuration Parameters dialog box, these limitations apply.

• Data type replacement does not support multiple levels of mapping. Each replacement
data type name maps directly to one or more built-in data types.

• Data type replacement is not supported for simulation target code generation for
referenced models.

• If you select the Classic call interface configuration parameter for your model, data
type replacement is not supported.

• Code generation performs data type replacements while generating .c, .cpp, and .h
files. Code generation places these files in build folders (including top and referenced
model build folders) and in the _sharedutils folder. Exceptions are as follows:

rtwtypes.h

multiword_types.h

model_reference_types.h

builtin_typeid_types.h

model_sf.c or .cpp (ERT S-function wrapper)
model_dt.h (C header file supporting external mode)
model_capi.c or .cpp
model_capi.h

• Data type replacement is not supported for complex data types.
• Many-to-one data type replacement is not supported for the char data type.

Attempting to use char as part of a many-to-one mapping to a custom data type
represents a violation of the MISRA C specification. For example, if you map char
(char_T) and either int8 (int8_T) or uint8 (uint8_T) to the same replacement
type, the result is a MISRA C violation. If you try to generate C++ code, the code
generator makes invalid implicit type casts, resulting in compile-time errors. Use
char only in one-to-one data type replacements.

• For ERT S-functions, replace the boolean data type with only an 8-bit integer, int8,
or uint8.

21-41

21 Data Types in Embedded Coder

• Set the DataScope property of a Simulink.AliasType object to Auto (default) or
Imported.

See Also
Simulink.AliasType | Simulink.NumericType

Related Examples
• “Conform to Coding Standards by Replacing and Renaming Data Types” on page

21-22
• “Replace boolean with Specific Integer Data Type” on page 56-14
• “Create Data Type Alias in the Generated Code” on page 21-12
• “What Are User-Defined Data Types?” on page 21-2

21-42

 Specify Boolean and Data Type Limit Identifiers

Specify Boolean and Data Type Limit Identifiers
You can use command-line parameters to replace the default Boolean and data type
limit identifiers. If you want to associate the data type limit identifiers with the data
type names, consider replacing the default identifiers. You can also use command-
line parameters to import a header file with the Boolean and data type limit identifier
definitions.

Data Type Limit Identifiers

You can control the data type limit identifiers in the generated code by using the
command-line parameters in this table.

Data Type Limit Default Identifier Command-Line Parameter

8-bit integer maximum MAX_int8_T MaxIdInt8

16-bit integer maximum MAX_int16_T MaxIdInt16

32-bit integer maximum MAX_int32_T MaxIdInt32

8-bit unsigned integer
maximum

MAX_uint8_T MaxIdUint8

16-bit unsigned integer
maximum

MAX_uint16_T MaxIdUint16

32-bit unsigned integer
maximum

MAX_uint32_T MaxIdUint32

8-bit integer minimum MIN_int8_T MinIdInt8

16-bit integer minimum MIN_int16_T MinIdInt16

32-bit integer minimum MIN_int32_T MinIdInt32

For example, to change the default identifiers for the 8-bit integer data limit minimum
and maximum to s4g_S4MIN and s4g_S4MAX, respectively:

set_param(gcs,'MinIdInt8','s4g_S4MIN');

set_param(gcs,'MaxIdInt8','s4g_S4MAX')

If you do not import a header file, the generated file rtwtypes.h defines the 8-bit
integer data minimum and maximum identifiers:

#define s4g_S4MAX ((int8_T)(127))

#define s4g_S4MIN ((int8_T)(-128))

21-43

21 Data Types in Embedded Coder

If you do import a header file defining the data type limit identifiers, the header file is
included in rtwtypes.h.

Boolean Identifiers

You can control the Boolean identifiers in the generated code by using the command-line
parameters in this table. When changing boolean identifiers, you must define false to
be numerically equivalent to 0, and true to be numerically equivalent to 1.

Boolean Default Identifier Command-Line Parameter

True true BooleanTrueId

False false BooleanFalseId

For example, to change the default Boolean true and false identifiers:

set_param(gcs,'BooleanTrueId','bTrue');

set_param(gcs,'BooleanFalseId','bFalse')

If you do not import a header file, the generated file rtwtypes.h defines the Boolean
identifiers:

#define bFalse (0U)

#define bTrue (1U)

If you do import a header file defining the Boolean identifiers, the header file is included
in rtwtypes.h.

Note: When changing boolean identifiers, you must define false to be numerically
equivalent to 0, and true to be numerically equivalent to 1.

Boolean and Data Type Limit Identifier Header Files

You can import a header file that defines Boolean and data type limit identifiers using
the command-line parameter TypeLimitIdReplacementHeaderFile. The header file
is included in rtwtypes.h. You must use the command-line parameters to specify the
Boolean and data type limit identifiers that are included in the imported header file.

For example, if you have a header file myfile.h with data type limit definitions, use
TypeLimitIdReplacementHeaderFile to include the definitions in the generated
code:

21-44

 Specify Boolean and Data Type Limit Identifiers

set_param(gcs,'TypeLimitIdReplacementHeaderFile','myfile.h');

The generated file rtwtypes.h includes myfile.h.

/* Import type limit identifier replacement definitions. */

#include "myfile.h"

Related Examples
• “Conform to Coding Standards by Replacing and Renaming Data Types” on page

21-22
• “Data Type Replacement” on page 21-36

21-45

22

Module Packaging Tool (MPT) Data
Objects in Embedded Coder

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

MPT Data Object Properties

In this section...

“Specify Persistence Level for Signals and Parameters” on page 22-14
“Register mpt User Object Types” on page 22-16

The following table describes the properties and property values for mpt.Parameter and
mpt.Signal data objects that appear in the Model Explorer.

Note: You can create mpt.Signal and mpt.Parameter objects in the base MATLAB
or model workspace. However, if you create the object in a model workspace, the object's
storage class must be set to auto.

The figure below shows an example of the Model Explorer. When you select an
mpt.Parameter or mpt.Signal data object in the middle pane, its properties and
property values display in the rightmost pane.

In the Properties column, the table lists the properties in the order in which they appear
on the Model Explorer.

22-2

 MPT Data Object Properties

Parameter and Signal Property Values

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Both User object type *auto Prenamed and predefined property
sets that are registered in the
sl_customization.m file. (See
“Register mpt User Object Types” on page
22-16.) This field is active when a user
object type is registered.

Select auto if this field is available but
you do not want to apply the properties
of a user object type to a selected data
object. The fields on the Model Explorer
are populated with default values.

 Listed user object
type name

Select a user object type name to
apply the properties and values that
you associated with this name in the
sl_customization.m file. The fields
on the Model Explorer are automatically
populated with those values.

Parameter Value *0 The data type and numeric value of
the data object. For example, int8(5).
The numeric value is used as an initial
parameter value in the generated code.

Both Data type Used to specify the data type for an
mpt.Signal data object, but not for an
mpt.Parameter data object. The data
type for an mpt.Parameter data object
is specified in the Value field above.
See “About Data Types in Simulink”
(Simulink).

Both Unit *null Units of measurement of the signal or
parameter. (Enter text in this field.)

22-3

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Both Dimensions *-1 The dimension of the signal or parameter.
For a parameter, the dimension is derived
from its value.

Both Complexity *auto

real

complex

Complexity specifies whether the signal
or parameter is a real or complex number.
Select auto for the code generator to
decide. For a parameter, the complexity is
derived from its value.

Signal Sample time *-1 Model or block execution rate.
Signal Sample mode *auto Determines how the signal propagates

through the model. Select auto for the
code generator to decide.

 Sample based The signal propagates through the model
one sample at a time.

 Frame based The signal propagates through the model
in batches of samples.

Both Minimum *0.0 The minimum value to which the
parameter or signal is expected to be
bound.

 Number within the
minimum range of
the parameter or
signal. (Based on
the data type and
resolution of the
parameter or signal.)

Both Maximum *0.0 Maximum value to which the parameter
or signal is expected to be bound. (Enter
information using a dialog box.)

 Code generation
options

22-4

 MPT Data Object Properties

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

 Storage class Note that an auto selection for a storage
class tells the build process to decide
how to declare and store the selected
parameter or signal.

Both Default
(Custom)

 Code generation decides how to declare
the data object.

Both Global (Custom) Global (Custom)

is the default storage
class for mpt data
objects.

Specifies that a code generator not place a
qualifier in the data object's declaration.

Both Memory section *Default Memory section allows you to specify
storage directives for the data object.
Default specifies that the code generator
not place a type qualifier and pragma
statement with the data object's
declaration.

Parameter MemConst Places the const type qualifier in the
declaration.

Both MemVolatile Places the volatile type qualifier in the
declaration.

Parameter MemConstVolatile Places the const volatile type
qualifier in the declaration.

Both Header file Name of the file used to import or export
the data object. This file contains the
declaration (extern) to the data object.

Also, you can specify this header
filename between the double-quotation
or angle-bracket delimiter. You can
specify the delimiter with or without
the .h extension. For example, specify
"object.h" or "object". For the
selected data object, this overrides
the general delimiter selection in the

22-5

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

#include file delimiter field on the
Configuration Parameters dialog box.

Both Owner *Blank The name of the module that owns this
signal or parameter. This is used to help
determine the ownership of a definition.
For details, see “Ownership Settings” on
page 36-106 and the table “Ownership
Settings” on page 36-116.

Both Definition file *Blank Name of the file that defines the data
object.

 Valid character
vector

Both Persistence level The number you specify is relative to
Signal display level or Parameter tune
level on the Code Placement pane of the
Configuration Parameters dialog box. For
a signal, allows you to specify whether or
not the code generator declares the data
object as global data. For a parameter,
allows you to specify whether or not the
code generator declares the data object as
tunable global data. See Signal display
level and Parameter tune level in
“Model Configuration Parameters: Code
Generation Code Placement”.

Both Bitfield
(Custom)

 Embeds Boolean data in a named bit field.

 Struct name Name of the struct into which the
object's data will be packed.

Parameter Const (Custom) Places the const type qualifier in the
declaration.

Parameter Header file See above.
Parameter Owner See above.

22-6

 MPT Data Object Properties

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Parameter Definition file See above.
Parameter Persistence

 level
 See above.

Both Volatile
(Custom)

 Places the volatile type qualifier in the
declaration.

Both Header file See above.
Both Owner See above.
Both Definition file See above.
Both Persistence

 level
 See above.

Parameter ConstVolatile
(Custom)

 Places the const volatile type
qualifier in declaration.

Parameter Header file See above.
Parameter Owner See above.
Parameter Definition file See above.
Parameter Persistence

 level
 See above.

Parameter Define (Custom) Represents parameters with a #define
macro.

Parameter Header file See above.
Both ExportToFile

(Custom)
 Generates global variable definition, and

generates a user-specified header (.h) file
that contains the declaration (extern) to
that variable.

Both Memory section See above.
Both Header file See above.
Both Definition file See above.
Both ImportFromFile

(Custom)
 Includes predefined header files

containing global variable declarations,

22-7

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

and places the #include in a
corresponding file. Assumes external code
defines (allocates memory) for the global
variable.

Both Data access *Direct Allows you to specify whether the
identifier that corresponds to the selected
data object stores data of a data type
(Direct) or stores the address of the data
(a pointer).

Both Pointer If you select Pointer, the code generator
places * before the identifier in the
generated code.

 Header file See above.
Both Struct (Custom) Embeds data in a named struct to

encapsulate sets of data.
Both Struct name See above.
Signal GetSet (Custom) Reads (gets) and writes (sets) data using

functions.
Signal Header file See above.
Signal Get function Specify the Get function.
Signal Set function Specify the Set function.
Both Alias *null As explained in detail in “Override

Data Object Naming Rules” on page
36-18, for a Simulink or mpt data
object (identifier), specifying a name
in the Alias field overrides the global
naming rule selection you make on the
Configuration Parameters dialog box.

 Valid ANSIa C/C++
variable name

Both Description *null Text description of the parameter or
signal. Appears as a comment beside the

22-8

 MPT Data Object Properties

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

signal or parameter's identifier in the
generated code.

 Character vector
Signal Reusable

(Custom)
 Allows the code generator to reuse a pair

of root I/O signals when you specify the
same name and the same custom storage
class for both. The custom storage class is
either Reusable (Custom) or derived
from Reusable (Custom).

Signal Data Scope *Auto You can specify the scope of symbols
code generation generates for a data
object of this class by selecting a value for
DataScope. When you take the default
of Auto, code generation determines
the symbol scope internally. If possible,
symbols have File scope. Otherwise, they
have Exported scope.

 File Code generation defines the scope of
each symbol as the file that defines it.
File scope requires each symbol to be
used in a single file. If the same symbol
is referenced in multiple files, code
generation reports an error.

 Exported Code generation exports symbols to
external code in the header file specified
by the HeaderFile field. If a HeaderFile
is not specified, symbols are exported to
external code in model.h.

 Imported Code generation imports symbols from
external code in the header file specified
by the HeaderFile field. If you do not
specify a header file, code generation
generates an extern directive in
model_private.h.

22-9

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

Class:
Parameter,
Signal, or Both

Property Available Property
Values
(* Indicates Default)

Description

Signal Header file See above.
Signal Owner See above.
Signal Definition file See above.

a. ANSI is a registered trademark of the American National Standards Institute, Inc.

22-10

 MPT Data Object Properties

mpt Package Custom Storage Classes

CSC Name Purpose Signals? Parameters?

BitField Generate a struct declaration
that embeds Boolean data in
named bit fields.

Y Y

CompilerFlag Supports preprocessor
conditionals defined via compiler
flag. See “Generate Preprocessor
Conditionals for Variant Systems”
on page 14-33.

N Y

Const Generate a constant declaration
with the const type qualifier.

N Y

ConstVolatile Generate declaration of volatile
constant with the const
volatile type qualifier.

N Y

Default The default custom storage class
for the Simulink package. Export
the declaration of data objects to a
default generated header file.

Y Y

Define Generate #define directive. Y Y
ExportToFile Generate header (.h) file, with

user-specified name, containing
global variable declarations.

Y Y

FileScope Generate a static qualifier suffix
for a variable declaration so that
the scope of the variable is limited
to the current file.

Y Y

GetSet Supports specialized function calls
to read and write the memory
associated with a Data Store
Memory block. See “Access Data
Through Functions with Custom
Storage Class GetSet” on page
23-92.

Y Y

22-11

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

CSC Name Purpose Signals? Parameters?

Global The default custom storage class
for the mpt package. Generate
the declaration and definition of a
data object in specified files, and
use the specified memory section.

Y Y

ImportedDefineSupports preprocessor
conditionals defined via legacy
header file. See “Generate
Preprocessor Conditionals for
Variant Systems” on page 14-33.

N Y

ImportFromFileGenerate directives to include
predefined header files containing
global variable declarations.

Y Y

Reusable Allows the code generator to reuse
a pair of root I/O signals when
you specify the same name and
the same custom storage class for
both. The custom storage class
is either Reusable (Custom)
or derived from Reusable
(Custom).

Y N

Struct Generate a struct declaration
encapsulating parameter or signal
object data.

Y Y

StructConst Generate a struct declaration,
with a const type qualifier,
encapsulating parameter object
data.

N Y

StructVolatileGenerate a struct declaration,
with a volatile type qualifier,
encapsulating parameter or signal
object data.

Y Y

Volatile Use volatile type qualifier in
declaration.

Y Y

22-12

 MPT Data Object Properties

Examples of Property Value Changes on Generated Code

What I noticed when inspecting
the .c/.cpp file

Change I made to property value
settings

What I noticed after
regenerating and reinspecting
the file

Example 1:
Parameter data objects can
be declared or defined as
constants. I know that the data
object GAIN is a parameter.
I want this to be declared
or defined in the .c file as a
variable. But I notice that GAIN
is declared as a constant by
the statement const real_T
GAIN = 5.0;. Also, this
statement is in the constant
section of the file.

In the Model Explorer, I clicked
the data object GAIN. I noticed
that the property value for its
Memory section property is set
at MemConst. I changed this to
Default.

I notice two differences. One is
that now GAIN is declared as
a variable with the statement
real_T GAIN = 5.0;. The
second difference is that the
declaration now is located in
the MemConst memory section
in the .c or .cpp file.

Example 2:
I notice again the declaration of
GAIN in the .c file mentioned
in Example 1. It appears as
real_T GAIN = 5.0;. But
I have changed my mind. I
want data object GAIN to be
#define.

I changed the Storage class
selection to Define (Custom).

GAIN is not declared in the .c
file as a MemConst parameter.
Rather, it is defined as a
#define macro by the code
#define GAIN 5.0, and
this is located near the top
of the .c file with the other
preprocessor directives.

Example 3:
I changed my mind again
after doing Example 2. I do
want GAIN defined using
the #define preprocessor
directive. But I do not want to
include the #define in this
file. I know it exists in another
file and I want to reference that
file.

On the Model Explorer, I notice
that the property value for
the Header file property
is blank. I changed this to
filename.h. (I chose the ANSI
C/C++ double quote mechanism
for the #include, but could
have chosen the angle bracket
mechanism.) Also, I must make
the user-defined filename.h
available to the compiler, placing
it either in the system path or
local directory.

#define GAIN 5.0 is not
present in this .c file. Instead,
the #include filename.h
code appears as a preprocessor
directive at the top of the file.

22-13

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

What I noticed when inspecting
the .c/.cpp file

Change I made to property value
settings

What I noticed after
regenerating and reinspecting
the file

Example 4:
I have one more change I
want to make. Let us say that
we have declared the data
object data_in, and that its
declaration statement in the .c
file reads
real_T data_in = 0.0;. I
want to replace this statement
with an alias in the .c file.

In the Model Explorer, I selected
the data object data_in. I
noticed that the Alias field
is blank. I changed this to
data_in_alias, which I know
is a valid ANSI C/C++ variable
name.

The identifier
data_in_alias now appears
in the .c file everywhere
data_in appeared.

Specify Persistence Level for Signals and Parameters

With this procedure, you can control the persistence level of signal and parameter objects
associated with a model. Persistence level allows you to make intermediate variables or
parameters global during initial development. At the later stages of development, you
can use this procedure to remove these signals and parameters for efficiency. Use the
Persistence Level property of mpt.Signal and mpt.Parameter data objects. For
descriptions of the properties on the Model Explorer, see “MPT Data Object Properties”
on page 22-2.

Notice also the Signal display level and Parameter tune level fields on the Code
Placement pane of the Configuration Parameters dialog box, as illustrated in the next
figure.

22-14

 MPT Data Object Properties

The Signal display level field allows you to specify whether or not the code generator
defines a signal data object as global data in the generated code. The number you specify
in this field is relative to the number you specify in the Persistence level field. The
Signal display level number is for mpt (module packaging tool) signal data objects in
the model. The Persistence level number is for a particular mpt signal data object. If
the data object's Persistence level is equal to or less than the Signal display level,
the signal appears in the generated code as global data with the custom attributes
that you specified. For example, this would occur if Persistence level is 2 and Signal
display level is 5.

Otherwise, the code generator automatically determines how the particular signal data
object appears in the generated code. Depending on the settings on the Optimization
pane of the Configuration Parameters dialog box, the signal data object could appear in
the code as local data without the custom attributes you specified for that data object. Or,

22-15

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

based on expression folding, the code generator could remove the data object so that it
does not appear in the code.

The Parameter tune level field allows you to specify whether or not the code generator
declares a parameter data object as tunable global data in the generated code.

The number you specify in this field is relative to the number you specify in the
Persistence level field. The Parameter tune level number is for mpt parameter
data objects in the model. The Persistence level number is for a particular mpt
parameter data object. If the data object's Persistence level is equal to or less than the
Parameter tune level, the parameter appears tunable in the generated code with the
custom attributes that you specified. For example, this would occur if Persistence level
is 2 and Parameter tune level is 5.

Otherwise, the parameter is inlined in the generated code, and the code generation
settings determine its exact form.

Note that, in the initial stages of development, you might be more concerned about
debugging than code size. Or, you might want one or more particular data objects to
appear in the code so that you can analyze intermediate calculations of an equation. In
this case, you might want to specify the Parameter tune level (Signal display level
for signals) to be higher than Persistence level for some mpt parameter (or signal) data
objects. This results in larger code size, because the code generator defines the parameter
(or signal) data objects as global data, which have the custom properties you specified. As
you approach production code generation, however, you might have more concern about
reducing the size of the code and less need for debugging or intermediate analyses. In
this stage of the tradeoff, you could make the Parameter tune level (Signal display
level for signals) greater than Persistence level for one or more data objects, generate
code and observe the results. Repeat until satisfied.

1 With the model open, in the Configuration Parameters dialog box, select Code
Generation > Code Placement.

2 Type the desired number in the Signal display level or Parameter tune level
field, and click Apply.

3 In the Model Explorer, type the desired number in the Persistence field for the
selected signal or parameter, and click Apply.

4 Save the model and generate code.

Register mpt User Object Types

• “Introduction” on page 22-17

22-16

 MPT Data Object Properties

• “Register mpt User Object Types Using sl_customization.m” on page 22-17
• “mpt User Object Type Customization Using sl_customization.m” on page 22-18

Introduction

Embedded Coder allows you to create custom mpt object types and specify properties
and property values to be associated with them. Once created, a user object type can be
applied to data objects displayed in Model Explorer. When you apply a user object type to
a data object, by selecting a type name in the User object type pull-down list in Model
Explorer, the data object is automatically populated with the properties and property
values that you specified for the user object type.

To register mpt user object type customizations, use the Simulink customization file
sl_customization.m. This file is a mechanism that allows you to use MATLAB code to
perform customizations of the standard Simulink user interface. The Simulink software
reads the sl_customization.m file, if present on the MATLAB path, when it starts
and the customizations specified in the file are applied to the Simulink session. For
more information on the sl_customization.m customization file, see “Registering
Customizations” (Simulink).

Register mpt User Object Types Using sl_customization.m

To register mpt user object type customizations, you create an instance of
sl_customization.m and include it on the MATLAB path of the Simulink installation
that you want to customize. The sl_customization function accepts one argument: a
handle to a customization manager object. For example,

function sl_customization(cm)

As a starting point for your customizations, the sl_customization function must first
get the default (factory) customizations, using the following assignment statement:

hObj = cm.slDataObjectCustomizer;

You then invoke methods to register your customizations. The customization manager
object includes the following methods for registering mpt user object type customizations:

• addMPTObjectType(hObj, objectTypeName, classtype, propName1,

propValue1, propName2, propValue2, ...)

addMPTObjectType(hObj, objectTypeName, classtype, {propName1,

propName2, ...}, {propValue1, propValue2, ...})

22-17

22 Module Packaging Tool (MPT) Data Objects in Embedded Coder

Registers the specified user object type, along with specified values for object
properties, and adds the object type to the top of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

• objectTypeName — Name of the user object type
• classType — Class to which the user object type applies: 'Signal',

'Parameter', or 'Both'
• propName — Name of a property of an mpt or mpt-derived data object to be

populated with a corresponding propValue when the registered user object type is
selected

• propValue — Specifies the value for a corresponding propName
• moveMPTObjectTypeToTop(hObj, objectTypeName)

Moves the specified user object type to the top of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

• moveMPTObjectTypeToEnd(hObj, objectTypeName)

Moves the specified user object type to the end of the user object type list, as displayed
in the User object type pull-down list in the Model Explorer.

• removeMPTObjectType(hObj, objectTypeName)

Removes the specified user object type from the user object type list.

Your instance of the sl_customization function should use these methods to register
mpt object type customizations for your Simulink installation.

The Simulink software reads the sl_customization.m file when it starts. If you
subsequently change the file, to use the changes, you must restart your MATLAB
session.

mpt User Object Type Customization Using sl_customization.m

The sl_customization.m file shown in sl_customization.m for mpt Object Type
Customizations uses the addMPTObjectType method to register the user signal types
EngineType and FuelType for mpt objects.

sl_customization.m for mpt Object Type Customizations

function sl_customization(cm)

22-18

 MPT Data Object Properties

% Register user customizations

% Get default (factory) customizations

hObj = cm.slDataObjectCustomizer;

% Add commonly used signal types

hObj.addMPTObjectType(...

 'EngineType','Signal',...

 'DataType', 'uint8',...

 'Min', 0,...

 'Max', 255,...

 'Unit','m/s');

hObj.addMPTObjectType(...

 'FuelType','Signal',...

 'DataType', 'int16',...

 'Min', -12,...

 'Max', 3000,...

 'Unit','mg/hr');

end

If you include the above file on the MATLAB path of the Simulink installation that
you want to customize, the specified customizations will appear in Model Explorer. For
example, you could view the customizations as follows:

1 Start a MATLAB session.
2 Open Model Explorer, for example, by entering the MATLAB command daexplr.
3 Select Base Workspace.
4 Add an mpt signal, for example, by selecting Add > Add Custom.
5 In the right-hand pane display for the added mpt signal, examine the User

object type drop-down list, noting the impact of the changes specified in
sl_customization.m for mpt Object Type Customizations.

6 From the User object type drop-down list, select one of the registered user
signal types, for example, FuelType, and verify that the displayed settings are
consistent with the arguments specified to the addMPTObjectType method in
sl_customization.m.

22-19

23

Custom Storage Classes in Embedded
Coder

• “Introduction to Custom Storage Classes” on page 23-2
• “Simulink Package Custom Storage Classes” on page 23-5
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11
• “Reuse Parameter Data from Custom Code in the Generated Code” on page 23-17
• “Import Parameter Data with Conditionally Compiled Dimension Length” on page

23-22
• “Access Structured Data Through a Pointer That External Code Defines” on page

23-27
• “Design Custom Storage Classes and Memory Sections” on page 23-34
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58
• “Control Data Code by Creating Custom Storage Class” on page 23-73
• “Define Advanced Custom Storage Classes Types” on page 23-78
• “Generate Code That Dereferences Data from a Literal Memory Address” on page

23-83
• “Access Data Through Functions with Custom Storage Class GetSet” on page

23-92
• “Configure Generated Code According to Interface Control Document” on page

23-112

23 Custom Storage Classes in Embedded Coder

Introduction to Custom Storage Classes

In this section...

“Custom Storage Class Memory Sections” on page 23-3
“Custom Storage Classes and Data Class Packages” on page 23-3
“Custom Storage Class Examples” on page 23-3

During the build process, the storage class specification of a signal, tunable parameter,
block state, or data object specifies how that entity is declared, stored, and represented in
generated code. Note that in the context of the build process, the term “storage class” is
not synonymous with the term “storage class specifier”, as used in the C language.

The code generator defines four built-in storage classes for use with system target files:
Auto, ExportedGlobal, ImportedExtern, and ImportedExternPointer. These
storage classes provide limited control over the form of the code generated for references
to the data. For example, data of storage class Auto is typically declared and accessed as
an element of a structure, while data of storage class ExportedGlobal is declared and
accessed as unstructured global variables. For information about built-in storage classes,
see “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
and “Block Parameter Representation in the Generated Code” (Simulink Coder).

If the built-in storage classes do not provide data representation required by your
application, you can define custom storage classes (CSCs). Embedded Coder CSCs extend
the built-in storage classes provided by Simulink Coder. CSCs can provide application-
specific control over the constructs required to represent data in an embedded algorithm.
For example, you can use CSCs to:

• Define structures for storage of parameter or signal data.
• Conserve memory by storing Boolean data in bit fields.
• Integrate generated code with legacy software whose interfaces cannot be modified.
• Generate data structures and definitions that comply with your organization's

software engineering guidelines for safety-critical code.

Custom storage classes affect only code generated for ERT targets. When Configuration
Parameters > Code Generation > Target Selection > System target file specifies a
GRT target, the names of custom storage classes sometimes appear in dialog boxes, but
selecting a CSC is functionally the same as selecting Auto. For information about ERT
and GRT targets, see “Compare System Target File Support” (Simulink Coder).

23-2

 Introduction to Custom Storage Classes

Custom Storage Class Memory Sections

Every custom storage class has an associated memory section definition. A memory
section is a named collection of properties related to placement of an object in memory;
for example, in RAM, ROM, or flash memory. Memory section properties let you specify
storage directives for data objects. For example, you can specify const declarations, or
compiler-specific #pragma statements for allocation of storage in ROM or flash memory
sections.

See “Create and Edit Memory Section Definitions” on page 23-52 for details about
using the Custom Storage Class designer to define memory sections. While memory
sections are often used with data in custom storage classes, they can also be used with
various other constructs. See “Control Data and Function Placement in Memory by
Inserting Pragmas” on page 27-2 for more information about using memory sections
with custom storage classes, and complete information about using memory sections with
other constructs.

Custom Storage Classes and Data Class Packages

CSCs are associated with Simulink data class packages (such as the Simulink
package) and with classes within packages (such as the Simulink.Parameter and
Simulink.Signal classes). A custom storage class is available only to data classes that
are defined by the associated package.

You cannot add or change CSCs associated with built-in packages and classes, but you
can create your own packages and subclasses, then associate customized CSCs with those
packages. To create your own packages and custom storage classes, see “Design Custom
Storage Classes and Memory Sections” on page 23-34.

Custom Storage Class Examples

These examples show Custom Storage Class capabilities:

“Configure Data Interface by Applying Custom Storage Classes” — Shows how custom
storage classes can support data-object-driven modeling

rtwdemo_cscpredef — Shows predefined custom storage classes and embedded signal
objects

rtwdemo_importstruct — Shows custom storage classes used to access imported data
efficiently

23-3

23 Custom Storage Classes in Embedded Coder

Click the links above, or type the name in the MATLAB Command Window.

Related Examples
• “Simulink Package Custom Storage Classes” on page 23-5
• “Control Data Representation by Applying Custom Storage Classes” on page

23-58
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11
• “Signal Representation in Generated Code” (Simulink Coder)
• “Block Parameter Representation in the Generated Code” (Simulink Coder)

23-4

 Simulink Package Custom Storage Classes

Simulink Package Custom Storage Classes

The Simulink package includes a set of built-in custom storage classes. These are
categorized as custom storage classes, even though they are built-in, because they:

• Extend the storage classes provided by Simulink Coder
• Are functionally the same as if you had defined them yourself using the CSC Designer

You cannot change the CSCs built into the Simulink package, but you can subclass the
package and add CSCs to the subclass, following the steps in “Resources for Defining
Custom Storage Classes” on page 23-34.

Some CSCs in the Simulink package are valid for parameter objects
(Simulink.Parameter, Simulink.LookupTable, and Simulink.Breakpoint) but
not signal objects (Simulink.Signal) and vice versa. For example, you can assign
the storage class Const to a parameter but not to a signal, because signal data is not
constant. The next table defines the CSCs built into the Simulink package and shows
where each of the CSCs can be used.

The code generator defines four built-in storage classes for use with targets: Auto,
ExportedGlobal, ImportedExtern, and ImportedExternPointer. These storage
classes provide limited control over the form of the code generated for references to the
data. For example, data of storage class Auto is typically declared and accessed as an
element of a structure, while data of storage class ExportedGlobal is declared and
accessed as unstructured global variables. For information about built-in storage classes,
see “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
and “Block Parameter Representation in the Generated Code” (Simulink Coder).

CSC Name Purpose Signals? Parameters?

BitField Generate a struct declaration that
embeds Boolean data in named bit
fields. For an example, see “Bitfields”
on page 13-95.

Y Y

CompilerFlag Supports preprocessor conditionals
defined via compiler flag. See
“Generate Preprocessor Conditionals
for Variant Systems” on page 14-33.

To specify the compiler option, use
the model configuration parameter

N Y

23-5

23 Custom Storage Classes in Embedded Coder

CSC Name Purpose Signals? Parameters?

Configuration Parameters >
Code Generation > Custom Code
> Additional build information
> Defines. See Code Generation
Pane: Custom Code: Additional Build
Information: Defines (Simulink
Coder).

Const Generate a constant declaration with
the const type qualifier.

N Y

ConstVolatile Generate declaration of volatile
constant with the const volatile
type qualifier. For an example, see
“Type Qualifiers” on page 13-15.

N Y

Default Default is a placeholder CSC that
the code generator assigns to the
CoderInfo.CustomStorageClass

property of signal and parameter
objects when they are created. The
signal, state, or parameter appears
in the generated code as a global
variable.

Y Y

Define Generate #define directive. The
generated code defines the macro
value. For an example, see “Macro
Definitions (#define)” on page
13-77. Also supports generation of
preprocessor conditionals for variant
systems. See “Generate Preprocessor
Conditionals for Variant Systems” on
page 14-33.

Y Y

ExportToFile Generate header (.h) file, with user-
specified name, containing global
variable declarations.

Y Y

23-6

 Simulink Package Custom Storage Classes

CSC Name Purpose Signals? Parameters?

FileScope Generate a static qualifier suffix for a
variable declaration so that the scope
of the variable is limited to the current
file.

Y Y

GetSet Supports specialized function calls
to read and write memory. You can
use this custom storage class with
data stores. For examples, see “Access
Data Through Functions with Custom
Storage Class GetSet” on page
23-92.

Y Y

ImportedDefine Generate #define directive. You
supply the macro definition in a
legacy header file. For an example,
see “Macro Definitions (#define)” on
page 13-77. Also supports preprocessor
conditionals, for variant systems,
defined via legacy header file. See
“Generate Preprocessor Conditionals
for Variant Systems” on page 14-33.

N Y

ImportFromFile Generate directives to include
predefined header files containing
global variable declarations.

Y Y

23-7

23 Custom Storage Classes in Embedded Coder

CSC Name Purpose Signals? Parameters?

Reusable Allows the code generator to reuse
a pair of root I/O signals when you
specify the same name and the
same custom storage class for both.
The custom storage class is either
Reusable (Custom) or derived
from Reusable (Custom). For an
example, see “Specify Buffer Reuse for
Multiple Signals in a Path” on page
55-19.

You can apply this storage class only
to Simulink.Signal objects. For
example, you cannot apply the storage
class by using a Signal Properties
dialog box.

Y N

Struct Generate a struct declaration
encapsulating parameter or signal
object data. For examples, see
“Organize Parameter Data into a
Structure by Using the Struct
Custom Storage Class” on page
23-8 and “Structures of Signals”
on page 13-87.

Y Y

Volatile Use volatile type qualifier in
declaration.

Y Y

Organize Parameter Data into a Structure by Using the Struct Custom
Storage Class

This example shows how to use the Struct custom storage class to organize block
parameter values into a structure in the generated code.

To create a structure of parameter data in the generated code, consider creating a
corresponding structure in Simulink. See “Organize Block Parameter Values into
Structures in the Generated Code” on page 19-97.

23-8

 Simulink Package Custom Storage Classes

1 Create the ex_struct_param model with three Constant blocks and three Outport
blocks.

2 Create a data object for each parameter, p1, p2, and p3. At the MATLAB command
line, enter:
p1 = Simulink.Parameter;

p2 = Simulink.Parameter;

p3 = Simulink.Parameter;

3 In the base workspace, double-click one of the parameter data objects to open the
Simulink.Parameter dialog box.

4 Specify a Value parameter for each parameter object.
5 Specify the Storage class parameter as Struct for each parameter object.
6 In the Custom Attributes section, specify the StructName as my_struct. Click

Apply and OK.
7 Press Ctrl+B to generate code.

The generated code includes the typedef definition for a structure, which is declared in
the ex_struct_param_types.h file.
/* Type definition for custom storage class: Struct */

 typedef struct my_struct_tag {

 real_T p1;

 real_T p2;

 real_T p3;

 } my_struct_type;

The generated code also includes the declaration of my_struct in ex_struct_param.c.
/* Definition for custom storage class: Struct */

my_struct_type my_struct = {

 /* p1 */

 1.0,

 /* p2 */

23-9

23 Custom Storage Classes in Embedded Coder

 2.0,

 /* p3 */

 3.0

};

Related Examples
• “Control Data Code by Creating Custom Storage Class” on page 23-73
• “Control Data Representation by Applying Custom Storage Classes” on page

23-58
• “Generate Code with Custom Storage Classes” on page 23-67
• “Design Custom Storage Classes and Memory Sections” on page 23-34
• “Data Objects” (Simulink)
• “Define Advanced Custom Storage Classes Types” on page 23-78

23-10

 Exchange and Reuse Parameter Data Between Generated Code and Existing Code

Exchange and Reuse Parameter Data Between Generated Code
and Existing Code

Blocks have numeric parameters that determine how they calculate output values, for
example, the Gain parameter of a Gain block. In the generated code, you can configure
block parameters to appear as parameter data, which include global variables and the
formal parameters of a function (see “Block Parameter Representation in the Generated
Code” on page 19-47).

When you integrate the generated code with your existing custom code, you can configure
the generated code to reuse parameter data that your custom code defines. You can also
generate code that defines parameter data for your custom code to use. For example, you
can configure a Gain parameter to refer to a Simulink.Parameter object, which you
can configure to appear in the generated code as a global variable. You can then use that
variable in your existing code.

When you generate code that defines (allocates memory for and initializes) parameter
data, the generated code exports that data. When your custom code defines parameter
data, the generated code imports that data.

To export or import global parameter data:

1 Create a Simulink.Parameter object to represent the parameter data. Use the
Value property of the object to store the parameter value for simulation in Simulink
and for generation of an exported definition.

To package lookup table data according to the ASAP2 or AUTOSAR standards (for
example, STD_AXIS or MAP), use Simulink.LookupTable or Simulink.Breakpoint
objects instead of Simulink.Parameter objects.

2 Optionally, specify the data type (for example, int32) of the parameter data by
configuring the parameter object. You can generate code that uses custom data types
(typedef) from your code. You can also represent structures, enumerations, and
Boolean data. If you have Fixed-Point Designer, you can represent fixed-point data
types.

3 Apply a storage class or custom storage class to the parameter object. Use the
storage class to control the scope of the data. The data scope indicates whether the
generated code imports or exports the data definition.

For most storage classes, the generated code algorithm accesses the data through
global reference.

23-11

23 Custom Storage Classes in Embedded Coder

For an example, see “Reuse Parameter Data from Custom Code in the Generated Code”
on page 23-17.

Control Data Scope

To specify whether global parameter data are imported or exported, use storage classes
and custom storage classes . Typically, storage classes that import data have the word
Import in the storage class name, for example ImportedExternPointer.

For more information about the storage classes that are built into the code generator, see
“Override Default Parameter Behavior by Creating Global Variables in the Generated
Code” on page 19-49. For more information about using and creating custom storage
classes, see “Introduction to Custom Storage Classes” on page 23-2 and “Simulink
Package Custom Storage Classes” on page 23-5.

Control File Placement of Exported Parameter Data

When you export parameter data from the generated code by using storage classes or
custom storage classes, the code generator creates an extern declaration. By default,
this declaration typically appears in the generated header file model.h. You can include
(#include) this header file in your code.

By default, the definition (memory allocation) and static initialization of exported
parameter data typically appear in model.c.

You can control the file placement of the declarations and definitions to:

• Create separate object files that store only global parameter data.
• Modularize the generated code by organizing declarations into separate files.

To control the default file placement for parameter data that use custom storage
classes, use the model configuration parameters Configuration Parameters > Code
Generation > Code Placement > Data definition and Data declaration (see “Data
definition” and “Data declaration”).

To control file placement for individual parameter data items (parameter objects), use
the custom storage class ExportToFile or create your own similar custom storage class.
For an example, see “Definition, Initialization, and Declaration of Parameter Data” on
page 13-8.

For more information about controlling file placement of declarations and definitions, see
“Manage Placement of Data Definitions and Declarations” on page 36-100.

23-12

 Exchange and Reuse Parameter Data Between Generated Code and Existing Code

Customize and Control Parameter Data Types

When your code uses typedef statements to define custom data types as aliases of
integer and floating-point data types, such as typedef int my_int;, you can generate
code that uses these different data types.

1 Create a Simulink.AliasType or Simulink.NumericType object.
2 Use the DataScope and HeaderFile properties of the object to import the type

definition from your code.
3 Use the object as the data type of block parameters and parameter objects.

When you share parameter data between the generated code and your custom code,
if you leave the data type of block parameters and Simulink.Parameter objects at
the default settings (typically Inherit: Inherit via internal rule and auto),
Simulink chooses the parameter and object data types. In some cases, when you make
changes to the model (for instance, by changing the data types of signals), Simulink
chooses different data types. Unless you modify your custom code so that it uses the
new parameter data type, this change can cause compiler errors when you integrate
the generated code with your custom code. To prevent the errors, you can explicitly
specify the data type of the parameter object by using the DataType property. The
corresponding global variable in the generated code uses the data type that you specify.
For an example, see “Reuse Parameter Data from Custom Code in the Generated Code”
on page 23-17 .

For more information about using data type objects to set data types in a model, see
“Create and Apply User-Defined Data Types” on page 21-9 and “Conform to Coding
Standards by Replacing and Renaming Data Types” on page 21-22. For more information
about controlling parameter data types, see “Parameter Data Types in the Generated
Code” on page 19-79.

To replace data type names throughout a model by default, consider using data type
replacement. See “Data Type Replacement” on page 21-36.

Enumerated Parameters

You can export or import the definition of an enumerated data type to the generated
code. For instance, use this technique to import parameter data that uses an enumerated
type defined by your code.

To create a Simulink representation of an enumeration that your existing C code defines,
use the Simulink.importExternalCTypes function. For an example that shows

23-13

23 Custom Storage Classes in Embedded Coder

how to export enumerated parameter data, see “Enumeration” on page 13-24. For more
information, see “Use Enumerated Data in Generated Code” on page 19-22.

Pass Imported Parameter Data to Generated Algorithm as Arguments

You can generate a reusable algorithm that accepts parameter data through formal
parameters of the model entry-point functions. You can then pass a different parameter
value to each function call in the generated code or in your code.

To parameterize reusable referenced models and subsystems, use model arguments and
mask parameters. For information, see “Parameter Interfaces for Reusable Components”
(Simulink).

When you write custom code that calls the generated model step function multiple
times, you can configure the model to generate a reentrant function that accepts signal,
state, and parameter data as formal parameters. Set the model configuration parameter
Code interface packaging to Reusable function (see “Code interface packaging”
(Simulink Coder)).

When you use this technique, to pass parameter data through the reentrant interface,
you must configure the parameter data to appear in the generated code as fields of the
global parameter structure.

• Set the model configuration parameter Default parameter behavior (see “Default
parameter behavior” (Simulink)) to Tunable. By default, block parameters appear in
the generated code as fields of the parameter structure.

Use this technique for rapid prototyping.
• In the model, create parameter objects (for example, Simulink.Parameter or

Simulink.LookupTable) to set block parameter values. Optionally, use structures
to group multiple parameter values into a single object (see “Organize Related
Block Parameter Definitions in Structures” (Simulink)). Apply the storage class
SimulinkGlobal to the parameter objects. These parameter objects appear in the
generated code as fields of the parameter structure.

Use this technique when you set Default parameter behavior to Inlined for
production code generation.

For more information about Code interface packaging and reentrancy, see “Generate
Reentrant Code from Top-Level Models” on page 34-20. For information about

23-14

 Exchange and Reuse Parameter Data Between Generated Code and Existing Code

creating instance-specific data in your custom code, see “Modify Static Main to Allocate
and Access Model Instance Data” on page 49-14.

Considerations for Other Modeling Goals

Goal Considerations and More Information

Use multidimensional
parameters (arrays)

The generated code defines and accesses multidimensional data,
including matrices, as column-major serialized vectors. If your custom
code uses a different format, consider using alternative techniques to
integrate the generated code. See “Code Generation of Matrices and
Arrays” on page 33-76.

Use parameter
structures

You can export or import a structure of parameter values by creating a
Simulink.Bus object to represent the structure type. Use the bus object
as the data type of a parameter object. You can also use custom storage
classes for greater modeling flexibility. See “Organize Block Parameter
Values into Structures in the Generated Code” on page 19-97.

Use macros (#define) To export a macro to your custom code, you can use the custom storage
class Define. To import a macro, use ImportedDefine. With macros,
you can reuse a parameter value in multiple locations in an algorithm
and change the parameter value between code compilations without
consuming memory to store the value. Typically, macros represent
engineering constants that you do not expect to change during code
execution. For examples, see “Macro Definitions (#define)” on page
13-77.

Generate code that
imports parameter
data through custom
functions

When your code contains functions, such as device drivers, that return
parameter data, you can use custom storage classes to generate code
that calls the functions. See “Access Data Through Functions with
Custom Storage Class GetSet” on page 23-92.

Use storage type
qualifiers such as const
and volatile

When you import parameter data from your code, you can generate
code that matches the storage type qualifiers that your code applies to
the data. Use custom storage classes and memory sections. See “Type
Qualifiers” on page 13-15.

Generate code comments
that describe attributes
of data including
physical units, real-

Generating these comments can help you match data interfaces while
handwriting integration code. See “Add Custom Comments for Variables
in the Generated Code” on page 36-5.

23-15

23 Custom Storage Classes in Embedded Coder

Goal Considerations and More Information

world initial value, and
data type
Use Simulink to
simulate an external
executable

You can use SIL, PIL, and external mode simulations to connect your
model to the corresponding generated executable for simulation. When
you import parameter data from your custom code:

• At the time that you begin an external mode simulation, the external
executable uses the value that your code uses to initialize the
parameter data. However, when you change the corresponding value
in Simulink during the simulation (for example by modifying the
Value property of the corresponding parameter object), Simulink
downloads the new value to the executable.

• SIL and PIL simulations do not import the parameter value from
your code. Instead, the simulations use the parameter value from
Simulink.

Related Examples
• “Reuse Parameter Data from Custom Code in the Generated Code” on page

23-17
• “Import Parameter Data with Conditionally Compiled Dimension Length” on page

23-22
• “Exchange Data Between External C/C++ Code and Simulink Model or Generated

Code” on page 39-86
• “Configure Generated Code According to Interface Control Document” on page

23-112
• “Create Tunable Calibration Parameter in the Generated Code” on page 19-60
• “Introduction to Custom Storage Classes” on page 23-2
• “Block Parameter Representation in the Generated Code” on page 19-47
• “Data Objects” (Simulink)

23-16

 Reuse Parameter Data from Custom Code in the Generated Code

Reuse Parameter Data from Custom Code in the Generated Code

This example shows how to generate code that imports a parameter value from your
external, custom code.

Create Custom Code Files

Suppose your custom code defines a vector parameter myGains with three elements.
Save the definition in your current folder in a file called ex_vector_import_src.c.

#include "ex_vector_import_decs.h"

my_int8 myGains[3] = {

 2,

 4,

 6

};

Save the declaration in your current folder in a file called ex_vector_import_decs.h.

#include "ex_vector_import_cust_types.h"

extern my_int8 myGains[3];

Save the custom data type definition my_int8 in your current folder in a file called
ex_vector_import_cust_types.h.

typedef signed char my_int8;

Import Parameter Value for Simulation

In your current folder, right-click the file ex_vector_import_src.c and select Import
Data.

In the Import dialog box, set the name of the generated MATLAB variable to tempVar.

Select only the parameter values (2, 4, and 6) to import.

23-17

23 Custom Storage Classes in Embedded Coder

Import the data by clicking the green check mark. The MATLAB variable tempVar
appears in the base workspace.

Alternatively, use the command prompt to manually create tempVar.

tempVar = [2;4;6];

Create and Configure Model

Create the model ex_vector_import.

open_system('ex_vector_import')

In the Gain block dialog box, on the Parameter Attributes tab, set Parameter data
type to Inherit: Inherit from 'Gain'.

On the Main tab, set Gain to myGains. Click Apply.

Click the action button next to the parameter value. Select Create Variable.

In the Create New Data dialog box, set Value to Simulink.Parameter and click
Create.

23-18

 Reuse Parameter Data from Custom Code in the Generated Code

In the myGains dialog box, set these property values and click OK:

• Data type to my_int8
• Storage class to ImportFromFile
• HeaderFile to ex_vector_import_decs.h

Alternatively, use these commands at the command prompt to create the object and set
the property values:

myGains = Simulink.Parameter;

set_param('ex_vector_import/Gain','Gain','myGains',...

 'ParamDataTypeStr','Inherit: Inherit from ''Gain''')

myGains.DataType = 'my_int8';

myGains.CoderInfo.StorageClass = 'Custom';

myGains.CoderInfo.CustomStorageClass = 'ImportFromFile';

myGains.CoderInfo.CustomAttributes.HeaderFile = 'ex_vector_import_decs.h';

At the command prompt, set the Value property by using the value of tempVar.

myGains.Value = tempVar;

At the command prompt, create a Simulink.AliasType object to represent your custom
data type my_int8. Set the DataScope and HeaderFile properties to import the type
definition from your custom code.

my_int8 = Simulink.AliasType('int8');

my_int8.DataScope = 'Imported';

my_int8.HeaderFile = 'ex_vector_import_cust_types.h';

Set Configuration Parameters > Code Generation > Custom Code > Additional
build information > Source files to ex_vector_import_src.c.

set_param('ex_vector_import','CustomSource','ex_vector_import_src.c')

Generate and Inspect Code

Generate code from the model.

rtwbuild('ex_vector_import')

Starting build procedure for model: ex_vector_import

Successful completion of build procedure for model: ex_vector_import

23-19

23 Custom Storage Classes in Embedded Coder

The generated file ex_vector_import.h includes the custom header files
ex_vector_import_decs.h and ex_vector_import_cust_types.h, which contain
the parameter variable declaration (myGains) and custom type definition (my_int8).

file = fullfile('ex_vector_import_ert_rtw','ex_vector_import.h');

rtwdemodbtype(file,'/* Includes for objects with custom storage classes. */',...

 '#include "ex_vector_import_cust_types.h"',1,1)

/* Includes for objects with custom storage classes. */

#include "ex_vector_import_decs.h"

#include "ex_vector_import_cust_types.h"

The generated code algorithm in the model step function in the generated file
ex_vector_import.c uses myGains for calculations.

file = fullfile('ex_vector_import_ert_rtw','ex_vector_import.c');

rtwdemodbtype(file,'/* Model step function */','/* Model initialize function */',1,0)

/* Model step function */

void ex_vector_import_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 * Inport: '<Root>/In1'

 */

 rtY.Out1[0] = (real_T)myGains[0] * rtU.In1;

 rtY.Out1[1] = (real_T)myGains[1] * rtU.In1;

 rtY.Out1[2] = (real_T)myGains[2] * rtU.In1;

}

The generated code does not define (allocate memory for) or initialize the global variable
myGains because the data scope of the corresponding parameter object is imported.

When you simulate the model in Simulink, the model uses the value stored in the
Value property of the parameter object. However, if you use external mode simulation,
the external executable begins the simulation by using the value from your code. See
“Considerations for Other Modeling Goals”.

Related Examples
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11

23-20

 Reuse Parameter Data from Custom Code in the Generated Code

• “Import Parameter Data with Conditionally Compiled Dimension Length” on page
23-22

23-21

23 Custom Storage Classes in Embedded Coder

Import Parameter Data with Conditionally Compiled Dimension
Length

Suppose your custom code conditionally allocates memory for and initializes lookup table
and breakpoint set data based on a dimension length that you specify as a #define
macro. This example shows how to generate code that imports this external global data.

Create Custom Code Files

Save the definition of the breakpoint set data T1Break and lookup table data T1Data in
your current folder in a file called ex_vec_symdim_src.c. These global variables have
either 9 or 11 elements depending on the value of the macro bpLen.

#include "ex_vec_symdim_decs.h"

#if bpLen == 11

double T1Break[bpLen] = {

 -5.0,

 -4.0,

 -3.0,

 -2.0,

 -1.0,

 0.0,

 1.0,

 2.0,

 3.0,

 4.0,

 5.0

} ;

double T1Data[bpLen] = {

 -1.0,

 -0.99,

 -0.98,

 -0.96,

 -0.76,

 0.0,

 0.76,

 0.96,

 0.98,

 0.99,

 1.0

23-22

 Import Parameter Data with Conditionally Compiled Dimension Length

} ;

#endif

#if bpLen == 9

double T1Break[bpLen] = {

 -4.0,

 -3.0,

 -2.0,

 -1.0,

 0.0,

 1.0,

 2.0,

 3.0,

 4.0

} ;

double T1Data[bpLen] = {

 -0.99,

 -0.98,

 -0.96,

 -0.76,

 0.0,

 0.76,

 0.96,

 0.98,

 0.99

} ;

#endif

Save the declarations of the variables and the definition of the macro in your current
folder in a file called ex_vec_symdim_decs.h.

#define bpLen 11

extern double T1Break[bpLen];

extern double T1Data[bpLen];

Explore and Configure Example Model

Open the example model rtwdemo_advsc.

open_system('rtwdemo_advsc')

23-23

23 Custom Storage Classes in Embedded Coder

Open the Table1 block dialog box. The block refers to Simulink.Parameter objects,
T1Data and T1Break, in the base workspace. These objects store the lookup table and
breakpoint set data with 11 elements.

At the command prompt, configure the objects to import the data definitions from your
custom code.

T1Data.CoderInfo.StorageClass = 'Custom';

T1Data.CoderInfo.CustomStorageClass = 'ImportFromFile';

T1Data.CoderInfo.CustomAttributes.HeaderFile = 'ex_vec_symdim_decs.h';

T1Break.CoderInfo.StorageClass = 'Custom';

T1Break.CoderInfo.CustomStorageClass = 'ImportFromFile';

T1Break.CoderInfo.CustomAttributes.HeaderFile = 'ex_vec_symdim_decs.h';

At the command prompt, create a Simulink.Parameter object to represent the custom
macro bpLen.

bpLen = Simulink.Parameter(11);

23-24

 Import Parameter Data with Conditionally Compiled Dimension Length

bpLen.Min = 9;

bpLen.Max = 11;

bpLen.DataType = 'int32';

bpLen.CoderInfo.StorageClass = 'Custom';

bpLen.CoderInfo.CustomStorageClass = 'ImportedDefine';

bpLen.CoderInfo.CustomAttributes.HeaderFile = 'ex_vec_symdim_decs.h';

Use bpLen to set the dimensions of the lookup table and breakpoint set data. Configure
the model to enable symbolic dimensions by selecting the configuration parameter Allow
symbolic dimension specification.

T1Data.Dimensions = '[1 bpLen]';

T1Break.Dimensions = '[1 bpLen]';

set_param('rtwdemo_advsc','AllowSymbolicDim','on')

Set Configuration Parameters > Code Generation > Custom Code > Additional
build information > Source files to ex_vec_symdim_src.c.

set_param('rtwdemo_advsc','CustomSource','ex_vec_symdim_src.c')

Generate and Inspect Code

Generate code from the model.

rtwbuild('rtwdemo_advsc')

Starting build procedure for model: rtwdemo_advsc

Successful completion of build procedure for model: rtwdemo_advsc

The generated code algorithm is in the model step function in the generated file
rtwdemo_advsc.c. The algorithm passes T1Break, T1Data, and bpLen as argument
values to the function that performs the table lookup. In this case, bpLen controls the
upper bound of the binary search that the function uses.

file = fullfile('rtwdemo_advsc_ert_rtw','rtwdemo_advsc.c');

rtwdemodbtype(file,' look1_binlc','bpLen - 1U',1,1)

 rtwdemo_advsc_DWork.X = look1_binlc(rtwdemo_advsc_U.input2, (&(T1Break[0])),

 (&(T1Data[0])), bpLen - 1U) * 2.0;

23-25

23 Custom Storage Classes in Embedded Coder

For more information about symbolic dimensions, see “Implement Dimension Variants
for Array Sizes in Generated Code”.

Related Examples
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11
• “Reuse Parameter Data from Custom Code in the Generated Code” on page 23-17

23-26

 Access Structured Data Through a Pointer That External Code Defines

Access Structured Data Through a Pointer That External Code
Defines

This example shows how to generate code that uses global data that some handwritten
code defines. In the handwritten code, a pointer variable points to one of two structure
variables that contain parameter data. A handwritten function switches the pointer
between the two structures. The generated code accesses the parameter data by
dereferencing the pointer variable.

Explore Custom Code

Open the example source file rtwdemo_importstruct_user.c. The code defines a structure
variable ReferenceStruct as constant (const) data and statically initializes each field.

/* Constant default data struct: ReferenceStruct */

const DataStruct_type ReferenceStruct =

{

 11, /* OFFSET */

 2 /* GAIN */

};

The code defines another structure variable, WorkingStruct, as volatile (volatile)
data.

/* Volatile data struct: WorkingStruct */

volatile DataStruct_type WorkingStruct;

The code defines a function that copies the field values from ReferenceStruct to
WorkingStruct.

/* Function to initialize WorkingStruct with data from ReferenceStruct */

void Init_WorkingStruct(void)

{

 memcpy((void*)&WorkingStruct, &ReferenceStruct, sizeof(ReferenceStruct));

}

The code defines StructPointer, which is a const volatile pointer to a structure.
The code initializes the pointer to the address of ReferenceStruct.

23-27

23 Custom Storage Classes in Embedded Coder

/* Create pointer to the default data struct, e.g. ReferenceStruct */

const volatile DataStruct_type *StructPointer = &ReferenceStruct;

Finally, the code defines a function that can dynamically set StructPointer to point to
either ReferenceStruct or WorkingStruct.

/* Function to switch between structures */

void SwitchStructPointer(Dataset_T Dataset)

{

 switch (Dataset)

 {

 case Working:

 StructPointer = &WorkingStruct;

 break;

 default:

 StructPointer = &ReferenceStruct;

 }

}

The example header file rtwdemo_importstruct_user.h defines the enumeration
Dataset_T and the structure type Datastruct_type. The file includes (#include) the
built-in Simulink® Coder™ header file rtwtypes.h, which defines (typedef) Simulink
Coder data types such as int16_T.

#include "rtwtypes.h"

typedef enum {

 Reference=0,

 Working

} Dataset_T;

typedef struct DataStruct_tag {

 int16_T OFFSET; /* OFFSET */

 int16_T GAIN; /* GAIN */

} DataStruct_type;

The file also declares the global variables and the functions.

Purpose of Custom Code

The code is designed so that the source code of a control algorithm (whether generated
or handwritten) can read data from either ReferenceStruct or WorkingStruct

23-28

 Access Structured Data Through a Pointer That External Code Defines

by dereferencing (->) StructPointer. A software engineer can write code that
dynamically switches StructPointer between the address of WorkingStruct and
ReferenceStruct by passing the corresponding enumeration member as the input
argument in calls to the SwitchStructPointer function.

Later, in preparation for calibration while the algorithm executes, a calibration tool can
make StructPointer point to WorkingStruct. The tool can then modify the fields of
WorkingStruct.

If necessary for safety or in preparation for shutting down the application, the calibration
tool can point StructPointer to ReferenceStruct instead. ReferenceStruct stores
default parameter values that do not change during execution.

Explore Example Model

Open the example model, rtwdemo_importstruct.

23-29

23 Custom Storage Classes in Embedded Coder

The model creates variables and objects in the base workspace. The Constant block
and the Gain block use the ECoderDemos.Parameter objects GAIN and OFFSET to set
the Constant value and Gain block parameters. ECoderDemos is an example custom
package that defines two classes, Parameter and Signal, and some custom storage
classes.

In the Constant block dialog box, next to the value of the Constant value parameter,
click the action button. Select Open Variable. In the property dialog box for OFFSET,

23-30

 Access Structured Data Through a Pointer That External Code Defines

Storage class is set to StructPointer, which is a custom storage class that the
ECoderDemos package defines. GAIN also uses this custom storage class.

Open the Custom Storage Class Designer and inspect the custom storage classes in the
ECoderDemos package. At the command prompt, use this command:

cscdesigner('ECoderDemos')

This example package defines multiple custom storage classes, including
StructPointer. You cannot edit the definitions. However, you can create your own
packages and custom storage classes later. For an example that shows how to create a
package and a custom storage class, see “Control Data Code by Creating Custom Storage
Class”.

Under Custom storage class definitions, click StructPointer. The settings for this
custom storage class enable the generated code to interact with the pointer variable,
StructPointer, from the custom code. For example, the custom storage class uses these
settings:

• Data scope is set to Imported because the example custom code defines (allocates
memory for) StructPointer. With this setting, the code generator avoids
generating unnecessary, duplicate definitions for the data items, such as the
ECoderDemos.Parameter objects, that use the custom storage class.

• Data access is set to Pointer because in the example custom code, StructPointer
is a pointer.

• Memory section is set to ConstVolatile because the example custom code defines
StructPointer as constant, volatile data (const volatile).

• Type is set to FlatStructure because in the example custom code, StructPointer
points to a structure. With this setting, the generated code treats each data item
(ECoderDemos.Parameter object) as a field of a flat structure whose variable name
and type name you can specify.

• On the Structure Attributes tab, Struct name is set to StructPointer. For
a FlatStructure custom storage class, Struct name specifies the name of the
structure variable in the generated code. In this example, StructPointer is the
name of the variable that the custom code defines.

• Type name is set to DataStruct_type, which is the name of the structure type that
the example custom code defines.

In the model, in the Configuration Parameters dialog box, inspect the Code
Generation > Custom Code pane.

23-31

23 Custom Storage Classes in Embedded Coder

Under Insert custom C code in generated, select Initialize function. In
this model, this configuration parameter is set so that the generated code calls
the Init_WorkingStruct function before execution of the primary algorithm.
Init_WorkingStruct initializes the fields of WorkingStruct with the values from
ReferenceStruct.

Under Additional build information, select Source files. This configuration
parameter identifies the example custom code file rtwdemo_importstruct_user.c for
inclusion in the build process after code generation.

Generate and Inspect Code

Generate code from the model.

In the generated file rtwdemo_importstruct.c, the model initialization function calls
Init_WorkingStruct.

/* Model initialize function */

void rtwdemo_importstruct_initialize(void)

{

 /* user code (Initialize function Body) */

 /* Initialize the volatile memory data set before switching to it */

 Init_WorkingStruct();

}

/*

The algorithm in the model execution (step) function dereferences the pointer variable
StructPointer.

/* Model step function */

void rtwdemo_importstruct_step(void)

{

 /* Gain: '<Root>/Gain' incorporates:

 * Constant: '<Root>/Offset'

 * Inport: '<Root>/In'

 * Sum: '<Root>/Sum'

 */

 Sensor_Out = (int16_T)((int16_T)(Sensor_In - StructPointer->OFFSET) *

 StructPointer->GAIN);

23-32

 Access Structured Data Through a Pointer That External Code Defines

}

Related Examples
• “Exchange Data Between External C/C++ Code and Simulink Model or Generated

Code” on page 39-86
• “Create Tunable Calibration Parameter in the Generated Code” on page 19-60
• “Switch Between Sets of Parameter Values During Simulation and Code Execution”

on page 19-103
• “Design Custom Storage Classes and Memory Sections” on page 23-34

23-33

23 Custom Storage Classes in Embedded Coder

Design Custom Storage Classes and Memory Sections

In this section...

“Resources for Defining Custom Storage Classes” on page 23-34
“Create Packages for Custom Storage Class Definitions” on page 23-34
“Use Custom Storage Class Designer” on page 23-35
“Edit Custom Storage Class Properties” on page 23-41
“Use Custom Storage Class References” on page 23-47
“Protect Custom Storage Class Definitions” on page 23-51
“Create and Edit Memory Section Definitions” on page 23-52
“Use Memory Section References” on page 23-55

Resources for Defining Custom Storage Classes

The resources for working with custom storage class definitions are:

• Use MATLAB class syntax to create a data class in a package. You can assign
properties to the data class and add initialization code to enable custom storage class
definition. For complete instructions, see “Define Data Classes” (Simulink).

• A set of ready-to-use CSCs. These CSCs are designed to be useful in code generation
for embedded systems development. CSC functionality is integrated into the
Simulink.Signal, Simulink.Parameter, Simulink.LookupTable, and
Simulink.Breakpoint classes; you do not need to use special object classes to
generate code with CSCs.

• The Custom Storage Class Designer (cscdesigner) tool, which is described in this
chapter. This tool lets you define CSCs that are tailored to your code generation
requirements. The Custom Storage Class Designer provides a graphical user interface
that you can use to implement CSCs. You can use your CSCs in code generation
immediately, without a Target Language Compiler (TLC) or other programming. See
“Design Custom Storage Classes and Memory Sections” on page 23-34 for details.

Create Packages for Custom Storage Class Definitions

Use MATLAB class syntax to create a data class in a package. You can assign properties
to the data class and add initialization code to enable custom storage class definition. For
complete instructions, see “Define Data Classes” (Simulink).

23-34

 Design Custom Storage Classes and Memory Sections

Use Custom Storage Class Designer

The Custom Storage Class Designer (cscdesigner) is a tool for creating and managing
custom storage classes and memory sections. You can use the Custom Storage Class
Designer to:

• Load existing custom storage classes and memory sections and view and edit their
properties

• Create new custom storage classes and memory sections
• Create references to custom storage classes and memory sections defined in other

packages
• Copy and modify existing custom storage class and memory section definitions
• Check a custom storage class and memory section definitions
• Preview pseudocode generated from custom storage class and memory section

definitions
• Save custom storage class and memory section definitions

To open the Custom Storage Class Designer for a particular package, type the following
command at the MATLAB prompt:

cscdesigner ('mypkg')

When first opened, the Custom Storage Class Designer scans data class packages on
the MATLAB path to detect packages that have a CSC registration file. A message is
displayed while scanning proceeds. When the scan is complete, the Custom Storage Class
Designer window appears:

23-35

23 Custom Storage Classes in Embedded Coder

The Custom Storage Class Designer window is divided into several panels:

• Select package: Lets you select from a menu of data class packages that have CSC
definitions associated with them. See “Select Data Class Package” on page 23-37
for details.

• Custom Storage Class / Memory Section properties: Lets you select, view, edit,
copy, verify, and perform other operations on CSC definitions or memory section
definitions. The common controls in the Custom Storage Class / Memory Section
properties panel are described in “Manipulate Custom Storage Classes and Memory
Sections” on page 23-38.

23-36

 Design Custom Storage Classes and Memory Sections

• When the Custom Storage Class tab is selected, you can select a CSC definition
or reference from a list and edit its properties. See “Edit Custom Storage Class
Properties” on page 23-41 for details.

• When the Memory Section tab is selected, you can select a memory section
definition or reference from a list and edit its properties. See “Create and Edit
Memory Section Definitions” on page 23-52 for details.

• Filename: Displays the filename and location of the current CSC registration file,
and lets you save your CSC definition to that file. See “Save Definitions” on page
23-40 for details.

• Pseudocode preview: Displays a preview of code that is generated from objects of
the given class. The preview is pseudocode, since the actual symbolic representation of
data objects is not available until code generation time. See “Preview Generated Code”
on page 23-54 for details.

• Validation result: Displays errors encountered when the currently selected CSC
definition is validated. See “Validate Definitions Category” on page 23-47 for
details.

Select Data Class Package

A CSC or memory section definition or reference is uniquely associated with a Simulink
data class package. The link between the definition/reference and the package is formed
when a CSC registration file (csc_registration.m) is located in the package directory.

You need not search for or edit a CSC registration file directly: the Custom Storage Class
Designer locates available CSC registration files. The Select package menu contains
names of data class packages that have a CSC registration file on the MATLAB search
path.

When you select a package, the CSCs and memory section definitions belonging to the
package are loaded into memory and their names are displayed in the scrolling list in the
Custom storage class panel. The name and location of the CSC registration file for the
package is displayed in the Filename panel.

If you select a user-defined package, by default you can use the Custom Storage Class
Designer to edit its custom storage classes and memory sections. If you select a built-in
package, you cannot edit its custom storage classes or memory sections.

23-37

23 Custom Storage Classes in Embedded Coder

Manipulate Custom Storage Classes and Memory Sections

The Custom Storage Class / Memory Section panel lets you select, view, and (if the
CSC is writable) edit CSC and memory section definitions and references. In the next
figure and the subsequent examples, the selected package is mypkg. Instructions for
creating a user-defined package like mypkg appear in “Design Custom Storage Classes
and Memory Sections” on page 23-34.

The list at the top of the panel displays the definitions/references for the currently
selected package. To select a definition/reference for viewing and editing, click on the
desired list entry. The properties of the selected definition/reference appear in the area
below the list. The number and type of properties vary for different types of CSC and
memory section definitions. See:

23-38

 Design Custom Storage Classes and Memory Sections

• “Edit Custom Storage Class Properties” on page 23-41 for information about the
properties of the predefined CSCs.

• “Create and Edit Memory Section Definitions” on page 23-52 for information about
the properties of the predefined memory section definitions.

The buttons to the right of the list perform these functions, which are common to both
custom storage classes and memory definitions:

• New: Creates a new CSC or memory section with default values.
• New Reference: Creates a reference to a CSC or memory section definition in

another package. The default initially has a default name and properties. See “Use
Custom Storage Class References” on page 23-47 and “Use Memory Section
References” on page 23-55.

• Copy: Creates a copy of the selected definition / reference. The copy initially has a
default name using the convention:

definition_name_n

where definition_name is the name of the original definition, and n is an integer
indicating successive copy numbers (for example: BitField_1, BitField_2, ...)

• Up: Moves the selected definition one position up in the list.
• Down: Moves the selected definition one position down in the list
• Remove: Removes the selected definition from the list.
• Validate: Performs a consistency check on the currently selected definition. Errors

are reported in the Validation result panel.

For example, if you click New, a new custom storage class is created with a default
name:

23-39

23 Custom Storage Classes in Embedded Coder

You can now rename the new class by typing the desired name into the Name field, and
specify other fields.

Note: The class name must be a valid MATLAB variable name. See “Variable Names”
(MATLAB)

Click Apply or OK.

Save Definitions

After you have created or edited a CSC or memory section definition or reference,
you must save the changes to the CSC registration file. To do this, click Save in the

23-40

 Design Custom Storage Classes and Memory Sections

Filename panel. When you click Save, the current CSC and memory section definitions
that are in memory are validated, and the definitions are written out.

If errors occur, they are reported in the Validation result panel. The definitions are
saved whether or not errors exist. However, you should resolve validation errors and
resave your definitions. Trying to use definitions that were saved with validation errors
can cause additional errors. Such problems can occur even it you do not try to use the
specific parts of the definition that contain the validation errors, making the problems
difficult to diagnose.

Restart MATLAB After Changing Definitions

If you add, change, or delete custom storage class or memory section definitions for a
user-defined class, and objects of that class already exist, you must restart MATLAB to
use the changed definitions and to eliminate obsolete objects. When you save the changed
definitions, a message appears indicating that you must restart MATLAB.

Edit Custom Storage Class Properties

To view and edit the properties of a CSC, click the Custom Storage Class tab in the
Custom Storage Class / Memory Section panel. Then, select a CSC name from the
Custom storage class definitions list.

The CSC properties are divided into several categories, selected by tabs. Selecting
a class, and setting property values for that class, can change the available tabs,
properties, and values. As you change property values, the changes in the generated code
is immediately displayed in the Pseudocode preview panel. In most cases, you can
define your CSCs quickly and easily by selecting the Pseudocode preview panel and
using the Validate button frequently.

The property categories and corresponding tabs are as follows:

General Category

Properties in the General category are common to CSCs. In the next figure and the
subsequent examples, the selected custom storage class is ByteField. Instructions for
creating a user-defined custom storage class like ByteField appear in “Manipulate
Custom Storage Classes and Memory Sections” on page 23-38.

23-41

23 Custom Storage Classes in Embedded Coder

Properties in the General category, and the possible values for each property, are as
follows:

• Name: The CSC name, selected from the Custom storage class definitions list.
The name cannot be a TLC keyword. Violating this rule causes an error.

• Type: Specifies how objects of this class are stored. Values:

• Unstructured: Objects of this class generate unstructured storage declarations
(for example, scalar or array variables), for example:

datatype dataname[dimension];

• FlatStructure: Objects of this class are stored as members of a struct. A
Structure Attributes tab is also displayed, allowing you to specify additional
properties such as the struct name. See “Structure Attributes Category” on page
23-45.

• AccessFunction: The generated code accesses objects of this class by calling
custom get and set functions whose definitions you provide. See “Access Function
Attributes Category” on page 23-46.

• Other: Used for certain data layouts, such as nested structures, that cannot
be generated using the standard Unstructured and FlatStructure custom
storage class types. If you want to generate other types of data, you can create a
new custom storage class from scratch by writing TLC code. See “Define Advanced
Custom Storage Classes Types” on page 23-78 for more information.

23-42

 Design Custom Storage Classes and Memory Sections

• For parameters and For signals: These options let you enable a CSC for use with
only certain classes of data objects. For example, it does not make sense to assign
storage class Const to a Simulink.Signal object. Accordingly, the For signals
option for the Const class is deselected, while the For parameters is selected.

• Memory section: Selects one of the memory sections defined in the Memory
Section panel. See “Create and Edit Memory Section Definitions” on page 23-52.

• Data scope: Controls the scope of symbols generated for data objects of this class.
Values:

• Auto: Symbol scope is determined internally by code generation. If possible,
symbols have File scope. Otherwise, they have Exported scope.

• Exported: Symbols are exported to external code in the header file specified by
the Header File field. If a Header File is not specified, symbols are exported to
external code in model.h.

• Imported: Symbols are imported from external code in the header file specified by
the Header File field. If you do not specify a header file, an extern directive is
generated in model_private.h.

• File: The scope of each symbol is the file that defines it. File scope requires each
symbol to be used in a single file. If the same symbol is referenced in multiple files,
an error occurs at code generation time.

• Instance specific: Symbol scope is defined by the Data scope field of the
CoderInfo.CustomAttributes property of each data object.

• Data initialization: Controls how storage is initialized in generated code. Values:

• Auto: Storage initialization is determined internally by the code generation.
Parameters have Static initialization, and signals have Dynamic initialization.

• None: Initialization code is not generated.
• Static: A static initializer of the following form is generated:

datatype dataname[dimension] = {...};

• Dynamic: Variable storage is initialized at runtime, in the model_initialize
function.

• Macro: A macro definition of the following form is generated:

 #define data numeric_value

23-43

23 Custom Storage Classes in Embedded Coder

The Macro initialization option is available only for use with unstructured
parameters. It is not available when the class is configured for generation of
structured data, or for signals. If you set Data scope to Imported:

• To import a macro that you define by creating a preprocessor directive
(#define), use the option Header file to configure the name of the header file
that contains the directive.

• To import a macro that you define by configuring a compiler option, omit the
header file.

To specify the compiler option, use the model configuration parameter
Configuration Parameters > Code Generation > Custom Code >
Additional build information > Defines. See Code Generation Pane:
Custom Code: Additional Build Information: Defines (Simulink Coder).

• Instance specific: Initialization is defined by the Data initialization
property of each data object.

Note: The code generator might include dynamic initialization code for signals
and states even if the CSC has Data initialization set to None or Static, if the
initialization is required.

• Data access: Controls whether imported symbols are declared as variables
or pointers. This field is enabled only when Data scope is set to Imported or
Instance-specific. Values:

• Direct: Symbols are declared as simple variables, such as

extern myType myVariable;

• Pointer: Symbols are declared as pointer variables, such as

extern myType *myVariable;

• Instance specific: Data access is defined by the Data access property of each
data object.

• Header file: Defines the name of a header file that contains exported or imported
variable declarations for objects of this class. If you set Type to AccessFunction,
Header file defines the name of the header file that contains your get and set
function prototypes. Values:

23-44

 Design Custom Storage Classes and Memory Sections

• Specify: An edit field is displayed to the right of the property. This lets you
specify a header file for exported or imported storage declarations. Specify the full
filename, including the filename extension (such as .h). Use quotes or brackets as
in C code to specify the location of the header file. Leave the edit field empty to not
specify a header file.

• Instance specific: The header file for each data object is defined by the
Header file property of the object. Leave the property undefined to not specify a
header file for that object.

If the Data scope is Exported, specifying a header file is optional. If you specify
a header file name, the custom storage class generates a header file containing the
storage declarations to be exported. Otherwise, the storage declarations are exported
in model.h.

If the Data scope of the class is Imported, a #include directive for the header file
is generated.

Comments Category

Comments

The Comments panel lets you specify comments to be generated with definitions and
declarations.

Comments must conform to the ANSI C standard (/*...*/). Use \n to specify a new
line.

Properties in the Comments tab are as follows:

• Comment rules: If Specify is selected, edit fields are displayed for entering
comments. If Default is selected, comments are generated under control of the code
generation software.

• Type comment: The comment entered in this field precedes the typedef or struct
definition for structured data.

• Declaration comment: Comment that precedes the storage declaration.
• Definition comment: Comment that precedes the storage definition.

Structure Attributes Category

The Structure Attributes panel gives you detailed control over code generation for
structs (including bitfields). The Structure Attributes tab is displayed for CSCs whose

23-45

23 Custom Storage Classes in Embedded Coder

Type parameter is set to FlatStructure. The following figure shows the Structure
Attributes panel.

The Structure Attributes properties are as follows:

• Struct name: If you select Instance specific, specify the struct name when
configuring each instance of the class.

If you select Specify, an edit field appears for entry of the name of the structure to
be used in the struct definition. Edit fields Type tag, Type token, and Type name
are also displayed.

• Is typedef: When this option is selected a typedef is generated for the struct
definition, for example:

typedef struct {

 ...

} SignalDataStruct;

Otherwise, a simple struct definition is generated.
• Bit-pack booleans: When this option is selected, signals and/or parameters that

have Boolean data type are packed into bit fields in the generated struct.
• Type tag: Specifies a tag to be generated after the struct keyword in the struct

definition.
• Type name: Specifies the name to be used in typedef definitions. This field is

visible if Is typedef is selected.
• Type token: Some compilers support an additional token (which is simply another

string) after the type tag. To generate such a token, enter the string in this field.

Access Function Attributes Category

When you set Type to AccessFunction in the General panel, use the Access
Function Attributes panel to control the get and set function names.

To apply the same get or set function naming scheme to all data items that use the
custom storage class, set Get function or Set function to Specify. Then, in the new
box, specify the function naming scheme, for example get_myData_$N. Use the token
$N in each naming scheme to represent the name of each data item. If you do not use the
token, each data item uses the same get or set function name, so the model generates
an error when you generate code.

23-46

 Design Custom Storage Classes and Memory Sections

To specify a get or set function for each data item, set Get function or Set function to
Instance specific. Later, when you create a data item and apply the custom storage
class, specify the function name by configuring the custom attributes of the data item.

Validate Definitions Category

To validate a CSC definition, select the definition on the Custom Storage Class panel
and click Validate. The Custom Storage Class Designer then checks the definition
for consistency. The Validation result panel displays a errors encountered when the
selected CSC definition is validated. The next figure shows the Validation result panel
with a typical error message:

Validation is also performed whenever CSC definitions are saved. In this case, all CSC
definitions are validated. (See “Save Definitions” on page 23-40.)

Use Custom Storage Class References

Packages can access and use custom storage classes that are defined in other packages,
including both user-defined packages and predefined packages such as Simulink. Only
one copy of the storage class exists, in the package that first defined it. Other packages
refer to it by pointing to it in its original location. Changes to the class, including changes
to a predefined class in later MathWorks product releases, are immediately available in
every referencing package.

To configure a package to use a custom storage class that is defined in another package:

1 Type cscdesigner to launch the Custom Storage Class Designer.

23-47

23 Custom Storage Classes in Embedded Coder

2 Select the Custom Storage Class tab.
3 Use Select Package to select the package in which you want to reference a class or

section defined in some other package. The selected package must be writable.
4 In the Custom storage class definitions pane, select the existing definition below

which you want to insert the reference. For example:

23-48

 Design Custom Storage Classes and Memory Sections

5 Click New Reference.

A new reference with a default name and properties appears below the previously
selected definition. The new reference is selected, and a Reference tab appears that
shows the reference's initial properties. A typical appearance is:

23-49

23 Custom Storage Classes in Embedded Coder

6 Use the Name field to enter a name for the new reference. The name must be unique
in the importing package, but can duplicate the name in the source package. The
name cannot be a TLC keyword. Violating this rule causes an error.

7 Set Refer to custom storage class in package to specify the package that
contains the custom storage class you want to reference.

8 Set Custom storage class to reference to specify the custom storage class to be
referenced. Trying to create a circular reference generates an error and leaves the
package unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions” on page
23-40 for information about saving changes permanently.

For example, the next figure shows the custom storage class ConstVolatile imported
from the Simulink package into mypkg, and given the same name that it has in the
source package. Other names could have been used without affecting the properties of
the storage class.

23-50

 Design Custom Storage Classes and Memory Sections

You can use Custom Storage Class Designer capabilities to copy, reorder, validate, and
otherwise manage classes that have been added to a class by reference. However, you
cannot change the underlying definitions. You can change a custom storage class only in
the package where it was originally defined.

Change Existing Custom Storage Class References

To change an existing CSC reference, select it in the Custom storage class definitions
pane. The Reference tab appears, showing the current properties of the reference. Make
changes, then click OK or Apply to save the changes to memory. See “Save Definitions”
on page 23-40 for information about saving changes permanently.

Protect Custom Storage Class Definitions

You can prevent changes to the custom storage class definitions of an entire data class
package by converting the package CSC registration file from a MATLAB file to a P-file.

23-51

23 Custom Storage Classes in Embedded Coder

To learn more about CSC registration files, see “Custom Storage Class Implementation”
on page 23-81.

Create and Edit Memory Section Definitions

Memory section definitions add comments, qualifiers, and #pragma directives to
generated symbol declarations. The Memory Section tab lets you create, view, edit, and
verify memory section definitions. The steps for creating a memory section definition are
essentially the same as for creating a custom storage class definition:

1 Select a writable package in the Select package field.
2 Select the Memory Section tab. In a new package, only a Default memory section

initially appears.
3 Select the existing memory section below which you want to create a new memory

section.
4 Click New.

A new memory section definition with a default name appears below the selected
memory section.

5 Set the name and other properties of the memory section.
6 Click OK or Apply.

The next figure shows mypkg with a memory section called MyMemSect:

23-52

 Design Custom Storage Classes and Memory Sections

The Memory section definitions list lets you select a memory section definition to
view or edit. The available memory section definitions also appear in the Memory
section name menu in the Custom Storage Class panel. The properties of a memory
section definition are as follows:

• Memory section name: Name of the memory section (displayed in Memory section
definitions list).

• Is const: If selected, a const qualifier is added to the symbol declarations.

23-53

23 Custom Storage Classes in Embedded Coder

• Is volatile: If selected, a volatile qualifier is added to the symbol declarations.
• Qualifier: The text entered into this field is added to the symbol declarations as a

further qualifier. Note that verification is not performed on this qualifier.
• Memory section comment: Comment inserted before declarations belonging to this

memory section. Comments must conform to the ANSI C standard (/*...*/). Use \n
to specify a new line.

• Pragma surrounds: Specifies whether the pragma should surround All
variables or Each variable. When Pragma surrounds is set to Each
variable, the %<identifier> token is allowed in pragmas and will be replaced by
the variable or function name.

• Pre-memory section pragma: pragma directive that precedes the storage definition
of data belonging to this memory section. The directive must begin with #pragma.

• Post-memory section pragma: pragma directive that follows the storage definition
of data belonging to this memory section. The directive must begin with #pragma.

Preview Generated Code

If you click Validate on the Memory Section panel, the Pseudocode preview panel
displays a preview of code that is generated from objects of the given class. The panel
also displays messages (in blue) to highlight changes as they are made. The code preview
changes dynamically as you edit the class properties. The next figure shows a code
preview for the MemConstVolatile memory section.

23-54

 Design Custom Storage Classes and Memory Sections

Use Memory Section References

Packages can access and use memory sections that are defined in other packages,
including both user-defined packages and predefined packages such as Simulink. Only
one copy of the section exists, in the package that first defined it; other packages refer to
it by pointing to it in its original location. Changes to the section, including changes to
a predefined section in later MathWorks product releases, are immediately available in
every referencing package.

To configure a package to use a memory section that is defined in another package:

1 Type cscdesigner to launch the Custom Storage Class Designer.
2 Select the Memory Section tab.
3 Use Select Package to select the package in which you want to reference a class or

section defined in some other package.
4 In the Memory section definitions pane, select the existing definition below which

you want to insert the reference.
5 Click New Reference.

A new reference with a default name and properties appears below the previously
selected definition. The new reference is selected, and a Reference tab appears that
shows the reference's initial properties.

6 Use the Name field to enter a name for the new reference. The name must be unique
in the importing package, but can duplicate the name in the source package.

7 Set Refer to memory section in package to specify the package that contains the
memory section you want to reference.

8 Set Memory section to reference to specify the memory section to be referenced.
Trying to create a circular reference generates an error and leaves the package
unchanged.

9 Click OK or Apply to save the changes to memory. See “Save Definitions” on page
23-40 for information about saving changes permanently.

For example, the next figure shows the memory section MemConstVolatile imported
from the Simulink package into mypkg, and given the same name that it has in the
source package. Other names could have been used without affecting the properties of
the memory section.

23-55

23 Custom Storage Classes in Embedded Coder

You can use Custom Storage Class Designer capabilities to copy, reorder, validate,
and otherwise manage memory sections that have been added to a class by reference.
However, you cannot change the underlying definitions. You can change a memory
section only in the package where it was originally defined.

Change Existing Memory Section References

To change an existing memory section reference, select it in the Memory section
definitions pane. The Reference tab appears, showing the current properties of the
reference. Make changes, then click OK or Apply to save the changes to memory. See
“Save Definitions” on page 23-40 for information about saving changes permanently.

Related Examples
• “Control Data Code by Creating Custom Storage Class” on page 23-73
• “Control Data Representation by Applying Custom Storage Classes” on page

23-58

23-56

 Design Custom Storage Classes and Memory Sections

• “Generate Code with Custom Storage Classes” on page 23-67
• “Data Objects” (Simulink)
• “Introduction to Custom Storage Classes” on page 23-2
• “Define Advanced Custom Storage Classes Types” on page 23-78
• “Access Structured Data Through a Pointer That External Code Defines” on page

23-27

23-57

23 Custom Storage Classes in Embedded Coder

Control Data Representation by Applying Custom Storage Classes

To control the declaration and definition of variables in the generated code, use the
custom storage classes available with Embedded Coder. You can use custom storage
classes to, for example, export multiple definitions or declarations to a single generated
file, create structures and bit fields, and append storage type qualifiers to declarations.

To use custom storage classes, you can:

• Apply them to data objects, such as Simulink.Parameter and Simulink.Signal,
that you associate with signal lines, block parameters, and states. See “Data Objects”
(Simulink)

You can also apply custom storage classes to Simulink.LookupTable and
Simulink.Breakpoint objects, which you use to package lookup table data
according to the ASAP2 and AUTOSAR standards.

• Specify them for signal lines and block states through dialog boxes and embedded
signal objects. These techniques do not require you to store a data object in a
workspace.

The custom storage classes then determine how the generated code represents the
signals, parameters, and states.

To achieve a range of goals such as grouping variables into flat structures, or controlling
declaration and definition file placement, use the custom storage classes from the built-in
package Simulink. For more information about the capabilities of these custom storage
classes, see “Simulink Package Custom Storage Classes” on page 23-5.

If the custom storage classes from the Simulink package do not satisfy your
requirements, you can define your own custom storage classes. For basic information
about defining your own custom storage class, see “Design Custom Storage Classes and
Memory Sections” on page 23-34.

In this section...

“Apply a Custom Storage Class from the Simulink Package Using Data Objects” on
page 23-59
“Create and Apply Your Own Custom Storage Class Using Data Objects” on page
23-60

23-58

 Control Data Representation by Applying Custom Storage Classes

In this section...

“Apply Custom Storage Classes Directly to Signal Lines, Block States, and Outport
Blocks” on page 23-61
“Programmatically Apply Custom Storage Classes Directly to Signals, States, and
Outport Blocks Using Embedded Signal Objects” on page 23-63
“Specify Instance-Specific Attributes” on page 23-65
“Generate Code with Custom Storage Classes” on page 23-67
“Configure Data Interface by Using Model Data Editor” on page 23-69
“Declare and Interface with Data Using Custom Storage Classes” on page 23-70
“Specify Default #include Syntax for Data Header Files” on page 23-71
“Custom Storage Class Limitations” on page 23-71

Apply a Custom Storage Class from the Simulink Package Using Data
Objects

To apply a custom storage class from the built-in package Simulink to a signal, block
parameter, or state:

1 Create a data object such as Simulink.Parameter or Simulink.Signal.
2 Configure the data object properties, including code generation settings. Specify the

custom storage class.
3 Associate the data object with a signal, block parameter, or state in a model. For

example:

• In a block parameter dialog box, specify the name of a parameter data object.
• Use the name of a signal data object to name a signal in a model. In the Signal

Properties dialog box, select Signal name must resolve to Simulink signal
object.

Specify Custom Storage Class for Data Object

1 In the Model Explorer Model Hierarchy pane, select the workspace that you want
to contain the data object.

2
Click Add Parameter to create a Simulink.Parameter object.

3 In the Contents pane, click the new data object, which is named Param by default.

23-59

23 Custom Storage Classes in Embedded Coder

4 In the Dialog pane, in the drop-down list Storage class, select ExportToFile
(Custom).

5 Under Custom attributes, specify additional code generation settings that the
custom storage class requires. For example, specify HeaderFile as myDataHdr.h.

Programmatically Specify Custom Storage Class for Data Object

% Create a data object. For example, create a

% Simulink.Parameter object.

myParam = Simulink.Parameter(15.23);

% Specify the custom storage class called ExportToFile.

myParam.CoderInfo.StorageClass = 'Custom';

myParam.CoderInfo.CustomStorageClass = 'ExportToFile';

% Specify custom attributes for this data object.

myParam.CoderInfo.CustomAttributes.HeaderFile = 'myDataHdr.h';

Create and Apply Your Own Custom Storage Class Using Data Objects

To create your own custom storage class, you must create a data class package and define
the custom storage class in the package. Afterward, you can apply the custom storage
class to signals, block parameters, and states:

1 Create a data object from your data class package. For example, if you name your
package myPackage, you create data objects such as myPackage.Parameter and
myPackage.Signal.

2 Configure the data object properties, including code generation settings. Specify the
custom storage class that you defined.

3 Associate the data object with a signal, block parameter, or state in a model. For
example, specify the name of a parameter object in a block parameter dialog box, or
use the name of a signal object to name a signal in a model.

For an example that shows how to control the generated code by creating and applying a
custom storage class, see “Control Data Code by Creating Custom Storage Class” on page
23-73.

Specify Custom Storage Class for Data Object

Suppose that you define a data class package myPackage and a custom storage class
ExportDefToFile in that package.

23-60

 Control Data Representation by Applying Custom Storage Classes

1 In the Model Explorer Model Hierarchy pane, select the workspace that you want
to contain the data object.

2
Click the arrow next to Add Parameter . In the drop-down list, select Customize
class lists.

3 In the dialog box, under Parameter classes, select the check box next to
myPackage.Parameter. Click OK.

4 Click the arrow next to Add Parameter again. In the drop-down list, select
myPackage Parameter.

A new data object appears in the workspace. The default object name is Param.
5 In the Contents pane, select the new data object. In the Dialog pane, in the drop-

down list Storage class, select ExportDefToFile (Custom).
6 Under Custom attributes, specify additional code generation settings that

the custom storage class requires. For example, suppose that data objects that
use ExportDefToFile require you to specify a definition file. You can specify
DefinitionFile as myDataSrc.c.

Programmatically Specify Custom Storage Class for Data Object

Suppose that you define a data class package myPackage and a custom storage class
ExportDefToFile in that package.

% Create a data object from your package. For example, create a

% myPackage.Parameter object.

myParam = myPackage.Parameter(15.23);

% Specify the custom storage class ExportDefToFile.

myParam.CoderInfo.StorageClass = 'Custom';

myParam.CoderInfo.CustomStorageClass = 'ExportDefToFile';

% Specify custom attributes for this data object. For example, suppose that

% ExportDefToFile requires a definition file for each data object.

myParam.CoderInfo.CustomAttributes.DefinitionFile = 'myDataSrc.c';

Apply Custom Storage Classes Directly to Signal Lines, Block States, and
Outport Blocks

Through dialog boxes and the Model Data Editor (see “Configure Data Properties by
Using a Table” (Simulink)), you can apply custom storage classes directly to signal lines

23-61

23 Custom Storage Classes in Embedded Coder

and block states. You do not need a data object that you store in a workspace or data
dictionary. However, you cannot use a signal object in a workspace to specify other
characteristics of the signal or state, such as data type.

To apply a storage class directly to a signal line, use the Signal Properties dialog box. For
a block state, use the State Attributes tab in the block dialog box.

To apply a custom storage class from the built-in package Simulink:

1 Open the Code Generation tab in a Signal Properties dialog box, or the State
Attributes tab in a block dialog box.

2 Specify a name in the Signal name box or the State name box. Click Apply.
3 In the Storage class drop-down list, select a custom storage class.

To apply a custom storage class from a different package:

1 Open the Code Generation tab in a Signal Properties dialog box or the State
Attributes tab in a block dialog box.

2 Specify a name in the Signal name box or the State name box. Click Apply.
3 In the Signal object class drop-down list, choose a package by selecting a signal

object class that the target package defines. For example, to apply custom storage
classes from the built-in package Simulink, select Simulink.Signal.

If the class that you want does not appear in the list:

a From the drop-down list, select Customize class lists.
b In the dialog box, under Signal classes, select the check box next to the class

that you want. For example, to use custom storage classes from the built-in
package mpt, select the check box next to mpt.Signal. Click OK.

If you created your own package, the classes that the package defines appear in
the dialog box only if you put the package folder in your current folder or on the
MATLAB path.

c From the drop-down list, select the option that corresponds to what you selected.
For example, select mpt.Signal.

4 In the Storage class drop-down list, select a custom storage class.

To apply a custom storage class to a root-level Outport block, use the Model Data Editor.
You can also use the Model Data Editor to apply custom storage classes to signals

23-62

 Control Data Representation by Applying Custom Storage Classes

through a list that you can sort, group, and filter. See “Configure Data Interface by Using
Model Data Editor” on page 23-69.

Programmatically Apply Custom Storage Classes Directly to Signals,
States, and Outport Blocks Using Embedded Signal Objects

You can use embedded signal objects to apply custom storage classes to signal lines and
block states. The embedded signal object does not appear in a workspace, so you do not
need to save the object in a separate file. However, you can use embedded signal objects
to specify only a custom storage class, the associated custom attributes, and an alias for
the object. You must specify other signal or state characteristics, such as data type, in the
source block dialog box.

If you create an embedded signal object for a signal or state, you cannot use a signal
object in a workspace to specify other characteristics of the signal or state. The signal or
state name resolves only to the embedded signal object.

To attach an embedded signal object to a signal or state:

1 Create a temporary signal object in a workspace such as the base workspace.
2 Specify a custom storage class and associated custom attributes.
3 Programmatically assign the object to:

• The corresponding block outport if the target is a signal
• The corresponding block state if the target is a state

4 Optionally, delete the temporary signal object from the workspace.

This example shows how to attach an embedded signal object to a signal in a model.

1 Open the example model rtwdemo_secondOrderSystem.

rtwdemo_secondOrderSystem

2 Create a handle to the output of the block named Force: f(t).

portHandles = get_param('rtwdemo_secondOrderSystem/Force: f(t)','PortHandles');

outportHandle = portHandles.Outport;

3 Set the name of the corresponding signal to ForceSignal.

set_param(outportHandle,'Name','ForceSignal')

23-63

23 Custom Storage Classes in Embedded Coder

4 In the base workspace, create a signal object and specify a custom storage class and
relevant custom attributes.

tempObj = Simulink.Signal;

tempObj.CoderInfo.StorageClass = 'Custom';

tempObj.CoderInfo.CustomStorageClass = 'ExportToFile';

tempObj.CoderInfo.CustomAttributes.HeaderFile = 'myHdrFile.h';

You can create the object from the data class package Simulink, or from any other
package, such as a package that you create.

5 Embed the signal object in the target signal line by attaching a copy of the
temporary workspace object.

set_param(outportHandle,'SignalObject',tempObj);

6 Clear the object from the base workspace. The signal now uses an embedded copy of
the object.

clear tempObj

To modify an existing embedded signal object, copy the object into the base workspace,
modify the copy, and reattach the copy. For example, to change the custom storage class
of the embedded signal object attached to the signal ForceSignal:

1 Copy the existing embedded signal object into the base workspace.

tempObj = get_param(outportHandle,'SignalObject');

2 Modify the properties of the object in the workspace.

tempObj.CoderInfo.CustomStorageClass='ImportFromFile';

tempObj.CoderInfo.CustomAttributes.HeaderFile = 'myOtherHdrFile.h';

3 Reattach a copy of the signal object.

set_param(outportHandle,'SignalObject',tempObj);

clear tempObj

To attach an embedded signal object to a root-level Outport block, using the function
set_param, specify the block parameter SignalName to name the signal that the block
represents. Use the parameter SignalObject to embed the signal object.

To attach an embedded signal object to a block state, using the set_param function,
specify the block parameter StateIdentifier to name the state. Use the parameter
StateSignalObject to embed the signal object.

23-64

 Control Data Representation by Applying Custom Storage Classes

To attach an embedded signal object to a data store that you define by using a Data Store
Memory block, use the block parameter StateSignalObject. You do not need to specify
a state name because the data store already has a name.

Specify Instance-Specific Attributes

A custom storage class can have properties that define attributes that are specific to that
CSC. Such properties are called instance-specific attributes. For example, if you specify
the Struct custom storage class, you must specify the name of the C language structure
that will store the data. That name is an instance-specific attribute of the Struct CSC.

Data objects have a property called CoderInfo, which stores an object of the
class Simulink.CoderInfo. Instance-specific attributes are stored in the
Simulink.CoderInfo property CustomAttributes. This property is initially defined
as follows:

SimulinkCSC.AttribClass_Simulink_Default

1x1 struct array with no fields

When you specify a custom storage class, Simulink automatically populates
CoderInfo.CustomAttributes with fields to represent instance-specific attributes
of that CSC. For example, if you set the storage class of a data object MyObj to Struct,
then enter:

MyObj.CoderInfo.CustomAttributes

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct

 StructName: ''

To specify that StructName is MyStruct, enter:

MyObj.CoderInfo.CustomAttributes.StructName='MyStruct'

MATLAB displays:

SimulinkCSC.AttribClass_Simulink_Struct

 StructName: 'MyStruct'

The table lists instance-specific attributes that the custom storage classes from the
built-in package Simulink define. When a data object uses one of these custom storage
classes, you can specify the corresponding instance-specific attribute values in the object.

23-65

23 Custom Storage Classes in Embedded Coder

Custom Storage Class
Name

Instance-Specific Attribute Purpose

BitField CustomAttributes.StructName Name of the bitfield struct into
which the code generator packs the
object's Boolean data.

ExportToFile CustomAttributes.HeaderFile Name of header (.h) file that
contains exported variable
declarations and export directives
for the object.

CustomAttributes.HeaderFile Name of header (.h) file to
#include in the generated
code. See “Access Data Through
Functions with Custom Storage
Class GetSet” on page 23-92.

CustomAttributes.GetFunction Specify the name of a function call
to read data.

GetSet

CustomAttributes.SetFunction Specify the name of a function call
to write data.

ImportedDefine CustomAttributes.HeaderFile The header file that defines the
values of code variant preprocessor
conditionals. See “Generate
Preprocessor Conditionals for
Variant Systems” on page 14-33.

ImportFromFile CustomAttributes.HeaderFile Name of header (.h) file containing
global variable declarations the
code generator imports for the
object.

Struct CustomAttributes.StructName Name of the struct into which the
code generator packs the object's
data.

If you use a grouped custom storage class, you cannot specify many of its properties on an
instance-specific basis. A grouped custom storage class combines multiple pieces of data
into a single data structure. Data that use this format must have the same properties
such as Header file, Data scope, and Data initialization. For example, the custom
storage classes BitField and Struct represent multiple data objects in the generated
code by using a single structure variable.

23-66

 Control Data Representation by Applying Custom Storage Classes

Generate Code with Custom Storage Classes

This example shows how to control data representation in the generate code by using
custom storage classes and data objects.

Before you generate code for a model that uses custom storage classes, clear the
Configuration Parameters > All Parameters > Ignore custom storage classes
model option. Otherwise, the code generator ignores custom storage class specifications
and treats data objects as if their Storage Class were SimulinkGlobal.

The model above contains three named signals: aa, bb, and cc. Using the Struct custom
storage class, the example generates code that packs these signals into a struct named
mySignals. The struct declaration is then exported to externally written code.

To specify the struct, you provide Simulink.Signal objects that specify the Struct
custom storage class, and associate the objects with the signals as described in “Apply
a Custom Storage Class from the Simulink Package Using Data Objects” on page
23-59. The three objects have the same properties. To view the properties, double-
click one of the objects in the workspace browser (base workspace).

The association between identically named model signals and signal objects is formed as
described in “Symbol Resolution” (Simulink). In this example, the symbols aa, bb, and cc
resolve to the signal objects aa, bb, and cc, which have custom storage class Struct. In
the generated code, storage for the three signals will be allocated within a struct named
mySignals.

To display the storage class of the signals in the model, select Display > Signals
& Ports > Storage Class in the Simulink editor. The figure below shows the block
diagram with signal data types and signal storage classes displayed.

23-67

23 Custom Storage Classes in Embedded Coder

With the model’s signal objects defined and associated with signals, you can generate
code that uses the custom storage classes to generate the desired data structure for the
signals. After code generation, the relevant definitions and declarations are located in
three files:

• model_types.h defines the following struct type for storage of the three signals:

typedef struct MySignals_tag {

 boolean_T bb;

 uint8_T aa;

 uint8_T cc;

} mySignals_type;

• model.c (or .cpp) defines the variable mySignals, as specified in the object's
instance-specific StructName attribute. The code generated for the Switch block
references the variable:

/* Definition for Custom Storage Class: Struct */

mySignals_type mySignals = {

/* cc */

FALSE,

/* bb */

0,

/* aa */

 0

};

...

/* Switch: '<Root>/Switch1' */

 if(mySignals.cc) {

 rtb_Switch1 = mySignals.aa;

 } else {

23-68

 Control Data Representation by Applying Custom Storage Classes

 rtb_Switch1 = mySignals.bb;

 }

• model.h exports the mySignals Struct variable:

/* Declaration for Custom Storage Class: Struct */

extern mySignals_type mySignals;

Configure Data Interface by Using Model Data Editor

Use the Model Data Editor to apply storage classes to Inport and Outport blocks, signal
lines, and Data Store Memory blocks. Use this technique to apply storage classes without
locating the blocks and signals in the model and to configure the data interface of the
model by using a single list.

To apply custom storage classes from a specific package, use the Model Explorer to create
a signal object from the target package. Then, when you open the Model Data Editor, the
Storage class column displays custom storage classes from the target package.

1 In the Model Explorer Model Hierarchy pane, select Base Workspace.
2

In the toolbar, click the arrow next to the Add Signal button.
3 In the drop-down list, select Customize class lists.
4 In the Customize class lists dialog box, select a signal class from the target

package. Click OK.
5 In the Model Explorer toolbar, click the arrow next to the Add Signal button.
6 In the drop-down list, select the target signal class.

An object of the target signal class appears in the base workspace. Optionally, delete
this unnecessary object.

7 Use the Model Data Editor to apply custom storage classes from the target package
to other data items. In the Model Data Editor, in the Storage class column, the
drop-down list allows you to select custom storage classes from the target package.

To learn how to use the Model Data Editor to configure a data interface, see “Use Model
Data Editor to Configure Data Interface” on page 19-127.

23-69

23 Custom Storage Classes in Embedded Coder

Declare and Interface with Data Using Custom Storage Classes

Custom storage classes allow you to declare and interface with virtually any type of data.
This model shows three of the several predefined custom storage classes provided with
Embedded Coder. In this example, custom storage classes are specified for signals via the
"Signal Properties..." dialog of a line and for parameters via Simulink parameter objects
in the MATLAB Workspace.

Open the example model rtwdemo_cscpredef.

open_system('rtwdemo_cscpredef')

• The input signals use the custom storage class Struct.
• The constant parameters use the custom storage class ConstVolatile.
• The output signals use the custom storage class BitField.

You can use the Custom Storage Class Designer to:

• Create new custom storage classes

23-70

 Control Data Representation by Applying Custom Storage Classes

• Reference custom storage classes from other packages

To launch the Custom Storage Class Designer, type cscdesigner at the command
prompt.

Specify Default #include Syntax for Data Header Files

To control the file placement of a data item such as a signal line or block state in the
generated code, you can apply a custom storage class to the data item (see “Introduction
to Custom Storage Classes” on page 23-2). You then use the HeaderFile custom
attribute to specify the generated or custom header file that contains the declaration of
the data.

To reduce maintenance effort and data entry, when you specify HeaderFile, you can
omit delimiters (" or <>) and use only the file name. You can then control the default
delimiters that the generated code uses for the corresponding #include directives. To
use angle brackets by default, set Configuration Parameters > Code Generation >
Code Placement > #include file delimiters to #include <header.h>.

Custom Storage Class Limitations

• Data objects cannot have a custom storage class and a multiword data type.
• The Fcn block does not support parameters with a custom storage class in code

generation.
• For custom storage classes in models that use referenced models:

• If you apply a grouped custom storage class to multiple data items, the custom
storage class Data scope property must be set to Imported and you must provide
the data declaration in a custom header file. Grouped custom storage classes use
a single variable in the generated code to represent multiple data objects. For
example, the custom storage classes BitField and Struct are grouped custom
storage classes.

• You cannot apply the custom storage class FileScope to parameters that
referenced models use.

• If data is assigned an ungrouped CSC, such as Const, and the data's Data scope
property is Exported, its Header file property must be unspecified. This results
in the data being exported with the standard header file, model.h. Note that for
ungrouped data, the Data scope and Header file properties are either specified
by the selected CSC, or as one of the data object's instance-specific properties.

23-71

23 Custom Storage Classes in Embedded Coder

• You cannot apply the custom storage class FileScope to data items used by a data
exchange interface (C API, external mode, or ASAP2) or MAT-file logging. File-scoped
data are not externally accessible.

Related Examples
• “Configure Data Interface by Applying Custom Storage Classes”
• “Control Data Code by Creating Custom Storage Class” on page 23-73
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11
• “Design Custom Storage Classes and Memory Sections” on page 23-34
• “Data Objects” (Simulink)
• “Introduction to Custom Storage Classes” on page 23-2
• “Configure Generated Code According to Interface Control Document” on page

23-112

23-72

 Control Data Code by Creating Custom Storage Class

Control Data Code by Creating Custom Storage Class

When you integrate code generated from a model with existing code from another source,
you can design custom storage classes to control the declaration and definition of model
signals and block parameters. This example shows how to control code generated from a
model by creating and applying your own custom storage class.

In this section...

“Explore Example Model” on page 23-73
“Create Data Class Package” on page 23-73
“Create Custom Storage Class” on page 23-74
“Apply Custom Storage Class” on page 23-75
“Generate Code” on page 23-76

Explore Example Model

Open the model rtwdemo_cscpredef. You can control code generated from this model by
defining your own data classes and creating your own custom storage classes.

This example shows you how to export the declarations and definitions of multiple
signals and parameters in the model to one declaration header file and one definition file.

Create Data Class Package

To create custom storage classes, you first create a data class package to contain the
custom storage class definitions. Data objects created from your package can use all of
the custom storage classes that the package defines.

1 Create your own data class package by copying the example package folder
+SimulinkDemos. Navigate to the example package folder.

% Remember the current folder path

currentPath = pwd;

% Navigate to the example package folder

demoPath = '\toolbox\simulink\simdemos\dataclasses';

cd([matlabroot,demoPath])

2 Copy the +SimulinkDemos folder to your clipboard.

23-73

23 Custom Storage Classes in Embedded Coder

3 Return to your working folder.

cd(currentPath)

4 Paste the +SimulinkDemos folder from your clipboard into your working folder.
Rename the copied folder to +myPackage.

5 Navigate inside the +myPackage folder to the file Signal.m to edit the definition of
the Signal class.

6 Uncomment the methods section that defines the method setupCoderInfo. In the
call to the function useLocalCustomStorageClasses, replace 'packageName'
with 'myPackage'. When you finish, the section appears as follows:

 methods

 function setupCoderInfo(h)

 % Use custom storage classes from this package

 useLocalCustomStorageClasses(h, 'myPackage');

 end

 end % methods

The function useLocalCustomStorageClasses allows you to apply the custom
storage classes that myPackage defines to data objects that you create from
myPackage.

7 Save and close the file.
8 Navigate inside the +myPackage folder to the file Parameter.m to edit the

definition of the Parameter class. Uncomment the methods section that defines the
method setupCoderInfo and replace 'packageName' with 'myPackage'.

9 Save and close the file.

Create Custom Storage Class

You can use the Custom Storage Class Designer to create or to edit the custom storage
classes that a data class package defines.

1 Set your current folder to the folder that contains the package myPackage.
2 Open the Custom Storage Class Designer.

cscdesigner('myPackage')

3 Select the custom storage class ExportToFile.
4 In the Name field, rename the custom storage class to ExportToGlobal.

23-74

 Control Data Code by Creating Custom Storage Class

5 In the Header file drop-down list, change the selection from Instance specific
to Specify. In the new field, provide the header file name global.h.

6 In the Definition file drop-down list, change the selection from Instance
specific to Specify. In the new field, provide the definition file name global.c.

7 Click OK. Click Yes to save changes to the data class package myPackage.

Apply Custom Storage Class

To apply your own custom storage class, you create data objects from your package and
configure the objects to use your custom storage class.

1 Create data objects to represent some of the parameters and signals in the example
model. Create the objects using the data class package myPackage.

% Parameters

templimit = myPackage.Parameter(202);

pressurelimit = myPackage.Parameter(45.2);

O2limit = myPackage.Parameter(0.96);

rpmlimit = myPackage.Parameter(7400);

% Signals

tempalarm = myPackage.Signal;

pressurealarm = myPackage.Signal;

O2alarm = myPackage.Signal;

rpmalarm = myPackage.Signal;

2 Set the custom storage class of each object to ExportToGlobal.

% Parameters

templimit.CoderInfo.StorageClass = 'Custom';

templimit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

pressurelimit.CoderInfo.StorageClass = 'Custom';

pressurelimit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

O2limit.CoderInfo.StorageClass = 'Custom';

O2limit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

rpmlimit.CoderInfo.StorageClass = 'Custom';

rpmlimit.CoderInfo.CustomStorageClass = 'ExportToGlobal';

% Signals

tempalarm.CoderInfo.StorageClass = 'Custom';

tempalarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

pressurealarm.CoderInfo.StorageClass = 'Custom';

pressurealarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

23-75

23 Custom Storage Classes in Embedded Coder

O2alarm.CoderInfo.StorageClass = 'Custom';

O2alarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

rpmalarm.CoderInfo.StorageClass = 'Custom';

rpmalarm.CoderInfo.CustomStorageClass = 'ExportToGlobal';

3 Select the Signal name must resolve to Simulink signal object option for each
of the target signals in the model. You can select the option by using the Signal
Properties dialog box or by using the command prompt.

% Signal tempalarm

portHandles = get_param('rtwdemo_cscpredef/RelOp1','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

% Signal pressurealarm

portHandles = get_param('rtwdemo_cscpredef/RelOp2','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

% Signal O2alarm

portHandles = get_param('rtwdemo_cscpredef/RelOp3','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

% Signal rpmalarm

portHandles = get_param('rtwdemo_cscpredef/RelOp4','PortHandles');

outputPortHandle = portHandles.Outport;

set_param(outputPortHandle,'MustResolveToSignalObject','on')

Generate Code

1 Generate code for the example model.

rtwbuild('rtwdemo_cscpredef')

2 In the code generation report, view the generated header file global.h. The file
contains the extern declarations of all of the model signals and parameters that use
the custom storage class ExportToGlobal.

/* Declaration for custom storage class: ExportToGlobal */

extern boolean_T O2alarm;

extern real_T O2limit;

extern boolean_T pressurealarm;

extern real_T pressurelimit;

extern boolean_T rpmalarm;

23-76

 Control Data Code by Creating Custom Storage Class

extern real_T rpmlimit;

extern boolean_T tempalarm;

extern real_T templimit;

3 View the generated file global.c. The file contains the definitions of the model
signals and parameters that use the custom storage class ExportToGlobal.

/* Definition for custom storage class: ExportToGlobal */

boolean_T O2alarm;

real_T O2limit = 0.96;

boolean_T pressurealarm;

real_T pressurelimit = 45.2;

boolean_T rpmalarm;

real_T rpmlimit = 7400.0;

boolean_T tempalarm;

real_T templimit = 202.0;

Related Examples
• “Generate Code with Custom Storage Classes” on page 23-67
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58
• “Design Custom Storage Classes and Memory Sections” on page 23-34
• “Data Objects” (Simulink)
• “Introduction to Custom Storage Classes” on page 23-2
• “Define Advanced Custom Storage Classes Types” on page 23-78
• “Access Structured Data Through a Pointer That External Code Defines” on page

23-27

23-77

23 Custom Storage Classes in Embedded Coder

Define Advanced Custom Storage Classes Types

In this section...

“Introduction” on page 23-78
“Create Your Own Parameter and Signal Classes” on page 23-78
“Create Custom Attributes Classes for Custom Storage Classes” on page 23-78
“Write TLC Code for Custom Storage Classes” on page 23-79
“Register Custom Storage Class Definitions” on page 23-79
“Custom Storage Class Implementation” on page 23-81

Introduction

Certain data layouts, such as nested structures, cannot be generated using the standard
Unstructured and FlatStructure custom storage class types. You can define an
advanced custom storage class if you want to generate other types of data. Creating
advanced CSCs requires understanding TLC programming and using a special advanced
mode of the Custom Storage Class Designer. These sections explain how to define
advanced CSC types. For more information about TLC programming, see “Why Use the
Target Language Compiler?” (Simulink Coder).

For an example, see “Generate Code That Dereferences Data from a Literal Memory
Address” on page 23-83.

Create Your Own Parameter and Signal Classes

The first step is to create your own package containing classes derived from
Simulink.Parameter or Simulink.Signal. This procedure is described in “Define
Data Classes” (Simulink).

Create Custom Attributes Classes for Custom Storage Classes

If you have instance-specific properties that are relevant only to your CSC, you should
create a custom attributes class for the package. A custom attributes class is a subclass
of Simulink.CustomStorageClassAttributes. The name, type, and default value
properties you set for the custom attributes class define the user view of instance-specific
properties. For instructions, see “Define Data Classes” (Simulink).

23-78

 Define Advanced Custom Storage Classes Types

For example, the ExportToFile custom storage class requires that you set the
CoderInfo.CustomAttributes.HeaderFile property to specify a .h file used for
exporting each piece of data. See “Simulink Package Custom Storage Classes” on page
23-5 for further information on instance-specific properties.

Note: If you rename or remove custom attributes, you may need to manually edit the
csc_registration file for the associated package to remove references to the custom
attributes that you renamed or removed.

Write TLC Code for Custom Storage Classes

The next step is to write TLC code that implements code generation for data of your new
custom storage class. A template TLC file is provided for this purpose. To create your
TLC code, follow these steps:

1 Create a tlc directory inside your package's +directory (if it does not already exist).
The naming convention to follow is

+PackageName/tlc

2 Copy TEMPLATE_v1.tlc (or another CSC template) from the folder matlabroot/
toolbox/rtw/targets/ecoder/csc_templates (open) into your tlc directory to
use as a starting point for defining your custom storage class.

3 Write your TLC code, following the comments in the CSC template file. Comments
describe how to specify code generation for data of your custom storage class (for
example, how data structures are to be declared, defined, and whether they are
accessed by value or by reference).

Alternatively, you can copy a custom storage class TLC file from another existing
package as a starting point for defining your custom storage class.

Register Custom Storage Class Definitions

After you have created a package for your new custom storage class and written its
associated TLC code, you must register your class definitions with the Custom Storage
Class Designer, using its advanced mode.

The advanced mode supports selection of an additional storage class Type, designated
Other. The Other type is designed to support special CSC types that cannot be
accommodated by the standard Unstructured and FlatStructure custom storage

23-79

23 Custom Storage Classes in Embedded Coder

class types. The Other type cannot be assigned to a CSC except when the Custom
Storage Class Designer is in advanced mode.

To register your class definitions:

1 Launch the Custom Storage Class Designer in advanced mode by typing the
following command at the MATLAB prompt:

cscdesigner -advanced

2 Select your package and create a new custom storage class.
3 Set the Type of the custom storage class to Other. Note that when you do this, the

Other Attributes pane is displayed. This pane is visible only for CSCs whose Type
is set to Other.

If you specify a customized package, additional options, as defined by the package,
also appear on the Other Attributes pane.

4 Set the properties shown on the Other Attributes pane. The properties are:

• Is grouped: Select this option if you intend to combine multiple data objects
of this CSC into a single variable in the generated code. For example, the built-
in custom storage classes BitField and Struct are grouped because they can
represent multiple data objects in the generated code by using a single structure
variable.

• TLC file name: Enter the name of the TLC file corresponding to this custom
storage class. The location of the file is assumed to be in the /tlc subdirectory
for the package, so you should not enter the path to the file.

• CSC attributes class name: (optional) If you created a custom attributes class
corresponding to this custom storage class, enter the full name of the custom
attributes class, for example, myPackage.myCustomAttsClass (see “Create
Custom Attributes Classes for Custom Storage Classes” on page 23-78).

23-80

 Define Advanced Custom Storage Classes Types

5 Set the remaining properties on the General and Comments panes based on the
layout of the data that you wish to generate (as defined in your TLC file).

Custom Storage Class Implementation

The file that defines a package's custom storage classes is called a CSC registration
file. The file is named csc_registration and resides in the +package directory that
defines the package. A CSC registration file can be a P-file (csc_registration.p) or a
MATLAB file (csc_registration.m). A built-in package defines custom storage classes
in both a P-file and a functionally equivalent MATLAB file. A user-defined package
initially defines custom storage classes only in a MATLAB file.

P-files take precedence over MATLAB files, so when MATLAB looks for a package's CSC
registration file and finds both a P-file and a MATLAB file, MATLAB loads the P-file
and ignores the MATLAB file. The capabilities and tools, including the Custom Storage
Class Designer, then use the CSC definitions stored in the P-file. P-files cannot be edited,
so CSC Designer editing capabilities are disabled for CSCs stored in a P-file. If a P-file
does not exist, MATLAB loads CSC definitions from the MATLAB file. MATLAB files are
editable, so CSC Designer editing capabilities are enabled for CSCs stored in a MATLAB
file.

Because CSC definitions for a built-in package exist in both a P-file and a MATLAB
file, they are uneditable. You can make the definitions editable by deleting the P-file,
but it is not recommended to modify built-in CSC registration files or other files under
matlabroot. The preferred technique is to create packages, data classes, and custom
storage classes, as described in “Define Data Classes” (Simulink).

The CSC Designer saves CSC definitions for user-defined packages in a MATLAB file,
so the definitions are editable. You can make the definitions uneditable by using the
pcode function to create an equivalent P-file, which will then shadow the MATLAB
file. However, you should preserve the MATLAB file if you may need to make further
changes, because you cannot modify CSC definitions that exist only in a P-file.

You can also use tools or techniques other than the Custom Storage Class Designer to
create and edit MATLAB files that define CSCs. However, that practice is vulnerable
to syntax errors and can give unexpected results. When MATLAB finds an older P-file
that shadows a newer MATLAB file, it displays a warning in the MATLAB Command
Window.

23-81

23 Custom Storage Classes in Embedded Coder

Related Examples
• “Introduction to the Target Language Compiler” (Simulink Coder)
• “Generate Code That Dereferences Data from a Literal Memory Address” on page

23-83
• “Control Data Code by Creating Custom Storage Class” on page 23-73
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58
• “Generate Code with Custom Storage Classes” on page 23-67
• “Design Custom Storage Classes and Memory Sections” on page 23-34
• “Data Object Information in model.rtw” (Simulink Coder)

23-82

 Generate Code That Dereferences Data from a Literal Memory Address

Generate Code That Dereferences Data from a Literal Memory
Address

This example shows how to generate code that reads the value of a signal by
dereferencing a memory address that you specify. With this technique, you can
generate a control algorithm that interacts with memory that your hardware populates
(for example, memory that stores the output of an analog-to-digital converter in a
microcontroller).

In this example, you generate an algorithm that acquires input data from a 16-bit block
of memory at address 0x8675309. Assume that a hardware device asynchronously
populates only the lower 10 bits of the address. The algorithm must treat the address as
read-only (const), volatile (volatile) data, and ignore the upper 6 bits of the address.

The generated code can access the data by defining a macro that dereferences
0x8675309 and masks the unnecessary bits:

#define A2D_INPUT ((*(volatile const uint16_T *)0x8675309)&0x03FF)

To configure a model to generate code that defines and uses this macro, you must create
an advanced custom storage class and write Target Language Compiler (TLC) code. For
an example that shows how to use the Custom Storage Class Designer without writing
TLC code, see “Control Data Code by Creating Custom Storage Class”.

Derivation of Macro Syntax

In this example, you configure the generated code to define and use the dereferencing
macro. To determine the correct syntax for the macro, start by recording the target
address.

0x8675309

Cast the address as a pointer to a 16-bit integer. Use the Simulink Coder data type name
uint16_T.

(uint16_T *)0x8675309

Add the storage type qualifier const because the generated code must not write to the
address. Add volatile because the hardware can populate the address at an arbitrary
time.

23-83

23 Custom Storage Classes in Embedded Coder

(volatile const uint16_T *)0x8675309

Dereference the address.

*(volatile const uint16_T *)0x8675309

After the dereference operation, apply a mask to retain only the 10 bits that the
hardware populates. Use explicit parentheses to control the order of operations.

(*(volatile const uint16_T *)0x8675309)&0x03FF

As a safe coding practice, wrap the entire construct in another layer of parentheses.

((*(volatile const uint16_T *)0x8675309)&0x03FF)

Create Example Model

Create the example model ex_memmap_simple.

For the Inport block, set the output data type to uint16. Name the signal as
A2D_INPUT. The Inport block and the signal line represent the data that the hardware
populates.

For the Gain block, set the output data type to double.

Create Package to Contain Definitions of Data Class and Custom Storage Class

In your current folder, create a folder named +MemoryMap. The folder defines a package
named MemoryMap.

To make the package available for use outside of your current folder, you can add the
+MemoryMap folder to the MATLAB path.

Create Custom Storage Class

To generate code that defines and reads A2D_INPUT as a macro, you must create a
custom storage class that you can apply to the signal line in the model. Later, you write
TLC code that complements the custom storage class.

23-84

 Generate Code That Dereferences Data from a Literal Memory Address

Open the Custom Storage Class designer in advanced mode. To design a custom storage
class that operates through custom TLC code, you must use the advanced mode.

cscdesigner('MemoryMap','-advanced');

In the Custom Storage Class Designer, click New. A new custom storage class,
NewCSC_1, appears in the list of custom storage class definitions.

Rename the new custom storage class MemoryMappedAddress.

For MemoryMappedAddress, on the General tab, set:

• Type to Other. The custom storage class can operate through custom TLC code that
you write later.

• Data scope to Exported. For data items that use this custom storage class,
Simulink Coder generates the definition (for example, the #define statement that
defines a macro).

• Data initialization to None. Simulink Coder does not generate code that initializes
the data item. Use this setting because this custom storage class represents read-only
data. You do not select Macro because the Custom Storage Class Designer does not
allow you to use Macro for signal data.

• Definition file to Specify (leave the text box empty). For data items that consume
memory in the generated code, Definition file specifies the .c source file that
allocates the memory. However, this custom storage class yields a macro, which does
not require memory. Header files (.h), not .c files, define macros. Setting Definition
file to Specify instead of Instance specific prevents users of the custom storage
class from unnecessarily specifying a definition file.

• Header file to Instance specific. To control the file placement of the macro
definition, the user of the custom storage class must specify a header file for each data
item that uses this custom storage class.

• Owner to Specify (leave the text box empty). Owner applies only to data items that
consume memory.

After you finish selecting the settings, click Apply and Save.

Now, when you apply the custom storage class to a data item, such as the A2D_INPUT
signal line, you can specify a header file to contain the generated macro definition.
However, you cannot yet specify a memory address for the data item. To enable
specification of a memory address, create a custom attributes class that you can associate
with the MemoryMappedAddress custom storage class.

23-85

23 Custom Storage Classes in Embedded Coder

Define Class to Store Custom Attributes for Custom Storage Class

Define a MATLAB class to store additional information for data items that use the
custom storage class. In this case, the additional information is the memory address.

In the MemoryMap package (the +MemoryMap folder), create a folder named
@MemoryMapAttribs.

In the @MemoryMapAttribs folder, create a file named MemoryMapAttribs.
The file defines a class that derives from the built-in class
Simulink.CustomStorageClassAttributes.

classdef MemoryMapAttribs < Simulink.CustomStorageClassAttributes

 properties(PropertyType = 'char')

 MemoryAddress = '';

 end

end

Later, you associate this MATLAB class with the MemoryMappedAddress custom
storage class. Then, when you apply the custom storage class to a data item, you can
specify a memory address.

Write TLC Code That Emits Correct C Code

Write TLC code that uses the attributes of the custom storage class, such as HeaderFile
and MemoryAddress, to generate correct C code for each data item.

In the +MemoryMap folder, create a folder named tlc.

Navigate to the new folder.

Inspect the built-in template TLC file, TEMPLATE_v1.tlc.

edit(fullfile(matlabroot,...

 'toolbox','rtw','targets','ecoder','csc_templates','TEMPLATE_v1.tlc'))

Save a copy of TEMPLATE_v1.tlc in the tlc folder. Rename the copy
memory_map_csc.tlc.

In memory_map_csc.tlc, find the portion that controls the generation of C-code data
declarations.

23-86

 Generate Code That Dereferences Data from a Literal Memory Address

 %case "declare"

 %% LibDefaultCustomStorageDeclare is the default declare function to

 %% declares a global variable whose identifier is the name of the data.

 %return "extern %<LibDefaultCustomStorageDeclare(record)>"

 %%break

 %% ==

The declare case (%case) constructs a return value (%return), which the code
generator emits into the header file that you specify for each data item. To control the C
code that declares each data item, adjust the return value in the declare case.

Replace the existing %case content with this new code, which specifies a different return
value:

%case "declare"

 %% In TLC code, a 'record' is a data item (for example, a signal line).

 %% 'LibGetRecordIdentifier' returns the name of the data item.

 %assign id = LibGetRecordIdentifier(record)

 %assign dt = LibGetRecordCompositeDataTypeName(record)

 %% The 'CoderInfo' property of a data item stores a

 %% 'Simulink.CoderInfo' object, which stores code generation settings

 %% such as the storage class or custom storage class that you specify

 %% for the item.

 %assign ci = record.Object.ObjectProperties.CoderInfo

 %% The 'ci' variable now stores the 'Simulink.CoderInfo' object.

 %% By default, the 'CustomAttributes' property of a 'Simulink.CoderInfo'

 %% object stores a 'Simulink.CustomStorageClassAttributes' object.

 %% This nested object stores specialized code generation settings

 %% such as the header file and definition file that you specify for

 %% the data item.

 %%

 %% The 'MemoryMap' package derives a new class,

 %% 'MemoryMapAttribs', from 'Simulink.CustomStorageClassAttributes'.

 %% The new class adds a property named 'MemoryAddress'.

 %% This TLC code determines the memory address of the data item by

 %% acquiring the value of the 'MemoryAddress' property.

23-87

23 Custom Storage Classes in Embedded Coder

 %assign ca = ci.Object.ObjectProperties.CustomAttributes

 %assign address = ca.Object.ObjectProperties.MemoryAddress

 %assign width = LibGetDataWidth(record)

 %% This TLC code constructs the full macro, with correct C syntax,

 %% based on the values of TLC variables such as 'address' and 'dt'.

 %% This TLC code also asserts that the data item must be a scalar.

 %if width == 1

 %assign macro = ...

 "#define %<id> ((*(volatile const %<dt>*)%<address>) & 0x03FF)"

 %else

 %error("Non scalars are not supported yet.")

 %endif

 %return "%<macro>"

 %%break

 %% ==

The new TLC code uses built-in, documented TLC functions, such as
LibGetRecordIdentifier, and other TLC commands and operations to access
information about the data item. Temporary variables such as dt and address store
that information. The TLC code constructs the full macro, with the correct C syntax, by
expanding the variables, and stores the macro in the variable macro.

In the same file, find the portion that controls the generation of data definitions.

 %case "define"

 %% LibDefaultCustomStorageDefine is the default define function to define

 %% a global variable whose identifier is the name of the data. If the

 %% data is a parameter, the definition is also statically initialized to

 %% its nominal value (as set in MATLAB).

 %return "%<LibDefaultCustomStorageDefine(record)>"

 %%break

 %% ==

The define case derives a return value that the code generator emits into a .c file,
which defines data items that consume memory.

Replace the existing %case content with this new content:

23-88

 Generate Code That Dereferences Data from a Literal Memory Address

 %case "define"

 %return ""

 %%break

 %% ==

MemoryMappedAddress yields a macro in the generated code, so you use the declare
case instead of the define case to construct and emit the macro. To prevent the define
case from emitting a duplicate macro definition, the new TLC code returns an empty
string.

Complete the Definition of the Custom Storage Class

Your new MATLAB class, MemoryMapAttribs, can enable users of your new
custom storage class, MemoryMappedAddress, to specify a memory address for
each data item. To allow this specification, associate MemoryMapAttribs with
MemoryMappedAddress. To generate correct C code based on the information that you
specify for each data item, associate the customized TLC file, memory_map_csc.tlc,
with MemoryMappedAddress.

Navigate to the folder that contains the +MemoryMap folder.

Open the Custom Storage Class Designer again.

For MemoryMappedAddress, on the Other Attributes tab, set:

• TLC file name to memory_map_csc.tlc.
• CSC attributes class to MemoryMap.MemoryMapAttribs.

Click Apply and Save.

Define Signal Data Class

To apply the custom storage class to a signal in a model, in the MemoryMap package,
you must create a MATLAB class that derives from Simulink.Signal. When you
configure the signal in the model, you select this new data class instead of the default
class, Simulink.Signal.

In the MemoryMap package, create a folder named @Signal.

In the @Signal folder, create a file named Signal.m.

23-89

23 Custom Storage Classes in Embedded Coder

classdef Signal < Simulink.Signal

 methods

 function setupCoderInfo(this)

 useLocalCustomStorageClasses(this, 'MemoryMap');

 return;

 end

 end

end

The file defines a class named MemoryMap.Signal. The class definition overrides the
setupCoderInfo method, which the Simulink.Signal class already implements.
The new implementation specifies that objects of the MemoryMap.Signal class use
custom storage classes from the MemoryMap package (instead of custom storage
classes from the Simulink package). When you configure a signal in a model by
selecting the MemoryMap.Signal class, you can select the new custom storage class,
MemoryMappedAddress.

Apply Custom Storage Class to Signal Line

Navigate to the folder that contains the example model and open the model.

In the model, select View > Property Inspector.

Click the signal named A2D_INPUT.

In the Property Inspector, under Code Generation, set Signal object class to
MemoryMap.Signal. If you do not see MemoryMap.Signal, select Customize class
lists and use the dialog box to enable the selection of MemoryMap.Signal.

In the Property Inspector, set Storage class to MemoryMappedAddress.

Set Header file to memory_mapped_addresses.h.

Set MemoryAddress to 0x8675309.

Generate and Inspect Code

Generate code from the model.

Starting build procedure for model: ex_memmap_simple

Successful completion of build procedure for model: ex_memmap_simple

23-90

 Generate Code That Dereferences Data from a Literal Memory Address

Inspect the generated header file memory_mapped_addresses.h. The file defines the
macro A2D_INPUT, which corresponds to the signal line in the model.

/* Declaration of data with custom storage class MemoryMappedAddress */

#define A2D_INPUT ((*(volatile const uint16_T*)0x8675309) & 0x03FF)

Inspect the generated file ex_memmap_simple.c. The generated algorithmic code (which
corresponds to the Gain block) calculates the model output, rtY.Out1, by operating on
A2D_INPUT.

/* Model step function */

void ex_memmap_simple_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 * Inport: '<Root>/In1'

 */

 rtY.Out1 = 42.0 * (real_T)A2D_INPUT;

}

Related Examples
• “Signal Representation in Generated Code” on page 19-112
• “Access Data Through Functions with Custom Storage Class GetSet” on page

23-92
• “Choose an External Code Integration Workflow” on page 39-4
• “Define Advanced Custom Storage Classes Types” on page 23-78
• “Target Language Compiler”

23-91

23 Custom Storage Classes in Embedded Coder

Access Data Through Functions with Custom Storage Class
GetSet

To integrate the generated code with legacy code that uses specialized functions to read
from and write to data, you can use the custom storage class GetSet. Signals, block
parameters, and states that use GetSet appear in the generated code as calls to accessor
functions. You provide the function definitions.

To generate code that conforms to the AUTOSAR standard by accessing data through
Rte function calls, use the Configure AUTOSAR Interface dialog box. See “AUTOSAR
Interface Configuration”.

Access Legacy Data Using Get and Set Functions

This example shows how to generate code that interfaces with legacy code by using
specialized get and set functions to access data.

View the example legacy header file ComponentDataHdr.h. The file defines a large
structure type ComponentData.

rtwdemodbtype('ComponentDataHdr.h','/* ComponentData */','} ComponentData;',1,1)

/* ComponentData */

typedef struct {

 ScalarData scalars;

 VectorData vectors;

 StructData structs;

 MatricesData matrices;

} ComponentData;

The field scalars is a substructure that uses the structure type ScalarData. The
structure type ScalarData defines three scalar fields: inSig, scalarParam, and
outSig.

rtwdemodbtype('ComponentDataHdr.h','/* ScalarData */','} ScalarData;',1,1)

/* ScalarData */

23-92

 Access Data Through Functions with Custom Storage Class GetSet

typedef struct {

 double inSig;

 double scalarParam;

 double outSig;

} ScalarData;

View the example legacy source file getsetSrc.c. The file defines and initializes a
global variable ex_getset_data that uses the structure type ComponentData. The
initialization includes values for the substructure scalars.

rtwdemodbtype('getsetSrc.c','/* Field "scalars" */','/* End of "scalars" */',1,1)

 /* Field "scalars" */

 {

 3.9,

 12.3,

 0.0

 },

 /* End of "scalars" */

The file also defines functions that read from and write to the fields of the substructure
scalars. The functions simplify data access by dereferencing the leaf fields of the global
structure variable ex_getset_data.

rtwdemodbtype('getsetSrc.c',...

 '/* Scalar get() and set() functions */','/* End of scalar functions */',1,1)

/* Scalar get() and set() functions */

double get_inSig(void)

{

 return ex_getset_data.scalars.inSig;

}

void set_inSig(double value)

{

 ex_getset_data.scalars.inSig = value;

}

23-93

23 Custom Storage Classes in Embedded Coder

double get_scalarParam(void)

{

 return ex_getset_data.scalars.scalarParam;

}

void set_scalarParam(double value)

{

 ex_getset_data.scalars.scalarParam = value;

}

double get_outSig(void)

{

 return ex_getset_data.scalars.outSig;

}

void set_outSig(double value)

{

 ex_getset_data.scalars.outSig = value;

}

View the example legacy header file getsetHdrScalar.h. The file contains the extern
prototypes for the get and set functions defined in getsetSrc.c.

Open the example model rtwdemo_getset_scalar. The model creates the data objects
inSig, outSig, and scalarParam in the base workspace. The objects correspond to the
signals and parameter in the model.

open_system('rtwdemo_getset_scalar')

In the base workspace, double-click the object inSig to view its properties. The object
uses the custom storage class GetSet. The GetFunction and SetFunction properties
are set to the defaults, get_$N and set_$N. The generated code uses the function names
that you specify in GetFunction and SetFunction to read from and write to the data.

23-94

 Access Data Through Functions with Custom Storage Class GetSet

The code replaces the token $N with the name of the data object. For example, for the
data object inSig, the generated code uses calls to the legacy functions get_inSig and
set_inSig.

For the data object inSig, the HeaderFile property is set to getsetHdrScalar.h.
This legacy header file contains the get and set function prototypes. The data objects
outSig and scalarParam also use the custom storage class GetSet and the header file
getsetHdrScalar.h.

In the model Configuration Parameters dialog box, on the Code Generation > Custom
Code pane, under Include list of additional, select Source files. The Source files
box identifies the source file getsetSrc.c for inclusion during the build process. This
legacy source file contains the get and set function definitions and the definition of the
global structure variable ex_getset_data.

Generate code with the example model.

rtwbuild('rtwdemo_getset_scalar');

Starting build procedure for model: rtwdemo_getset_scalar

Successful completion of build procedure for model: rtwdemo_getset_scalar

In the code generation report, view the file rtwdemo_getset_scalar.c. The model
step function uses the legacy get and set functions to execute the algorithm. The
generated code accesses the legacy signal and parameter data by calling the custom,
handwritten get and set functions.

rtwdemodbtype(fullfile('rtwdemo_getset_scalar_ert_rtw','rtwdemo_getset_scalar.c'),...

 '/* Model step function */','}',1,1)

/* Model step function */

void rtwdemo_getset_scalar_step(void)

{

 /* Gain: '<Root>/Gain' incorporates:

 * Inport: '<Root>/In1'

 */

 set_outSig(get_scalarParam() * get_inSig());

}

You can generate code that calls your custom get and set functions as long as the
functions that you write accept and return the expected values. For scalar data, the
functions must have these characteristics:

23-95

23 Custom Storage Classes in Embedded Coder

• The get function must return a single scalar numeric value of the appropriate data
type, and must not accept any arguments (void).

• The set function must not return anything (void), and must accept a single scalar
numeric value of the appropriate data type.

Use GetSet with Vector Data

This example shows how to apply the custom storage class GetSet to signals and
parameters that are vectors.

View the example legacy header file ComponentDataHdr.h. The file defines a large
structure type ComponentData.

rtwdemodbtype('ComponentDataHdr.h','/* ComponentData */','} ComponentData;',1,1)

/* ComponentData */

typedef struct {

 ScalarData scalars;

 VectorData vectors;

 StructData structs;

 MatricesData matrices;

} ComponentData;

The field vectors is a substructure that uses the structure type VectorData. The
structure type VectorData defines three vector fields: inVector, vectorParam, and
outVector. The vectors each have five elements.

rtwdemodbtype('ComponentDataHdr.h','/* VectorData */','} VectorData;',1,1)

/* VectorData */

typedef struct {

 double inVector[5];

 double vectorParam[5];

 double outVector[5];

} VectorData;

View the example legacy source file getsetSrc.c. The file defines and initializes a
global variable ex_getset_data that uses the structure type ComponentData. The
initialization includes values for the substructure vectors.

23-96

 Access Data Through Functions with Custom Storage Class GetSet

rtwdemodbtype('getsetSrc.c','/* Field "vectors" */','/* End of "vectors" */',1,1)

 /* Field "vectors" */

 {

 {5.7, 6.8, 1.2, 3.5, 10.1},

 {12.3, 18.7, 21.2, 28, 32.9},

 {0.0, 0.0, 0.0, 0.0, 0.0}

 },

 /* End of "vectors" */

The file also defines functions that read from and write to the fields of the substructure
vectors. The functions simplify data access by dereferencing the leaf fields of the global
structure variable ex_getset_data. To access the vector data, all of the functions
accept an integer index argument. The get function returns the vector value at the input
index. The set function assigns the input value to the input index.

rtwdemodbtype('getsetSrc.c',...

 '/* Vector get() and set() functions */','/* End of vector functions */',1,1)

/* Vector get() and set() functions */

double get_inVector(int index)

{

 return ex_getset_data.vectors.inVector[index];

}

void set_inVector(int index, double value)

{

 ex_getset_data.vectors.inVector[index] = value;

}

double get_vectorParam(int index)

{

 return ex_getset_data.vectors.vectorParam[index];

}

void set_vectorParam(int index, double value)

{

 ex_getset_data.vectors.vectorParam[index] = value;

}

23-97

23 Custom Storage Classes in Embedded Coder

double get_outVector(int index)

{

 return ex_getset_data.vectors.outVector[index];

}

void set_outVector(int index, double value)

{

 ex_getset_data.vectors.outVector[index] = value;

}

View the example legacy header file getsetHdrVector.h. The file contains the extern
prototypes for the get and set functions defined in getsetSrc.c.

Open the example model rtwdemo_getset_vector. The model creates the data objects
inVector, outVector, and vectorParam in the base workspace. The objects
correspond to the signals and parameter in the model.

open_system('rtwdemo_getset_vector')

In the base workspace, double-click the object inVector to view its properties. The
object uses the custom storage class GetSet. The property HeaderFile is specified
as getsetHdrVector.h. This legacy header file contains the get and set function
prototypes.

In the model Configuration Parameters dialog box, on the Code Generation > Custom
Code pane, the example legacy source file getsetSrc.c is identified for inclusion
during the build process. This legacy source file contains the get and set function
definitions and the definition of the global structure variable ex_getset_data.

Generate code with the example model.

23-98

 Access Data Through Functions with Custom Storage Class GetSet

rtwbuild('rtwdemo_getset_vector');

Starting build procedure for model: rtwdemo_getset_vector

Successful completion of build procedure for model: rtwdemo_getset_vector

In the code generation report, view the file rtwdemo_getset_vector.c. The model
step function uses the legacy get and set functions to execute the algorithm.

rtwdemodbtype(fullfile('rtwdemo_getset_vector_ert_rtw','rtwdemo_getset_vector.c'),...

 '/* Model step function */','}',1,1)

/* Model step function */

void rtwdemo_getset_vector_step(void)

{

 int32_T i;

 /* Gain: '<Root>/Gain' incorporates:

 * Inport: '<Root>/In1'

 */

 for (i = 0; i < 5; i++) {

 set_outVector(i , get_vectorParam(i) * get_inVector(i));

 }

When you use the custom storage class GetSet with vector data, the get and set
functions that you provide must accept an index input. The get function must return
a single element of the vector. The set function must write to a single element of the
vector.

Use GetSet with Structured Data

This example shows how to apply the custom storage class GetSet to nonvirtual bus
signals and structure parameters in a model.

View the example legacy header file ComponentDataHdr.h. The file defines a large
structure type ComponentData.

rtwdemodbtype('ComponentDataHdr.h','/* ComponentData */','} ComponentData;',1,1)

/* ComponentData */

23-99

23 Custom Storage Classes in Embedded Coder

typedef struct {

 ScalarData scalars;

 VectorData vectors;

 StructData structs;

 MatricesData matrices;

} ComponentData;

The field structs is a substructure that uses the structure type StructData. The
structure type StructData defines three fields: inStruct, structParam, and
outStruct.

rtwdemodbtype('ComponentDataHdr.h','/* StructData */','} StructData;',1,1)

/* StructData */

typedef struct {

 SigBus inStruct;

 ParamBus structParam;

 SigBus outStruct;

} StructData;

The fields inStruct, structParam, and outStruct are also substructures that use the
structure types SigBus and ParamBus. Each of these two structure types define three
scalar fields.

rtwdemodbtype('ComponentDataHdr.h','/* SigBus */','} ParamBus',1,1)

/* SigBus */

typedef struct {

 double cmd;

 double sensor1;

 double sensor2;

} SigBus;

/* ParamBus */

typedef struct {

 double offset;

 double gain1;

 double gain2;

} ParamBus;

23-100

 Access Data Through Functions with Custom Storage Class GetSet

View the example legacy source file getsetSrc.c. The file defines and initializes a
global variable ex_getset_data that uses the structure type ComponentData. The
initialization includes values for the substructure structs.

rtwdemodbtype('getsetSrc.c','/* Field "structs" */','/* End of "structs" */',1,1)

 /* Field "structs" */

 {

 {1.3, 5.7, 9.2},

 {12.3, 9.6, 1.76},

 {0.0, 0.0, 0.0}

 },

 /* End of "structs" */

The file also defines functions that read from and write to the fields of the substructure
structs. The functions simplify data access by dereferencing the fields of the global
structure variable ex_getset_data. The functions access the data in the fields
inStruct, structParam, and outStruct by accepting and returning complete
structures of the types SigBus and ParamBus.

rtwdemodbtype('getsetSrc.c',...

 '/* Structure get() and set() functions */','/* End of structure functions */',1,1)

/* Structure get() and set() functions */

SigBus get_inStruct(void)

{

 return ex_getset_data.structs.inStruct;

}

void set_inStruct(SigBus value)

{

 ex_getset_data.structs.inStruct = value;

}

ParamBus get_structParam(void)

{

 return ex_getset_data.structs.structParam;

}

23-101

23 Custom Storage Classes in Embedded Coder

void set_structParam(ParamBus value)

{

 ex_getset_data.structs.structParam = value;

}

SigBus get_outStruct(void)

{

 return ex_getset_data.structs.outStruct;

}

void set_outStruct(SigBus value)

{

 ex_getset_data.structs.outStruct = value;

}

View the example legacy header file getsetHdrStruct.h. The file contains the extern
prototypes for the get and set functions defined in getsetSrc.c.

Open the example model rtwdemo_getset_struct. The model creates the data objects
inStruct, structParam, and outStruct in the base workspace. The objects
correspond to the signals and parameter in the model.

open_system('rtwdemo_getset_struct')

23-102

 Access Data Through Functions with Custom Storage Class GetSet

In the base workspace, double-click the object inStruct to view its properties. The
object uses the custom storage class GetSet. The property HeaderFile is specified
as getsetHdrStruct.h. This legacy header file contains the get and set function
prototypes.

The model also creates the bus objects ParamBus and SigBus in the base workspace.
The signals and parameter in the model use the bus types that these objects define. The
property DataScope of each bus object is set to Imported. The property HeaderFile is
set to ComponentDataHdr.h. The generated code imports these structure types from the
legacy header file ComponentDataHdr.h.

In the model Configuration Parameters dialog box, on the Code Generation > Custom
Code pane, the example legacy source file getsetSrc.c is identified for inclusion
during the build process. This legacy source file contains the get and set function
definitions and the definition of the global structure variable ex_getset_data.

Generate code with the example model.

rtwbuild('rtwdemo_getset_struct');

Starting build procedure for model: rtwdemo_getset_struct

Successful completion of build procedure for model: rtwdemo_getset_struct

In the code generation report, view the file rtwdemo_getset_struct.c. The model
step function uses the legacy get and set functions to execute the algorithm.

rtwdemodbtype(fullfile('rtwdemo_getset_struct_ert_rtw','rtwdemo_getset_struct.c'),...

 '/* Model step function */','}',1,1)

/* Model step function */

void rtwdemo_getset_struct_step(void)

{

 /* Bias: '<Root>/Bias' incorporates:

 * Inport: '<Root>/In1'

 */

 rtDW.BusCreator.cmd = get_inStruct().cmd + get_structParam().offset;

 /* Gain: '<Root>/Gain' incorporates:

 * Inport: '<Root>/In1'

 */

 rtDW.BusCreator.sensor1 = get_structParam().gain1 * get_inStruct().sensor1;

23-103

23 Custom Storage Classes in Embedded Coder

 /* Gain: '<Root>/Gain1' incorporates:

 * Inport: '<Root>/In1'

 */

 rtDW.BusCreator.sensor2 = get_structParam().gain2 * get_inStruct().sensor2;

 /* SignalConversion: '<Root>/Signal Conversion' */

 set_outStruct(rtDW.BusCreator);

}

When you use the custom storage class GetSet with structured data, the get and set
functions that you provide must return and accept complete structures. The generated
code dereferences individual fields of the structure that the get function returns.

The output signal of the Bus Creator block is a test point. This signal is the input for a
Signal Conversion block. The test point and the Signal Conversion block exist so that the
generated code defines a variable for the output of the Bus Creator block. To provide a
complete structure argument for the function set_outStruct, you must configure the
model to create this variable.

Use GetSet with Matrix Data

This example shows how to apply the custom storage class GetSet to signals and
parameters that are matrices.

View the example legacy header file ComponentDataHdr.h. The file defines a large
structure type ComponentData.

rtwdemodbtype('ComponentDataHdr.h',...

 '/* ComponentData */','} ComponentData;',1,1)

/* ComponentData */

typedef struct {

 ScalarData scalars;

 VectorData vectors;

 StructData structs;

 MatricesData matrices;

} ComponentData;

The field matrices is a substructure that uses the structure type MatricesData. The
structure type MatricesData defines three fields: matrixInput, matrixParam, and

23-104

 Access Data Through Functions with Custom Storage Class GetSet

matrixOutput. The fields store matrix data as serial arrays. In this case, the input and
parameter fields each have 15 elements. The output field has nine elements.

rtwdemodbtype('ComponentDataHdr.h'...

 ,'/* MatricesData */','} MatricesData;',1,1)

/* MatricesData */

typedef struct {

 double matrixInput[15];

 double matrixParam[15];

 double matrixOutput[9];

} MatricesData;

View the example legacy source file getsetSrc.c. The file defines and initializes a
global variable ex_getset_data that uses the structure type ComponentData. The
initialization includes values for the substructure matrices.

rtwdemodbtype('getsetSrc.c',...

 '/* Field "matrices" */','/* End of "matrices" */',1,1)

 /* Field "matrices" */

 {

 {12.0, 13.9, 7.4,

 0.5, 11.8, 6.4,

 4.7, 5.3, 13.0,

 0.7, 16.1, 13.5,

 1.6, 0.5, 3.1},

 {8.3, 12.0, 11.5, 2.0, 5.7,

 7.5, 12.8, 11.1, 8.4, 9.9,

 10.9, 4.6, 2.7, 16.3, 3.8},

 {0.0, 0.0, 0.0,

 0.0, 0.0, 0.0,

 0.0, 0.0, 0.0}

 }

 /* End of "matrices" */

The input matrix has five rows and three columns. The matrix parameter has three rows
and five columns. The matrix output has three rows and three columns. The file defines
macros that indicate these dimensions.

23-105

23 Custom Storage Classes in Embedded Coder

rtwdemodbtype('getsetSrc.c',...

 '/* Matrix dimensions */','/* End of matrix dimensions */',1,1)

/* Matrix dimensions */

#define MATRIXINPUT_NROWS 5

#define MATRIXINPUT_NCOLS 3

#define MATRIXPARAM_NROWS 3

#define MATRIXPARAM_NCOLS 5

#define MATRIXOUTPUT_NROWS MATRIXPARAM_NROWS

#define MATRIXOUTPUT_NCOLS MATRIXINPUT_NCOLS

The file also defines functions that read from and write to the fields of the substructure
matrices.

rtwdemodbtype('getsetSrc.c',...

 '/* Matrix get() and set() functions */','/* End of matrix functions */',1,1)

/* Matrix get() and set() functions */

double get_matrixInput(int colIndex)

{

 int rowIndexGetInput = MATRIXINPUT_NCOLS * (colIndex % MATRIXINPUT_NROWS) + colIndex/MATRIXINPUT_NROWS;

 return ex_getset_data.matrices.matrixInput[rowIndexGetInput];

}

void set_matrixInput(int colIndex, double value)

{

 int rowIndexSetInput = MATRIXINPUT_NCOLS * (colIndex % MATRIXINPUT_NROWS) + colIndex/MATRIXINPUT_NROWS;

 ex_getset_data.matrices.matrixInput[rowIndexSetInput] = value;

}

double get_matrixParam(int colIndex)

{

 int rowIndexGetParam = MATRIXPARAM_NCOLS * (colIndex % MATRIXPARAM_NROWS) + colIndex/MATRIXPARAM_NROWS;

 return ex_getset_data.matrices.matrixParam[rowIndexGetParam];

}

void set_matrixParam(int colIndex, double value)

{

23-106

 Access Data Through Functions with Custom Storage Class GetSet

 int rowIndexSetParam = MATRIXPARAM_NCOLS * (colIndex % MATRIXPARAM_NROWS) + colIndex/MATRIXPARAM_NROWS;

 ex_getset_data.matrices.matrixParam[rowIndexSetParam] = value;

}

double get_matrixOutput(int colIndex)

{

 int rowIndexGetOut = MATRIXOUTPUT_NCOLS * (colIndex % MATRIXOUTPUT_NROWS) + colIndex/MATRIXOUTPUT_NROWS;

 return ex_getset_data.matrices.matrixOutput[rowIndexGetOut];

}

void set_matrixOutput(int colIndex, double value)

{

 int rowIndexSetOut = MATRIXOUTPUT_NCOLS * (colIndex % MATRIXOUTPUT_NROWS) + colIndex/MATRIXOUTPUT_NROWS;

 ex_getset_data.matrices.matrixOutput[rowIndexSetOut] = value;

}

The code that you generate from a model represents matrices as serial arrays. Therefore,
each of the get and set functions accept a single scalar index argument.

The generated code uses column-major format to store and to access matrix data.
However, many C applications use row-major indexing. To integrate the generated
code with the example legacy code, which stores the matrices matrixInput and
matrixParam using row-major format, the custom get functions use the column-major
index input to calculate an equivalent row-major index. The generated code algorithm,
which interprets matrix data using column-major format by default, performs the correct
matrix math because the get functions effectively convert the legacy matrices to column-
major format. The set function for the output, matrixOutput, also calculates a row-
major index so the code writes the algorithm output to matrixOutput using row-major
format. Alternatively, to integrate the column-major generated code with your row-
major legacy code, you can manually convert the legacy code to column-major format by
transposing your matrix data and algorithms.

View the example legacy header file getsetHdrMatrix.h. The file contains the extern
prototypes for the get and set functions defined in getsetSrc.c.

Open the example model rtwdemo_getset_matrix. The model creates the data objects
matrixInput, matrixParam, and matrixOutput in the base workspace. The objects
correspond to the signals and parameter in the model.

load_system('rtwdemo_getset_matrix')

set_param('rtwdemo_getset_matrix','SimulationCommand','Update')

open_system('rtwdemo_getset_matrix')

23-107

23 Custom Storage Classes in Embedded Coder

In the base workspace, double-click the object matrixInput to view its properties. The
object uses the custom storage class GetSet. The property HeaderFile is specified
as getsetHdrMatrix.h. This legacy header file contains the get and set function
prototypes.

In the model Configuration Parameters dialog box, on the Code Generation > Custom
Code pane, the example legacy source file getsetSrc.c is identified for inclusion
during the build process. This legacy source file contains the get and set function
definitions and the definition of the global structure variable ex_getset_data.

Generate code with the example model.

rtwbuild('rtwdemo_getset_matrix');

Starting build procedure for model: rtwdemo_getset_matrix

Successful completion of build procedure for model: rtwdemo_getset_matrix

In the code generation report, view the file rtwdemo_getset_matrix.c. The model
step function uses the legacy get and set functions to execute the algorithm.

rtwdemodbtype(fullfile('rtwdemo_getset_matrix_ert_rtw',...

 'rtwdemo_getset_matrix.c'),'/* Model step function */','}',1,1)

/* Model step function */

void rtwdemo_getset_matrix_step(void)

{

 int32_T i;

 int32_T i_0;

 int32_T i_1;

23-108

 Access Data Through Functions with Custom Storage Class GetSet

 /* Product: '<Root>/Product' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Root>/In1'

 */

 for (i_0 = 0; i_0 < 3; i_0++) {

 for (i = 0; i < 3; i++) {

 set_matrixOutput(i + 3 * i_0 , 0.0);

 for (i_1 = 0; i_1 < 5; i_1++) {

 set_matrixOutput(i + 3 * i_0 , get_matrixParam(3 * i_1 + i) *

 get_matrixInput(5 * i_0 + i_1) + get_matrixOutput(3 *

 i_0 + i));

 }

Specify Header File or Function Naming Scheme for All Data Items

By default, you specify a header file name, get function name, and set function name
for each data item, such as a signal or parameter, that uses the custom storage class
GetSet.

To configure a single header file, get function naming scheme, or set function naming
scheme to use for every data item, you can use the Custom Storage Class Designer to
create your own copy of GetSet. You can specify the header file or function names in a
single location.

Follow these steps to create your own custom storage class by creating your own data
class package, creating a copy of GetSet, and applying the new custom storage class to
data items in your model.

1 Create your own data class package, myPackage, by copying the example package
folder +SimulinkDemos and renaming the copied folder as +myPackage. Modify the
Parameter and Signal class definitions so that they use the custom storage class
definitions from myPackage. For an example, see “Create Data Class Package” on
page 23-73.

2 Set your current folder to the folder that contains the package folder. Alternatively,
add the folder to your MATLAB path.

3 Open the Custom Storage Class Designer.

cscdesigner('myPackage')

4 Select the custom storage class GetSet. Click Copy to create a copy called
GetSet_1.

23-109

23 Custom Storage Classes in Embedded Coder

5 Select the new custom storage class GetSet_1. In the General tab, set Name to
myGetSet.

6 Set the drop-down list Header file to Specify. In the new text box, set Header file
to myFcnHdr.h. Click Apply.

7 On the Access Function Attributes tab, set the drop-down lists Get function and
Set function to Specify.

8 In the new boxes, set Get function to myGetFcn_$N and Set function to
mySetFcn_$N. Click OK. Click Yes in response to the message about saving
changes.

When you generate code, the token $N expands into the name of the data item that
uses this custom storage class.

9 Apply the custom storage class myGetSet from your package to a data item. For
example, create a myPackage.Parameter object in the base workspace.

myParam = myPackage.Parameter(15.23);

myParam.CoderInfo.StorageClass = 'Custom';

myParam.CoderInfo.CustomStorageClass = 'myGetSet';

10 Use the object to set a parameter value in your model. When you generate code, the
code algorithm accesses the parameter through the functions that you specified. The
code uses a #include directive to include the header file that you specified.

GetSet Custom Storage Class Restrictions

• GetSet does not support complex signals.
• Multiple data in the same model cannot use the same GetFunction or

SetFunction.
• Some blocks do not directly support GetSet.
• Custom S-functions do not directly support GetSet.

To use GetSet with an unsupported block or a custom S-function:

1 Insert a Signal Conversion block at the output of the block or function.
2 In the Signal Conversion block dialog box, select Exclude this block from 'Block

reduction' optimization.
3 Assign the custom storage class GetSet to the output of the Signal Conversion block.

23-110

 Access Data Through Functions with Custom Storage Class GetSet

Related Examples
• “Exchange Data Between External C/C++ Code and Simulink Model or Generated

Code” on page 39-86
• “Control Data Code by Creating Custom Storage Class” on page 23-73
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58
• “Introduction to Custom Storage Classes” on page 23-2
• “Define Advanced Custom Storage Classes Types” on page 23-78
• “Generate Code That Dereferences Data from a Literal Memory Address” on page

23-83

23-111

23 Custom Storage Classes in Embedded Coder

Configure Generated Code According to Interface Control
Document

Import specifications from an interface control document (ICD), configure code
generation settings for a model according to the specifications, and store the settings in
data dictionaries.

An ICD describes the data interface between two software components. To exchange and
share data, the components declare and define global variables that store signal and
parameter values. The ICD names the variables and lists characteristics such as data
type, physical units, and parameter values. When you create models of the components in
Simulink, you can configure the generated code to conform to the interface specification.

In this example, the ICD is a Microsoft® Excel® workbook.

Explore Interface Control Document

Navigate to the folder matlabroot/examples/ecoder (open). Copy these files to a
writable, working folder:

• ICD.xls

• importICD.m

In Microsoft® Excel® or another compatible program, open the ICD.xls workbook and
view the first worksheet, Signals. Each row of the worksheet describes a signal that
crosses the interface boundary.

Inspect the cell values in the worksheet. The Owner column indicates the name of the
component that allocates memory for each signal. The DataType column indicates
the signal data type in memory. For example, the worksheet uses the expression Bus:
EngSensors to represent a structure type named EngSensors.

In the Parameters worksheet, the Value column indicates the value of each parameter.
If the value of the parameter is nonscalar, the value is stored in its own separate
worksheet, which has the same name as the parameter.

In the Numeric Types worksheet, each row represents a named numeric data type.
In this ICD, the data use fixed-point data types (Fixed-Point Designer). The IsAlias
column indicates whether the C code uses the name of the data type (for example, u8En7)

23-112

 Configure Generated Code According to Interface Control Document

or uses the name of the primitive integer data type that corresponds to the word length.
The DataScope column indicates whether the generated code exports or imports the
definition of the type.

In the Structure Types worksheet, each row represents either a structure type or
a field of a structure type. For structure types, the value in the DataType column is
struct. Subsequent rows that do not use struct represent fields of the preceding
structure type. This ICD defines a structure type, EngSensors, with four fields:
throttle, speed, ego, and map.

In the Enumerated Types worksheet, similar to the Structure Types worksheet,
each row represents either an enumerated type or an enumeration member. This ICD
defines an enumerated type sldemo_FuelModes.

Write Custom Code

Some data items in the ICD belong to other component, which is a component that
exists outside of MATLAB. Create the custom code files that define and declare this
external data.

Create the custom source file inter_sigs.c in your current folder. This file defines the
imported signal sensors.

#include "inter_sigs.h"

EngSensors sensors; /* Instrument measurements. */

Create the custom header file inter_sigs.h in your current folder.

#include "inter_types.h"

extern EngSensors sensors; /* Instrument measurements. */

Create the custom header file inter_types.h in your current folder. This file defines
the structure type EngSensors and numeric data types such as u8En7.

#ifndef INTER_TYPES_H__

#define INTER_TYPES_H__

23-113

23 Custom Storage Classes in Embedded Coder

typedef short s16En3;

typedef short s16En7;

typedef unsigned char u8En7;

typedef short s16En15;

/* Structure type for instrument measurements. */

typedef struct {

 /* Throttle angle. */

 s16En3 throttle;

 /* Engine speed. */

 s16En3 speed;

 /* EGO sensors. */

 s16En7 ego;

 /* Manifold pressure. */

 u8En7 map;

} EngSensors;

#endif

Explore Example Model

Run the script prepare_sldemo_fuelsys_dd. The script prepares a system model,
sldemo_fuelsys_dd, for this example.

run(fullfile(matlabroot,'examples','ecoder','prepare_sldemo_fuelsys_dd'))

Open the system model, sldemo_fuelsys_dd.

sldemo_fuelsys_dd

23-114

 Configure Generated Code According to Interface Control Document

This system model references a controller model. In this example, you generate code from
the controller model.

Open the controller model, sldemo_fuelsys_dd_controller.

sldemo_fuelsys_dd_controller

23-115

23 Custom Storage Classes in Embedded Coder

Data items in the controller model refer to Simulink.Signal and
Simulink.Parameter objects in the base workspace. For example, the input signal
sensors refers to a Simulink.Signal object that has the same name. These objects
store settings such as data types, block parameter values, and physical units. The names
of these data items and objects match the names of the signals and parameters in the
ICD.

Import ICD Specifications into Simulink

To configure code generation settings for the data items, import the settings from the
ICD.

Open the example script importICD. The script imports the data from each worksheet
of the ICD into variables in the base workspace. It then configures the properties of the
Simulink.Signal and Simulink.Parameter objects in the base workspace by using
the imported data.

edit('importICD')

If the base workspace already contains a data object that corresponds to a target data
item in the ICD, the script configures the properties of the existing object. If the object
does not exist, the script creates the object.

Run the importICD script.

23-116

 Configure Generated Code According to Interface Control Document

run('importICD')

The script configures the data objects in the base workspace for code generation
according to the specifications in the ICD. The Simulink.Bus object EngSensors
represents the structure type from the ICD. The Simulink.NumericType objects, such
as u8En7, represent the fixed-point data types.

ans =

 'Cannot redefine enumerated type sldemo_FuelModes because open models and existing variables use the type. Close the models and clear the variables.'

Generate and Inspect Code

Configure the controller model to compile the generated code into an executable by
clearing the model configuration parameter Generate code only.

Generate code from the controller model.

Starting build procedure for model: sldemo_fuelsys_dd_controller

Successful completion of build procedure for model: sldemo_fuelsys_dd_controller

The generated header file sldemo_FuelModes.h defines the enumeration
sldemo_FuelModes.

typedef enum {

 LOW = 1, /* Default value */

 RICH,

 DISABLED

} sldemo_FuelModes;

The file sldemo_fuelsys_dd_controller_types.h includes (#include) the custom
header file inter_types.h, which defines data types such as u8En7 and the structure
type EngSensors.

#include "inter_types.h"

The file sldemo_fuelsys_dd_controller_private.h includes the custom header file
inter_sigs.h. This custom header file contains the extern declaration of the signal
sensors, which a different software component owns.

23-117

23 Custom Storage Classes in Embedded Coder

The data header file global_data.h declares the exported parameters and signals that
the ICD specifies. To share this data, other components can include this header file.

/* Exported data declaration */

/* Declaration for custom storage class: ExportToFile */

extern u8En7 PressEst[855]; /* Lookup table to estimate pressure on sensor failure. */

extern s16En15 PumpCon[551]; /* Lookup table to determine pumping constant based on measured engine speed and manifold pressure. */

extern s16En15 RampRateKiZ[25]; /* Lookup table to determine throttle rate. */

extern s16En3 SpeedEst[1305]; /* Lookup table to estimate engine speed on sensor failure. */

extern s16En7 ThrotEst[551]; /* Lookup table to estimate throttle angle on sensor failure. */

extern sldemo_FuelModes fuel_mode; /* Fueling mode of engine. Enrich air/fuel mixture on sensor failure. */

extern int16_T fuel_rate; /* Fuel rate setpoint. */

The data definitions (memory allocation) appear in the source files that the ICD
specifies, params.c and signals.c. For example, params.c defines and initializes the
parameter RampRateKiZ.

s16En15 RampRateKiZ[25] = { 393, 786, 1180, 1573, 1966, 786, 1573, 2359, 3146,

 3932, 1180, 2359, 3539, 4719, 5898, 1573, 3146, 4719, 6291, 7864, 1966, 3932,

 5898, 7864, 9830 } ; /* Lookup table to determine throttle rate. */

The algorithm is in the model step function in the file
sldemo_fuelsys_dd_controller.c. The algorithm uses the global data that the
ICD identifies. For example, the algorithm uses the value of the signal fuel_mode in a
switch block to control the flow of execution.

 /* SwitchCase: '<S10>/Switch Case' incorporates:

 * Constant: '<S11>/shutoff'

 */

 switch (fuel_mode) {

 case LOW:

 /* Outputs for IfAction SubSystem: '<S10>/low_mode' incorporates:

 * ActionPort: '<S12>/Action Port'

 */

 /* DiscreteFilter: '<S12>/Discrete Filter' incorporates:

 * DiscreteIntegrator: '<S1>/Discrete Integrator'

 */

 DiscreteFilter_tmp = (int16_T)(int32_T)((int32_T)((int32_T)((int32_T)

 rtDWork.DiscreteIntegrator_DSTATE << 14) - (int32_T)(-12137 * (int32_T)

 rtDWork.DiscreteFilter_states_g)) >> 14);

23-118

 Configure Generated Code According to Interface Control Document

Change Ownership of Data in ICD

When you make changes to the ICD, you can reuse the importICD script to reconfigure
the model. Change the ownership of the signal sensors, the structure type, and the
fixed-point data types from other_component to sldemo_fuelsys_dd_controller.

In the ICD, on the signals worksheet, for the signal sensors, set these cell values:

• Owner to sldemo_fuelsys_dd_controller
• HeaderFile to global_data.h
• DefinitionFile to signals.c

On the Numeric Types worksheet, for all of the fixed-point data types, set:

• DataScope to Exported
• HeaderFile to exported_types.h.

On the Structure Types worksheet, for the structure type EngSensors, set:

• DataScope to Exported
• HeaderFile to exported_types.h.

Rerun the importICD script.

ans =

 'Cannot redefine enumerated type sldemo_FuelModes because open models and existing variables use the type. Close the models and clear the variables.'

Generate code from the model.

Starting build procedure for model: sldemo_fuelsys_dd_controller

Successful completion of build procedure for model: sldemo_fuelsys_dd_controller

The generated file exported_types.h defines the structure type EngSensors and the
fixed-point data types.

typedef int16_T s16En3;

typedef int16_T s16En7;

23-119

23 Custom Storage Classes in Embedded Coder

typedef uint8_T u8En7;

/* Structure type for instrument measurements. */

typedef struct {

 /* Throttle angle. */

 s16En3 throttle;

 /* Engine speed. */

 s16En3 speed;

 /* EGO sensors. */

 s16En7 ego;

 /* Manifold pressure. */

 u8En7 map;

} EngSensors;

typedef int16_T s16En15;

The file signals.c now includes the definition of the signal sensors.

/* Exported data definition */

/* Definition for custom storage class: ExportToFile */

sldemo_FuelModes fuel_mode; /* Fueling mode of engine. Enrich air/fuel mixture on sensor failure. */

int16_T fuel_rate; /* Fuel rate setpoint. */

EngSensors sensors; /* Instrument measurements. */

Migrate Base Workspace Data to Data Dictionary

Objects and variables that you create in the base workspace (for example,
Simulink.Parameter objects) are not saved with the model. When you end your
MATLAB session, the objects and variables do not persist. To permanently store the
objects and variables, link one or more models to one or more data dictionaries.

Data dictionaries also enable you to track changes made to the objects and variables,
which helps you to:

• Reconcile the data stored in MATLAB with the data stored in the ICD.
• Export data from MATLAB to the ICD.

1 In the top model, sldemo_fuelsys_dd, select File > Model Properties > Link to
Data Dictionary.

23-120

 Configure Generated Code According to Interface Control Document

2 In the Model Properties dialog box, select Data Dictionary. Click New.
3 In the Create a new Data Dictionary dialog box, set File name to sysDict and click

Save.
4 In the Model Properties dialog box, click OK.
5 Click Yes in response to the message about migrating base workspace data.
6 Click Yes in response to the message about removing the imported items from the

base workspace.
7 Click OK in response to the message about enumerated type migration.

The variables and objects that the models use all exist in the new data dictionary
sysDict.sldd, which is in your current folder. All three models in the model reference
hierarchy are linked to this dictionary.

Create Reference Dictionary

To establish clear ownership of the data that you store in a dictionary, create reference
dictionaries.

1 Open the controller model, sldemo_fuelsys_dd_controller. Select File >
Model Properties > Link to Data Dictionary. Click New.

2 Set the name of the new dictionary to ctrlDict.sldd and click Save. In the Model
Properties dialog box, click OK.

3 In response to the message about changing the dictionary or moving the data, click
Move Data. Click Yes in response to the message about migrating data.

The variables and objects that the controller model uses now exist in the referenced
dictionary ctrlDict.sldd. Because sysDict.sldd references ctrlDict.sldd, you
can view all of the data by opening sysDict.sldd in the Model Explorer.

Now that the model data acquire code generation settings from objects and variables
that are stored in data dictionaries, you can modify the importICD script so it
accesses the dictionaries instead of the base workspace. For more information about
the programmatic interface for data dictionaries, see “Store Data in Dictionary
Programmatically” (Simulink).

Store Enumerated Type Definition in Data Dictionary

You can import the definition of the enumerated type sldemo_FuelModes into the
controller dictionary. See “Enumerations in Data Dictionary” (Simulink).

23-121

23 Custom Storage Classes in Embedded Coder

Store Signal and State Design Attributes Inside or Outside of Model File

In this example, you use Simulink.Signal objects to specify design attributes such as
data types, minimum and maximum values, and physical units. The signal objects store
these specifications outside of the model file.

Alternatively, you can store these specifications in the model file by using block and
port parameters, which you can access through the Model Data Editor, the Property
Inspector, and other dialog boxes.

To decide where to store the specifications, see “Store Design Attributes of Signals and
States” (Simulink).

Related Examples
• “Exchange Data Between External C/C++ Code and Simulink Model or Generated

Code” on page 39-86
• “Conform to Coding Standards by Replacing and Renaming Data Types” on page

21-22
• “Data Import and Export” (MATLAB)
• “Introduction to Custom Storage Classes” on page 23-2
• “Data Types”
• “What Is a Data Dictionary?” (Simulink)
• “Data Objects” (Simulink)

23-122

24

Data Object Wizard in Embedded
Coder

24 Data Object Wizard in Embedded Coder

Create Data Objects for Code Generation with Data Object Wizard

To specify code generation options for signal lines, block parameters, and states in a
model, you can use data objects that you store in a workspace or data dictionary. For
basic information about data objects, see “Data Objects” (Simulink).

You can use the Data Object Wizard to create data objects for:

• New or existing models that do not use data objects.
• Existing models to which you have added signal lines or blocks.

This example shows how to use the Data Object Wizard to create and configure data
objects for code generation from the built-in package Simulink.

Create Data Objects

Open the example model rtwdemo_basicsc.

open_system('rtwdemo_basicsc')

24-2

 Create Data Objects for Code Generation with Data Object Wizard

The model creates numeric variables in the base workspace. Blocks in the model use
these variables to set parameter values (such as the Gain parameter of a Gain block).
Some of the signals and block states in the model have explicit names, such as input1.

In the model, select Code > Data Objects > Data Object Wizard.

24-3

24 Data Object Wizard in Embedded Coder

24-4

 Create Data Objects for Code Generation with Data Object Wizard

In the Data Object Wizard, click Find. The wizard proposes the creation of
Simulink.Parameter objects to replace the variables and the creation of
Simulink.Signal objects to represent the signals and states.

24-5

24 Data Object Wizard in Embedded Coder

24-6

 Create Data Objects for Code Generation with Data Object Wizard

The wizard finds only signals, parameters, data stores, and states whose storage class is
set to Auto. For example, if you use the Signal Properties dialog box to specify a storage
class other than Auto for a signal line, the wizard does not propose a data object.

Click Select All.

Click Create. The data objects appear in the base workspace.

For detailed information about the options that you can choose in the Data Object
Wizard, see “Create Data Objects for a Model Using Data Object Wizard” (Simulink).

Set Storage Class for Data Objects

Storage classes determine how the generated code uses variables to represent signals,
parameters, and states. For data objects from the built-in package Simulink, the default
storage class is Auto. To specify storage classes for the new data objects, you can use the
Model Explorer.

Open the Model Explorer.

In the Model Hierarchy pane, select Base Workspace.

24-7

24 Data Object Wizard in Embedded Coder

In the Contents pane, from the drop-down list Column View, select Storage Class.

Select all of the new data objects. For example, select the object input1, hold Shift, and
select the object X.

Set the property StorageClass for all of the data objects to ExportToFile. To change
the storage class for all of the selected objects, in the StorageClass column, click any
of the objects. In the drop-down list, select ExportToFile. The change that you make
propagates to all of the selected objects.

Specify the HeaderFile property for all of the objects as myExportedHdrFile.h.

24-8

 Create Data Objects for Code Generation with Data Object Wizard

In the model, set Configuration Parameters > Code Generation > System target
file to ert.tlc. With this setting, the code generator honors custom storage classes such
as ExportToFile.

Generate and Inspect Code

Generate code from the model.

Starting build procedure for model: rtwdemo_basicsc

Successful completion of build procedure for model: rtwdemo_basicsc

In the code generaetion report, view the generated file myExportedHdrFile.h. The file
contains extern declarations for the global variables that correspond to the data objects.

/* Exported data declaration */

/* Declaration for custom storage class: ExportToFile */

extern int8_T K1;

extern real_T K2;

extern real32_T LOWER;

extern real32_T T1Break[11];

extern real32_T T1Data[11];

extern real32_T T2Break[3];

extern real32_T T2Data[9];

extern real32_T UPPER;

extern real32_T X;

extern real32_T input1;

extern real32_T input2;

extern real32_T input3;

extern real32_T input4;

extern boolean_T mode;

extern real32_T output;

View the file rtwdemo_basicsc.c. The file contains the definitions for the global
variables. The code assigns numeric values for the variables that correspond to
parameter objects.

/* Exported data definition */

/* Definition for custom storage class: ExportToFile */

int8_T K1 = 2;

real_T K2 = 3.0;

24-9

24 Data Object Wizard in Embedded Coder

real32_T LOWER = -10.0F;

real32_T T1Break[11] = { -5.0F, -4.0F, -3.0F, -2.0F, -1.0F, 0.0F, 1.0F, 2.0F,

 3.0F, 4.0F, 5.0F } ;

real32_T T1Data[11] = { -1.0F, -0.99F, -0.98F, -0.96F, -0.76F, 0.0F, 0.76F,

 0.96F, 0.98F, 0.99F, 1.0F } ;

real32_T T2Break[3] = { 1.0F, 2.0F, 3.0F } ;

real32_T T2Data[9] = { 4.0F, 16.0F, 10.0F, 5.0F, 19.0F, 18.0F, 6.0F, 20.0F,

 23.0F } ;

real32_T UPPER = 10.0F;

real32_T X;

real32_T input1;

real32_T input2;

real32_T input3;

real32_T input4;

boolean_T mode;

real32_T output;

See Also
Simulink.Parameter | Simulink.Signal

Related Examples
• “Data Objects” (Simulink)
• “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
• “Block Parameter Representation in the Generated Code” (Simulink Coder)
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58

24-10

25

Entry-Point Functions and Scheduling
in Simulink Coder

• “Entry-Point Functions and Scheduling” on page 25-2
• “Generate Reentrant Code from Top-Level Models” on page 25-4
• “Generate C++ Class Interface to Model or Subsystem Code” on page 25-6
• “Execution of Code Generated from a Model” on page 25-9
• “Rapid Prototyping Model Functions” on page 25-21

25 Entry-Point Functions and Scheduling in Simulink Coder

Entry-Point Functions and Scheduling

The code generator produces the following entry-point functions for a model:

Function Description

model_initialize Initialization code in the code generated for a model. Call the
function once at the start of the application code. Do not use
this function to reset the real-time model data structure (rtM).

model_reset Code generated if the model includes a Reset Function block.
Call the function from the application code to reset conditions
or state.

model_step Generated output and update code for blocks in model. If you
clear the model configuration parameter “Single output/update
function” (Simulink Coder) (selected by default), instead of
producing a model_step function, the code generator produces
entry-point functions model_output and model_update.

model_terminate Generated code to call for powering off a system. For ERT-
based models, suppress generation of this entry-point function
by clearing the model configuration parameter “Terminate
function required” (Simulink Coder) (set by default).

The calling interface that the code generator produces for each of these entry-point
functions differs depending on the value of the model parameter “Code interface
packaging” (Simulink Coder):

• C++ class (default for C++ language) — Generates a C++ class interface to model
code. The generated interface encapsulates required model data into C++ class
attributes and model entry-point functions into C++ class methods.

• Nonreusable function (default for C language) — Generates nonreusable code.
Model entry-point functions pass (void). The code generator statically allocates
global model data structures and produces a set of model entry-entry point functions.
External code can access the data structures by calling the entry-point functions.

• Reusable function — Generates reusable, multi-instance code that is reentrant, as
follows:

• For a GRT-based model, the generated model.c source file contains an allocation
function that dynamically allocates model data for each instance of the model.
For an ERT-based model, use the “Use dynamic memory allocation for model

25-2

 Entry-Point Functions and Scheduling

initialization” (Simulink Coder) parameter to control whether the code generator
produces an allocation function.

• The generated code passes the real-time model data structure in, by reference, as
an argument to model_step and the other model entry-point functions.

• The code generator exports the real-time model data structure in the model.h
header file.

For an ERT-based model, you can use the “Pass root-level I/O as” (Simulink Coder)
parameter to control how the code generator passes root-level input and output
arguments to the reusable model entry-point functions. You can include them in the
real-time model data structure that the code generator passes to the functions, passes
as individual arguments, or passes as references to an input structure and an output
structure.

To call the generated entry-point functions from external code, add an #include
model.h directive to your code.

For more information, see the reference pages for the listed functions.

Note: The function reference pages document the C language default (Nonreusable
function) calling interface generated for these functions.

More About
• “Generate Reentrant Code from Top-Level Models” (Simulink Coder)
• “Generate C++ Class Interface to Model or Subsystem Code” (Simulink Coder)
• “Execution of Code Generated from a Model” (Simulink Coder)
• “Rapid Prototyping Model Functions” (Simulink Coder)
• “Generate Code That Responds to Initialize, Reset, and Terminate Events”

(Simulink Coder)
• “Select a System Target File” on page 30-2

25-3

25 Entry-Point Functions and Scheduling in Simulink Coder

Generate Reentrant Code from Top-Level Models

To generate reentrant multi-instance code from a model, select Reusable function
code interface packaging. When you select the Reusable function code interface for a
GRT model:

• The generated model.c source file contains an allocation function that dynamically
allocates model data for each instance of the model.

• The generated code passes the real-time model data structure in, by reference, as an
argument to model_step and the other model entry point functions.

• The real-time model data structure is exported with the model.h header file.

To configure a model to generate reusable, reentrant function code:

1 In the Code Generation > Interface pane of the Configuration Parameters dialog
box, set Code interface packaging (Simulink Coder) to the value Reusable
function. This action enables the parameter Multi-instance code error
diagnostic.

Note: If you have an Embedded Coder license and you have selected an ERT target
for your model, selecting Reusable function enables additional parameters for
customizing the generated reusable function interface to model code — Pass root-
level I/O as (Simulink Coder) and Use dynamic memory allocation for model
initialization (Simulink Coder).

2 Examine the setting of Multi-instance code error diagnostic (Simulink Coder).
Leave the parameter at its default value Error unless you have a specific need to
alter the severity level for diagnostics displayed when a model violates requirements
for generating multi-instance code.

3 Generate model code.
4 Examine the model entry-point function interfaces in the generated files and the

HTML code generation report. For more information about generating and calling
model entry-point functions, see “Entry-Point Functions and Scheduling” (Simulink
Coder).

25-4

 Generate Reentrant Code from Top-Level Models

For an example of a model configured to generate reusable, reentrant code, open the
example model rtwdemo_reusable. To generate GRT code for the example model,
double-click the button Generate Code Using Simulink Coder.

More About
• “Entry-Point Functions and Scheduling” (Simulink Coder)
• “Generate C++ Class Interface to Model or Subsystem Code” (Simulink Coder)
• “Execution of Code Generated from a Model” (Simulink Coder)
• “Rapid Prototyping Model Functions” (Simulink Coder)

25-5

25 Entry-Point Functions and Scheduling in Simulink Coder

Generate C++ Class Interface to Model or Subsystem Code
On the Configuration Parameters dialog box, set the Code Generation > Interface
“Code interface packaging” (Simulink Coder) parameter to C++ class for generating a
C++ class interface to model code. The generated interface encapsulates required model
data into C++ class attributes and model entry point functions into C++ class methods.
The benefits of C++ class encapsulation include:

• Greater control over access to model data
• Ability to multiply instantiate model classes
• Easier integration of model code into C++ programming environments

C++ class encapsulation also works for right-click builds of nonvirtual subsystems. (For
information on requirements that apply, see “Generate C++ Class Interface to Nonvirtual
Subsystem Code” on page 25-7.)

Generate C++ Class Interface to Model Code

To generate encapsulated C++ class code from a GRT-based model:

1 Set the Configuration Parameters dialog box parameter Code Generation >
Language to C++. This selection also enables C++ class code interface packaging for
the model.

2 On the Code Generation > Interface pane, verify that the parameter Code
interface packaging (Simulink Coder) is set to C++ class.

3 Examine the setting of Multi-instance code error diagnostic (Simulink Coder).
Leave the parameter at its default value Error unless you have a specific need to
alter the severity level for diagnostics displayed when a model violates requirements
for generating multi-instance code.

4 Generate code for the model.
5 Examine the C++ model class code in the generated files model.h and model.cpp.

For example, the following code excerpt from the H file generated for the example
model rtwdemo_secondOrderSystem shows the C++ class declaration for the
model.
/* Class declaration for model rtwdemo_secondOrderSystem */

25-6

 Generate C++ Class Interface to Model or Subsystem Code

class rtwdemo_secondOrderSystemModelClass {

 /* public data and function members */

 public:

 /* External outputs */

 ExtY_rtwdemo_secondOrderSyste_T rtwdemo_secondOrderSystem_Y;

 /* Model entry point functions */

 /* model initialize function */

 void initialize();

 /* model step function */

 void step();

 /* model terminate function */

 void terminate();

 /* Constructor */

 rtwdemo_secondOrderSystemModelClass();

 /* Destructor */

 ~rtwdemo_secondOrderSystemModelClass();

 /* Real-Time Model get method */

 RT_MODEL_rtwdemo_secondOrderS_T * getRTM();

...

};

For more information about generating and calling model entry-point functions, see
“Entry-Point Functions and Scheduling” (Simulink Coder).

Note: If you have an Embedded Coder license and you have selected an ERT target for
your model, you can use additional Code Generation > Interface pane parameters to
customize the generated C++ class interface to model code.

Generate C++ Class Interface to Nonvirtual Subsystem Code

You can generate C++ class interfaces for right-click builds of nonvirtual subsystems in
Simulink models, if the following requirements are met:

• The model is configured for the C++ language and C++ class code interface
packaging.

• The subsystem is convertible to a Model block using the function
Simulink.SubSystem.convertToModelReference. For referenced
model conversion requirements, see the Simulink reference page
Simulink.SubSystem.convertToModelReference.

25-7

25 Entry-Point Functions and Scheduling in Simulink Coder

To configure C++ class interfaces for a subsystem that meets the requirements:

1 Open the containing model and select the subsystem block.
2 Right-click the subsystem and select C/C++ Code > Build This Subsystem.
3 When the subsystem build completes, examine the C++ class interfaces in the

generated files and the HTML code generation report. For more information about
generating and calling model entry-point methods, see “Entry-Point Functions and
Scheduling” (Simulink Coder).

Note: If you have an Embedded Coder license and you have selected an ERT target
for your model, you can use the MATLAB command RTW.configSubsystemBuild to
customize the generated C++ class interface to subsystem code.

C++ Class Interface Limitations

• Among the data exchange interfaces available on the Interface pane of the
Configuration Parameters dialog box, only the C API interface is supported for C+
+ class code generation. If you select External mode or ASAP2 interface, code
generation fails with a validation error.

• If a model root inport value connects to a Simscape conversion block, you must
insert a Simulink Signal Conversion block between the root inport and the Simscape
conversion block. On the Simulink Signal Conversion block parameter dialog box,
select Exclude this block from 'Block reduction' optimization.

• When building a referenced model that is configured to generate a C++ class
interface, you cannot use a C++ class interface in cases when a referenced model
cannot have a combined output/update function. Cases include a model that

• Has a continuous sample time
• Saves states

More About
• “Generate Reentrant Code from Top-Level Models” (Simulink Coder)
• “Entry-Point Functions and Scheduling” (Simulink Coder)
• “Execution of Code Generated from a Model” (Simulink Coder)
• “Rapid Prototyping Model Functions” (Simulink Coder)

25-8

 Execution of Code Generated from a Model

Execution of Code Generated from a Model

The code generator produces algorithmic code as defined by your model. You can include
external (for example, custom or legacy) code in a model by using techniques explained in
“Choose an External Code Integration Workflow” (Simulink Coder).

The code generator also provides a interface that executes the generated model code. The
interface and model code are compiled together to create an executable program. The
next figure shows a high-level object-oriented view of the executable.

Model code
and S-functions

Run-Time Interface

Execution driver for model code,
operating system interface routines,
I/O dependent routines,
solver and data logging routines.

The Object-Oriented View of a Real-Time Program

In general, the conceptual design of the model execution driver does not change between
the rapid prototyping and embedded style of generated code. The following sections
describe model execution for single-tasking and multitasking environments both for
simulation (non-real-time) and for real time. For most model code, the multitasking
environment will provide the most efficient model execution (that is, fastest sample rate).

The following concepts are useful in describing how model code executes.

• Initialization: model_initialize initializes the interface code and the model code.
• ModelOutputs: Calls blocks in your model that have a sample hit at the current time

and has them produce their output. model_output can be done in major or minor
time steps. In major time steps, the output is a given simulation time step. In minor
time steps, the interface integrates the derivatives to update the continuous states.

• ModelUpdate: model_update calls blocks in your model that have a sample hit at
the current point in time and has them update their discrete states or similar type
objects.

25-9

25 Entry-Point Functions and Scheduling in Simulink Coder

• ModelDerivatives: Calls blocks in your model that have continuous states and has
them update their derivatives. model_derivatives is only called in minor time
steps.

• ModelTerminate: model_terminate terminates the program if it is designed
to run for a finite time. It destroys the real-time model data structure, deallocates
memory, and can write data to a file.

Program Execution

A real-time program cannot require 100% of the CPU's time. This provides an
opportunity to run background tasks during the free time.

Background tasks include operations such as writing data to a buffer or file, allowing
access to program data by third-party data monitoring tools, or using Simulink external
mode to update program parameters.

It is important, however, that the program be able to preempt the background task so the
model code can execute in real time.

The way the program manages tasks depends on capabilities of the environment in which
it operates.

Program Timing

Real-time programs require careful timing of the task invocations (either by using an
interrupt or a real-time operating system tasking primitive) so that the model code
executes to completion before another task invocation occurs. This includes time to read
and write data to and from external hardware.

The next figure illustrates interrupt timing.

25-10

 Execution of Code Generated from a Model

Time to execute the model code

Sample interval is too short for this model code execution.

Sample interval is appropriate for this model code execution.

Time available to process background tasks
Time to execute
the model code

time

time

Task Timing

The sample interval must be long enough to allow model code execution between task
invocations.

In the figure above, the time between two adjacent vertical arrows is the sample interval.
The empty boxes in the upper diagram show an example of a program that can complete
one step within the interval and still allow time for the background task. The gray box
in the lower diagram indicates what happens if the sample interval is too short. Another
task invocation occurs before the task is complete. Such timing results in an execution
error.

Note also that, if the real-time program is designed to run forever (that is, the final time
is 0 or infinite so that the while loop never exits), then the shutdown code does not
execute.

For more information on how the timing engine works, see “Absolute and Elapsed Time
Computation” (Simulink Coder).

External Mode Communication

External mode allows communication between the Simulink block diagram and the
standalone program that is built from the generated code. In this mode, the real-time

25-11

25 Entry-Point Functions and Scheduling in Simulink Coder

program functions as an interprocess communication server, responding to requests from
the Simulink engine.

Data Logging in Single-Tasking and Multitasking Model Execution

“Debug” on page 28-23 explains how you can save system states, outputs, and
time to a MAT-file at the completion of the model execution. The LogTXY function,
which performs data logging, operates differently in single-tasking and multitasking
environments.

If you examine how LogTXY is called in the single-tasking and multitasking
environments, you will notice that for single-tasking LogTXY is called after
ModelOutputs. During this ModelOutputs call, blocks that have a hit at time t execute,
whereas in multitasking, LogTXY is called after ModelOutputs(tid=0), which executes
only the blocks that have a hit at time t and that have a task identifier of 0. This results
in differences in the logged values between single-tasking and multitasking logging.
Specifically, consider a model with two sample times, the faster sample time having a
period of 1.0 second and the slower sample time having a period of 10.0 seconds. At time t
= k*10, k=0,1,2... both the fast (tid=0) and slow (tid=1) blocks execute. When executing
in multitasking mode, when LogTXY is called, the slow blocks execute, but the previous
value is logged, whereas in single-tasking the current value is logged.

Another difference occurs when logging data in an enabled subsystem. Consider an
enabled subsystem that has a slow signal driving the enable port and fast blocks within
the enabled subsystem. In this case, the evaluation of the enable signal occurs in a slow
task, and the fast blocks see a delay of one sample period; thus the logged values will
show these differences.

To summarize differences in logged data between single-tasking and multitasking,
differences will be seen when

• Any root outport block has a sample time that is slower than the fastest sample time
• Any block with states has a sample time that is slower than the fastest sample time
• Any block in an enabled subsystem where the signal driving the enable port is slower

than the rate of the blocks in the enabled subsystem

For the first two cases, even though the logged values are different between single-
tasking and multitasking, the model results are not different. The only real difference
is where (at what point in time) the logging is done. The third (enabled subsystem) case
results in a delay that can be seen in a real-time environment.

25-12

 Execution of Code Generated from a Model

Non-Real-Time Single-Tasking Systems

The pseudocode below shows the execution of a model for a non-real-time single-tasking
system.

main()

{

 Initialization

 While (time < final time)

 ModelOutputs -- Major time step.

 LogTXY -- Log time, states and root outports.

 ModelUpdate -- Major time step.

 Integrate -- Integration in minor time step for

 -- models with continuous states.

 ModelDerivatives

 Do 0 or more

 ModelOutputs

 ModelDerivatives

 EndDo -- Number of iterations depends upon the solver

 Integrate derivatives to update continuous states.

 EndIntegrate

 EndWhile

 Termination

}

The initialization phase begins first. This consists of initializing model states and
setting up the execution engine. The model then executes, one step at a time. First
ModelOutputs executes at time t, then the workspace I/O data is logged, and then
ModelUpdate updates the discrete states. Next, if your model has continuous states,
ModelDerivatives integrates the continuous states' derivatives to generate the states
for time t t hnew = + , where h is the step size. Time then moves forward to t

new
 and the

process repeats.

During the ModelOutputs and ModelUpdate phases of model execution, only blocks
that reach the current point in time execute.

Non-Real-Time Multitasking Systems

The pseudocode below shows the execution of a model for a non-real-time multitasking
system.

main()

25-13

25 Entry-Point Functions and Scheduling in Simulink Coder

{

 Initialization

 While (time < final time)

 ModelOutputs(tid=0) -- Major time step.

 LogTXY -- Log time, states, and root

 -- outports.

 ModelUpdate(tid=0) -- Major time step.

 Integrate -- Integration in minor time step for

 -- models with continuous states.

 ModelDerivatives

 Do 0 or more

 ModelOutputs(tid=0)

 ModelDerivatives

 EndDo (Number of iterations depends upon the solver.)

 Integrate derivatives to update continuous states.

 EndIntegrate

 For i=1:NumTids

 ModelOutputs(tid=i) -- Major time step.

 ModelUpdate(tid=i) -- Major time step.

 EndFor

 EndWhile

 Termination

 }

Multitasking operation is more complex than single-tasking execution because the output
and update functions are subdivided by the task identifier (tid) that is passed into these
functions. This allows for multiple invocations of these functions with different task
identifiers using overlapped interrupts, or for multiple tasks when using a real-time
operating system. In simulation, multiple tasks are emulated by executing the code in
the order that would occur if no preemption existed in a real-time system.

Multitasking execution assumes that all task rates are multiples of the base rate. The
Simulink product enforces this when you create a fixed-step multitasking model. The
multitasking execution loop is very similar to that of single-tasking, except for the use of
the task identifier (tid) argument to ModelOutputs and ModelUpdate.

Note: You cannot use tid values from code generated by a target file and not by
Simulink Coder. Simulink Coder tracks the use of tid when generating code for a
specific subsystem or function type. When you generate code in a target file, this
argument cannot be tracked because the scope does not have subsystem or function type.
Therefore, tid becomes an undefined variable and your target file fails to compile.

25-14

 Execution of Code Generated from a Model

Real-Time Single-Tasking Systems

The pseudocode below shows the execution of a model in a real-time single-tasking
system where the model is run at interrupt level.

rtOneStep()

{

 Check for interrupt overflow

 Enable "rtOneStep" interrupt

 ModelOutputs -- Major time step.

 LogTXY -- Log time, states and root outports.

 ModelUpdate -- Major time step.

 Integrate -- Integration in minor time step for models

 -- with continuous states.

 ModelDerivatives

 Do 0 or more

 ModelOutputs

 ModelDerivatives

 EndDo (Number of iterations depends upon the solver.)

 Integrate derivatives to update continuous states.

 EndIntegrate

}

main()

{

 Initialization (including installation of rtOneStep as an

 interrupt service routine, ISR, for a real-time clock).

 While(time < final time)

 Background task.

 EndWhile

 Mask interrupts (Disable rtOneStep from executing.)

 Complete any background tasks.

 Shutdown

}

Real-time single-tasking execution is very similar to non-real-time single-tasking
execution, except that instead of free-running the code, the rt_OneStep function is
driven by a periodic timer interrupt.

At the interval specified by the program's base sample rate, the interrupt service routine
(ISR) preempts the background task to execute the model code. The base sample rate is
the fastest in the model. If the model has continuous blocks, then the integration step
size determines the base sample rate.

25-15

25 Entry-Point Functions and Scheduling in Simulink Coder

For example, if the model code is a controller operating at 100 Hz, then every 0.01
seconds the background task is interrupted. During this interrupt, the controller reads
its inputs from the analog-to-digital converter (ADC), calculates its outputs, writes
these outputs to the digital-to-analog converter (DAC), and updates its states. Program
control then returns to the background task. All of these steps must occur before the next
interrupt.

Real-Time Multitasking Systems

The following pseudocode shows how a model executes in a real-time multitasking
system where the model is run at interrupt level.

rtOneStep()

{

 Check for interrupt overflow

 Enable "rtOneStep" interrupt

 ModelOutputs(tid=0) -- Major time step.

 LogTXY -- Log time, states and root outports.

 ModelUpdate(tid=0) -- Major time step.

 Integrate -- Integration in minor time step for

 -- models with continuous states.

 ModelDerivatives

 Do 0 or more

 ModelOutputs(tid=0)

 ModelDerivatives

 EndDo (Number of iterations depends upon the solver.)

 Integrate derivatives and update continuous states.

 EndIntegrate

 For i=1:NumTasks

 If (hit in task i)

 ModelOutputs(tid=i)

 ModelUpdate(tid=i)

 EndIf

 EndFor

}

main()

{

 Initialization (including installation of rtOneStep as an

 interrupt service routine, ISR, for a real-time clock).

 While(time < final time)

 Background task.

 EndWhile

25-16

 Execution of Code Generated from a Model

 Mask interrupts (Disable rtOneStep from executing.)

 Complete any background tasks.

 Shutdown

}

Running models at interrupt level in a real-time multitasking environment is very
similar to the previous single-tasking environment, except that overlapped interrupts are
employed for concurrent execution of the tasks.

The execution of a model in a single-tasking or multitasking environment when using
real-time operating system tasking primitives is very similar to the interrupt-level
examples discussed above. The pseudocode below is for a single-tasking model using real-
time tasking primitives.

tSingleRate()

{

 MainLoop:

 If clockSem already "given", then error out due to overflow.

 Wait on clockSem

 ModelOutputs -- Major time step.

 LogTXY -- Log time, states and root

 -- outports

 ModelUpdate -- Major time step

 Integrate -- Integration in minor time step

 -- for models with continuous

 -- states.

 ModelDeriviatives

 Do 0 or more

 ModelOutputs

 ModelDerivatives

 EndDo (Number of iterations depends upon the solver.)

 Integrate derivatives to update continuous states.

 EndIntegrate

 EndMainLoop

}

main()

{

 Initialization

 Start/spawn task "tSingleRate".

 Start clock that does a "semGive" on a clockSem semaphore.

 Wait on "model-running" semaphore.

 Shutdown

}

25-17

25 Entry-Point Functions and Scheduling in Simulink Coder

In this single-tasking environment, the model executes as real-time operating system
tasking primitives. In this environment, create a single task (tSingleRate) to run
the model code. This task is invoked when a clock tick occurs. The clock tick gives a
clockSem (clock semaphore) to the model task (tSingleRate). The model task waits for
the semaphore before executing. The clock ticks occur at the fundamental step size (base
rate) for your model.

Multitasking Systems Using Real-Time Tasking Primitives

The pseudocode below is for a multitasking model using real-time tasking primitives.

tSubRate(subTaskSem,i)

{

 Loop:

 Wait on semaphore subTaskSem.

 ModelOutputs(tid=i)

 ModelUpdate(tid=i)

 EndLoop

}

tBaseRate()

{

 MainLoop:

 If clockSem already "given", then error out due to overflow.

 Wait on clockSem

 For i=1:NumTasks

 If (hit in task i)

 If task i is currently executing, then error out due to

 overflow.

 Do a "semGive" on subTaskSem for task i.

 EndIf

 EndFor

 ModelOutputs(tid=0) -- major time step.

 LogTXY -- Log time, states and root outports.

 ModelUpdate(tid=0) -- major time step.

 Loop: -- Integration in minor time step for

 -- models with continuous states.

 ModelDeriviatives

 Do 0 or more

 ModelOutputs(tid=0)

 ModelDerivatives

 EndDo (number of iterations depends upon the solver).

 Integrate derivatives to update continuous states.

 EndLoop

25-18

 Execution of Code Generated from a Model

 EndMainLoop

}

main()

{

 Initialization

 Start/spawn task "tSubRate".

 Start/spawn task "tBaseRate".

 Start clock that does a "semGive" on a clockSem semaphore.

 Wait on "model-running" semaphore.

 Shutdown

}

In this multitasking environment, the model is executed using real-time operating
system tasking primitives. Such environments require several model tasks (tBaseRate
and several tSubRate tasks) to run the model code. The base rate task (tBaseRate)
has a higher priority than the subrate tasks. The subrate task for tid=1 has a higher
priority than the subrate task for tid=2, and so on. The base rate task is invoked when
a clock tick occurs. The clock tick gives a clockSem to tBaseRate. The first thing
tBaseRate does is give semaphores to the subtasks that have a hit at the current point
in time. Because the base rate task has a higher priority, it continues to execute. Next it
executes the fastest task (tid=0), consisting of blocks in your model that have the fastest
sample time. After this execution, it resumes waiting for the clock semaphore. The clock
ticks are configured to occur at the fundamental step size for your model.

Rapid Prototyping and Embedded Model Execution Differences

The rapid prototyping program framework provides a common application programming
interface (API) that does not change between model definitions.

The Embedded Coder product provides a different framework called the embedded
program framework. The embedded program framework provides an optimized API that
is tailored to your model. When you use the embedded style of generated code, you are
modeling how you would like your code to execute in your embedded system. Therefore,
the definitions defined in your model should be specific to your embedded targets. Items
such as the model name, parameter, and signal storage class are included as part of the
API for the embedded style of code.

One major difference between the rapid prototyping and embedded style of generated
code is that the latter contains fewer entry-point functions. The embedded style of code
can be configured to have only one function, model_step.

25-19

25 Entry-Point Functions and Scheduling in Simulink Coder

Thus, model execution code eliminates Loop...EndLoop statements and groups
ModelOutputs, LogTXY, and ModelUpdate into a single statement, model_step.

For more information about how generated embedded code executes, see “Entry-Point
Functions and Scheduling” on page 25-2.

More About
• “Time-Based Scheduling and Code Generation” on page 16-2
• “Sample Times in Subsystems” (Simulink)
• “Sample Times in Systems” (Simulink)
• “Time-Based Scheduling Example Models” on page 16-36

25-20

 Rapid Prototyping Model Functions

Rapid Prototyping Model Functions
Rapid prototyping code defines the following functions that interface with the main
program (main.c or main.cpp):

• Model(): The model registration function. This function initializes the work areas
(for example, allocating and setting pointers to various data structures) used by
the model. The model registration function calls the MdlInitializeSizes and
MdlInitializeSampleTimes functions. These two functions are very similar to the
S-function mdlInitializeSizes and mdlInitializeSampleTimes methods.

• MdlStart(void): After the model registration functions MdlInitializeSizes and
MdlInitializeSampleTimes execute, the main program starts execution by calling
MdlStart. This routine is called once at startup.

The function MdlStart has four basic sections:

• Code to initialize the states for each block in the root model that has states. A
subroutine call is made to the “initialize states” routines of conditionally executed
subsystems.

• Code generated by the one-time initialization (start) function for each block in the
model.

• Code to enable the blocks in the root model that have enable methods, and the
blocks inside triggered or function-call subsystems residing in the root model.
Simulink blocks can have enable and disable methods. An enable method is called
just before a block starts executing, and the disable method is called just after the
block stops executing.

• Code for each block in the model whose output value is constant. The block code
appears in the MdlStart function only if the block parameters are not tunable
in the generated code and if the code generator cannot eliminate the block code
through constant folding.

• MdlOutputs(int_T tid): MdlOutputs updates the output of blocks. The tid
(task identifier) parameter identifies the task that in turn maps when to execute
blocks based upon their sample time. This routine is invoked by the main program
during major and minor time steps. The major time steps are when the main program
is taking an actual time step (that is, it is time to execute a specific task). If your
model contains continuous states, the minor time steps will be taken. The minor time
steps are when the solver is generating integration stages, which are points between
major outputs. These integration stages are used to compute the derivatives used in
advancing the continuous states.

25-21

25 Entry-Point Functions and Scheduling in Simulink Coder

• MdlUpdate(int_T tid): MdlUpdate updates the states and work vector state
information (that is, states that are neither continuous nor discrete) saved in work
vectors. The tid (task identifier) parameter identifies the task that in turn indicates
which sample times are active, allowing you to conditionally update only states of
active blocks. This routine is invoked by the interface after the major MdlOutputs
has been executed. The solver is also called, and model_Derivatives is called
in minor steps by the solver during its integration stages. All blocks that have
continuous states have an identical number of derivatives. These blocks are required
to compute the derivatives so that the solvers can integrate the states.

• MdlTerminate(void): MdlTerminate contains any block shutdown code.
MdlTerminate is called by the interface, as part of the termination of the real-time
program.

The contents of the above functions are directly related to the blocks in your model. A
Simulink block can be generalized to the following set of equations.

y f t x x uc d= 0(, , ,)

Output y is a function of continuous state xc, discrete state xd, and input u. Each block
writes its specific equation in a section of MdlOutputs.

x f t x ud u d+
=1 (, ,)

The discrete states xd are a function of the current state and input. Each block that has a
discrete state updates its state in MdlUpdate.

&x f t x ud c= (, ,)

The derivatives x are a function of the current input. Each block that has continuous
states provides its derivatives to the solver (for example, ode5) in model_Derivatives.
The derivatives are used by the solver to integrate the continuous state to produce the
next value.

The output, y, is generally written to the block I/O structure. Root-level Outport blocks
write to the external outputs structure. The continuous and discrete states are stored
in the states structure. The input, u, can originate from another block's output, which
is located in the block I/O structure, an external input (located in the external inputs

25-22

 Rapid Prototyping Model Functions

structure), or a state. These structures are defined in the model.h file that the Simulink
Coder software generates.

The next example shows the general contents of the rapid prototyping style of C code
written to the model.c file.

The next figure shows a flow chart describing the execution of the rapid prototyping
generated code.

25-23

25 Entry-Point Functions and Scheduling in Simulink Coder

E
x
e

c
u

ti
o

n
 L

o
o

p

Integration in Minor Time Steps

End

model_Derivatives

Start Execution

MdlStart

MdlOutputs

MdlUpdate

MdlOutputs

model_Derivatives

MdlTerminate

Rapid Prototyping Execution Flow Chart

Each block places code in specific Mdl routines according to the algorithm that it is
implementing. Blocks have input, output, parameters, and states, as well as other
general items. For example, in general, block inputs and outputs are written to a block
I/O structure (model_B). Block inputs can also come from the external input structure
(model_U) or the state structure when connected to a state port of an integrator
(model_X), or ground (rtGround) if unconnected or grounded. Block outputs can also go
to the external output structure (model_Y). The next figure shows the general mapping
between these items.

25-24

 Rapid Prototyping Model Functions

Block

External
inputs
struct
model_U

rtGround

Block I/O
struct
model_B

External
outputs
struct
model_Y

States
struct
model_X

Parameter
struct
model_P

Work
structs
rtRWork,
rtIWork,
rtPWork,
....

Data View of the Generated Code

The following list defines the structures shown in the preceding figure:

• Block I/O structure (model_B): This structure consists of persistent block output
signals. The number of block output signals is the sum of the widths of the data
output ports of all nonvirtual blocks in your model. If you activate block I/O
optimizations, the Simulink and Simulink Coder products reduce the size of the
model_B structure by

• Reusing the entries in the model_B structure
• Making other entries local variables

See “Signal Representation in Generated Code” on page 19-112 for more information
on these optimizations.

Structure field names are determined either by the block's output signal name
(when present) or by the block name and port number when the output signal is left
unlabeled.

25-25

25 Entry-Point Functions and Scheduling in Simulink Coder

• Block states structures: The continuous states structure (model_X) contains
the continuous state information for blocks in your model that have continuous
states. Discrete states are stored in a data structure called the DWork vector
(model_DWork).

• Block parameters structure (model_P): The parameters structure contains block
parameters that can be changed during execution (for example, the parameter of a
Gain block).

• External inputs structure (model_U): The external inputs structure consists of all
root-level Inport block signals. Field names are determined by either the block's
output signal name, when present, or by the Inport block's name when the output
signal is left unlabeled.

• External outputs structure (model_Y): The external outputs structure consists of all
root-level Outport blocks. Field names are determined by the root-level Outport block
names in your model.

• Real work, integer work, and pointer work structures (model_RWork, model_IWork,
model_PWork): Blocks might have a need for real, integer, or pointer work areas. For
example, the Memory block uses a real work element for each signal. These areas are
used to save internal states or similar information.

More About
• “Time-Based Scheduling and Code Generation” on page 16-2

25-26

26

Function and Class Interfaces in
Embedded Coder

• “Control Generation of Function Prototypes” on page 26-2
• “Control Generation of C++ Class Interfaces” on page 26-23
• “Combine I/O Arguments in Model Step Interface” on page 26-53
• “Generate Modular Function Code” on page 26-55
• “Configure Simulink Function Code Interface” on page 26-67

26 Function and Class Interfaces in Embedded Coder

Control Generation of Function Prototypes

About Function Prototype Control

For fixed-step, rate-based models that you configure with an ERT-based system target
file, you can control the prototypes of functions that the code generator produces. Control
the function prototype generation by using the Configure Model Functions button,
located on the Code Generation > Interface pane of the Configuration Parameters
dialog box.

By default, the function prototype of the generated model_step function resembles the
following:
void model_step(void);

The function prototype of the generated model_initialize function resembles the
following:
void model_initialize(void);

(For more detailed information about the default calling interface for the model_step
function, see the model_step reference page.)

The Configure Model Functions button on the Interface pane provides you flexible
control over the model function prototypes that are generated for your model. Clicking
Configure Model Functions launches a Model Interface dialog box (see “Configure
Function Prototypes Using Graphical Interfaces” on page 26-3). Based on the
Function specification value you specify for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototypes. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

For more information about using the Configure Model Functions button and the
Model Interface dialog box, see “Sample Procedure for Configuring Function Prototypes”
on page 26-11 and the model rtwdemo_fcnprotoctrl, which is preconfigured to
demonstrate function prototype control.

Alternatively, you can use function prototype control functions to programmatically
control model function prototypes. For more information, see “Configure Function
Prototypes Programmatically” on page 26-16.

26-2

 Control Generation of Function Prototypes

You can also control model function prototypes for nonvirtual subsystems, if you generate
subsystem code using right-click build. To launch the Model Interface for subsystem
dialog box, use the RTW.configSubsystemBuild function.

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make. For more information, see “Configure
Function Prototypes for Nonvirtual Subsystems” on page 26-9.

For limitations that apply, see “Function Prototype Control Limitations” on page
26-21.

Configure Function Prototypes Using Graphical Interfaces

• “Launch the Model Interface Dialog Boxes” on page 26-3
• “Default Model Initialize and Step Functions View” on page 26-3
• “Model Specific C Prototypes View” on page 26-4
• “Configure Function Prototypes for Nonvirtual Subsystems” on page 26-9

Launch the Model Interface Dialog Boxes

Clicking the Configure Model Functions button on the Interface pane of the
Configuration Parameters dialog box launches the Model Interface dialog box. This
dialog box is the starting point for configuring the model function prototypes that
are generated during code generation for ERT-based Simulink models. Based on the
Function specification value you select for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototype. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

To configure function prototypes for a right-click build of a nonvirtual subsystem, invoke
the RTW.configSubsystemBuild function, which launches the Model Interface for
subsystem dialog box. For more information, see “Configure Function Prototypes for
Nonvirtual Subsystems” on page 26-9

Default Model Initialize and Step Functions View

The figure below shows the Model Interface dialog box in the Default model
initialize and step functions view.

26-3

26 Function and Class Interfaces in Embedded Coder

The Default model initialize and step functions view allows you to validate
and preview the predicted default model step and initialization function prototypes.
To validate the default function prototype configuration against your model, click the
Validate button. If the validation succeeds, the predicted step function prototype
appears in the Step function preview subpane.

Note: You cannot use the Default model initialize and step functions view
to modify the function prototype configuration.

Model Specific C Prototypes View

Selecting Model specific C prototypes for the Function specification parameter
displays the Model specific C prototypes view of your model function prototypes.
This view provides controls that you can use to customize the function names, the order
of arguments, and argument attributes including name, passing mechanism, and type
qualifier for each of the model's root-level I/O ports.

26-4

 Control Generation of Function Prototypes

To begin configuring your function control prototype configuration, click the Get Default
Configuration button. This activates and initializes the function names and properties
in the Configure model initialize and step functions subpane, as shown below.
If you click Get Default Configuration again later, only the properties of the step
function arguments are reset to default values.

26-5

26 Function and Class Interfaces in Embedded Coder

In the Configure model initialize and step functions subpane:

26-6

 Control Generation of Function Prototypes

Parameter Description

Step function name Name of the model_step function.
Initialize function name Name of the model_initialize function.

Note: A referenced model contains at least one
initialization function. When the model is not built as a
referenced model, this parameter controls the name of the
function that initializes states to nonzero values. A model
generates this function only if it contains such states or
requires the function for some other less common reason.
The code generator determines the names of the other
initialization functions.

When built as a referenced model, this parameter does not
control the name of the Model Initialize fcn for
ModelReference Block. The code generator determines
the name of this function for referenced model builds.

Order Order of the argument. A return argument is listed as
Return.

Port Name Name of the port.
Port Type Type of the port.
Category Specifies how an argument is passed in or out from

the customized step function, either by copying a value
(Value) or by a pointer to a memory space (Pointer).

Argument Name Name of the argument.

26-7

26 Function and Class Interfaces in Embedded Coder

Parameter Description

Qualifier (optional) Specifies a const type qualifier for a function argument.
The available values are dependent on the Category
specified. When you change the Category, if the specified
type is not available, the Qualifier changes to none. The
possible values are:

• none

• const (value)
• const* (value referenced by the pointer)
• const*const (value referenced by the pointer and the

pointer itself)

Note: When a model includes a referenced model, the
const type qualifier for the root input argument of the
referenced model's specified step function interface is
set to none, and the qualifier for the source signal in the
referenced model's parent is set to a value other than
none, code generation honors the referenced model's
interface specification by generating a type cast that
discards the const type qualifier from the source signal.
To override this behavior, add a const type qualifier to
the referenced model.

The Step function preview subpane provides a preview of how your step function
prototype is interpreted in generated code. The preview is updated dynamically as you
make modifications.

An argument foo whose Category is Pointer is previewed as * foo. If its Category
is Value, it is previewed as foo. Notice that argument types and qualifiers are not
represented in the Step function preview subpane.

Note: The list of step function arguments has an entry for each of the model’s root-
level I/O ports. This list does not include model parameter arguments that can appear
in the generated code when the model is used as a referenced model. For example, a
model sldemo_mdlref_counter_paramargs has an inport with argument name
arg_input, an outport with argument name arg_output, and a saturation block whose

26-8

 Control Generation of Function Prototypes

limits have workspace parameter argument names lower_saturation_limit and
upper_saturation_limit.

The step function preview for this model is:

sldemo_mdlref_counter_paramargs_custom (arg__input, * arg_output)

The function prototype in the generated code differs from the preview. The prototype in
the generated code (with the additional model parameter arguments) is:

sldemo_mdlref_counter_paramargs_custom(

 real_T arg__input,

 real_T *arg_output,

 real_T rtp_lower_saturation_limit,

 real_T rtp_upper_saturation_limit)

Configure Function Prototypes for Nonvirtual Subsystems

You can control step and initialization function prototypes for nonvirtual subsystems
in ERT-based Simulink models, if you generate subsystem code using right-click build.
Function prototype control is supported for the following types of nonvirtual blocks:

• Triggered subsystems
• Enabled subsystems
• Enabled trigger subsystems
• While subsystems
• For subsystems
• Stateflow blocks
• MATLAB function block

To launch the Model Interface for Subsystem dialog box, open the model containing the
subsystem and invoke the RTW.configSubsystemBuild function.

The Model Interface dialog box for modifying the model-specific C prototypes for the
rtwdemo_counter/Amplifier subsystem appears as follows:

26-9

26 Function and Class Interfaces in Embedded Coder

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make.

26-10

 Control Generation of Function Prototypes

Sample Procedure for Configuring Function Prototypes

The following procedure shows how to use the Configure Model Functions button on
the Code Generation > Interface pane of the Configuration Parameters dialog box to
control the model function prototypes when generating code for your Simulink model.

1 Open a MATLAB session and launch the rtwdemo_counter model.
2 In the rtwdemo_counter Model Editor, double-click the Generate Code Using

Embedded Coder (double-click) button to generate code for an ERT-based
version of rtwdemo_counter. The code generation report for rtwdemo_counter
appears.

3 In the code generation report, click the link for rtwdemo_counter.c.
4 In the rtwdemo_counter.c code display, locate and examine the generated code for

the rtwdemo_counter_step and the rtwdemo_counter_initialize functions:

/* Model step function */

void rtwdemo_counter_step(void)

{

 ...

}

/* Model initialize function */

void rtwdemo_counter_initialize(void)

{

 ...

}

You can close the report window after you have examined the generated code.
Optionally, you can save rtwdemo_counter.c and other generated files to a
different location for later comparison.

5 From the rtwdemo_counter model, open the Configuration Parameters dialog box.
6 Navigate to the Code Generation > Interface pane and click the Configure

Model Functions button. The Model Interface dialog box appears.
7 In the initial (Default model initialize and step functions) view of the

Model Interface dialog box, click the Validate button to validate and preview the
default function prototype for the rtwdemo_counter_step function. The function
prototype arguments under Step function preview should correspond to the
default prototype in step 4.

26-11

26 Function and Class Interfaces in Embedded Coder

Note: Validation errors in this context prevent successful preview of the default
function prototype. Resolve any validation errors to display the preview.

8 In the Model Interface dialog box, set Function specification field to Model
specific C prototypes. Making this selection switches the dialog box from
the Default model initialize and step functions view to the Model
specific C prototypes view.

26-12

 Control Generation of Function Prototypes

9 In the Model specific C prototypes view, click the Get Default
Configuration button to activate the Configure model initialize and step
functions subpane.

26-13

26 Function and Class Interfaces in Embedded Coder

10 In the Configure model initialize and step functions subpane, change
Initialize function name to rtwdemo_counter_cust_init.

26-14

 Control Generation of Function Prototypes

11 In the Configure model initialize and step functions subpane, in the row for the
Input argument, change the value of Category from Value to Pointer and change
the value of Qualifier from none to const *. The preview reflects your changes.

26-15

26 Function and Class Interfaces in Embedded Coder

12 Click the Validate button to validate the modified function prototype. The
Validation subpane displays a message that the validation succeeded.

Note: Validation errors in this context prevent successful code generation. Resolve
any validation errors before proceeding. Or, if resolution is not possible, set the
Function specification field to Default model initialize and step
functions before proceeding.

13 Click OK to exit the Model Interface dialog box.
14 Generate code for the model. When the build completes, the code generation report

for rtwdemo_counter appears.
15 In the code generation report, click the link for rtwdemo_counter.c.
16 Locate and examine the generated code for the rtwdemo_counter_custom and

rtwdemo_counter_cust_init functions:
/* Model step function */

void rtwdemo_counter_custom(const int32_T *arg_Input, int32_T *arg_Output)

{

 ...

}

 /* Model initialize function */

void rtwdemo_counter_cust_init(void)

{

 ...

}

17 Verify that the generated code is consistent with the function prototype
modifications that you specified in the Model Interface dialog box.

Configure Function Prototypes Programmatically

You can use the function prototype control functions (listed in Function Prototype
Control Functions), to programmatically control model function prototypes. Typical uses
of these functions include:

• Create and validate a new function prototype

1 Create a model-specific C function prototype with obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Add argument configuration information for your model ports using
RTW.ModelSpecificCPrototype.addArgConf.

26-16

 Control Generation of Function Prototypes

3 Attach the function prototype to your loaded ERT-based Simulink model using
RTW.ModelSpecificCPrototype.attachToModel.

4 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

5 If validation succeeds, save your model and then generate code using the
rtwbuild function.

• Modify and validate an existing function prototype

1 Get the handle to an existing model-specific C function prototype that
is attached to your loaded ERT-based Simulink model with obj =
RTW.getFunctionSpecification(modelName), where modelName is a
character vector specifying the name of a loaded ERT-based Simulink model, and
obj returns a handle to a function prototype attached to the specified model.

You can use other function prototype control functions on the returned handle
only if the test isa(obj,'RTW.ModelSpecificCPrototype') returns 1. If the
model does not have a function prototype configuration, the function returns [].
If the function returns a handle to an object of type RTW.FcnDefault, you cannot
modify the existing function prototype.

2 Use the Get and Set functions listed in Function Prototype Control Functions
to test and reset such items as the function names, argument names, argument
positions, argument categories, and argument type qualifiers.

3 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

4 If validation succeeds, save your model and then generate code using the
rtwbuild function.

• Create and validate a new function prototype, starting with default
configuration information from your Simulink model

1 Create a model-specific C function prototype using obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to a newly
created, empty function prototype.

2 Attach the function prototype to your loaded ERT-based Simulink model using
RTW.ModelSpecificCPrototype.attachToModel.

3 Get default configuration information from your model using
RTW.ModelSpecificCPrototype.getDefaultConf.

26-17

26 Function and Class Interfaces in Embedded Coder

4 Use the Get and Set functions listed in Function Prototype Control Functions
to test and reset such items as the function names, argument names, argument
positions, argument categories, and argument type qualifiers.

5 Validate the function prototype using
RTW.ModelSpecificCPrototype.runValidation.

6 If validation succeeds, save your model and then generate code using the
rtwbuild function.

• Reset the model function prototype to the default ERT function
configuration Create an object of the ERT default function signature. Reset
the model function prototype and undo any custom settings, by calling the
RTW.FcnDefault method, attachToModel, as follows:

obj = RTW.FcnDefault;

obj.attachToModel(model);

model must be a loaded ERT-based model.

Note: You should not use the same model-specific C function prototype object across
multiple models. If you do, changes that you make to the step and initialization function
prototypes in one model are propagated to other models, which is usually not desirable.

Function Prototype Control Functions

Function Description

RTW.ModelSpecificCPrototype.addArgConf Add step function argument configuration
information for Simulink model port to
model-specific C function prototype

RTW.ModelSpecificCPrototype.attachToModel Attach model-specific C function prototype
to loaded ERT-based Simulink model

RTW.ModelSpecificCPrototype.getArgCategory Get step function argument category for
Simulink model port from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getArgName Get step function argument name for
Simulink model port from model-specific C
function prototype

26-18

 Control Generation of Function Prototypes

Function Description

RTW.ModelSpecificCPrototype.getArgPosition Get step function argument position for
Simulink model port from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getArgQualifier Get step function argument type qualifier
for Simulink model port from model-specific
C function prototype

RTW.ModelSpecificCPrototype.getDefaultConf Get default configuration information for
model-specific C function prototype from
Simulink model to which it is attached

RTW.ModelSpecificCPrototype.getFunctionName Get function names from model-specific C
function prototype

RTW.ModelSpecificCPrototype.getNumArgs Get number of step function arguments from
model-specific C function prototype

RTW.ModelSpecificCPrototype.getPreview Get model-specific C function prototype code
previews

RTW.configSubsystemBuild Launch GUI to configure C function
prototype or C++ class interface for right-
click build of specified subsystem

RTW.getFunctionSpecification Get handle to model-specific C function
prototype object

RTW.ModelSpecificCPrototype.runValidation Validate model-specific C function prototype
against Simulink model to which it is
attached

RTW.ModelSpecificCPrototype.setArgCategory Set step function argument category for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgName Set step function argument name for
Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setArgPosition Set step function argument position for
Simulink model port in model-specific C
function prototype

26-19

26 Function and Class Interfaces in Embedded Coder

Function Description

RTW.ModelSpecificCPrototype.setArgQualifier Set step function argument type qualifier
for Simulink model port in model-specific C
function prototype

RTW.ModelSpecificCPrototype.setFunctionName Set function names in model-specific C
function prototype

Sample Script for Configuring Function Prototypes

The following sample MATLAB script configures the model function prototypes for the
rtwdemo_counter model, using the Function Prototype Control Functions.

%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Create a model-specific C function prototype

a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports

addArgConf(a,'Input','Pointer','inputArg','const *')

addArgConf(a,'Output','Pointer','outputArg','none')

%% Attach the model-specific C function prototype to the model

attachToModel(a,gcs)

%% Rename the initialization function

setFunctionName(a,'InitFunction','init')

%% Rename the step function and change some argument attributes

setFunctionName(a,'StepFunction','step')

setArgPosition(a,'Output',1)

setArgCategory(a,'Input','Value')

setArgName(a,'Input','InputArg')

setArgQualifier(a,'Input','none')

%% Validate the function prototype against the model

[status,message]=runValidation(a)

%% if validation succeeded, generate code and build

if status

 rtwbuild(gcs)

end

26-20

 Control Generation of Function Prototypes

Verify Generated Code for Customized Functions

You can use software-in-the-loop (SIL) testing to verify the generated code for your
customized step and initialization functions. This involves creating a SIL block with your
generated code, which then can be integrated into a Simulink model to verify that the
generated code provides the same result as the original model or nonvirtual subsystem.
For more information, see “Choose a SIL or PIL Approach” on page 64-11.

Function Prototype Control Limitations

The following limitations apply to controlling model function prototypes:

• Function prototype control supports only step and initialization functions generated
from a Simulink model.

• Function prototype control supports only single-instance implementations. For
standalone targets, you must set Code interface packaging to Nonreusable
function (on the Code Generation > Interface pane of the Configuration
Parameters dialog box). For model reference targets, you must select One for the
Total number of instances allowed per top model parameter (on the Model
Referencing pane of the Configuration Parameters dialog box).

• For model reference targets, if Code interface packaging is set to Reusable
function, the code generator ignores the setting.

• You must select the Single output/update function parameter (on the All
Parameters tab of the Configuration Parameters dialog box).

• Function prototype control does not support multitasking models. Multirate models
are supported, but you must configure the models for single-tasking.

• You must configure root-level inports and outports to use Auto storage classes.
• Do not control function prototypes with the static ert_main.c provided by

MathWorks. Specifying a function prototype control configuration other than the
default creates a mismatch between the generated code and the default static
ert_main.c.

• The code generator removes the data structure for the root inports of the model unless
a subsystem implemented by a nonreusable function uses the value of one or more of
the inports.

• The code generator removes the data structure for the root outports of the model
except when you enable MAT-file logging, or if the sample time of one or more of the
outports is not the fundamental base rate (including a constant rate).

26-21

26 Function and Class Interfaces in Embedded Coder

• If you copy a subsystem block and paste it to create a new block in either a new model
or the same model, the function prototype control interface information from the
original subsystem block does not copy to the new subsystem block.

• If you have a Stateflow license, for a Stateflow chart that uses a model root inport
value, or that calls a subsystem that uses a model root inport value, you must do one
of the following to generate code:

• Clear the Execute (enter) Chart At Initialization check box in the Stateflow
chart.

• Make the Stateflow function a nonreusable function.
• Insert a Simulink Signal Conversion block immediately after the root inport. In

the Signal Conversion block parameters dialog box, select Exclude this block
from 'Block reduction' optimization.

• If a model root inport value connects to a Simscape conversion block, you must
insert a Simulink Signal Conversion block between the root inport and the Simscape
conversion block. In the Signal Conversion block parameters dialog box, select
Exclude this block from 'Block reduction' optimization.

• When building a referenced model that is configured for function prototype control, do
not use virtual buses as inputs or outputs to the referenced model. When bus signals
cross referenced model boundaries, use nonvirtual buses.

• If the C function prototype control is not the default, the value is ignored for the
Configuration Parameters > Model Referencing > Pass fixed-size scalar root
inputs by value for code generation parameter. For more information, see “Pass
fixed-size scalar root inputs by value for code generation” (Simulink).

Related Examples
• “Combine I/O Arguments in Model Step Interface” on page 26-53
• “Customize Prototypes of Step and Initialize Functions Generated for a Model”

26-22

 Control Generation of C++ Class Interfaces

Control Generation of C++ Class Interfaces
Using the Code interface packaging (Simulink Coder) option C++ class, on the
Code Generation > Interface pane of the Configuration Parameters dialog box, you
can generate a C++ class interface to model code. The generated interface encapsulates
required model data into C++ class attributes and model entry point functions into C++
class methods. The benefits of C++ class encapsulation include:

• Greater control over access to model data
• Ability to multiply instantiate model classes
• Easier integration of model code into C++ programming environments

C++ class encapsulation also works for right-click builds of nonvirtual subsystems.
(For information on requirements that apply, see “Configure C++ Class Interfaces for
Nonvirtual Subsystems” on page 26-44.)

The general procedure for generating C++ class interfaces to model code is as follows:

1 Configure your model to use an ert.tlc system target file provided by MathWorks.
2 Select the C++ language for your model.
3 Select C++ class code interface packaging for your model.
4 Optionally, configure related C++ class interface settings for your model code, using

either a graphical user interface (GUI) or application programming interface (API).
5 Generate model code and examine the results.

To get started with an example, see “Simple Use of C++ Class Control” on page 26-24.
For more details about configuring C++ class interfaces for your model code, see
“Customize C++ Class Interfaces Using Graphical Interfaces” on page 26-31 and
“Customize C++ Class Interfaces Programmatically” on page 26-45. For limitations
that apply, see “C++ Class Interface Control Limitations” on page 26-50.

Note: For an example of C++ class code generation, see the example model
rtwdemo_cppclass.

In this section...

“Simple Use of C++ Class Control” on page 26-24
“Customize C++ Class Interfaces Using Graphical Interfaces” on page 26-31

26-23

26 Function and Class Interfaces in Embedded Coder

In this section...

“Customize C++ Class Interfaces Programmatically” on page 26-45
“Configure Step Method for Model Class” on page 26-47
“Specify Custom Storage Class for C++ Class Code Generation” on page 26-48
“Model Class Copy Constructor and Assignment Operator” on page 26-49
“C++ Class Interface Control Limitations” on page 26-50

Simple Use of C++ Class Control

This example illustrates a simple use of C++ class code interface packaging.
It generates C+ class code interfaces from an example model, without extensive
modifications to default settings.

Note: For details about setting C++ class parameters, see the sections that follow this
example, beginning with “Customize C++ Class Interfaces Using Graphical Interfaces”
on page 26-31.

To generate C++ class interfaces for a Simulink model:

1 Open a model for which you would like to generate C++ class code interfaces. This
example uses the model rtwdemo_counter.

2 Configure the model to use an ert.tlc system target file provided by MathWorks.
For example, open the Configuration Parameters dialog box, go to the Code
Generation pane, select a target value from the System target file menu, and
click Apply.

3 On the Code Generation pane of the Configuration Parameters dialog box, set the
Language parameter to C++.

On the Code Generation > Interface pane, check that the Code interface
packaging parameter is set to C++ class.

Click Apply.

26-24

 Control Generation of C++ Class Interfaces

Note: To immediately generate the default style of C++ class code, without exploring
the related model configuration options, skip steps 4–8 and go directly to step 9.

4 Go to the Interface pane of the Configuration Parameters dialog box and examine
the Code interface subpane.

When you select C++ class code interface packaging for your model, additional
C++ class interface controls become available in the Code interface subpane.
See “Configure Code Interface Options” on page 26-31 for descriptions of
these controls. You might want to modify the default settings according to your
application.

5 Click the Configure C++ Class Interface button. This action opens the Configure
C++ class interface dialog box, which allows you to configure the step method for
your generated model class. The dialog box initially displays a view for configuring
a Default step method for the model class. In this view, you can specify the model
class name, step method name, and namespace for your model.

26-25

26 Function and Class Interfaces in Embedded Coder

See “Configure Step Method for Your Model Class” on page 26-34 for descriptions
of these controls.

Note: If the default interface style meets your needs, you can skip steps 6–8 and go
directly to step 9.

6 If you want root-level model input and output to be arguments on the step method,
select the value I/O arguments step method from the Function specification
menu. The dialog box displays a view for configuring an I/O arguments style step
method for the model class.

26-26

 Control Generation of C++ Class Interfaces

See “Configure Step Method for Your Model Class” on page 26-34 for descriptions
of these controls.

7 Click the Get Default Configuration button. This action causes a Configure C
++ class interface subpane to appear in the dialog box. The subpane displays the
initial interface configuration for your model, which provides a starting point for
further customization.

26-27

26 Function and Class Interfaces in Embedded Coder

See “Passing I/O Arguments” on page 26-37 for descriptions of these controls.
8 Perform this optional step only if you want to customize the configuration of the I/O

arguments generated for your model step method.

Note: If you choose to skip this step, you should click Cancel to exit the dialog box.

If you choose to perform this step, first you must check that the required option
Remove root level I/O zero initialization is selected on the Optimization pane,
and then navigate back to the I/O arguments step method view of the Configure
C++ class interface dialog box.

Now you can use the dialog box controls to configure I/O argument attributes.
For example, in the Configure C++ class interface subpane, in the row for the
Input argument, you can change the value of Category from Value to Pointer
and change the value of Qualifier from none to const *. The preview updates to
reflect your changes. Click the Validate button to validate the modified interface
configuration.

Continue modifying and validating until you are satisfied with the step method
configuration.

26-28

 Control Generation of C++ Class Interfaces

Click Apply and OK.
9 Generate code for the model. When the build completes, the code generation report

for rtwdemo_counter appears. Examine the report and observe that required
model data is encapsulated into C++ class attributes and model entry point
functions are encapsulated into C++ class methods. For example, click the link for
rtwdemo_counter.h to see the class declaration for the model.

26-29

26 Function and Class Interfaces in Embedded Coder

Note: If you configured custom I/O arguments for the model step method (optional
step 8), examine the generated code for the step method in rtwdemo_counter.h and
rtwdemo_counter.cpp. The arguments should reflect your changes. For example, if
you performed the Input argument modifications in step 8, the input argument should
appear as const int32_T *arg_Input.

26-30

 Control Generation of C++ Class Interfaces

Customize C++ Class Interfaces Using Graphical Interfaces

• “Select C++ Class Code Interface Packaging” on page 26-31
• “Configure Code Interface Options” on page 26-31
• “Configure Step Method for Your Model Class” on page 26-34
• “Use Namespaces to Scope C++ Model Classes” on page 26-40
• “Combine I/O Arguments in Model Step Interface” on page 26-42
• “Configure C++ Class Interfaces for Nonvirtual Subsystems” on page 26-44

Select C++ Class Code Interface Packaging

To select C++ class code interface packaging, in the Configuration Parameters dialog
box, on the Code Generation pane, set the Language parameter to C++. Then, in
the Code Generation > Interface pane, check that the Code interface packaging
parameter is set to C++ class:

Selecting this value:

• Disables model configuration options that C++ class does not support. For details,
see “C++ Class Interface Control Limitations” on page 26-50.

• Adds additional C++ class interface parameters, which are described in the next
section.

Configure Code Interface Options

When you select C++ class code interface packaging for your model, the Code
interface parameters shown below are displayed on the Interface pane.

26-31

26 Function and Class Interfaces in Embedded Coder

• Multi-instance code error diagnostic

Specifies the severity level for diagnostics displayed when a model violates
requirements for generating multi-instance code.

• None — Proceed with build without displaying a diagnostic message.
• Warning — Proceed with build after displaying a warning message.
• Error (default) — Abort build after displaying an error message.

• Remove error status field in real-time model data structure

Specifies whether to omit the error status field from the generated real-time model
data structure rtModel (off by default). Selecting this option reduces memory usage.

Be aware that selecting this option can cause the code generator to omit the rtModel
data structure from generated code.

• Parameter visibility

Specifies whether to generate the block parameter structure as a public, private,
or protected data member of the C++ model class (private by default).

• Parameter access

Specifies whether to generate access methods for block parameters for the C++ model
class (None by default). You can select noninlined access methods (Method) or inlined
access methods (Inlined method).

• External I/O access

Specifies whether to generate access methods for root-level I/O signals for the C++
model class (None by default). If you want to generate access methods, you have the
following options:

• Generate either noninlined or inlined access methods.
• Generate either per-signal or structure-based access methods. That is, you can

generate a series of set and get methods on a per-signal basis, or generate just one
set method that takes the address of an external input structure as an argument
and, for external outputs (if applicable), just one get method that returns a
reference to an external output structure. The generated code for structure-based
access methods has the following general form:
class ModelClass {

...

26-32

 Control Generation of C++ Class Interfaces

 // Root inports set method

 void setExternalInputs(const ExternalInputs* pExternalInputs);

 // Root outports get method

 const ExternalOutputs & getExternalOutputs() const;

}

Note: This parameter affects generated code only if you are using the default style
step method for your model class; not if you are explicitly passing arguments for root-
level I/O signals using an I/O arguments style step method. For more information, see
“Passing Default Arguments” on page 26-35 and “Passing I/O Arguments” on page
26-37.

• Configure C++ Class Interface

Opens the Configure C++ class interface dialog box, which allows you to configure the
step method for your model class. For more information, see “Configure Step Method
for Your Model Class” on page 26-34.

Interface parameters that are related, but are less commonly used, are displayed in the
All Parameters tab:

• Terminate function required

Specifies whether to generate the model_terminate method (on by default). This
function contains model termination code and should be called as part of system
shutdown.

• Combine signal/state structures

Specifies whether to combine global block signals and global state data into one data
structure in the generated code (off by default). Selecting this option reduces RAM
and improves readability of the generated code.

• Internal data visibility

Specifies whether to generate internal data structures, such as Block I/O, DWork
vectors, Runtime model, Zero-crossings, and continuous states, as public, private,
or protected data members of the C++ model class (private by default).

• Internal data access

Specifies whether to generate access methods for internal data structures, such as
Block I/O, DWork vectors, Runtime model, Zero-crossings, and continuous states,

26-33

26 Function and Class Interfaces in Embedded Coder

for the C++ model class (None by default). You can select noninlined access methods
(Method) or inlined access methods (Inlined method).

• Generate destructor

Specifies whether to generate a destructor for the C++ model class (on by default).
• Use dynamic memory allocation for model block instantiation (Simulink

Coder)

For a model containing Model blocks, specifies whether generated code should use
dynamic memory allocation, during model object registration, to instantiate objects
for referenced models configured with a C++ class interface (off by default). If you
select this option, during instantiation of an object for the top model in a model
reference hierarchy, the generated code uses the operator new to instantiate objects
for referenced models.

Selecting this option frees a parent model from having to maintain information about
referenced models beyond its direct children. Clearing this option means that a parent
model maintains information about its referenced models, including its direct and
indirect children.

Note:

• If you select this option, be aware that a bad_alloc exception might be
thrown, per the C++ standard, if an out-of-memory error occurs during the use

of new. You must provide code to catch and process the bad_alloc exception in
case an out-of-memory error occurs for a new call during construction of a top
model object.

• If Use dynamic memory allocation for model block instantiation is
selected and the base model contains a Model block, the build process might
generate copy constructor and assignment operator functions in the private
section of the model class. The purpose of the functions is to prevent pointer
members within the model class from being copied by other code. For more
information, see “Model Class Copy Constructor and Assignment Operator” on
page 26-49.

Configure Step Method for Your Model Class

To configure the step method for your model class, on the Code Generation > Interface
pane, click the Configure C++ Class Interface button, which is available when

26-34

 Control Generation of C++ Class Interfaces

you select C++ class code interface packaging for your model. This action opens the
Configure C++ class interface dialog box, where you can configure the step method for
your model class in either of two styles:

• “Passing Default Arguments” on page 26-35
• “Passing I/O Arguments” on page 26-37

Note: The Default step method supports single-rate models and multirate models. The
model can be configured for single-tasking operation or multi-tasking operation. This
method also supports virtual bus crossing boundaries.

The I/O arguments step method supports single-rate models and multirate models.
The model can be configured for single-tasking operation.

Passing Default Arguments

The Configure C++ class interface dialog box initially displays a view for configuring a
Default step method for the model class.

26-35

26 Function and Class Interfaces in Embedded Coder

• Step method name

Allows you to specify a step method name other than the default, step.
• Class name

Allows you to specify a model class name other than the default, modelModelClass.
• Namespace

Allows you to specify a namespace for the model class. If specified, the namespace
is emitted in the generated code for the model class. The Namespace parameter
provides a means of scoping C++ model classes. In a model reference hierarchy, you
can specify a different namespace for each referenced model.

26-36

 Control Generation of C++ Class Interfaces

• Step function preview

Displays a preview of the model step function prototype as currently configured. The
preview display is dynamically updated after you validate your current configuration.

Note: The list of step function arguments has an entry for each of the model’s
root-level I/O ports. This list does not include model parameter arguments that
can appear in the generated code when the model is used as a referenced model.
For example, a model sldemo_mdlref_counter_paramargs has an inport
with argument name arg_input, an outport with argument name arg_output,
and a saturation block whose limits have workspace parameter argument names
lower_saturation_limit and upper_saturation_limit.

The step function preview for this model is:

sldemo_mdlref_counter_paramargsModelClass :: step (arg__input, * arg_output)

The function prototype in the generated code differs from the preview. The prototype
in the generated code (with the additional model parameter arguments) is:

sldemo_mdlref_counter_paramargsModelClass::step (

 real_T arg__input,

 real_T *arg_output,

 real_T rtp_lower_saturation_limit,

 real_T rtp_upper_saturation_limit)

• Validate

Validates your current model step function configuration. The Validation pane
displays the status and an explanation of any failure.

Passing I/O Arguments

If you select I/O arguments step method from the Function specification menu,
the dialog box displays a view for configuring an I/O arguments style step method for the
model class.

Note: To use the I/O arguments style step method, you must select the option Remove
root level I/O zero initialization on the Optimization pane of the Configuration
Parameters dialog box.

26-37

26 Function and Class Interfaces in Embedded Coder

• Get Default Configuration

Click this button to get the initial interface configuration that provides a starting
point for further customization.

• Step function preview

Displays a preview of the model step function prototype as currently configured. The
preview dynamically updates as you make configuration changes.

• Validate

Validates your current model step function configuration. The Validation pane
displays the status and an explanation of any failure.

26-38

 Control Generation of C++ Class Interfaces

When you click Get Default Configuration, the Configure C++ class interface
subpane appears in the dialog box, displaying the initial interface configuration. For
example:

• Step method name

Allows you to specify a step method name other than the default, step.
• Class name

Allows you to specify a model class name other than the default, modelModelClass.
• Namespace

Allows you to specify a namespace for the model class. If specified, the namespace
is emitted in the generated code for the model class. The Namespace parameter
provides a means of scoping C++ model classes. In a model reference hierarchy, you
can specify a different namespace for each referenced model.

• Order

Displays the numerical position of each argument. Use the Up and Down buttons to
change argument order.

• Port Name

Displays the port name of each argument (not configurable using this dialog box).
• Port Type

Displays the port type, Inport or Outport, of each argument (not configurable using
this dialog box).

• Category

26-39

26 Function and Class Interfaces in Embedded Coder

Displays the passing mechanism for each argument. To change the passing
mechanism for an argument, select Value, Pointer, or Reference from the
argument's Category menu.

• Argument Name

Displays the name of each argument. To change an argument name, click in the
argument's Argument name field, position the cursor for text entry, and enter the
new name.

• Qualifier

Displays the const type qualifier for each argument. To change the qualifier for
an argument, select an available value from the argument's Qualifier menu. The
possible values are:

• none

• const (value)
• const* (value referenced by the pointer)
• const*const (value referenced by the pointer and the pointer itself)
• const & (value referenced by the reference)

Tip: When a model includes a referenced model, the const type qualifier for the root
input argument of the referenced model's specified step function interface is set to none
and the qualifier for the source signal in the referenced model's parent is set to a value
other than none, code generation honors the referenced model's interface specification by
generating a type cast that discards the const type qualifier from the source signal. To
override this behavior, add a const type qualifier to the referenced model.

Use Namespaces to Scope C++ Model Classes

Embedded Coder provides namespace control for scoping model classes generated using
C++ class code interface packaging. In the Configure C++ class interface dialog box, use
the Namespace parameter to specify a namespace for a model class. If specified, the
namespace is emitted in the generated code for the model class. To scope the C++ model
classes in a model reference hierarchy, you can specify a different namespace for each
referenced model.

26-40

 Control Generation of C++ Class Interfaces

For an example of namespace control, see the example model rtwdemo_cppclass. This
model assigns namespaces as follows:

• TopNS for top-level model rtwdemo_cppclass
• MiddleNS for referenced model rtwdemo_cppclass_refmid
• BottomNS for referenced model rtwdemo_cppclass_refbot

If you build the model with its default settings, you can examine the generated header
and source files for each model to see where the namespace is emitted. For example,
the Namespace setting for the model rtwdemo_cppclass_refmid is shown below,
followed by excerpts of the emitted namespace code in the model header and source files.

42 // Class declaration for model rtwdemo_cppclass_refmid

43 namespace MiddleNS {

44 class MiddleClass {

45 // public data and function members

46 public:

47 // Model entry point functions

...

52 // model step function

53 void StepMethod(const real_T *arg_In1, const real_T &arg_In2, real_T

54 *arg_Out1, real_T *arg_Out2);

...

87 };

88 }

15 #include "rtwdemo_cppclass_refmid.h"

16 #include "rtwdemo_cppclass_refmid_private.h"

17

18 namespace MiddleNS

19 {

20 // Model step function

21 void MiddleClass::StepMethod(const real_T *arg_In1, const real_T &arg_In2,

22 real_T *arg_Out1, real_T *arg_Out2)

26-41

26 Function and Class Interfaces in Embedded Coder

23 {

...

43 }

...

83 }

Combine I/O Arguments in Model Step Interface

When using C function prototype control or C++ class interface control, you can combine
a pair of model step function arguments, an input and an output. This merging of input
and output allows the code generator to reuse buffers, which can eliminate buffers in the
generated code.

The following requirements apply to combining model step function input and output
arguments:

• The input and output arguments must be assigned the same argument name.
• The corresponding inport and outport blocks must have the same data type and

sampling rate.

Additionally, the following limitations apply to combining model step function input and
output arguments:

• The sample rate of the inport and outport blocks must be the same as the base rate of
the model.

• A conditionally executed subsystem cannot drive the outport.
• A single, nonvirtual block output must drive the outport. For example, a Mux block,

which merges multiple buffers, cannot drive the outport.

To configure model step function I/O arguments to allow buffer reuse:

1 In the Configuration Parameters dialog box, select the Code Generation >
Interface pane. To initiate C function prototype control, click the Configure Model
Functions button. To initiate C++ class interface control, click the Configure C++
Class Interface button.

2 Navigate to the view that allows you to modify model step function I/O arguments
– Model specific C prototypes view for C function prototype control or I/O
arguments step method for C++ class interface control.

3 Select an inport/outport pair, configure their Category and Argument Name
settings to match, and make sure that Category is not set to Value. Set Qualifier
to none for both ports.

26-42

 Control Generation of C++ Class Interfaces

When you generate code from the model, the arguments are combined in the function
prototype. For example:

The shared argument appears in inport read code and outport write code. For example:

26-43

26 Function and Class Interfaces in Embedded Coder

Configure C++ Class Interfaces for Nonvirtual Subsystems

You can configure C++ class interfaces for right-click builds of nonvirtual subsystems in
Simulink models, if the following requirements are met:

• The model is configured for the C++ language and C++ class code interface
packaging.

• The subsystem is convertible to a Model block using the function
Simulink.SubSystem.convertToModelReference. For referenced
model conversion requirements, see the Simulink reference page
Simulink.SubSystem.convertToModelReference.

To configure C++ class interfaces for a subsystem that meets the requirements:

1 Open the containing model and select the subsystem block.
2 Enter the following MATLAB command:

RTW.configSubsystemBuild(gcb)

where gcb is the Simulink function gcb, returning the full block path name of the
current block.

This command opens a subsystem equivalent of the Configure C++ class interface
dialog sequence that is described in detail in the preceding section, “Configure Step
Method for Your Model Class” on page 26-34. (For more information about using
the MATLAB command, see RTW.configSubsystemBuild.)

3 Use the Configure C++ class interface dialog boxes to configure C++ class settings for
the subsystem.

4 Right-click the subsystem and select C/C++ Code > Build This Subsystem.

26-44

 Control Generation of C++ Class Interfaces

5 When the subsystem build completes, you can examine the C++ class interfaces in
the generated files and the HTML code generation report.

Customize C++ Class Interfaces Programmatically

If you select the Code interface packaging option C++ class for your model, you
can use the C++ class interface control functions (listed in C++ Class Interface Control
Functions) to programmatically configure the step method for your model class.

Typical uses of these functions include:

• Create and validate a new step method interface, starting with default
configuration information from your Simulink model

1 Create a model-specific C++ class interface with obj =
RTW.ModelCPPDefaultClass or obj = RTW.ModelCPPArgsClass, where obj
returns a handle to an newly created, empty C++ class interface.

2 Attach the C++ class interface to your loaded ERT-based Simulink model using
attachToModel.

3 Get default C++ class interface configuration information from your model using
getDefaultConf.

4 Use the Get and Set functions listed in C++ Class Interface Control Functions
to test or reset the model class name and model step method name. Additionally,
if you are using the I/O arguments style step method, you can test and reset
argument names, argument positions, argument categories, and argument type
qualifiers.

5 Validate the C++ class interface using runValidation. (If validation fails,
use the error message information thatrunValidation returns to address the
issues.)

6 Save your model and then generate code using the rtwbuild function.
• Modify and validate an existing step method interface for a Simulink model

1 Get the handle to an existing model-specific C++ class interface that
is attached to your loaded ERT-based Simulink model using obj =
RTW.getClassInterfaceSpecification(modelName), where modelName is
a character vector specifying the name of a loaded ERT-based Simulink model,
and obj returns a handle to a C++ class interface attached to the specified model.
If the model does not have an attached C++ class interface configuration, the
function returns [].

26-45

26 Function and Class Interfaces in Embedded Coder

2 Use the Get and Set functions listed in C++ Class Interface Control Functions to
test or reset the model class name and model step method name. Additionally, if
the returned interface uses the I/O arguments style step method, you can test and
reset argument names, argument positions, argument categories, and argument
type qualifiers.

3 Validate the C++ class interface using runValidation. (If validation fails, use
the error message information that runValidation returns to address the
issues.)

4 Save your model and then generate code using the rtwbuild function.

Note: You should not use the same model-specific C++ class interface control
object across multiple models. If you do, changes that you make to the step method
configuration in one model propagate to other models, which is usually not desirable.

C++ Class Interface Control Functions

Function Description

attachToModel Attach model-specific C++ class interface to loaded ERT-based
Simulink model

getArgCategory Get argument category for Simulink model port from model-
specific C++ class interface

getArgName Get argument name for Simulink model port from model-
specific C++ class interface

getArgPosition Get argument position for Simulink model port from model-
specific C++ class interface

getArgQualifier Get argument type qualifier for Simulink model port from
model-specific C++ class interface

getClassName Get class name from model-specific C++ class interface
getDefaultConf Get default configuration information for model-specific C++

class interface from Simulink model to which it is attached
getNamespace Get namespace from model-specific C++ class interface
getNumArgs Get number of step method arguments from model-specific C+

+ class interface
getStepMethodName Get step method name from model-specific C++ class interface

26-46

 Control Generation of C++ Class Interfaces

Function Description

RTW.configSubsystemBuild Open GUI to configure C function prototype or C++ class
interface for right-click build of specified subsystem

RTW.getClass-

InterfaceSpecification

Get handle to model-specific C++ class interface control object

runValidation Validate model-specific C++ class interface against Simulink
model to which it is attached

setArgCategory Set argument category for Simulink model port in model-
specific C++ class interface

setArgName Set argument name for Simulink model port in model-specific
C++ class interface

setArgPosition Set argument position for Simulink model port in model-
specific C++ class interface

setArgQualifier Set argument type qualifier for Simulink model port in model-
specific C++ class interface

setClassName Set class name in model-specific C++ class interface
setNamespace Set namespace in model-specific C++ class interface
setStepMethodName Set step method name in model-specific C++ class interface

Configure Step Method for Model Class

The following sample MATLAB script configures the step method for the
rtwdemo_counter model class, using the C++ Class Interface Control Functions.
%% Open the rtwdemo_counter model

rtwdemo_counter

%% Select ert.tlc as the System Target File for the model

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Select C++ as the target language for the model

set_param(gcs,'TargetLang','C++')

%% Select C++ class as the code interface packaging for the model

set_param(gcs,'CodeInterfacePackaging','C++ class')

%% Set required option for I/O arguments style step method (cmd off = GUI on)

set_param(gcs,'ZeroExternalMemoryAtStartup','off')

%% Create a C++ class interface using an I/O arguments style step method

a=RTW.ModelCPPArgsClass

26-47

26 Function and Class Interfaces in Embedded Coder

%% Attach the C++ class interface to the model

attachToModel(a,gcs)

%% Get the default C++ class interface configuration from the model

getDefaultConf(a)

%% Move the Output port argument from position 2 to position 1

setArgPosition(a,'Output',1)

%% Reset the model step method name from step to StepMethod

setStepMethodName(a,'StepMethod')

%% Change the Input port argument name, category, and qualifier

setArgName(a,'Input','inputArg')

setArgCategory(a,'Input','Pointer')

setArgQualifier(a,'Input','const *')

%% Validate the function prototype against the model

[status,message]=runValidation(a)

%% if validation succeeded, generate code and build

if status

 rtwbuild(gcs)

end

Specify Custom Storage Class for C++ Class Code Generation

To configure a Simulink parameter, signal, or state to use a custom storage class (CSC)
with C++ class code generation:

1 Open an ERT-based model for which Language is set to C++ and Code interface
packaging is set to C++ class.

2 Open the Configuration Parameters dialog box.
3 On the Code Generation > Interface pane, set the Multi-instance code error

diagnostic (Simulink Coder) parameter to a value other than Error.

4 On the All Parameters tab, if the option Ignore custom storage classes is
selected, clear the option.

Apply the changes.
5 In the model, select a custom storage class for a parameter, signal, or state. For

example, select a signal, open its Properties dialog box, and view its code generation

26-48

 Control Generation of C++ Class Interfaces

options. In the Storage class drop-down list, select a custom storage class, and then
configure its attributes. Apply the changes.

Note: C++ class code generation does not support the following CSCs:

• CSCs with Volatile specifications.
• CSCs of type Other, except GetSet.

6 Build the model.
7 In the code generation report, examine the files model.h and model.cpp to observe

the use of CSCs in the generated C++ code.

Model Class Copy Constructor and Assignment Operator

Code generation automatically adds a copy constructor and an assignment operator
to C++ class declarations when required to securely handle pointer members. The
constructor and operator are added as private member functions when both of the
following conditions exist:

• The model option Use dynamic memory allocation for model block
instantiation (Simulink Coder) is set to on.

• The base model contains a Model block. The Model block is not directly or indirectly
within a subsystem for which Function packaging is set to Reusable function.

Under these conditions, the software generates a private copy constructor and
assignment operator to prevent pointer members within the model class from being
copied by other code.

Note: To prevent generation of these functions, consider clearing the option Use
dynamic memory allocation for model block instantiation.

The code excerpt below shows generated model.h code for a model class that has a
pointer member. (Look for instances of MiddleClass_ptr). The copy constructor and
assignment operator declarations are shown in bold.
class MiddleClass; // class forward declaration for <S1>/Bottom model instance

typedef MiddleClass* MiddleClass_ptr;

26-49

26 Function and Class Interfaces in Embedded Coder

...

// Class declaration for model cppclass_top

class Top {

...

 // private data and function members

 private:

 // Block signals

 BlockIO_cppclass_top cppclass_top_B;

 // Block states

 D_Work_cppclass_top cppclass_top_DWork;

 // Real-Time Model

 RT_MODEL_cppclass_top cppclass_top_M;

 // private member function(s) for subsystem '<Root>/Subsystem'

 void cppclass_top_Subsystem_Init();

 void cppclass_top_Subsystem_Start();

 void cppclass_top_Subsystem();

 //Copy Constructor

 Top(const Top &rhs);

 //Assignment Operator

 Top& operator= (const Top &rhs);

 // model instance variable for '<S1>/Bottom model instance'

 MiddleClass_ptr Bottom_model_instanceMDLOBJ1;

};

C++ Class Interface Control Limitations

• The C++ class code interface packaging option does not support some Simulink
model configuration options. Selecting C++ class disables the following items in the
Configuration Parameters dialog box:

• Identifier format control subpane on the Symbols pane
• File customization template parameter on the Templates pane

Note: The code and data templates on the Templates pane are supported for C+
+ class code generation. However, the following template file features that are
supported for other language selections are not supported for C++ class generated
code:

• Free-form text outside template sections
• Custom tokens

26-50

 Control Generation of C++ Class Interfaces

• TLC commands (<! > tokens)

• Global data placement (custom storage classes only) subpane on the Code
Placement pane

• Memory Sections pane
• Among the data exchange interfaces available on the Interface pane of the

Configuration Parameters dialog box, only the C API interface is supported for C+
+ class code generation. If you select External mode or ASAP2 interface, code
generation fails with a validation error.

• The I/O arguments style of step method specification supports single-rate models and
multirate single-tasking models, but not multirate multitasking models.

• If you have a Stateflow license, for a Stateflow chart that resides in a root model
configured to use the I/O arguments step method function specification, and
that uses a model root inport value or calls a subsystem that uses a model root inport
value, you must do one of the following to generate code:

• Clear the Execute (enter) Chart At Initialization check box in the Stateflow
chart.

• Insert a Simulink Signal Conversion block immediately after the root inport. In
the Signal Conversion block parameters dialog box, select Exclude this block
from 'Block reduction' optimization.

• If a model root inport value connects to a Simscape conversion block, you must
insert a Simulink Signal Conversion block between the root inport and the Simscape
conversion block. In the Signal Conversion block parameters dialog box, select
Exclude this block from 'Block reduction' optimization.

• When building a referenced model that is configured to generate a C++ class
interface:

• Do not use a C++ class interface in cases when a referenced model cannot have
a combined output/update function. Cases include a model that has a continuous
sample time or saves states.

• Do not use virtual buses as inputs or outputs to the referenced model when the
referenced model uses the I/O arguments step method. When bus signals cross
referenced model boundaries, either use nonvirtual buses or use the Default step
method.

• If the C++ encapsulation interface is not the default, the value is ignored for the
Configuration Parameters > Model Referencing > Pass fixed-size scalar root

26-51

26 Function and Class Interfaces in Embedded Coder

inputs by value for code generation parameter. For more information, see “Pass
fixed-size scalar root inputs by value for code generation” (Simulink).

Related Examples
• “Combine I/O Arguments in Model Step Interface” on page 26-53
• “Customize C++ Encapsulation Interface to Generated Code”

26-52

 Combine I/O Arguments in Model Step Interface

Combine I/O Arguments in Model Step Interface

When using C function prototype control or C++ class interface control, you can combine
a pair of model step function arguments, an input and an output. This merging of input
and output allows the code generator to reuse buffers, which can eliminate buffers in the
generated code.

The following requirements apply to combining model step function input and output
arguments:

• The input and output arguments must be assigned the same argument name.
• The corresponding inport and outport blocks must have the same data type and

sampling rate.

Additionally, the following limitations apply to combining model step function input and
output arguments:

• The sample rate of the inport and outport blocks must be the same as the base rate of
the model.

• A conditionally executed subsystem cannot drive the outport.
• A single, nonvirtual block output must drive the outport. For example, a Mux block,

which merges multiple buffers, cannot drive the outport.

To configure model step function I/O arguments to allow buffer reuse:

1 In the Configuration Parameters dialog box, select the Code Generation >
Interface pane. To initiate C function prototype control, click the Configure Model
Functions button. To initiate C++ class interface control, click the Configure C++
Class Interface button.

2 Navigate to the view that allows you to modify model step function I/O arguments
– Model specific C prototypes view for C function prototype control or I/O
arguments step method for C++ class interface control.

3 Select an inport/outport pair, configure their Category and Argument Name
settings to match, and make sure that Category is not set to Value. Set Qualifier
to none for both ports.

26-53

26 Function and Class Interfaces in Embedded Coder

When you generate code from the model, the arguments are combined in the function
prototype. For example:

The shared argument appears in inport read code and outport write code. For example:

Related Examples
• “Customize C++ Encapsulation Interface to Generated Code”

26-54

 Generate Modular Function Code

Generate Modular Function Code

The Embedded Coder software provides a Subsystem Parameters dialog box option,
Function with separate data, that allows you to generate modular function code
for nonvirtual subsystems, including atomic subsystems and conditionally executed
subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem's internal data from the data of its parent Simulink model. This can make
it difficult to trace and test the code, particularly for nonreusable subsystems. Also, in
large models containing nonvirtual subsystems, data structures can become large and
potentially difficult to compile.

About Nonvirtual Subsystem Code Generation

Function with separate data allows you to generate subsystem function code in which
the internal data for a nonvirtual subsystem is separated from its parent model and is
owned by the subsystem. The subsystem data structure is declared independently from
the parent model data structures. A subsystem with separate data has its own block I/O
and DWork data structure. As a result, the generated code for the subsystem is easier to
trace and test. The data separation also tends to reduce the maximum size of global data
structures throughout the model, because they are split into multiple data structures.

To use the Function with separate data parameter,

• Your model must use an ERT-based system target file (requires a Embedded Coder
license).

• Your subsystem must be configured to be atomic or conditionally executed. For more
information, see “Systems and Subsystems” (Simulink).

• Your subsystem must use the Nonreusable function setting for Code
Generation > Function packaging.

To configure your subsystem for generating modular function code, you invoke the
Subsystem Parameters dialog box and make a series of selections to display and enable
the Function with separate data option. See “Configure Subsystem for Generating
Modular Function Code” on page 26-56 and “Modular Function Code for Nonvirtual
Subsystems” on page 26-60 for details. For limitations that apply, see “Nonvirtual
Subsystem Modular Function Code Limitations” on page 26-66.

26-55

26 Function and Class Interfaces in Embedded Coder

For more information about generating code for atomic subsystems, see the sections
“Code Generation of Subsystems” (Simulink Coder) and “Generate Code and Executables
for Individual Subsystem” (Simulink Coder).

Configure Subsystem for Generating Modular Function Code

This section summarizes the steps to configure a nonvirtual subsystem in a Simulink
model for modular function code generation.

1 Verify that the Simulink model containing the subsystem uses an ERT-based system
target file (see the System target file parameter on the Code Generation pane of
the Configuration Parameters dialog box).

2 In your Simulink model, select the subsystem for which you want to generate
modular function code and launch the Subsystem Parameters dialog box (for
example, right-click the subsystem and select Block Parameters (Subsystem)).
The dialog box for an atomic subsystem is shown below. (In the dialog box for a
conditionally executed subsystem, the dialog box option Treat as atomic unit is
greyed out, and you can skip Step 3.)

3 If the Subsystem Parameters dialog box option Treat as atomic unit is available
for selection but not selected, the subsystem is neither atomic nor conditionally

26-56

 Generate Modular Function Code

executed. Select the option Treat as atomic unit, which enables Function
packaging on the Code Generation tab. Select the Code Generation tab.

4 For the Function packaging parameter, select the value Nonreusable
function. After you make this selection, the Function with separate data option
is displayed.

26-57

26 Function and Class Interfaces in Embedded Coder

Note: Before you generate nonvirtual subsystem function code with the Function
with separate data option selected, you might want to generate function code with
the option deselected and save the generated function .c and .h files in a separate
directory for later comparison.

5 Select the Function with separate data option. After you make this selection,
additional configuration parameters are displayed.

26-58

 Generate Modular Function Code

Note: To control the naming of the subsystem function and the subsystem files in the
generated code, you can modify the subsystem parameters Function name options
and File name options.

6 To save your subsystem parameter settings and exit the dialog box, click OK.

This completes the subsystem configuration for generating modular function code.
You can now generate the code for the subsystem and examine the generated files,
including the function .c and .h files named according to your subsystem parameter
specifications. For more information on generating code for nonvirtual subsystems,
see “Code Generation of Subsystems” (Simulink Coder). For examples of generated
subsystem function code, see “Modular Function Code for Nonvirtual Subsystems” on
page 26-60.

26-59

26 Function and Class Interfaces in Embedded Coder

Modular Function Code for Nonvirtual Subsystems

To illustrate the selection of the Function with separate data option for a nonvirtual
subsystem, the following procedure generates atomic subsystem function code with and
without the option selected and compares the results.

1 Open MATLAB and launch the model rtwdemo_atomic using the MATLAB
command rtwdemo_atomic.

Examine the Simulink model. This model shows how to preserve the boundary
of a virtual subsystem. By selecting the Subsystem Parameters option Treat as
atomic unit, you guarantee that the code for that subsystem executes as an atomic
unit. When a system is marked as atomic, you can specify how the subsystem is
represented in code with the Subsystem Parameters option Code Generation
Function Packaging. You can specify that the subsystem is translated to any of
the following types of implementation:

• Inline: Inline the subsystem code at the call sites
• Function: A void/void function with I/O and internal data in global data

structure
• Reusable Function: A reentrant function with data passed in as part of

function arguments
• Auto: Let the code generator optimize the implementation based on context

2 Double-click the SS1 subsystem and examine the contents.

26-60

 Generate Modular Function Code

Close the subsystem window when you are finished.
3 Right-click the SS1 subsystem, select Block Parameters (Subsystem) from the

context menu, and examine the settings. Simulink and the code generator can avoid
"artificial" algebraic loops when the subsystem is made atomic with the subsystem
option Minimize algebraic loop occurrences.

Close the Block Parameters dialog box when you are finished.
4 Change the System target file for the mode from grt.tlc to ert.tlc. Select the

Configuration Parameters > Code Generation tab and specify ert.tlc for the
System target file parameter. Click OK twice to confirm the change. Using the
ERT target provides more code generation options for the atomic subsystem.

5 Create a variant of rtwdemo_atomic that illustrates function code without data
separation.

a In the rtwdemo_atomic model, right-click the SS1 subsystem and select Block
Parameters (Subsystem). In the Subsystem Parameters dialog box that
appears, verify that

• On the Main tab, Treat as atomic unit is selected
• On the Code Generation tab, User specified is selected for Function

name options
• On the Code Generation tab, myfun is specified for Function name

b In the Subsystem Parameters dialog box, on the Code Generation tab verify
that

i Nonreusable function is selected for the Function packaging
parameter. After this selection, additional parameters and options appear.

ii Use function name is selected for the File name options parameter.
This selection is optional but simplifies the later task of code comparison by
causing the atomic subsystem function code to be generated into the files
myfun.c and myfun.h.

26-61

26 Function and Class Interfaces in Embedded Coder

Do not select the option Function with separate data. Click Apply to apply
the changes and click OK to exit the dialog box.

c Save this model variant to a personal work directory, for example,
rtwdemo_atomic1 in d:/atomic.

6 Create a variant of rtwdemo_atomic that illustrates function code with data
separation.

a In the rtwdemo_atomic1 model (or rtwdemo_atomic with step 3 reapplied),
right-click the SS1 subsystem and select Block Parameters (Subsystem). In
the Subsystem Parameters dialog box, verify that

• On the Main tab, Treat as atomic unit is selected
• On the Code Generation tab, Function is selected for Function

packaging
• On the Code Generation tab, User specified is selected for Function

name options
• On the Code Generation tab, myfun is specified for Function name
• On the Code Generation tab, Use function name is specified for File

name options
b In the Subsystem Parameters dialog box, on the Code Generation tab, select

the option Function with separate data. Click Apply to apply the change and
click OK to exit the dialog box.

c Save this model variant, using a different name than the first variant, to a
personal work directory, for example, rtwdemo_atomic2 in d:/atomic.

7 Generate code for each model, rtwdemo_atomic1 and rtwdemo_atomic2.
8 In the generated code directories, compare the model.c/.h and myfun.c/.h

files generated for the two models. For code comparison discussion, see “H File
Differences for Nonvirtual Subsystem Function Data Separation” on page 26-63
and “H File Differences for Nonvirtual Subsystem Function Data Separation”
on page 26-63“C File Differences for Nonvirtual Subsystem Function Data
Separation” on page 26-64.

In this example, there are not significant differences in the generated variants of
ert_main.c, model_private.h, model_types.h, or rtwtypes.h.

26-62

 Generate Modular Function Code

H File Differences for Nonvirtual Subsystem Function Data Separation

The differences between the H files generated for rtwdemo_atomic1 and
rtwdemo_atomic2 help illustrate the selection of the Function with separate data
option for nonvirtual subsystems.

1 Selecting Function with separate data causes typedefs for subsystem data to be
generated in the myfun.h file for rtwdemo_atomic2:

/* Block signals for system '<Root>/SS1' */

typedef struct {

 real_T Integrator; /* '<S1>/Integrator' */

} rtB_myfun;

/* Block states (auto storage) for system '<Root>/SS1' */

typedef struct {

 real_T Integrator_DSTATE; /* '<S1>/Integrator' */

} rtDW_myfun;

By contrast, for rtwdemo_atomic1, typedefs for subsystem data belong to the
model and appear in rtwdemo_atomic1.h:

/* Block signals (auto storage) */

typedef struct {

...

 real_T Integrator; /* '<S1>/Integrator' */

} BlockIO_rtwdemo_atomic1;

/* Block states (auto storage) for system '<Root>' */

typedef struct {

 real_T Integrator_DSTATE; /* '<S1>/Integrator' */

} D_Work_rtwdemo_atomic1;

2 Selecting Function with separate data generates the following external
declarations in the myfun.h file for rtwdemo_atomic2:
/* Extern declarations of internal data for 'system '<Root>/SS1'' */

extern rtB_myfun rtwdemo_atomic2_myfunB;

extern rtDW_myfun rtwdemo_atomic2_myfunDW;

extern void myfun_initialize(void);

By contrast, the generated code for rtwdemo_atomic1 contains model-level
external declarations for the subsystem's BlockIO and D_Work data, in
rtwdemo_atomic1.h:

26-63

26 Function and Class Interfaces in Embedded Coder

/* Block signals (auto storage) */

extern BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */

extern D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

C File Differences for Nonvirtual Subsystem Function Data Separation

The differences between the C files generated for rtwdemo_atomic1 and
rtwdemo_atomic2 illustrate the selection of the Function with separate data option
for nonvirtual subsystems.

1 Selecting Function with separate data causes a separate subsystem
initialize function, myfun_initialize, to be generated in the myfun.c file for
rtwdemo_atomic2:

void myfun_initialize(void) {

 {

 ((real_T*)&rtwdemo_atomic2_myfunB.Integrator)[0] = 0.0;

 }

 rtwdemo_atomic2_myfunDW.Integrator_DSTATE = 0.0;

}

The subsystem initialize function in myfun.c is invoked by the model initialize
function in rtwdemo_atomic2.c:

/* Model initialize function */

void rtwdemo_atomic2_initialize(void)

{

...

 /* Initialize subsystem data */

 myfun_initialize();

}

By contrast, for rtwdemo_atomic1, subsystem data is initialized by the model
initialize function in rtwdemo_atomic1.c:

/* Model initialize function */

void rtwdemo_atomic1_initialize(void)

{

26-64

 Generate Modular Function Code

...

 /* block I/O */

 {

 ...

 ((real_T*)&rtwdemo_atomic1_B.Integrator)[0] = 0.0;

 }

 /* states (dwork) */

 rtwdemo_atomic1_DWork.Integrator_DSTATE = 0.0;

...

}

2 Selecting Function with separate data generates the following declarations in the
myfun.c file for rtwdemo_atomic2:

/* Declare variables for internal data of system '<Root>/SS1' */

rtB_myfun rtwdemo_atomic2_myfunB;

rtDW_myfun rtwdemo_atomic2_myfunDW;

By contrast, the generated code for rtwdemo_atomic1 contains model-
level declarations for the subsystem's BlockIO and D_Work data, in
rtwdemo_atomic1.c:

/* Block signals (auto storage) */

BlockIO_rtwdemo_atomic1 rtwdemo_atomic1_B;

/* Block states (auto storage) */

D_Work_rtwdemo_atomic1 rtwdemo_atomic1_DWork;

3 Selecting Function with separate data generates identifier naming that reflects
the subsystem orientation of data items. Notice the references to subsystem
data in subsystem functions such as myfun and myfun_update or in the
model's model_step function. For example, compare this code from myfun for
rtwdemo_atomic2

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic2_myfunB.Integrator = rtwdemo_atomic2_myfunDW.Integrator_DSTATE;

to the corresponding code from myfun for rtwdemo_atomic1.

/* DiscreteIntegrator: '<S1>/Integrator' */

rtwdemo_atomic1_B.Integrator = rtwdemo_atomic1_DWork.Integrator_DSTATE;

26-65

26 Function and Class Interfaces in Embedded Coder

Nonvirtual Subsystem Modular Function Code Limitations

The nonvirtual subsystem option Function with separate data has the following
limitations:

• The Function with separate data option is available only in ERT-based Simulink
models (requires a Embedded Coder license).

• The nonvirtual subsystem to which the option is applied cannot have multiple sample
times or continuous sample times; that is, the subsystem must be single-rate with a
discrete sample time.

• The nonvirtual subsystem cannot contain continuous states.
• The nonvirtual subsystem cannot output function call signals.
• The nonvirtual subsystem cannot contain noninlined S-functions.
• The generated files for the nonvirtual subsystem will reference model-wide header

files, such as model.h and model_private.h.
• The Function with separate data option is incompatible with the Classic

call interface option, located on the Code Generation > Interface pane of the
Configuration Parameters dialog box. Selecting both generates an error.

• The Function with separate data option is incompatible with setting Code
interface packaging to Reusable function (Code Generation > Interface
pane). Selecting both generates an error.

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2

26-66

 Configure Simulink Function Code Interface

Configure Simulink Function Code Interface

With Embedded Coder, you can customize the generated C/C++ function interfaces for
Simulink Function and Function Caller blocks. Function code interface configuration
supports easier integration of generated code with functions or function calls in external
code, and customizations for coding standards or design requirements.

By opening a dialog box from a selected Simulink Function or Function Caller block,
you can customize the C/C++ function prototype generated for that block. Your changes
for the selected block also update other corresponding Simulink Function and Function
Caller blocks in the model. You can change the generated C/C++ function name, and the
names, type qualifiers, and order of function arguments. Your changes do not graphically
alter the model and do not affect the Simulink function prototype defined in the block.

Embedded Coder supports Simulink function code interface configuration for ERT
and ERT-derived targets, except for the AUTOSAR target. Function code interface
configuration applies to global Simulink functions, and does not apply to private
Simulink functions.

Customize Generated C/C++ Function Interface for Simulink Function
Block

In this example, you modify the generated C/C++ function interface for a Simulink
Function block, and generate C code with the specified changes.

1 Open the example model rtwdemo_functions. Save it to a writable work area.
2 Right-click the Simulink Function block f3. In the right-click context menu, select

C/C++ Code > Configure C/C++ Function Interface. The Configure C/C++
Function Interface dialog box opens.

The dialog box displays the Simulink function prototype defined in the block, y
= f3(u), and the initial default C/C++ function prototype, void f3(rtu_u, *
rty_y).

26-67

26 Function and Class Interfaces in Embedded Coder

3 Examine the dialog box settings for the C/C++ function name and the C/C++
argument identifier names — $N and rt$INM.

In the Configuration Parameters dialog box, Code Generation > Symbols pane,
the Subsystem method arguments parameter defines the default identifier format
for Simulink Function arguments.

rt is a text prefix. $I, $N, and $M are identifier format macros. For more
information, see “Subsystem method arguments” (Simulink Coder).

4 In the Configure C/C++ Function Interface dialog box, modify the function and
argument identifier names. Changes that you make in the dialog box override model
configuration parameter defaults.

In the C/C++ function name field, and in the C/C++ Identifier Name field for
each function argument, enter a custom name or identifier format. Specify valid C-

26-68

 Configure Simulink Function Code Interface

identifier characters, identifier format macros, or a combination. This example uses
function name function3 and, for both arguments, identifier format NM.

To see tips about available macros, hover over the C/C++ function name and C/C+
+ Identifier Name fields. For more information about the identifier format macros,
see “Identifier Format Control” on page 36-22.

5 For the u argument, change the C/C++ Type Qualifier field from Auto to Pointer
to const.

6 To reorder the generated arguments, drag the y argument row above the u argument
row, and drop.

7 Click Apply and examine the updated C/C++ function prototype: void
function3(* y, const * u).

Your modifications, whether made to a Simulink Function block or a Function Caller
block, affect code generation for the Simulink Function block and corresponding
Function Caller blocks in the model.

26-69

26 Function and Class Interfaces in Embedded Coder

Optionally, you could change C/C++ return argument from void to y. The
resulting C/C++ function prototype is y = function3(const * u).

8 Save the model changes and generate code for rtwdemo_functions.
9 Open the generated file rtwdemo_functions.c and search for function3. The

generated function code reflects the changes to the generated C/C++ function
prototype.
/* Output and update for Simulink Function: '<Root>/f3' */

void function3(real_T *y, const real_T *u)

{

...

 adder_h(rtB.Subtract, rtU.U2, *u, &rtB.FunctionCaller);

 ...

 *y = rtB.FunctionCaller;

}

Simulink Function Code Interface Limitations

• Simulink function code interface configuration is incompatible with C++ class
interface control, in which you configure C++ class interfaces for model entry point
functions.

• Simulink function code interface configuration does not support Simulink functions
and function callers in Stateflow.

See Also
Function Caller | Simulink Function

More About
• “Customize Generated Identifier Naming Rules” on page 36-15
• “Function and Class Interfaces”
• “Design Models for Generated Embedded Code Deployment” on page 1-2

26-70

27

Memory Sections in Embedded Coder

• “Control Data and Function Placement in Memory by Inserting Pragmas” on page
27-2

• “Declare Constant Data as Volatile Using Memory Sections” on page 27-19

27 Memory Sections in Embedded Coder

Control Data and Function Placement in Memory by Inserting
Pragmas

In this section...

“Define Memory Sections” on page 27-3
“Apply Memory Sections” on page 27-6
“Generated Code with Memory Sections” on page 27-13
“Insert Pragmas for Functions and Data in Generated Code” on page 27-16
“Documenting Use of Pragmas with Simulink Report Generator” on page 27-17

Some hardware targets run code more efficiently if different kinds of data and functions
are stored in specific locations in computer memory. A memory section is a named
collection of properties related to placement of an object in memory; for example, in RAM,
ROM, or flash memory. Memory section properties let you specify storage directives
for model signals, block parameters, and states. For example, you can specify const
declarations, or compiler-specific #pragma statements for allocation of storage in ROM or
flash memory sections.

The Embedded Coder software provides a memory section capability that allows you to
insert comments and pragmas and to qualify constants as volatile in the generated
code for:

• Data in custom storage classes
• Model-level functions
• Model-level internal data
• Subsystem functions
• Subsystem internal data

Pragmas inserted into the generated code can surround:

• A contiguous block of function or data definitions
• Each function or data definition separately

When pragmas surround each function or data definition separately, the text of each
pragma can contain the name of the definition to which it applies.

27-2

 Control Data and Function Placement in Memory by Inserting Pragmas

To apply a memory section to groups of data or to model functions such as initialize
and step, you use the Configuration Parameters dialog box. To apply a memory
section to individual signals and parameters, you must associate the memory section
with a custom storage class. For more information about custom storage classes, see
“Introduction to Custom Storage Classes” on page 23-2.

Define Memory Sections

• “Edit Memory Section Properties” on page 27-3
• “Specify the Memory Section Name” on page 27-4
• “Specify Comment and Pragma Text” on page 27-5
• “Surround Individual Definitions with Pragmas” on page 27-5
• “Include Identifier Names in Pragmas” on page 27-5
• “Specify a Qualifier for Custom Storage Class Data Definitions” on page 27-6

To define memory sections, you must create a data class package using MATLAB class
syntax. For more information about creating a data class package, see “Define Data
Classes” (Simulink).

Edit Memory Section Properties

To create new memory sections or specify memory section properties:

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.
2 Choose Tools > Custom Storage Class Designer in the Model Explorer window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

3 Click the Memory Section tab of the Custom Storage Class Designer. The Memory
Section pane initially looks like this:

27-3

27 Memory Sections in Embedded Coder

4 If you intend to create or change memory section definitions, use the Select
package field to select a writable package.

For more detailed information about the controls on the Memory Section pane, see
“Design Custom Storage Classes and Memory Sections” on page 23-34.

Specify the Memory Section Name

To specify the name of a memory section, use the Name field. A memory section name
must be a legal MATLAB identifier.

27-4

 Control Data and Function Placement in Memory by Inserting Pragmas

Specify Comment and Pragma Text

To specify a comment, prepragma, or postpragma for a memory section, enter the
comment in the text boxes on the left side of the Custom Storage Class Designer. In the
text boxes, you can type multiple lines separated by ordinary Returns.

Surround Individual Definitions with Pragmas

If the Pragma surrounds field for a memory section specifies Each variable, the
code generator will surround each definition in a contiguous block of definitions with the
comment, prepragma, and postpragma defined for the section.

If the Pragma surrounds field for a memory section specifies All variables, the
code generator will insert the comment and prepragma for the section before the
first definition in a contiguous block of custom storage class data definitions, and the
postpragma after the last definition in the block.

Note: Specifying All variables affects only custom storage class data definitions. For
other definition categories, the code generator surrounds each definition separately
regardless of the value of Pragma surrounds.

Include Identifier Names in Pragmas

When pragmas surround each separate definition in a contiguous block, you can include
the character vector %<identifier> in a pragma. The character vector must appear
without surrounding quotes.

• When %<identifier> appears in a prepragma, the code generator will substitute
the identifier from the subsequent function or data definition.

• When %<identifier> appears in a postpragma, the code generator will substitute
the identifier from the previous function or data definition.

You can use %<identifier> with pragmas only when pragmas to surround each
variable. The Validate phase will report an error if you violate this rule.

Note: Although %<identifier> looks like a TLC variable, it is not: it is just a keyword
that directs the code generator to substitute the applicable data definition identifier
when it outputs a pragma. TLC variables cannot appear in pragma specifications in the
Memory Section pane.

27-5

27 Memory Sections in Embedded Coder

Specify a Qualifier for Custom Storage Class Data Definitions

To specify a qualifier for custom storage class data definitions in a memory section, enter
the components of the qualifier below the Name field.

• To specify const, check Is const.
• To specify volatile, check Is volatile.
• To specify anything else (e.g., static), enter the text in the Qualifier field.

The qualifier will appear in generated code with its components in the same left-to-
right order in which their definitions appear in the dialog box. A preview appears in the
Pseudocode preview subpane on the lower right.

Note: Specifying a qualifier affects only custom storage class data definitions. The code
generator omits the qualifier from other definition categories.

Apply Memory Sections

• “Assign Memory Sections to Custom Storage Classes” on page 27-6
• “Apply Memory Sections to Model-Level Functions and Internal Data” on page

27-8
• “Apply Memory Sections to Atomic Subsystems” on page 27-10

Assign Memory Sections to Custom Storage Classes

To assign a memory section to a custom storage class,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.
2 Choose Tools > Custom Storage Class Designer in the Model Explorer window.

A notification box appears that states Please Wait ... Finding Packages. After
a brief pause, the notification box closes and the Custom Storage Class Designer
appears.

3 Select the Custom Storage Class tab. The Custom Storage Class pane initially
looks like this:

27-6

 Control Data and Function Placement in Memory by Inserting Pragmas

4 Use the Select package field to select a writable package. The rest of this section
assumes that you have selected a writable package.

5 Select the desired custom storage class in the Custom storage class definitions
pane.

6 Select the desired memory section from the Memory section pull-down.
7 Click Apply to apply changes to the open copy of the model; Save to apply changes

and save them to disk; or OK to apply changes, save changes, and close the Custom
Storage Class Designer.

Generated code for data definitions in the specified custom storage class are enclosed
in the pragmas of the specified memory section. The pragmas can surround contiguous
blocks of definitions or each definition separately, as described in “Surround Individual
Definitions with Pragmas” on page 27-5. For more information, see “Design Custom
Storage Classes and Memory Sections” on page 23-34.

27-7

27 Memory Sections in Embedded Coder

Note: The code generator does not generate a pragma around definitions or declarations
for data that has the following built-in storage classes:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

The code generator treats data with these built-in storage classes like custom storage
classes without a specified memory section.

Apply Memory Sections to Model-Level Functions and Internal Data

The table shows the categories of model-level functions to which you can apply memory
sections.

Function Category Functions Included in Memory Section

Initialize/StartInitialize/Terminate functions
Terminate
Step functions
Run-time initialization
Derivative
Enable

Execution functions

Disable
Shared utility functions • Shared utility functions, such as those

generated for model references.
• Subfunctions, such as those generated

by Simulink Coder for intrinsic math
utilities, Stateflow graphical functions,
and MATLAB subfunctions.

The table shows the categories of internal data to which you can apply memory sections.
The specified memory section applies to the corresponding global data structures in the
generated code. For basic information about the global data structures, see “Default Data
Structures in the Generated Code” (Simulink Coder).

27-8

 Control Data and Function Placement in Memory by Inserting Pragmas

Data Category Data Included in Memory Section

Constant block parametersConstants
Block inputs and outputs that have constant
values
Root inputsInput/Output
Root outputs
Block input and output signals
DWork vectors

Internal data

Zero-crossings
Parameters Block parameters

Memory section specifications for model-level functions and internal data apply to the top
level of the model and to its subsystems. However, these specifications are not applicable
to atomic subsystems that contain overriding memory section specifications, as described
in “Apply Memory Sections to Atomic Subsystems” on page 27-10.

To specify memory sections for model-level functions or internal data,

1 Open the Configuration Parameters dialog box and select Code Generation >
General.

2 Specify the System target file as an ERT target, such as ert.tlc .
3 Select Memory Sections. The Memory Sections pane looks like this:

27-9

27 Memory Sections in Embedded Coder

4 Initially, the Package field specifies ---None--- and the pull-down lists only built-
in packages. If you have defined packages of your own, click Refresh package list.
This action adds user-defined packages on your search path to the package list.

5 In the Package pull-down, select the package that contains the memory sections
that you want to apply.

6 In the pull-down for each category of internal data and model-level function, specify
the memory section that you want to apply to that category. Accepting or specifying
Default omits specifying memory section for that category.

7 Click Apply to save changes to the package and memory section selections.

Apply Memory Sections to Atomic Subsystems

For atomic subsystem whose Function packaging is Nonreusable function or
Reusable function, you can specify memory sections for functions and internal data
that exist in that code interface packaging. Such specifications override model-level
memory section specifications. Such overrides apply only to the atomic subsystem itself,

27-10

 Control Data and Function Placement in Memory by Inserting Pragmas

not to subsystems within it. Subsystems of an atomic subsystem inherit memory section
specifications from the containing model, not from the containing atomic subsystem.

The memory section that you specify for internal data applies to the corresponding
global data structures in the generated code. For basic information about the global
data structures generated for atomic subsystems, see “Default Data Structures in the
Generated Code” (Simulink Coder).

To specify memory sections for an atomic subsystem,

1 Right-click the subsystem in the model window.
2 Choose Subsystem Parameters from the context menu. The Function Block

Parameters: Subsystem dialog box appears.
3 Select the Treat as atomic unit checkbox. If it is not selected, you cannot specify

memory sections for the subsystem.

For an atomic system, on the Code Generation tab, you can use the Function
packaging field to control the format of the generated code.

4 Specify Function packaging as Nonreusable function or Reusable
function. Otherwise, you cannot specify memory sections for the subsystem.

5 If the Function packaging is Reusable function and you want separate data,
check Function with separate data.

The Code Generation tab now shows applicable memory section options. The
available options depend on the values of Function packaging and the Function
with separate data check box. When the former is Nonreusable function and
the latter is checked, the pane looks like this:

27-11

27 Memory Sections in Embedded Coder

6 In the pull-down for each available definition category, specify the memory section
that you want to apply to that category.

• Selecting Inherit from model inherits the corresponding selection from the
model level (not parent subsystem).

• Selecting Default specifies that the category does not have an associated
memory section, overriding model-level specifications for that category.

7 Click Apply to save changes, or OK to save changes and close the dialog box.

Caution: If you use Build This Subsystem or Build Selected Subsystem to generate
code for an atomic subsystem that specifies memory sections, the code generator ignores
the subsystem-level specifications and uses the model-level specifications instead.
The generated code is the same as if the atomic subsystem specified Inherit from
model for every category of definition. For information about building subsystems, see
“Generate Code and Executables for Individual Subsystem” (Simulink Coder).

27-12

 Control Data and Function Placement in Memory by Inserting Pragmas

It is not possible to specify the memory section for a subsystem in a library. However,
you can specify the memory section for the subsystem after you have copied it into a
Simulink model. This is because in the library it is unknown what code generation target
will be used. You can copy a library block into many different models with different code
generation targets and different memory sections available.

Generated Code with Memory Sections

The next figures show an ERT-based Simulink model that defines one subsystem,
mySubsystem, and then the contents of that subsystem.

Assume that the subsystem is atomic. On the Code Generation tab, the Function
packaging parameter is Reusable function. Memory sections have been created and
assigned as shown in the next two tables; here, data memory sections specify Pragma
surrounds to be Each variable.

Model-Level Memory Section Assignments and Definitions

Section Assignment Section Name Field Name Field Value

Prepragma #pragma IO-beginInput/Output MemSect1

Postpragma #pragma IO-end

Prepragma #pragma InData-begin(%<identifier>)Internal data MemSect2

Postpragma #pragma InData-end

Prepragma #pragma Parameters-beginParameters MemSect3

Postpragma #pragma Parameters-end

27-13

27 Memory Sections in Embedded Coder

Section Assignment Section Name Field Name Field Value

Prepragma #pragma InitTerminate-beginInitialize/
Terminate

MemSect4

Postpragma #pragma InitTerminate-end

Prepragma #pragma ExecFunc-begin(%<identifier>)Execution
functions

MemSect5

Postpragma #pragma ExecFunc-end(%<identifier>)

Subsystem-Level Memory Section Assignments and Definitions

Section Assignment Section Name Field Name Field Value

Prepragma #pragma DATA_SEC(%<identifier>,

"FAST_RAM")

Execution
functions

MemSect6

Postpragma

Given the preceding specifications and definitions, the code generator would create the
following code, with minor variations depending on the current version of the Target
Language Compiler.

Model-Level Data Structures

#pragma IO-begin

ExternalInputs_mySample mySample_U;

#pragma IO-end

#pragma IO-begin

ExternalOutputs_mySample mySample_Y;

#pragma IO-end

#pragma InData-begin(mySample_B)

BlockIO_mySample mySample_B;

#pragma InData-end

#pragma InData-begin(mySample_DWork)

D_Work_mySample mySample_DWork;

#pragma InData-end

#pragma InData-begin(mySample_M_)

RT_MODEL_mySample mySample_M_;

#pragma InData-end

#pragma Parameters-begin

27-14

 Control Data and Function Placement in Memory by Inserting Pragmas

Parameters_mySample mySample_P = {

 1.0 , {2.3}

};

#pragma Parameters-end

Model-Level Functions

#pragma ExecFunc-begin(mySample_step)

void mySample_step(void)

{

 mySample_B.UnitDelay = mySample_DWork.UnitDelay_DSTATE;

 mySample_mySubsystem();

 mySample_DWork.UnitDelay_DSTATE = mySample_U.In1;

}

#pragma ExecFunc-end(mySample_step)

#pragma InitTerminate-begin

void mySample_initialize(void)

{

 mySample_U.In1 = 0.0;

 mySample_Y.Out1 = 0.0;

 mySample_DWork.UnitDelay_DSTATE = mySample_P.UnitDelay_InitialCondition;

}

#pragma InitTerminate-end

Subsystem Function

Because the subsystem specifies a memory section for execution functions that overrides
that of the parent model, subsystem code looks like this:

#pragma DATA_SEC(mySample_mySubsystem, “FAST_RAM”)

void mySample_mySubsystem(void)

{

 mySample_Y.Out1 = mySample_P.Gain_Gain * mySample_B.UnitDelay;

}

If the subsystem had not defined its own memory section for execution functions, but
inherited that of the parent model, the subsystem code would have looked like this:

#pragma ExecFunc-begin(mySample_mySubsystem)

void mySample_mySubsystem(void)

{

 mySample_Y.Out1 = mySample_P.Gain_Gain * mySample_B.UnitDelay;

}

27-15

27 Memory Sections in Embedded Coder

#pragma ExecFunc-end(mySubsystem)

Insert Pragmas for Functions and Data in Generated Code

This model shows how to insert pragmas for functions and data in generated code.

Explore Example Model

Open the example model.

open_system('rtwdemo_memsec')

Instructions

1 Learn about memory sections by clicking the documentation link in the model.
2 View the memory sections in the ECoderDemos package by clicking the button in the

model and then selecting the Memory Sections tab.
3 View the memory sections selected for this model by clicking the button in the model.

The model-level settings are also the default settings for atomic subsystems.
4 Open the SubSystem Parameters dialog for the subsystems to see the memory

section settings for each of the atomic subsystems in the model.

27-16

 Control Data and Function Placement in Memory by Inserting Pragmas

5 Generate code by clicking the button in the model. An HTML report is displayed
automatically. Inspect the data and function definitions in the .c files and observe
how the generated pragmas correspond to the specified memory sections.

Documenting Use of Pragmas with Simulink Report Generator

If you need to report on the use of pragmas to define memory sections, for example to
satisfy the modeling guideline “hisl_0402: Use of custom #pragma to improve MISRA
C:2012 compliance” (Simulink), you can customize the Simulink Report Generator report
to include this information.

To add pragma information to your Simulink Report Generator report:

1 Open your Simulink Report Generator report. For more information on these reports,
see “Getting Started with Simulink Report Generator” (Simulink Report Generator).

2 In the Library pane, under the MATLAB category, add the Evaluate MATLAB
Expression component to your report.

3 Add code, similar to the following, to the Expression to evaluate in the base
workspace text box. This code extracts pragma information from the model.

% Find data objects with PRAGMA information

% Note: only objects that are used should be returned

clear pragma;

pragma{1,1} = {'Pragma Name'};

pragma{1,2} = {'Pragma Type'};

% Data classes with PRAGMA Information

PragTypes = {'PragmaDemo.PragmaDef','OtherPragma.PragmaDef'};

allData = who;

for inx = 1 : length(allData)

 isPragma = strcmp(eval(['class(',allData{inx},')']),PragTypes);

 if ~isempty(find(isPragma))

 pragma{end+1,1} = allData{inx};

 pragma{end,2} = PragTypes{isPragma};

 end

end

4 Select the Evaluate this expression if there is an error check box.
5 In the field under the check box, add code similar to the following:

27-17

27 Memory Sections in Embedded Coder

% The exception generated above can be referenced by evalException

% See the default code below for an example

warningMessageLevel = 2;

displayWarningMessage = true;

failGenerationWithException = false;

failGenerationWithoutException = false;

if (displayWarningMessage)

 rptgen.displayMessage(sprintf('%s : %s',...

 'Exception during eval', evalException.message),...

 warningMessageLevel);

end

if (failGenerationWithException)

 rptgen.displayMessage('Failed to evaluate', warningMessageLevel);

 rethrow(evalException);

elseif (failGenerationWithoutException)

 rptgen.displayMessage(sprintf('%s\n%s','Failed to evaluate', ...

 'Halting generation'), warningMessageLevel, false);

 rptgen.haltGenerate;

end

6 Click File > Save to save the report setup file.

For more information on adding a component that evaluates MATLAB commands, see
“Add Report Content with Components” (Simulink Report Generator).

Related Examples
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58
• “Design Custom Storage Classes and Memory Sections” on page 23-34
• “Declare Constant Data as Volatile Using Memory Sections” on page 27-19
• “Default Data Structures in the Generated Code” (Simulink Coder)

27-18

 Declare Constant Data as Volatile Using Memory Sections

Declare Constant Data as Volatile Using Memory Sections

In the C language, the value of data declared with the storage type qualifier, volatile,
can be read from memory and written back to memory when changed without compiler
control or detection. Examples of use include variables for initialization at system power-
up or for system clock updates.

You can add the volatile qualifier to type definitions generated in code for model
constant block I/O, constant parameters, and ground data (zero representation). Note
that if the input to a reusable subsystem is volatile data, the code generator casts away
the volatile qualifier. The subsystem argument is the address of the volatile data.

To add the volatile qualifier to type definitions, you must configure your model as
follows:

• Specify an ERT target
• Set the memory section for constant data to MemVolatile or MemConstVolatile

If you choose to add the volatile qualifier to type definitions in your generated code,
note the following:

• If constant data that is qualified with volatile is passed by pointer, the code
generator casts away the volatility. This occurs because generated functions assume
that data values do not change during execution and, therefore, pass their arguments
as const * (not const volatile *).

• If a variable must be declared const and you specify MemVolatile, the code
generator declares the variable with the const and volatile qualifiers.

• If you set Constants to MemConst or MemConstVolatile, and a variable cannot be
declared as constant data, a TLC warning appears and the code generator does not
qualify the variable with const.

Consider the following simple lookup table model.

27-19

27 Memory Sections in Embedded Coder

1 On the Configuration Parameters dialog box, In the Code Generation pane, set
System target file to ert.tlc.

2 In the Code Generation > Memory Sections pane, set Package to Simulink,
and Constants to MemConstVolatile.

3 Open the Signal Properties dialog box for signal INPUT. On the Code Generation
tab, set Storage class to ExportedGlobal for storing state in a global variable.

4 Generate code. You should see the volatile qualifier in the generated files
model_data.c and model.h.

model_data.c

/* Constant parameters (auto storage) */

/* ConstVolatile memory section */

const volatile ConstParam_simple_lookup simple_lookup_ConstP = {

 /* Expression: [-5:5]

 * Referenced by: '<Root>/Lookup Table'

 */

 { -5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 },

 /* Expression: tanh([-5:5])

 * Referenced by: '<Root>/Lookup Table'

 */

 { -0.99990920426259511, -0.999329299739067,

 -0.99505475368673046, -0.9640275800758169,

 -0.76159415595576485, 0.0, 0.76159415595576485,

 0.9640275800758169, 0.99505475368673046,

 0.999329299739067, 0.99990920426259511 }

};

model.h

/* Real-time Model Data Structure */

struct RT_MODEL_simple_lookup {

 const char_T * volatile errorStatus;

};

/* Constant parameters (auto storage) */

extern const volatile ConstParam_simple_lookup simple_lookup_ConstP;

Also note in the model.c file that a typecast is inserted in the rt_Lookup function
call, removing the volatile qualifier.

/* Lookup: '<Root>/Lookup Table' incorporates:

27-20

 Declare Constant Data as Volatile Using Memory Sections

 * Inport: '<Root>/In1'

 */

OUTPUT = rt_Lookup(((const real_T*)

 &simple_lookup_ConstP.LookupTable_XData[0]), 11, INPUT, ((

 const real_T*) &simple_lookup_ConstP.LookupTable_YData[0]));

Related Examples
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58
• “Default Data Structures in the Generated Code” (Simulink Coder)

27-21

Code Generation

28

Configuration for Simulink Coder

• “Code Generation Configuration” on page 28-2
• “Configure Code Generation Parameters for Model Programmatically” on page

28-5
• “Check Model and Configuration for Code Generation” on page 28-7
• “Application Objectives Using Code Generation Advisor” on page 28-9
• “Simulink Coder Model Advisor Checks for Standards and Code Efficiency” on page

28-13
• “Configure Code Comments” on page 28-14
• “Construction of Generated Identifiers” on page 28-15
• “Identifier Name Collisions and Mangling” on page 28-16
• “Specify Identifier Length to Avoid Naming Collisions” on page 28-17
• “Specify Reserved Names for Generated Identifiers” on page 28-18
• “Reserved Keywords” on page 28-19
• “Debug” on page 28-23

28 Configuration for Simulink Coder

Code Generation Configuration

When you are ready to generate code for a model, you can modify the model configuration
parameters specific to code generation. The code generation parameters determine how
the code generator produces code and builds an executable program from your model.

The model configuration parameters for code generation are in the Code Generation
and Optimization panes in the Configuration Parameters dialog box. The content of the
Code Generation pane and its subpanes can change depending on the target that you
specify. Some configuration options are available only with the Embedded Coder product.
The Optimization pane includes code generation parameters that help to improve the
performance of the generated code.

Your application objectives can include a combination of these code generation objectives:
debugging, traceability, execution efficiency, and safety precaution. There are tradeoffs
associated with these configuration choices, such as execution speed and memory usage.
To help configure a model to achieve your application objectives, use the Model Advisor
and the Code Generation Advisor.

Open the Model Configuration for Code Generation

To modify the model configuration parameters for code generation, open the Code
Generation pane. There are several different ways to open the Code Generation pane
from the Simulink editor:

• To open the Configuration Parameters dialog box, click the model configuration
parameters icon.

Then click Code Generation in the Select (left) pane.
• From the Simulation menu, select Model Configuration Parameters. When the

Configuration Parameters dialog box opens, click Code Generation in the Select
(left) pane.

• From the Code menu, select C/C++ Code > Code Generation Options.
• From the View menu in the model window, select Model Explorer, or from the

MATLAB command line, type daexplr and press Enter. In the Model Explorer,

28-2

 Code Generation Configuration

expand the node for the current model in the left pane and click Configuration
(active). Click elements in the middle pane to display the corresponding
parameters in the right pane.

Note In a Configuration Parameters dialog box, when you change the value of a check
box, menu selection, or edit field, the white background of the element changes color to
indicate that you made an unsaved change. When you click OK, Cancel, or Apply, the
background resets to white.

Configuration Tools

To help you configure your model for code generation and to check your configuration
against your code generation objectives, Simulink Coder and Embedded Coder provide
several tools.

Goal Approach More Information

Automate
configuration.

At the MATLAB command
line, use the set_param
function

“Configure Code Generation
Parameters for Model
Programmatically” on page
28-5

Configure your model
for code generation
quickly and easily
(Embedded Coder).

Embedded Coder Quick
Start tool

“Generate Code with the Quick
Start Tool” on page 34-10

Use a template
to create a model
configured for code
generation, ready for
you to add your own
blocks.

Code generation templates • “Generate Code and Simulate
Models in a Simulink Project”
(Simulink Coder)

• “Generate Code and Simulate
Models in a Simulink Project”

To configure your
model for code
generation, use
Simulink blocks and
predefined or custom
MATLAB scripts.

Code Generation Wizards
blocks

“Configure and Optimize Model
with Configuration Wizard
Blocks” on page 29-21

28-3

28 Configuration for Simulink Coder

Goal Approach More Information

Verify that your model
meets standards and
guidelines.

Model Advisor “Select and Run Model Advisor
Checks” (Simulink)

Verify that your model
meets your application
objectives.

Code Generation Advisor “Application Objectives Using
Code Generation Advisor” on page
28-9

Related Examples
• “Configuration Reuse” (Simulink)
• “Configure Code Generation Parameters for Model Programmatically” (Simulink

Coder)
• “Application Objectives Using Code Generation Advisor” on page 28-9

28-4

 Configure Code Generation Parameters for Model Programmatically

Configure Code Generation Parameters for Model
Programmatically

You can modify code generation parameters for the active configuration set in the
Configuration Parameters dialog box or from the MATLAB command line. Use the
command-line approach for creating a script that automates setting parameters for an
established model configuration. The Configuration Parameters All Parameters tab
provides parameter command-line names to use in scripts.

Modify Parameters to Support Execution efficiency

In this example, you modify the configuration parameters to support the Code
Generation Advisor application objective, Execution efficiency.

Step 1. Open a model.

slexAircraftExample

Step 2. Get the active configuration set.

cs = getActiveConfigSet(model);

Step 3. Select the Generic Real-Time (GRT) target.

switchTarget(cs,'grt.tlc',[]);

Step 4. To optimize execution speed, modify parameters.

If your application objective is Execution efficiency, use set_param to modify these
parameters:

set_param(cs,'MatFileLogging','off');

set_param(cs,'SupportNonFinite','off');

set_param(cs,'RTWCompilerOptimization','on');

set_param(cs,'OptimizeBlockIOStorage','on');

set_param(cs,'EnhancedBackFolding','on');

set_param(cs,'ConditionallyExecuteInputs','on')

set_param(cs,'DefaultParameterBehavior','Inlined');

set_param(cs,'BooleanDataType','on');

set_param(cs,'BlockReduction','on');

set_param(cs,'ExpressionFolding','on');

set_param(cs,'LocalBlockOutputs','on');

28-5

28 Configuration for Simulink Coder

set_param(cs,'EfficientFloat2IntCast','on');

set_param(cs,'BufferReuse','on');

Step 5. Save the model configuration to a file.

Save the model configuration to a file, ‘Exec_efficiency_cs.m’, and view the
parameter settings.

saveAs(cs,'Exec_Efficiency_cs');

dbtype Exec_Efficiency_cs 1:50

More About
• “Code Generation Configuration” on page 28-2
• “Application Objectives Using Code Generation Advisor” on page 28-9

28-6

 Check Model and Configuration for Code Generation

Check Model and Configuration for Code Generation
You can use the Model Advisor checks to assess model readiness to generate code.
To check and configure your model for code generation application objectives such as
traceability or debugging, use the Code Generation Advisor.

For information about See

Model Advisor “Run Model Checks” (Simulink)
Code Generation Advisor “Application Objectives Using Code

Generation Advisor” (Simulink Coder)
Checks available with Simulink Coder “Simulink Coder Checks” (Simulink Coder)
Checks available with Embedded Coder “Embedded Coder Checks”

Check Mode for Code Efficiency with Model Advisor

To check model rtwdemo_throttlecntrl for code efficiency, use the Model Advisor.

1 Open rtwdemo_throttlecntrl. Save a copy as throttlecntrl in a writable
location on your MATLAB path.

2 To start the Model Advisor, select Analysis > Model Advisor > Model Advisor. A
dialog box opens showing the model system hierarchy.

3 Click throttlecntrl and then click OK. The Model Advisor window opens.
4 Expand By Task > Code Generation Efficiency. To check your model for code

generation efficiency, use the checks in the folder . By default, checks that do not
trigger an Update Diagram are selected. The checks available for code generation
efficiency depend on whether you have a Simulink Coder or Embedded Coder license.

5 In the left pane, select the remaining checks, and then select Code Generation
Efficiency.

6 In the right pane, select Show report after run and click Run Selected Checks.
The report shows a Run Summary that flags check warnings.

7 Review the report. The warnings highlight issues that impact code efficiency. For
more information about the report, see “View Model Advisor Reports” (Simulink).

Check Model During Code Generation with Code Generation Advisor

To review a model as part of the code generation process, use the Code Generation
Advisor.

28-7

28 Configuration for Simulink Coder

1 To specify your code generation objectives, on the Configuration Parameters >
Code Generation pane, choose a value for the Select objective parameter.

2 On the Configuration Parameters > Code Generation > General pane, select
one of the following from Check model before generating code:

• On (proceed with warnings)

• On (stop for warnings)

3 If you want to only generate code, select Generate code only. Otherwise clear the
check box to build an executable.

4 Apply your changes, and then click Generate Code/Build. The Code Generation
Advisor starts and reviews the top model and subsystems.

If the Code Generation Advisor issues failures or warnings, and you specified:

• On (proceed with warnings) — The Code Generation Advisor window opens
while the build process proceeds. After the build process is complete, you can
review the results.

• On (stop for warnings) — The build process halts and displays the
Diagnostic Viewer. To continue, you must review and resolve the Code
Generation Advisor results or clear the Check model before generating code
parameter.

5 In the Code Generation Advisor window, review the results by selecting a check from
the left pane. The results for that check display in the right pane.

6 After reviewing the check results, you can choose to fix warnings and failures as
described in “Fix a Model Check Warning or Failure” (Simulink).

Note: When you specify an efficiency or Safety precaution objective, the Code
Generation Advisor includes additional checks. When you make changes to one of
these additional checks, previous check results can potentially become invalid and
need to be rerun.

For more information, see “Set Objectives — Code Generation Advisor Dialog Box”
(Simulink Coder)

Related Examples
• “Select and Run Model Advisor Checks” (Simulink)
• “Application Objectives Using Code Generation Advisor” on page 28-9

28-8

 Application Objectives Using Code Generation Advisor

Application Objectives Using Code Generation Advisor

In this section...

“High-Level Code Generation Objectives” on page 28-10
“Configure Model for Code Generation Objectives Using Code Generation Advisor” on
page 28-10
“Configure Model for Code Generation Objectives by Using Configuration Parameters
Dialog Box” on page 28-12

Consider how your application objectives, such as efficiency, traceability, and safety,
map to code generation options in a model configuration set. Parameters that you set in
the Solver, Data Import/Export, Diagnostics, and Code Generation panes in the
Configuration Parameters dialog box specify the behavior of a model in simulation and
the code generated for the model.

Before generating code, or as part of the code generation process, you can use the Code
Generation Advisor to review a model . When you choose to review a model before
generating code, you specify which model, subsystem, or referenced model the Code
Generation Advisor reviews. When you choose to review a model as part of the code
generation process, the Code Generation Advisor reviews the entire system. The Code
Generation Advisor uses the information presented in “Recommended Settings Summary
for Model Configuration Parameters” to determine the parameter values that meet
your objectives. When there is a conflict between multiple objectives, the higher-priority
objective takes precedence.

Setting code generation objectives, and then running the Code Generation Advisor
provides information on how to meet code generation objectives for your model. The
Code Generation Advisor does not alter the generated code. You can use the Code
Generation Advisor to make the suggested changes to your model. The generated code is
changed only after you modify your model and regenerate code. When you use the Code
Generation Advisor to set code generation objectives and check your model, the generated
code includes comments identifying which objectives you specified, the checks the Code
Generation Advisor ran on the model, and the results of running the checks.

If a model uses a configuration reference (Simulink), you can run the Code Generation
Advisor to review your configuration parameter settings. However, the Code Generation
Advisor cannot modify the configuration parameter settings.

28-9

28 Configuration for Simulink Coder

High-Level Code Generation Objectives

Depending on the type of application that your model represents, you are likely to have
specific high-level code generation objectives. For example, safety and traceability might
be more critical than efficient use of memory. If you have specific objectives, you can
quickly configure your model to meet those objectives by selecting and prioritizing from
these code generation objectives:

• Execution efficiency (all targets) — Configure code generation settings to achieve fast
execution time.

• ROM efficiency (ERT-based targets) — Configure code generation settings to reduce
ROM usage.

• RAM efficiency (ERT-based targets) — Configure code generation settings to reduce
RAM usage.

• Traceability (ERT-based targets) — Configure code generation settings to provide
mapping between model elements and code.

• Safety precaution (ERT-based targets) — Configure code generation settings to
increase clarity, determinism, robustness, and verifiability of the code.

• Debugging (all targets) — Configure code generation settings to debug the code
generation build process.

• MISRA C:2012 guidelines (ERT-based targets) — Configure code generation settings
to increase compliance with MISRA C:2012 guidelines.

• Polyspace (ERT-based targets) — Configure code generation settings to prepare the
code for Polyspace analysis.

If you select the MISRA C:2012 guidelines code generation objective, the Code
Generation Advisor:

• Checks the model configuration settings for compliance with the MISRA C:2012
configuration setting recommendations.

• Checks for blocks that are not supported or recommended for MISRA C:2012
compliant code generation.

Configure Model for Code Generation Objectives Using Code Generation
Advisor

This example shows how to use the Code Generation Advisor to check and configure your
model to meet code generation objectives:

28-10

 Application Objectives Using Code Generation Advisor

1 On the menu bar, select Code > C/C++ Code > Code Generation Advisor.
2 In the System Selector window, select the model or subsystem that you want to

review, and then click OK.
3 In the Code Generation Advisor, on the Code Generation Objectives pane, select

the code generation objectives from the drop-down list (GRT-based targets). As you
select objectives, on the left pane, the Code Generation Advisor updates the list of
checks it will run on your model. If your model is configured with an ERT-based
target, more objectives are available.

4 Click Run Selected Checks to run the checks listed in the left pane of the Code
Generation Advisor.

5 In the Code Generation Advisor window, review the results for Check model
configuration settings against code generation objectives by selecting it from
the left pane. The results for that check are displayed in the right pane.

Check model configuration settings against code generation objectives
triggers a warning for these issues:

• Parameters are set to values other than the value recommended for the specified
code generation objectives.

• Selected code generation objectives differ from the objectives set in the model.

Click Modify Parameters to set:

• Parameters to the value recommended for the specified code generation
objectives.

• Code generation objectives in the model to the objectives specified in the Code
Generation Advisor.

6 In the Code Generation Advisor window, review the results for the remaining checks
by selecting them from the left pane. The results for the checks display in the right
pane.

7 After reviewing the check results, you can choose to fix warnings and failures, as
described in “Fix a Model Check Warning or Failure” (Simulink).

When you specify an efficiency or Safety precaution objective, the Code Generation
Advisor includes additional checks. When you make changes to one of these additional
checks, previous check results can potentially become invalid and need to be rerun.

28-11

28 Configuration for Simulink Coder

Configure Model for Code Generation Objectives by Using Configuration
Parameters Dialog Box

This example shows how to check and configure the code generation objectives in the
Configuration Parameters dialog box:

1 Open the Configuration Parameters dialog box and select Code Generation.
2 Select or confirm selection of a System target file.
3 Specify the objectives using the Select objectives drop down list (GRT-based

targets) or clicking Set Objectives button (ERT-based targets). Clicking Set
Objectives opens the “Set Objectives — Code Generation Advisor Dialog Box”
(Simulink Coder) dialog box.

4 Click Check Model to run the model checks. The Code Generation Advisor dialog
box opens. The Code Generation Advisor uses the code generation objectives to
determine which model checks to run.

5 On the left pane, the Code Generation Advisor lists the checks run on the model and
the results. Click each warning to see the suggestions for changes that you can make
to your model to pass the check.

6 Determine which changes to make to your model. On the right pane of the Code
Generation Advisor, follow the instructions listed for each check to modify the model.

28-12

 Simulink Coder Model Advisor Checks for Standards and Code Efficiency

Simulink Coder Model Advisor Checks for Standards and Code
Efficiency

To check that your model meets standards and is ready to generate code, you can use the
Model Advisor checks available with Simulink Coder.

• To start the Model Advisor, in the model window, select Analysis > Model Advisor >
Model Advisor.

• In the Model Advisor window, expand the By Task folder. The folder contains Model
Advisor checks that you can run to help accomplish the task.

For more information about the Model Advisor, see “Run Model Checks” (Simulink).

The table summarizes the Simulink Coder Model Advisor checks that are available in the
By Task folders.

By Task folder Model Advisor checks

Code
Generation
Efficiency

“Identify blocks using one-based indexing” (Simulink Coder)

Modeling
Standards
for DO-178C/
DO-331

“Check solver for code generation” (Simulink Coder)

“Check for blocks that have constraints on tunable parameters”
(Simulink Coder)

“Check sample times and tasking mode” (Simulink Coder)
Model
Referencing

“Check for model reference configuration mismatch” (Simulink Coder)

“Check for code generation identifier formats used for model reference”
(Simulink Coder)

Related Examples
• “Select and Run Model Advisor Checks” (Simulink)
• “Embedded Coder Model Advisor Checks for Standards, Guidelines, and Code

Efficiency” on page 29-12
• “Modeling Guidelines for Model Configuration” (Simulink Coder)

28-13

28 Configuration for Simulink Coder

Configure Code Comments

Configure how the code generator inserts comments into generated code by modifying
parameters on the Code Generation > Comments pane.

To... Select...

Include comments in
generated code

Include comments (Simulink Coder). Selecting this parameter allows
you to select one or more auto generated comment types to be placed in the
code.

Include comments that
describe a block's code

Simulink block / Stateflow object comments (Simulink Coder).
Selecting this parameter includes the comments before the block’s code in
the generating file.

Include MATLAB
source code as
comments

MATLAB source code as comments (Simulink Coder). Selecting this
parameter inserts these comments preceding the associated generated
code. The function signature is included in the function banner.

Include comments for
eliminated blocks

Show eliminated blocks (Simulink Coder). Selecting this parameter
includes comments for blocks that were eliminated as the result of
optimizations, such as inlining parameters.

Include parameter
comments regardless
of the number of
parameters

Verbose comments for SimulinkGlobal storage class (Simulink
Coder). Selecting this parameter includes comments for parameter
variable names and names of source blocks in the model parameter
structure declaration in model_prm.h.

If you do not select this parameter, parameter comments are generated
if less than 1000 parameters are declared. This reduces the size of the
generated file for models with a large number of parameters.

Note When you configure the code generator to produce code that includes comments,
the code generator includes text for model parameters, block names, signal names, and
Stateflow object names in the generated code comments. If the text includes characters
that are unrepresented in the character set encoding for the model, the code generator
replaces the characters with XML escape sequences. For example, the code generator
replaces the Japanese full-width Katakana letter ア with the escape sequence ア.
For more information, see “Internationalization and Code Generation” (Simulink Coder).

28-14

 Construction of Generated Identifiers

Construction of Generated Identifiers

For GRT and RSim targets, the code generator automatically constructs identifiers for
variables and functions in the generated code. These identifiers represent:

• Signals and parameters that have Auto storage class
• Subsystem function names that are not user defined
• Stateflow names

The components of a generated identifier include

• The root model name, followed by
• The name of the generating object (signal, parameter, state, and so on), followed by
• Unique name-mangling text

The code generator conditionally generates the name-mangling text to resolve potential
conflicts with other generated identifiers.

To configure how the code generator names identifiers and objects, see:

• “Specify Identifier Length to Avoid Naming Collisions” on page 28-17
• “Specify Reserved Names for Generated Identifiers” on page 28-18

The code generator reserves certain words for its own use as keywords of the generated
code language. For more information, see “Reserved Keywords” on page 28-19.

With an Embedded Coder license, you can specify parameters to control identifier
formats, mangle length, scalar inlined parameters, and Simulink data object naming
rules. For more information, see “Customize Generated Identifier Naming Rules” on page
36-15.

28-15

28 Configuration for Simulink Coder

Identifier Name Collisions and Mangling

In identifier generation, a circumstance that would cause generation of two or more
identical identifiers is called a name collision. When a potential name collision exists,
unique name-mangling text is generated and inserted into each of the potentially
conflicting identifiers. Each set of name-mangling characters is unique for each
generated identifier.

Identifier Name Collisions with Referenced Models

Referenced models can introduce additional naming constraints. Within a model that
uses referenced models, collisions between the names of the models cannot exist.
When you generate code from a model that includes referenced models, the Maximum
identifier length parameter must be large enough to accommodate the root model name
and name-mangling text. A code generation error occurs if Maximum identifier length
is too small.

When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the identifier from the
referenced model is preserved. Name mangling is performed on the identifier from the
higher-level model.

For more information on referenced models, see “Parameterize Instances of a Reusable
Referenced Model” (Simulink).

28-16

 Specify Identifier Length to Avoid Naming Collisions

Specify Identifier Length to Avoid Naming Collisions

The length of a generated identifier is limited by the Maximum identifier length
parameter specified on the Symbols pane of the Configuration Parameters dialog box.
The Maximum identifier length field allows you to limit the number of characters in
function, type definition, and variable names. The default is 31 characters. This is also
the minimum length you can specify. The maximum is 256 characters.

When there is a potential name collision between two identifiers, name-mangling text
is generated. The text has the minimum number of characters required to avoid the
collision. The other symbol components are then inserted. If Maximum identifier
length is not large enough to accommodate full expansions of the other components, they
are truncated. To avoid this outcome, it is good practice to:

• Avoid name collisions by not using default block names (for example, Gain1,
Gain2...) when the model includes multiple blocks of the same type.

• For subsystems, make them atomic and reusable.
• Increase the Maximum identifier length parameter to accommodate the length of

the identifier you expect to generate.

28-17

28 Configuration for Simulink Coder

Specify Reserved Names for Generated Identifiers

You can specify a set of reserved keywords that the code generation process should
not use, facilitating code integration where functions and variables from external
environments are unknown in the Simulink model. To create a list of reserved names,
open the Configuration Parameters dialog box. On the Code Generation > Symbols
pane, enter the keywords in the “Reserved names” (Simulink Coder) field.

If your model contains MATLAB Function or Stateflow blocks, the code generation
process can use the reserved names specified for those blocks if you select Use the same
reserved names as Simulation Target (Simulink Coder) on the Code Generation >
Symbols pane.

28-18

 Reserved Keywords

Reserved Keywords

In this section...

“C Reserved Keywords” on page 28-19
“C++ Reserved Keywords” on page 28-20
“Reserved Keywords for Code Generation” on page 28-20
“Code Generation Code Replacement Library Keywords” on page 28-21

Generator keywords are reserved for internal use. Do not use them in models as
identifiers or function names. Also avoid using C reserved keywords in models as
identifiers or function names. If your model contains reserved keywords, code generation
does not complete and an error message appears. To address the error, modify your
model to use identifiers or names that are not reserved.

If you use the code generator to produce C++ code, your model must not contain the
“Reserved Keywords for Code Generation” on page 28-20 nor the “C++ Reserved
Keywords” on page 28-20.

Note: You can register additional reserved identifiers in the Simulink environment. For
more information, see “Specify Reserved Names for Generated Identifiers” on page 28-18.

C Reserved Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

28-19

28 Configuration for Simulink Coder

C++ Reserved Keywords

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

explicit operator this wchar_t

export private throw

Reserved Keywords for Code Generation

abs int8_T MAX_uint8_T* rtInf

asm int16_T MAX_uint16_T* rtMinusInf

bool int32_T MAX_uint32_T* rtNaN

boolean_T int64_T MAX_uint64_T SeedFileBuffer

byte_T INTEGER_CODE MIN_int8_T* SeedFileBufferLen

char_T LINK_DATA_BUFFER_SIZE MIN_int16_T* single

cint8_T LINK_DATA_STREAM MIN_int32_T* TID01EQ

cint16_T localB MIN_int64_T time_T

cint32_T localC MODEL true

creal_T localDWork MT uint_T

creal32_T localP NCSTATES uint8_T

creal64_T localX NULL uint16_T

cuint8_T localXdis NUMST uint32_T

cuint16_T localXdot pointer_T uint64_T

cuint32_T localZCE PROFILING_ENABLED UNUSED_PARAMETER

ERT localZCSV PROFILING_NUM_SAMPLES USE_RTMODEL

false matrix real_T VCAST_FLUSH_DATA

fortran MAX_int8_T* real32_T vector

28-20

 Reserved Keywords

HAVESTDIO MAX_int16_T* real64_T
id_t MAX_int32_T* RT
int_T MAX_int64_T RT_MALLOC
*Not reserved if you specify a replacement identifier.

Code Generation Code Replacement Library Keywords

The list of code replacement library reserved keywords for your development
environment varies depending on which libraries are registered. The list of available code
replacement libraries varies depending on other installed products (for example, a target
product), or if you used Embedded Coder to create and register custom code replacement
libraries.

To generate a list of reserved keywords for libraries currently registered in your
environment, use the following MATLAB function:
lib_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers()

This function returns an array of library keywords. Specifying the input argument is
optional.

Note: To list the libraries currently registered in your environment, use the MATLAB
command crviewer.

To generate a list of reserved keywords for a specific library that you are using to
generate code, call the function passing the name of the library as displayed in the
Code replacement library menu on the Code Generation > Interface pane of the
Configuration Parameters dialog box. For example,
lib_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU C99 Extensions')

Here is a partial example of the function output:
>> lib_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU C99 Extensions')

lib_ids =

 'exp10'

 'exp10f'

 'acosf'

 'acoshf'

28-21

28 Configuration for Simulink Coder

 'asinf'

 'asinhf'

 'atanf'

 'atanhf'

...

 'rt_lu_cplx'

 'rt_lu_cplx_sgl'

 'rt_lu_real'

 'rt_lu_real_sgl'

 'rt_mod_boolean'

 'rt_rem_boolean'

 'strcpy'

 'utAssert'

Note: Some of the returned keywords appear with the suffix $N, for example,
'rt_atan2$N'. $N expands into the suffix _snf only if nonfinite numbers are
supported. For example, 'rt_atan2$N' represents 'rt_atan2_snf' if nonfinite
numbers are supported and 'rt_atan2' if nonfinite numbers are not supported. As a
precaution, you should treat both forms of the keyword as reserved.

28-22

 Debug

Debug

In the Configuration Parameters dialog box, use parameters on the Diagnostics pane
and debugging parameters on the All Parameters tab to configure a model such that
the generated code and the build process are set for debugging. You can set parameters
that apply to the model compilation phase, the target language code generation phase, or
both.

Parameters in the following table will be helpful if you are writing TLC code for
customizing targets, integrating legacy code, or developing new blocks.

To... Select...

Display progress
information during
code generation in the
MATLAB Command
Window

“Verbose build” (Simulink Coder).Compiler output also
displays.

Prevent the build
process from deleting
the model.rtw file
from the build folder at
the end of the build

“Retain .rtw file” (Simulink Coder). This parameter is useful
if you are modifying the target files, in which case you need to
look at the model.rtw file.

Instruct the TLC
profiler to analyze the
performance of TLC
code executed during
code generation and
generate a report

“Profile TLC” (Simulink Coder). The report is in HTML format
and can be read in your Web browser.

Start the TLC debugger
during code generation

“Start TLC debugger when generating code” (Simulink Coder).
Alternatively, enter the argument -dc for the “System target
file” (Simulink Coder) parameter on the Code Generation
pane. To start the debugger and run a debugger script, enter -
df filename for System target file.

Generate a report
containing statistics
indicating how
many times the code
generator reads each

“Start TLC coverage when generating code” (Simulink Coder).
Alternatively, enter the argument -dg for the System Target
File parameter on the Code Generation pane.

28-23

28 Configuration for Simulink Coder

To... Select...

line of TLC code during
code generation
Halt a build if a user-
supplied TLC file
contains an %assert
directive that evaluates
to FALSE

“Enable TLC assertion” (Simulink Coder). Alternatively,
you can use MATLAB commands to control TLC assertion
handling.

To set the flag on or off, use the set_param command. The
default is off.

set_param(model, 'TLCAssertion', 'on|off')

To check the current setting, use get_param.

get_param(model, 'TLCAssertion')

Detect loss of tunability “Detect loss of tunability” (Simulink) on the Diagnostics >
Data Validity pane. You can use this parameter to report
loss of tunability when an expression is reduced to a numeric
expression. This can occur if a tunable workspace variable
is modified by Mask Initialization code, or is used in an
arithmetic expression with unsupported operators or functions.
Possible values are:

• none — Loss of tunability can occur without notification.
• warning — Loss of tunability generates a warning

(default).
• error — Loss of tunability generates an error.

For a list of supported operators and functions, see “Tunable
Expression Limitations” (Simulink Coder)

28-24

 Debug

To... Select...

Enable model
verification (assertion)
blocks

“Model Verification block enabling” (Simulink) on the All
Parameters. Use this parameter to enable or disable model
verification blocks such as Assert, Check Static Gap, and
related range check blocks. The diagnostic applies to generated
code as well as simulation behavior. For example, simulation
and code generation ignore this parameter when model
verification blocks are inside an S-function. Possible values are:

• User local settings

• Enable All

• Disable All

For Assertion blocks not disabled, generated code for a
model includes one of the following statements, depending
on the blocks input signal type (Boolean, real, or integer,
respectively).

utAssert(input_signal);

utAssert(input_signal != 0.0);

utAssert(input_signal != 0);

By default, utAssert does not change generated code.
For assertions to abort execution, you must enable them
by specifying the following make_rtw command for Code
Generation > “Make command” (Simulink Coder) parameter:

make_rtw OPTS="-DDOASSERTS"

Use the following variant if you want triggered assertions to
print the assertion statement instead of aborting execution:

make_rtw OPTS="-DDOASSERTS -DPRINT_ASSERTS"

utAssert is defined as #define utAssert(exp)
assert(exp).

To customize assertion behavior, provide your own definition
of utAssert in a handwritten header file that overrides
the default utAssert.h. For details on how to include a
customized header file in generated code, see “Integrate

28-25

28 Configuration for Simulink Coder

To... Select...

External Code by Using Model Configuration Parameters”
(Simulink Coder).

When running a model in accelerator mode, the Simulink
engine calls back to itself to execute assertion blocks instead
of using generated code. Thus, user-defined callbacks are still
called when assertions fail.

For more information about the TLC debugging options, see Debugging on “Target
Language Compiler” (Simulink Coder). Also, consider using the Model Advisor as a tool
for troubleshooting model builds.

More About
• “Tunable Expression Limitations” (Simulink Coder)
• “Integrate External Code by Using Model Configuration Parameters” (Simulink

Coder)
• “Target Language Compiler” (Simulink Coder)

28-26

29

Configuration in Embedded Coder

• “Configure Model for Code Generation Objectives by Using Code Generation Advisor”
on page 29-2

• “Configure Code Generation Objectives Programmatically” on page 29-9
• “Check Model and Configuration for Code Generation” on page 29-10
• “Embedded Coder Model Advisor Checks for Standards, Guidelines, and Code

Efficiency” on page 29-12
• “Create Custom Code Generation Objectives” on page 29-14
• “Configuration Variations” on page 29-20
• “Configure and Optimize Model with Configuration Wizard Blocks” on page 29-21
• “Create a Model Configured for Code Generation Using Model Templates” on page

29-30

29 Configuration in Embedded Coder

Configure Model for Code Generation Objectives by Using Code
Generation Advisor

In this section...

“High-Level Code Generation Objectives” on page 29-3
“Specify Objectives in Referenced Models” on page 29-3
“Configure Model Using Code Generation Advisor” on page 29-4
“Configure Model for Code Generation Objectives by Using Configuration Parameters
Dialog Box” on page 29-6

Consider how your application objectives, such as efficiency, traceability, and safety, map
to code generation parameters in a model configuration set. Parameters that you set in
the Solver, Data Import/Export, Diagnostics, and Code Generation panes in the
Configuration Parameters dialog box specify the behavior of a model in simulation and
the code generated for the model.

Before generating code, or as part of the code generation process, you can use the Code
Generation Advisor to review a model. When you choose to review a model before
generating code, you specify which model, subsystem, or referenced model the Code
Generation Advisor reviews. When you choose to review a model as part of the code
generation process, the Code Generation Advisor reviews the entire system. The Code
Generation Advisor uses the information presented in “Recommended Settings Summary
for Model Configuration Parameters” to determine the parameter values that meet
your objectives. When there is a conflict between multiple objectives, the higher-priority
objective takes precedence.

Setting code generation objectives, and then running the Code Generation Advisor
provides information on how to meet code generation objectives for your model. The
Code Generation Advisor does not alter the generated code. You can use the Code
Generation Advisor to make the suggested changes to your model. The generated code is
changed only after you modify your model and regenerate code. When you use the Code
Generation Advisor to set code generation objectives and check your model, the generated
code includes comments identifying which objectives you specified, the checks that the
Code Generation Advisor ran on the model, and the results of running the checks.

If a model uses a configuration reference (Simulink), you can run the Code Generation
Advisor to review your configuration parameter settings. but the Code Generation
Advisor cannot modify the configuration parameter settings.

29-2

 Configure Model for Code Generation Objectives by Using Code Generation Advisor

High-Level Code Generation Objectives

Depending on the type of application that your model represents, you are likely to have
specific high-level code generation objectives. For example, safety and traceability are
more critical than efficient use of memory. If you have specific objectives, you can quickly
configure your model to meet those objectives by selecting and prioritizing from these
code generation objectives:

• Execution efficiency (all targets) — Configure code generation settings to achieve fast
execution time.

• ROM efficiency (ERT-based targets) — Configure code generation settings to reduce
ROM usage.

• RAM efficiency (ERT-based targets) — Configure code generation settings to reduce
RAM usage.

• Traceability (ERT-based targets) — Configure code generation settings to provide
mapping between model elements and code.

• Safety precaution (ERT-based targets) — Configure code generation settings to
increase clarity, determinism, robustness, and verifiability of the code.

• Debugging (all targets) — Configure code generation settings to debug the code
generation build process.

• MISRA C:2012 guidelines (ERT-based targets) — Configure code generation settings
to increase compliance with MISRA C:2012 guidelines.

• Polyspace (ERT-based targets) — Configure code generation settings to prepare the
code for Polyspace analysis.

If you select the MISRA C:2012 guidelines code generation objective, the Code
Generation Advisor:

• Checks the model configuration settings for compliance with the MISRA C:2012
configuration setting recommendations.

• Checks for blocks that are not supported or recommended for MISRA C:2012
compliant code generation.

Specify Objectives in Referenced Models

When you check a model during the code generation process, you must specify the same
objectives in the top model and referenced models. If you specify different objectives for
the top model and referenced model, the build process generates an error.

29-3

29 Configuration in Embedded Coder

To specify different objectives for the top model and each referenced model, review the
models separately without generating code.

Configure Model Using Code Generation Advisor

This example shows how to use the Code Generation Advisor to check and configure your
model to meet code generation objectives:

1 On the menu bar, select Code > C/C++ Code > Code Generation Advisor.
2 In the System Selector window, select the model or subsystem that you want to

review, and then click OK.
3 In the Code Generation Advisor, on the Code Generation Objectives pane, select

the code generation objectives. As you select objectives, on the left pane, the Code
Generation Advisor updates the list of checks it runs on your model. If your model
is configured with an ERT-based target, more objectives are available. For this
example, the model is configured with an ERT-based target. If your objectives are
execution efficiency and traceability, in that priority, do the following:

a In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability is added
to Selected objectives - prioritized under Execution efficiency.

4 To run the checks listed in the left pane of the Code Generation Advisor, click Run
Selected Checks.

5 In the Code Generation Advisor window, review the results for Check model
configuration settings against code generation objectives by selecting it from
the left pane. The results for that check are displayed in the right pane.

29-4

 Configure Model for Code Generation Objectives by Using Code Generation Advisor

Check model configuration settings against code generation objectives
triggers a warning for these issues:

• Parameters are set to values other than the value recommended for the specified
code generation objectives.

• Selected code generation objectives differ from the objectives set in the model.

Click Modify Parameters to set:

• Parameters to the value recommended for the specified code generation
objectives.

• Code generation objectives in the model to the objectives specified in the Code
Generation Advisor.

6 In the Code Generation Advisor window, review the results for the remaining checks
by selecting them from the left pane. The results for the checks display in the right
pane.

29-5

29 Configuration in Embedded Coder

7 After reviewing the check results, you can choose to fix warnings and failures, as
described in “Fix a Model Check Warning or Failure” (Simulink).

When you specify an efficiency or Safety precaution objective, the Code Generation
Advisor includes additional checks. When you make changes to one of these additional
checks, previous check results can potentially become invalid and need to be rerun.

Configure Model for Code Generation Objectives by Using Configuration
Parameters Dialog Box

This example shows how to configure and check your model to meet code generation
objectives via the Configuration Parameters dialog box:

1 Open the Configuration Parameters dialog box. Select Code Generation.
2 Specify a system target file. If you specify an ERT-based target, more objectives are

available. For this example, choose an ERT-based target such as ert.tlc.
3 Click Set Objectives.
4 In the “Set Objectives — Code Generation Advisor Dialog Box” (Simulink Coder),

specify your objectives. For example, if your objectives are execution efficiency and
traceability, in that priority, do the following:

a In Available objectives, double-click Execution efficiency. Execution
efficiency is added to Selected objectives - prioritized.

b In Available objectives, double-click Traceability. Traceability is added
to Selected objectives - prioritized under Execution efficiency.

c To accept the objectives, click OK. In the Configuration Parameters dialog box,
Code Generation > General > Prioritized objectives is updated.

5 On the Configuration Parameters > Code Generation > General pane, click
Check Model.

29-6

 Configure Model for Code Generation Objectives by Using Code Generation Advisor

6 In the System Selector window, select the model or subsystem that you want to
review, and then click OK. The Code Generation Advisor opens and reviews the
model or subsystem that you specified.

7 In the Code Generation Advisor window, review the results by selecting a check from
the left pane. The results for that check display in the right pane.

8 After reviewing the check results, you can choose to fix warnings and failures, as
described in “Fix a Model Check Warning or Failure” (Simulink).

When you specify an efficiency or Safety precaution objective, the Code Generation
Advisor includes additional checks. When you make changes to one of these additional
checks, previous check results can potentially become invalid and need to be rerun.

For more information, see “Set Objectives — Code Generation Advisor Dialog Box”
(Simulink Coder)

Related Examples
• “Configure Code Generation Objectives Programmatically” on page 29-9

29-7

29 Configuration in Embedded Coder

• “Recommended Settings Summary for Model Configuration Parameters”
• “Code Generation Advisor Checks” (Simulink Coder)

29-8

 Configure Code Generation Objectives Programmatically

Configure Code Generation Objectives Programmatically

This example shows how to configure code generation objectives by writing a MATLAB
script or entering commands at the command line.

1 Specify a system target file. If you specify an ERT-based target, more objectives are
available. For this example, specify ert.tlc. model_name is the name or handle to
the model.

set_param(model_name, 'SystemTargetFile', 'ert.tlc');

2 Specify your objectives. For example, if your objectives are execution efficiency and
traceability, in that priority, enter:

set_param(model_name, 'ObjectivePriorities',...

{'Execution efficiency', 'Traceability'});

3 Execute the Code Generation Advisor, by using either the Code Generation Advisor
or in the Configuration Parameters dialog box. For more information, see “Configure
Model for Code Generation Objectives by Using Code Generation Advisor” on page
29-2.

When you specify a GRT-based system target file, you can specify an objective at the
command line. If you specify ROM efficiency, RAM efficiency, Traceability,
MISRA C:2012 guidelines, Polyspace, or Safety precaution, the build process
changes the objective to Unspecified because you have specified a value that is invalid
when using a GRT-based target.

Related Examples
• “Configure Model for Code Generation Objectives by Using Code Generation

Advisor” on page 29-2
• “Create Custom Code Generation Objectives” on page 29-14
• “Recommended Settings Summary for Model Configuration Parameters”
• “Code Generation Advisor Checks” (Simulink Coder)

29-9

29 Configuration in Embedded Coder

Check Model and Configuration for Code Generation

You can use the Model Advisor checks to assess model readiness to generate code.
To check and configure your model for code generation application objectives such as
traceability or debugging, use the Code Generation Advisor.

For information about See

Model Advisor “Run Model Checks” (Simulink)
Code Generation Advisor “Configure Model for Code Generation

Objectives by Using Code Generation
Advisor” on page 29-2

Checks available with Simulink Coder “Simulink Coder Checks” (Simulink Coder)
Checks available with Embedded Coder “Embedded Coder Checks”

To check model rtwdemo_throttlecntrl for code efficiency, use the Model Advisor.

1 Open rtwdemo_throttlecntrl. Save a copy as throttlecntrl in a writable
location on your MATLAB path.

2 To start the Model Advisor, select Analysis > Model Advisor > Model Advisor. A
dialog box opens showing the model system hierarchy.

3 Click throttlecntrl and then click OK. The Model Advisor window opens.
4 Expand By Task > Code Generation Efficiency. To check your model for code

generation efficiency, use the checks in the folder. By default, checks that do not
trigger an Update Diagram are selected. The checks available for code generation
efficiency depend on whether you have a Simulink Coder or Embedded Coder license.

5 In the left pane, select the remaining checks, and then select Code Generation
Efficiency.

6 In the right pane, select Show report after run and click Run Selected Checks.
The report shows a Run Summary that flags check warnings.

7 Review the report. The warnings highlight issues that impact code efficiency. For
more information about the report, see “View Model Advisor Reports” (Simulink).

Check Model During Code Generation

To review a model as part of the code generation process, use the Code Generation
Advisor .

29-10

 Check Model and Configuration for Code Generation

1 To select and prioritize your code generation objectives, on the Configuration
Parameters > Code Generation pane, click Set Objectives.

2 On the Configuration Parameters > Code Generation > General pane, select
one of the following from Check model before generating code:

• On (proceed with warnings)

• On (stop for warnings)

3 If you want to only generate code, select Generate code only. Otherwise clear the
check box to build an executable.

4 Apply your changes. In the model window, press Ctrl+B to generate code or build
the model.

If the Code Generation Advisor issues failures or warnings, and you specified:

• On (proceed with warnings) — The Code Generation Advisor window opens
while the build process proceeds. After the build process is complete, you can
review the results.

• On (stop for warnings) — The build process halts and displays the
Diagnostic Viewer. To continue, you must review and resolve the Code
Generation Advisor results or clear the Check model before generating code
parameter.

5 In the Code Generation Advisor window, review the results by selecting a check from
the left pane. The results for that check display in the right pane.

6 After reviewing the check results, you can choose to fix warnings and failures as
described in “Fix a Model Check Warning or Failure” (Simulink).

Note: When you specify an efficiency or Safety precaution objective, the Code
Generation Advisor includes additional checks. When you make changes to one of
these additional checks, previous check results can potentially become invalid and
need to be rerun.

For more information, see “Set Objectives — Code Generation Advisor Dialog Box”
(Simulink Coder)

29-11

29 Configuration in Embedded Coder

Embedded Coder Model Advisor Checks for Standards, Guidelines,
and Code Efficiency

To check that your model meets guidelines, standards, and is ready to generate code, you
can use the Model Advisor checks available with Embedded Coder.

• To start the Model Advisor, in the model window, select Analysis > Model Advisor >
Model Advisor.

• In the Model Advisor window, expand the By Task folder. The folder contains Model
Advisor checks that you can run to help accomplish the task.

For more information about the Model Advisor, see “Run Model Checks” (Simulink).

The table summarizes the Embedded Coder Model Advisor checks that are available in
the By Task folders.

By Task folder Model Advisor checks

Modeling
Standards for

• IEC 61508,
IEC 62304, ISO
26262, and EN
50128

• Modeling
Standards for
MAAB

“Check for blocks not recommended for C/C++ production code
deployment”

Code Generation
Efficiency

“Identify lookup table blocks that generate expensive out-of-range
checking code”

“Check output types of logic blocks”

“Identify questionable software environment specifications”

“Identify questionable code instrumentation (data I/O)”

“Identify blocks that generate expensive fixed-point and saturation
code”

“Identify blocks that generate expensive rounding code”

29-12

 Embedded Coder Model Advisor Checks for Standards, Guidelines, and Code Efficiency

By Task folder Model Advisor checks

“Identify questionable fixed-point operations”
Modeling
Standards for
DO-178C/DO-331

“Check for blocks not recommended for C/C++ production code
deployment”

“Check the hardware implementation”

“Identify questionable subsystem settings”
Modeling
Guidelines for
MISRA C:2012

“Check configuration parameters for MISRA C:2012”

“Check for blocks not recommended for MISRA C:2012”

“Check for unsupported block names”

“Check usage of Assignment blocks”

“Check for bitwise operations on signed integers”

“Check for recursive function calls”

“Check for switch case expressions without a default case”

“Check for equality and inequality operations on floating-point
values”

Related Examples
• “Select and Run Model Advisor Checks” (Simulink)
• “Simulink Coder Model Advisor Checks for Standards and Code Efficiency”

(Simulink Coder)
• “Modeling Guidelines for Model Configuration” on page 2-41

29-13

29 Configuration in Embedded Coder

Create Custom Code Generation Objectives

In this section...

“Specify Parameters in Custom Objectives” on page 29-14
“Specify Checks in Custom Objectives” on page 29-15
“Determine Checks and Parameters in Existing Objectives” on page 29-15
“Steps to Create Custom Objectives” on page 29-16

The Code Generation Advisor reviews your model based on objectives that you specify. If
the predefined efficiency, traceability, Safety precaution, and debugging objectives do not
meet your requirements, you can create custom objectives.

To create custom objectives:

• Create an objective and add parameters and checks to this new objective.
• Create an objective based on an existing objective, then add, modify, and remove the

parameters and checks within that new objective.

Specify Parameters in Custom Objectives

When you create a custom objective, you specify the values of configuration parameters
that the Code Generation Advisor reviews. You can use the following methods:

• addParam — Add parameters and specify the values that the Code Generation
Advisor reviews in Check model configuration settings against code
generation objectives.

• modifyInheritedParam — Modify inherited parameter values that the Code
Generation Advisor reviews in Check model configuration settings against code
generation objectives.

• removeInheritedParam — Remove inherited parameters from a new objective that
is based on an existing objective. When you select multiple objectives, if another
selected objective includes this parameter, the Code Generation Advisor reviews
the parameter value in Check model configuration settings against code
generation objectives.

29-14

 Create Custom Code Generation Objectives

Specify Checks in Custom Objectives

Objectives include the Check model configuration settings against code
generation objectives check by default. When you create a custom objective, you
specify the list of additional checks that are associated with the custom objective. You
can use the following methods:

• addCheck — Add checks to the Code Generation Advisor. When you select the custom
objective, the Code Generation Advisor displays the check, unless you specify an
additional objective with a higher priority that excludes the check.

For example, add a check to the Code Generation Advisor to include a custom check in
the automatic model checking process.

• excludeCheck — Exclude checks from the Code Generation Advisor. When you select
multiple objectives, if you specify an additional objective that includes this check as a
higher priority objective, the Code Generation Advisor displays this check.

For example, exclude a check from the Code Generation Advisor when a check takes a
long time to process.

• removeInheritedCheck — Remove inherited checks from a new objective that is based
on an existing objective. When you select multiple objectives, if another selected
objective includes this check, the Code Generation Advisor displays the check.

For example, remove an inherited check, rather than exclude the check, when the
check takes a long time to process, but the check is important for another objective.

Determine Checks and Parameters in Existing Objectives

When you base a new objective on an existing objective, you can determine what checks
and parameters the existing objective contains. The Code Generation Advisor contains
the list of checks in each objective.

For example, the Efficiency objective includes checks that you can see in the Code
Generation Advisor.

1 Open the rtwdemo_rtwecintro model.
2 Specify an ERT-based target.
3 On the model toolbar, select Code > C/C++ Code > Code Generation Advisor.
4 In the System Selector window, select the model or subsystem that you want to

review, and then click OK.

29-15

29 Configuration in Embedded Coder

5 In the Code Generation Advisor, on the Code Generation Objectives pane,
select the code generation objectives. As you select objectives, on the left pane,
the Code Generation Advisor updates the list of checks it runs on your model. For
this example, select Execution efficiency. In Available objectives, double-
click Execution efficiency. Execution efficiency is added to Selected
objectives - prioritized.

In the left pane, the Code Generation Advisor lists the checks for the Execution
efficiency objective. The first check, Check model configuration settings against
code generation objectives, lists parameters and values specified by the objective.
For example, the Code Generation Advisor displays the list of parameters and the
recommended values in the Execution efficiency objective. To see the list of
parameters and values:

1 Run Check model configuration settings against code generation objectives.
2 Click Modify Parameters.
3 Rerun the check.

In the check results, the Code Generation Advisor displays the list of parameters and
recommended values for the Execution efficiency objective.

Steps to Create Custom Objectives

To create a custom objective:

1 Create an sl_customization.m file.

• Specify custom objectives in a single sl_customization.m file only or the
software generates an error. This issue is true even if you have more than one
sl_customization.m file on your MATLAB path.

29-16

 Create Custom Code Generation Objectives

• Except for the matlabroot/work folder, do not place an sl_customization.m
file in your root MATLAB folder or its subfolders. Otherwise, the software ignores
the customizations that the file specifies.

2 Create an sl_customization function that takes a single argument. When
the software invokes the function, the value of this argument is the Simulink
customization manager. In the function:

• To create a handle to the code generation objective, use the
ObjectiveCustomizer constructor.

• To register a callback function for the custom objectives, use the
ObjectiveCustomizer.addCallbackObjFcn method.

• To add a call to execute the callback function, use the
ObjectiveCustomizer.callbackFcn method.

For example:

function sl_customization(cm)

%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;

index = objCustomizer.addCallbackObjFcn(@addObjectives);

objCustomizer.callbackFcn{index}();

end

3 Create a MATLAB callback function that:

• Creates code generation objective objects by using the
rtw.codegenObjectives.Objective constructor.

• Adds, modifies, and removes configuration parameters for each objective by using
the addParam, modifyInheritedParam, and removeInheritedParam methods.

• Includes and excludes checks for each objective by using the addCheck,
excludeCheck, and removeInheritedCheck methods.

• Registers objectives by using the register method.

The following example shows how to create an objective Reduce RAM Example.
Reduce RAM Example includes five parameters and three checks that the Code
Generation Advisor reviews.

function addObjectives

% Create the custom objective

obj = rtw.codegenObjectives.Objective('ex_ram_1');

29-17

29 Configuration in Embedded Coder

setObjectiveName(obj, 'Reduce RAM Example');

% Add parameters to the objective

addParam(obj, 'DefaultParameterBehavior', 'Inlined');

addParam(obj, 'BooleanDataType', 'on');

addParam(obj, 'OptimizeBlockIOStorage', 'on');

addParam(obj, 'EnhancedBackFolding', 'on');

addParam(obj, 'BooleansAsBitfields', 'on');

% Add additional checks to the objective

% The Code Generation Advisor automatically includes 'Check model

% configuration settings against code generation objectives' in every

% objective.

addCheck(obj, 'mathworks.design.UnconnectedLinesPorts');

addCheck(obj, 'mathworks.design.Update');

%Register the objective

register(obj);

end

The following example shows you how to create an objective My Traceability
Example based on the existing Traceability objective. The custom objective modifies,
removes, and adds parameters that the Code Generation Advisor reviews. It also
adds and removes checks from the Code Generation Advisor.

function addObjectives

% Create the custom objective from an existing objective

obj = rtw.codegenObjectives.Objective('ex_my_trace_1', 'Traceability');

setObjectiveName(obj, 'My Traceability Example');

% Modify parameters in the objective

modifyInheritedParam(obj, 'GenerateTraceReportSf', 'Off');

removeInheritedParam(obj, 'ConditionallyExecuteInputs');

addParam(obj, 'MatFileLogging', 'On');

% Modify checks in the objective

addCheck(obj, 'mathworks.codegen.SWEnvironmentSpec');

removeInheritedCheck(obj, 'mathworks.codegen.CodeInstrumentation');

%Register the objective

register(obj);

end

4 If you previously opened the Code Generation Advisor, close the model from which
you opened the Code Generation Advisor.

5 Refresh the customization manager. At the MATLAB command line, enter
sl_refresh_customizations.

6 Open your model and review the new objectives.

29-18

 Create Custom Code Generation Objectives

Related Examples
• “Configure Model for Code Generation Objectives by Using Code Generation

Advisor” on page 29-2
• “Configure Code Generation Objectives Programmatically” on page 29-9
• “Recommended Settings Summary for Model Configuration Parameters”
• “Code Generation Advisor Checks” (Simulink Coder)

29-19

29 Configuration in Embedded Coder

Configuration Variations

Every model contains one or more named configuration sets that specify model
parameters such as solver options, code generation options, and other choices. A model
can contain multiple configuration sets, but only one configuration set is active at a
time. For more information on configuration sets and how to view and edit them in the
Configuration Parameters dialog box, see “About Model Configurations” (Simulink).

A configuration set includes parameters that specify code generation in general. For
more information, see “Configure a Model for Code Generation” (Simulink Coder). With
Embedded Coder and an ERT system target file, more parameters are available for fine-
tuning to optimize and customize the appearance of the generated code.

Multiple configuration sets can be useful in embedded systems development. By defining
multiple configuration sets in a model, you can easily retarget code generation from
that model. For example, one configuration set can specify the default ERT target with
external mode support enabled for rapid prototyping. Another configuration set can
specify the ERT-based target for Visual C++® to generate production code for deployment
of the application. Activation of either configuration set fully reconfigures the model for
that type of code generation.

Related Examples
• “About Model Configurations” (Simulink)
• “Configure a Model for Code Generation” (Simulink Coder)

29-20

 Configure and Optimize Model with Configuration Wizard Blocks

Configure and Optimize Model with Configuration Wizard Blocks

The Embedded Coder software provides a library of Configuration Wizard blocks and
scripts to help you configure and optimize code generation from your models.

In this section...

“Configuration Wizard Block Library” on page 29-21
“Add a Configuration Wizard Block” on page 29-22
“Use Configuration Wizard Blocks to Configure Your Model” on page 29-23
“Create a Custom Configuration Wizard Block” on page 29-24

Configuration Wizard Block Library

The library provides a Configuration Wizard block that you can customize. It also
provides four preset Configuration Wizard blocks that update the active configuration
parameters for a specified goal.

Block Description

Custom MATLAB file Update active configuration parameters of
parent model by using a custom file

ERT (optimized for fixed-point) Update active configuration parameters
of parent model for ERT fixed-point code
generation

ERT (optimized for floating-point) Update active configuration parameters of
parent model for ERT floating-point code
generation

GRT (debug for fixed/floating-point) Update active configuration parameters
of parent model for GRT fixed- or floating-
point code generation with debugging
enabled

GRT (optimized for fixed/floating-point) Update active configuration parameters
of parent model for GRT fixed- or floating-
point code generation

29-21

29 Configuration in Embedded Coder

When you add one of the preset Configuration Wizard blocks to your model and
double-click it, a predefined MATLAB file script configures parameters of the active
configuration set without manual intervention. The preset blocks optimally configure the
parameters for one of the following cases:

• Fixed-point code generation with the ERT target
• Floating-point code generation with the ERT target
• Fixed-point or floating-point code generation with TLC debugging parameters

enabled, with the GRT target.
• Fixed-point or floating-point code generation with the GRT target

The Custom block provides an example MATLAB file script that you can adapt to your
requirements.

You can also set up the Configuration Wizard blocks to invoke the build process after
configuring the model.

Add a Configuration Wizard Block

The Configuration Wizard blocks are available in the Embedded Coder block library. To
use a Configuration Wizard block:

1 Open the model that you want to configure.
2 Open the Embedded Coder block library by typing the command rtweclib.

29-22

 Configure and Optimize Model with Configuration Wizard Blocks

3 Double-click the Configuration Wizards icon. The Configuration Wizards sublibrary
opens.

4 Select the Configuration Wizard block that you want to use and drag it into
your model. This model contains the ERT (optimized for fixed-point)
Configuration Wizard block.

5 If you want the Configuration Wizard block to invoke the build process after
configuration, right-click the Configuration Wizard block in your model, and select
Mask > Mask Parameters from the context menu. Then, select the Invoke build
process after configuration parameter. Do not change the Configure the model
for block parameter, unless you want to create a custom block and script. In that
case, see “Create a Custom Configuration Wizard Block” on page 29-24.

6 Click Apply and close the Mask Parameters dialog box.
7 Save the model.

Use Configuration Wizard Blocks to Configure Your Model

After you add a Configuration Wizard block to your model, to configure your model,
double-click the block. The script associated with the block sets parameters of the active
configuration set that are relevant to code generation (including selection of the target).
You can see that the parameters have changed by opening the Configuration Parameters
dialog box and examining the parameter settings.

If you selected the Invoke build process after configuration block parameter, the
script also initiates the code generation and build process.

29-23

29 Configuration in Embedded Coder

Note: To provide a quick way to switch between configurations, you can add more than
one Configuration Wizard block to your model.

Create a Custom Configuration Wizard Block

The Custom Configuration Wizard block and the associated MATLAB file script,
matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m, provide a starting point for
customization.

Set Up a Configuration Wizard Block

Set up a custom Configuration Wizard block and link it to a script. If you want to use the
block in more than one mode, it is advisable to create a Simulink library to contain the
block.

To begin, make a copy of the example script for later customization:

1 To store your custom script, create a folder. This folder must not be anywhere inside
the MATLAB folder structure (that is, it must not be under matlabroot).

The example refers to this folder as /my_wizards.
2 Add the folder to the MATLAB path. Save the path for future sessions.
3 Copy the example script rtwsampleconfig.m in the folder matlabroot/toolbox/

rtw/rtw (open) to the /my_wizards folder that you created. Then, rename the
script. This example uses the name my_configscript.m.

4 Open the example script into the MATLAB editor. Scroll to the end of the file and
enter the following line of code:

disp('Custom Configuration Wizard Script completed.');

This statement is used later as a test to see that your custom block has executed the
script.

5 Save your script and close the MATLAB editor.

The next task is to create a Simulink library and add a custom block to it.

1 Open the Embedded Coder block library and the Configuration Wizards sublibrary,
as described in “Add a Configuration Wizard Block” on page 29-22.

2 Select New > Library from the File menu of the Configuration Wizards sublibrary
window. An empty library window opens.

29-24

 Configure and Optimize Model with Configuration Wizard Blocks

3 Select the Custom MATLAB file block from the Configuration Wizards sublibrary
and drag it into the empty library window.

4 To distinguish your custom block from the original, edit the Custom MATLAB file
label under the block.

5 Select Save as from the File menu of the new library window. Save the library
to the /my_wizards folder, under your library name of choice. In this figure,
the library is saved as ex_custom_button and the block is labeled my_wizard
MATLAB-file.

The next task is to link the custom block to the custom script:

1 Right-click the block in your model and select Mask > Mask Parameters from the
context menu. The Configure the model for menu is set to Custom. When Custom
is selected, the Configuration function edit field is enabled so that you can enter
the name of a custom script.

2 In the Configuration function field, enter the name of your custom script . (Do not
enter the .m file name extension, which is implicit.)

3 By default, the Invoke build process after configuration parameter is cleared.
You can change the default for your custom block by selecting this option. For now,
leave this parameter cleared.

4 Click Apply and close the Mask Parameters dialog box.
5 Save the library.

29-25

29 Configuration in Embedded Coder

6 Close the Embedded Coder block library and the Configuration Wizards sublibrary.
Leave your custom library open for use in the next task.

Test your block and script in a model.

1 Open the vdp model by typing the command:

vdp

2 Open the Configuration Parameters dialog box and view the parameters by clicking
Code Generation in the list in the left pane of the dialog box.

3 Observe that vdp is configured, by default, for the GRT target. Close the
Configuration Parameters dialog box.

4 Select your custom block from your custom library. Drag the block into the vdp
model.

5 In the vdp model, double-click your custom block.
6 In the MATLAB window, you see the test message that you previously added to your

script:

Custom Configuration Wizard Script completed.

The test message indicates that the custom block executed the script.
7 Reopen the Configuration Parameters dialog box and view the Code Generation

pane again. The model is now configured for the ERT target.

Before applying further edits to your custom script, proceed to the next section to learn
about the operation and conventions of Configuration Wizard scripts.

29-26

 Configure and Optimize Model with Configuration Wizard Blocks

Create a Configuration Wizard Script

Create your custom Configuration Wizard script by copying and modifying the example
script, rtwsampleconfig.m.

The Configuration Function

The example script implements a single function without a return value. The function
takes a single argument cs:

function rtwsampleconfig(cs)

The argument cs is a handle to a proprietary object that contains information about the
active configuration set. The Simulink software obtains this handle and passes it in to
the configuration function when you double-click a Configuration Wizard block.

Your custom script must conform to this prototype. Your code must use cs as a “black-
box” object that transmits information to and from the active configuration set.

Access Configuration Set Parameters

To set parameters or obtain parameter values, use the Simulink set_param and
get_param functions.

Option names are passed in to set_param and get_param as character vectors
specifying an internal option name. The internal option name can be different from
the option label on the UI (for example, the Configuration Parameters dialog box).
The example configuration accompanies each set_param and get_param call with a
comment that correlates internal option names to UI option labels. For example:

set_param(cs,'LifeSpan','1'); % Application lifespan (days)

To obtain the current setting of an option in the active configuration set, call get_param.
Pass in the cs object as the first argument, followed by the internal option name. For
example, the following code excerpt tests the setting of the Create code generation
report option:

if strcmp(get_param(cs, 'GenerateReport'), 'on')

 ...

To set an option in the active configuration set, call set_param. Pass in the cs object
as the first argument, followed by one or more parameter/value pairs that specify the
internal option name and its value. For example, the following code excerpt turns off the
Support absolute time option:

29-27

29 Configuration in Embedded Coder

set_param(cs,'SupportAbsoluteTime','off');

Select a Target

A Configuration Wizard script must select a target configuration. The example script
uses the ERT target as a default. The script first stores character vector variables
that correspond to the required System target file, Template makefile, and Make
command settings:

stf = 'ert.tlc';

tmf = 'ert_default_tmf';

mc = 'make_rtw';

You select the system target file by passing the cs object and the stf character vector to
the switchTarget function:

switchTarget(cs,stf,[]);

Set the template makefile and make command options by using set_param calls:

set_param(cs,'TemplateMakefile',tmf);

set_param(cs,'MakeCommand',mc);

To select a target, your custom script must set up the character vector variables stf,
tmf, and mc and pass them to the calls.

Obtain Target and Configuration Set Information

The following utility functions and properties are provided so that your code can obtain
information about the current target and configuration set with the cs object:

• isValidParam(cs, 'option'): The option argument is an internal option name.
isValidParam returns true if option is a valid option in the context of the active
configuration set.

• getPropEnabled(cs, 'option'): The option argument is an internal option
name. Returns true if this option is enabled (that is, writable).

• IsERTTarget property: Your code can detect whether the currently selected target is
derived from the ERT target by checking the IsERTTarget property, as follows:

 isERT = strcmp(get_param(cs,'IsERTTarget'),'on');

You can use this information to determine whether the script must configure ERT-
specific parameters, for example:

29-28

 Configure and Optimize Model with Configuration Wizard Blocks

if isERT

 set_param(cs,'ZeroExternalMemoryAtStartup','off');

 set_param(cs,'ZeroInternalMemoryAtStartup','off');

 set_param(cs,'InitFltsAndDblsToZero','off');

 set_param(cs,'InlinedParameterPlacement',...

 'NonHierarchical');

 set_param(cs,'NoFixptDivByZeroProtection','on')

end

Invoke a Configuration Wizard Script from the Command Line

Configuration Wizard scripts can be run from the MATLAB command line.

Before invoking the script, you must open a model and instantiate a cs object to pass in
as an argument to the script. After running the script, you can invoke the build process
with the rtwbuild command. The following example opens, configures, and builds a
model.

open my_model;

cs = getActiveConfigSet ('my_model');

rtwsampleconfig(cs);

rtwbuild('my_model');

Related Examples
• “Generate Code with the Quick Start Tool” on page 34-10
• “Generate Code and Simulate Models in a Simulink Project”
• “Generate Code and Simulate Models with Simulink Project API”

29-29

29 Configuration in Embedded Coder

Create a Model Configured for Code Generation Using Model
Templates

Model templates provide you with a starting point for quickly developing models for
code generation. Embedded Coder templates provide starting models for the following
applications:

• Code Generation System. Create a model to get started with code generation.
• Exported functions. Create a model for generating code from function-call subsystems.
• Fixed-step, multirate. Create a fixed-step model with multiple rates for production

code generation.
• Fixed-step, single-rate. Create a fixed-step model with a single rate for production

code generation.

In the templates, traceability and reporting are turned on so that you can easily
evaluate your generated code. The model has System target file set to ert.tlc and is
configured to meet code generation objectives prioritized in the following order:

1 Execution efficiency
2 Traceability

To create a model using a model template:

1 On the MATLAB home tab, click Simulink.
2 In the Simulink start page, expand Embedded Coder.
3 Select a template.
4 Click Create. A new model that uses the template contents and settings appears in

the Simulink Editor window.

For more information, for example to create and use a template as a reference design, see
“Create a Template from a Model” (Simulink).

29-30

30

System Target File Configuration

• “Select a System Target File” on page 30-2
• “Configure STF-Related Code Generation Parameters” on page 30-7
• “Configure a Code Replacement Library” on page 30-17
• “Configure Standard Math Library for Target System” on page 30-18
• “Compare System Target File Support” on page 30-21

30 System Target File Configuration

Select a System Target File
To configure a model for code generation, follow the steps in “Select a Solver That
Supports Code Generation” (Simulink Coder) and “Select a System Target File from
STF Browser” (Simulink Coder). When you select a system target file, other model
configuration parameters change to serve requirements of the execution environment.
For example:

• Code interface parameters
• Build process parameters, such as the toolchain or template makefile
• Target hardware parameters, such as word size and byte ordering

After selecting a system target file, you can modify model configuration parameter
settings.

You can switch between different system target files in a single workflow for different
code generation purposes (for example, rapid prototyping versus product code
deployment). To switch, set up different configuration sets for the same model and
switch the active configuration set for the current operation. For more information on
how to set up configuration sets and change the active configuration set, see “Manage a
Configuration Set” (Simulink).

In this section...

“Select a Solver That Supports Code Generation” on page 30-2
“Select a System Target File from STF Browser” on page 30-3
“Select a System Target File Programmatically” on page 30-4
“Develop Custom System Target Files” on page 30-5

Select a Solver That Supports Code Generation

To build a model, the model configuration must select a solver that is compatible
with code generation for the system target file. Few system target files support code
generation with variable-step solvers or for models with a nonzero start time.

• Use Configuration Parameters > Solver > Type and select Fixed-step for GRT,
ERT, and ERT-based system target files.

• Use Configuration Parameters > Solver > Type and select Fixed-step or
Variable-step for Rapid Simulation (Rsim) or S-Function (rtwsfcn) system target
files.

30-2

 Select a System Target File

For more information, see “Time-Based Scheduling and Code Generation” on page 16-2.

When you try to build models with a nonzero start time using a system target file does
not support a nonzero start time, the code generator does not produce code. The build
process displays an error message. The Rapid Simulation (RSim) system target file
supports a nonzero start time when Configuration Parameters > RSim Target >
Solver selection is set to Use Simulink solver module. Other system target files
do not support a nonzero start time.

Select a System Target File from STF Browser

After you follow the steps in “Select a Solver That Supports Code Generation” (Simulink
Coder), use Configuration Parameters > Code Generation > System target
file and click the Browse button to open the System Target File Browser. Select a
system target file from the list. Your selection appears in the System target file field
(target.tlc).

If you use a system target file that does not appear in the System Target File Browser,
enter the name of your system target file in the System target file field.

You also can select a system target file programmatically from MATLAB code, as
described in “Select a System Target File Programmatically” on page 30-4.

After selecting a system target file, you can modify model configuration parameter
settings. Selecting a system target file for your model selects either the toolchain
approach or template makefile approach for build process control. For more information
about these approaches, see “Choose and Configure Build Process” on page 40-14.

If you want to switch between different system target files in a single workflow for
different code generation purposes, set up different configuration sets for the same
model. Switch the active configuration set for the current operation. This approach is
useful for switching between rapid prototyping and product code deployment. For more
information on how to set up configuration sets and change the active configuration set,
see “Manage a Configuration Set” (Simulink).

To select a system target file using the System Target File Browser,

1 Open the Code Generation pane of the Configuration Parameters dialog box.
2 Click the Browse button next to the System target file field. This button opens

the System Target File Browser. The browser displays a list of currently available

30-3

30 System Target File Configuration

system target files, including customizations. When you select a system target
file, the code generator automatically chooses the system target file, toolchain or
template makefile, and/or make command for that configuration.

The next step shows the System Target File Browser with the GRT system target file
selected.

3 Click the desired entry in the list of available configurations. The background of the
list box turns yellow to indicate that an unapplied choice has been made. To apply it,
click Apply or OK.

System Target File Browser

When you choose a system target file, the code generator selects the toolchain
or template makefile and/or make command for that configuration and displays
them in the System target file field. The description of the system target file
from the browser is placed below its name in the Code Generation pane. For
information each system target file, see “Compare System Target File Support” on
page 30-21.

Select a System Target File Programmatically

Simulink models store model-wide parameters and system target file-specific data
in configuration sets. Every configuration set contains a component that defines the
structure of a particular system target file and the current values of relevant options.
Simulink loads some of this information from the system target file that you specify. You
can configure models to generate alternative code by copying and modifying old or adding

30-4

 Select a System Target File

new configuration sets and browsing to select a new system target file. Then, you can
interactively select an active configuration from among these sets (only one configuration
set can be active at a given time).

Scripts that automate system target file selection must emulate this process.

To program system target file selection:

1 Obtain a handle to the active configuration set with a call to the
getActiveConfigSet function.

2 Define character vector variables that correspond to the required system target
file, toolchain or template makefile, and/or make command settings. For example,
for the ERT system target file, you would define variables for the character vectors
'ert.tlc', 'ert_default_tmf', and 'make_rtw'.

3 Select the system target file with a call to the switchTarget function. In the
function call, specify the handle for the active configuration set and the system
target file.

4 Set the TemplateMakefile and MakeCommand configuration parameters to the
corresponding variables created in step 2.

For example:

cs = getActiveConfigSet(model);

stf = 'ert.tlc';

tmf = 'ert_default_tmf';

mc = 'make_rtw';

switchTarget(cs,stf,[]);

set_param(cs,'TemplateMakefile',tmf);

set_param(cs,'MakeCommand',mc);

For more information about selecting system target files programmatically, see
switchTarget.

Develop Custom System Target Files

You can create your own system target files that interface with external code or
operating environments.

For more information on how to make custom system target files appear in the System
Target File Browser and display relevant controls, see “About Embedded Target
Development” (Simulink Coder) and the topics it references.

30-5

30 System Target File Configuration

See Also
getActiveConfigSet | switchTarget

More About
• “Configure STF-Related Code Generation Parameters” on page 30-7
• “Configure a Code Replacement Library” on page 30-17
• “Configure Standard Math Library for Target System” on page 30-18
• “Compare System Target File Support” on page 30-21
• “About Embedded Target Development” (Simulink Coder)

30-6

 Configure STF-Related Code Generation Parameters

Configure STF-Related Code Generation Parameters

Many model configuration parameters for code generation are specific to GRT, ERT, or
ERT-based system target files. For more information, see the following topics.

In this section...

“Specify Generated Code Interfaces” on page 30-7
“Configure Numeric Data Support” on page 30-12
“Configure Time Value Support” on page 30-12
“Configure Noninlined S-Function Support” on page 30-13
“Configure Model Function Generation and Argument Passing” on page 30-13
“Configure Code Reuse Support” on page 30-15

Specify Generated Code Interfaces

Use interface model configuration parameters to control which libraries to use when
generating code, whether to include support for an API in generated code, and other
interface options.

To... Select or Enter...

Specify the standard
math library that the
code generator uses when
generating code.

Select C89/C90 (ANSI), C99 (ISO), or C++03 (ISO) for the
Standard math library parameter on the All Parameters tab.

Selecting C89/C90 (ANSI) provides the ANSIa C set of library
functions. For example, selecting C89/C90 (ANSI) results in
generated code that calls sin() whether the input argument is
double precision or single precision. However, if you select C99
(ISO), the generated code calls the function sinf() when the input
argument is single precision. If your compiler supports the ISO®b

C math extensions, selecting the ISO C library can result in more
efficient code.

For more information, see “Standard math library” (Simulink Coder).

The options for this parameter have dependencies. See Interface
Dependencies.

30-7

30 System Target File Configuration

To... Select or Enter...

Specify an application-
specific library that the
code generator uses when
generating code.

If you generate application-specific C or C++ code for math functions
or operations, select a value for Code replacement library.
Otherwise, specify None.

For more information about code replacement libraries, see “Choose a
Code Replacement Library” on page 37-9 and “Code replacement
library” (Simulink Coder).

The options for this parameter have dependencies. See Interface
Dependencies.

Direct where the code
generator places fixed-point
and other utility code.

Select Auto or Shared location for Shared code placement. The
shared location directs code for utilities to be placed within the slprj
folder in your working folder, which is used for building referenced
models. If you select Auto,

• When the model contains Model blocks, places utility code within
the slprj/target/_sharedutils folder.

• When the model does not contain Model blocks, places utility code
in the build folder (generally, in model.c or model.cpp).

Specify text to be added to
the variable names used
when logging data to MAT-
files and to distinguish
logging data from code
generation and simulation
applications.

Enter a prefix or suffix, such as rt_ or _rt, for the MAT-file
variable name modifier parameter on the All Parameters tab.
The code generator prefixes or appends the text to the variable names
for system outputs, states, and simulation time specified in the Data
Import/Export pane. See “Log Program Execution Results” on page
42-2 for information on MAT-file data logging.

30-8

 Configure STF-Related Code Generation Parameters

To... Select or Enter...

Specify data exchange APIs
to be included in generated
code.

Select one or more C API options, the ASAP2 interface option, or
the External mode option. When you select External mode, other
options appear. The data exchange APIs are independent, and you
can select combinations of these APIs. For example, you could choose
C API and external mode.

For more information on working with these interfaces, see
“Exchange Data Between Generated and External Code Using C API”
on page 43-2, “Export ASAP2 File for Data Measurement and
Calibration” on page 44-2, and “What You Can Do with a Host/
Target Communication Channel” on page 41-2.

The options for this parameter have dependencies. See Interface
Dependencies.

a. ANSI is a registered trademark of the American National Standards Institute, Inc.
b. ISO is a registered trademark of the International Organization for Standardization.

Note: Before setting Standard math library or Code replacement library, verify
that your compiler supports the library you want to use. If you select a parameter value
that your toolchain does not support, compiler errors can occur. For example, if you select
standard math library C99 (ISO) and your compiler does not support the ISO C math
extensions, compile-time errors could occur.

When the Embedded Coder product is installed on your system, the Code Generation >
Interface pane expands to include several additional options. For descriptions of Code
Generation > Interface pane parameters, see “Model Configuration Parameters: Code
Generation Interface” (Simulink Coder).

Several interface parameters have dependencies on settings of other parameters. The
following table summarizes the dependencies.

Interface Dependencies

Parameter Dependencies? Dependency Details

Standard math library Yes Available values depend on Language
selection.

30-9

30 System Target File Configuration

Parameter Dependencies? Dependency Details

Code replacement library Yes Available values depend on product
licensing and other parameters.
For more information, see “Code
replacement library” (Simulink Coder).

Shared code placement No
Support: floating-point
numbers (ERT system target files
only)

No

Support: non-finite numbers Yes (ERT)
No (GRT)

For ERT system target files, enabled by
Support floating-point numbers

Support: complex numbers
(ERT system target files only)

No

Support: absolute time (ERT
system target files only)

No

Support: continuous time (ERT
system target files only)

Yes Requires that you disable Remove
error status field in real-time model
data structure.

Support: non-inlined S-
functions (ERT system target
files only)

Yes Requires that you enable Support
floating-point numbers and Support
non-finite numbers

Classic call interface Yes Requires that you disable Single
output/update function. For ERT
system target files, requires that
you enable Support floating-point
numbers.

Single output/update function Yes Disable for Classic call interface
Terminate function required
(ERT system target files only)

Yes

Code interface packaging Yes Available values depend on Language
selection.

Multi-instance code error
diagnostic

Yes Set Code interface packaging to
Reusable function or C++ class

30-10

 Configure STF-Related Code Generation Parameters

Parameter Dependencies? Dependency Details

Pass root-level I/O as (ERT
system target files only)

Yes Set Code interface packaging to
Reusable function

Use dynamic memory
allocation for model
initialization (ERT system target
files only)

Yes Set Code interface packaging to
Reusable function

MAT-file logging Yes For GRT system target files, requires
that you enable Support non-finite
numbers; for ERT system target files,
requires that you enable Support
floating-point numbers, Support
non-finite numbers, and Terminate
function required

MAT-file file variable name
modifier

Yes Enabled by MAT-file logging

Remove error status field in
real-time model data structure
(ERT system target files only)

Yes Requires that you disable Support:
continuous time.

Generate C API for: signals No
Generate C API for:
parameters

No

Generate C API for: states No
Generate C API for: root-level
I/O

No

ASAP2 interface No
External mode No
Transport layer Yes Enable External mode
MEX-file arguments Yes Enable External mode
Static memory allocation Yes Enable External mode
Static memory buffer size Yes Enable Static memory allocation

30-11

30 System Target File Configuration

Configure Numeric Data Support

By default, ERT system target files support code generation for integer, floating-point,
nonfinite, and complex numbers.

To Generate Code That Supports... Do...

Integer data only Clear Support floating-point numbers. If noninteger data or
expressions are encountered during code generation, an error
message reports the offending blocks and parameters.

Floating-point data Select Support floating-point numbers.
Nonfinite values (for example,
NaN, Inf)

Select Support floating-point numbers and Support non-
finite numbers.

Complex data Select Support complex numbers.

For more information, see “Model Configuration Parameters: Code Generation Interface”
(Simulink Coder).

Configure Time Value Support

Certain blocks require the value of absolute time, elapsed time, or continuous time.
Absolute time is the time from the start of program execution to the present time.
Elapsed time is the time elapsed between two trigger events. Depending on the blocks
used, your model could require adjustment of the configuration settings for supported
time values.

To... Select...

Generate code that creates
and maintains integer
counters for blocks that use
absolute or elapsed time
values (default).

Support absolute time. For further information on the allocation
and operation of absolute and elapsed timers, see “Absolute and
Elapsed Time Computation” (Simulink Coder). If you do not select
this parameter and the model includes a block that uses absolute or
elapsed time values, the build process generates an error.

Generate code for blocks
that rely on continuous time.

Support continuous time. If you do not select this parameter
and the model includes continuous-time blocks, the build process
generates an error.

For more information, see “Model Configuration Parameters: Code Generation Interface”
(Simulink Coder).

30-12

 Configure STF-Related Code Generation Parameters

Configure Noninlined S-Function Support

To generate code for noninlined S-Functions in a model, select Support noninlined
S-functions. The generation of noninlined S-functions requires floating-point and
nonfinite numbers. Thus, when you select Support non-inlined S-functions, the ERT
system target file selects Support floating-point numbers and Support non-finite
numbers.

When you select Support non-finite numbers and the model includes a C MEX S-
function that does not have a corresponding TLC implementation (for inlining code
generation), the build process generates an error.

Inlining S-functions is highly advantageous in production code generation, for example
in implementing device drivers. To enforce the use of inlined S-functions for code
generation, clear Support non-inlined S-functions.

When generating code for a model that contains noninlined S-functions with an
ERT system target file, there could be a mismatch between the simulation and code
generation results when either of the following is true:

• Model configuration parameter GenCodeOnly is set to off or Configuration
Parameters > Code Generation > Generate code only is cleared.

• Model configuration parameter ProdEqTarget is set to off.

To avoid such a mismatch, set ProdEqTarget to on or select Configuration
Parameters > Code Generation > Generate code only (or set GenCodeOnly to on).

Configure Model Function Generation and Argument Passing

For ERT system target files, you can configure model for how functions are generated
and how arguments are passed to the functions.

To... Do...

Generate model function calls
that are compatible with the
main program module of the pre-
R2012a GRT system target file
(grt_main.c or .cpp).

Select Classic call interface and MAT-file logging. In
addition, clearing Remove error status field in real-time
model data structure. Classic call interface provides a
quick way to use code generated in R2012a or higher with a
pre-R2012a GRT-based custom system target file by generating
wrapper function calls that interface to the generated code.

30-13

30 System Target File Configuration

To... Do...

Reduce overhead and use more
local variables by combining the
output and update functions in a
single model_step function.

Select Single output/update function

Errors or unexpected behavior can occur if a Model block is part
of a cycle and the model configuration enables “Single output/
update function” (Simulink Coder) (the default). See “Model
Blocks and Direct Feed through” (Simulink).

Generate a model_terminate
function for a model not designed
to run indefinitely.

Select Terminate function required (Simulink Coder). For
more information, see the description of model_terminate.

Generate reusable, reentrant
code from a model or subsystem.

Select Generate reusable code. See “Configure Code Reuse
Support” on page 30-15 for details.

Statically allocate model data
structures and access them
directly in the model code.

Clear Generate reusable code. The generated code is
not reusable or reentrant. See “Entry-Point Functions and
Scheduling” (Simulink Coder) for information on the calling
interface generated for model functions in this case.

Suppress the generation of an
error status field in the real-time
model data structure, rtModel,
for example, if you do not require
to log or monitor error messages.

Select Remove error status field in real-time model data
structure. Selecting this parameter can also cause the code
generator to omit the rtModel structure from the generated
code.

When generating code for multiple integrated models, set
this parameter the same for all of the models. Otherwise, the
integrated application could exhibit unexpected behavior.
For example, if you select the option in one model but not in
another, it is possible that the integrated application could not
register the error status.

Do not select this parameter if you select the MAT-file logging
option. The two options are incompatible.

30-14

 Configure STF-Related Code Generation Parameters

To... Do...

Open the Model Step Functions
dialog box preview and modify
the model_step function
prototype (see “Entry-Point
Functions and Scheduling”
(Simulink Coder)).

Click Configure Step Function. Based on the Function
specification value you select for your model_step function
(supported values include Default model-step function
and Model specific C prototype), you can preview and
modify the function prototype. Once you validate and apply
your changes, you can generate code based on your function
prototype modifications. For more information about using
the Configure Step Function button and the Model Step
Functions dialog box, see “Control Generation of Function
Prototypes” on page 26-2.

For more information, see “Model Configuration Parameters: Code Generation Interface”
(Simulink Coder).

Configure Code Reuse Support

For GRT, ERT, GRT-based, and ERT-based system target files, you can configure how a
model reuses code by setting the Configuration Parameters > Code Generation >
Code interface packaging parameter value to Reusable function.

The Configuration Parameters > Code Generation > Pass root-level I/O as
parameter provides options that control how model inputs and outputs at the root level of
the model are passed to the model_step function.

To... Select...

Pass each root-level model input and output
argument to the model_step function
individually (the default)

Code interface packaging > Reusable
function and Pass root-level I/O as >
Individual arguments.

Pack root-level input arguments and root-level
output arguments into separate structures that
are then passed to the model_step function

Code interface packaging > Reusable
function and Pass root-level I/O as >
Structure reference.

Pack root-level input arguments and root-level
output arguments into the model data structure
to support reentrant multi-instance code from a
model for ERT system target file

Code interface packaging > Reusable
function and Pass root-level I/O as > Part
of model data structure.

If using the Code interface packaging > Reusable function selection, consider
using the Use dynamic memory allocation for model initialization option to control

30-15

30 System Target File Configuration

whether an allocation function is generated. This option applies for ERT system target
files.

Sometimes, selecting Code interface packaging as Reusable function can generate
code that compiles but is not reentrant. For example, if a signal, DWork structure,
or parameter data has a storage class other than Auto, global data structures are
generated. To handle such cases, use the Multi-instance code error diagnostic
parameter to choose the severity levels for diagnostics.

Sometimes, the code generator is unable to generate valid and compilable code. For
example, if the model contains one of the following, the generated code is invalid.

• An S-function that is not code-reuse compliant
• A subsystem triggered by a wide function-call trigger

In these cases, the build terminates after reporting the problem.

For more information, see “Generate Reentrant Code from Top-Level Models” on page
34-20 and “Model Configuration Parameters: Code Generation Interface” (Simulink
Coder).

More About
• “Select a System Target File” on page 30-2
• “Configure a Code Replacement Library” on page 30-17
• “Configure Standard Math Library for Target System” on page 30-18
• “Compare System Target File Support” on page 30-21

30-16

 Configure a Code Replacement Library

Configure a Code Replacement Library

You can configure the code generator to change the code that it generates for functions
and operators such that the code meets application requirements. Configure the code
generator to apply a code replacement library (CRL) during code generation. If you have
Embedded Coder, you can develop and apply custom code replacement libraries.

For more information about replacing code, using code replacement libraries that
MathWorks provides, see “What Is Code Replacement?” on page 38-2 and “Code
Replacement Libraries” (Simulink Coder). For information about developing code
replacement libraries, see “What Is Code Replacement Customization?” on page
51-3.

More About
• “Select a System Target File” on page 30-2
• “Configure STF-Related Code Generation Parameters” on page 30-7
• “Configure Standard Math Library for Target System” on page 30-18
• “Compare System Target File Support” on page 30-21
• “Specify Generated Code Interfaces” on page 30-7

30-17

30 System Target File Configuration

Configure Standard Math Library for Target System

Specify standard library extensions that the code generator uses for math operations.
When you generate code for a new model or with a new configuration set object, the code
generator uses the ISO®/IEC 9899:1999 C (C99 (ISO)) library by default. For preexisting
models and configuration set objects, the code generator uses the library specified by the
Standard math library parameter.

If your compiler supports the ISO®/IEC 9899:1990 (C89/C90 (ANSI)) or ISO/IEC
14882:2003(C++03 (ISO)) math library extensions, you can change the standard math
library setting. The C++03 (ISO) library is an option when you select C++ for the
programming language.

The C99 library leverages the performance that a compiler offers over standard ANSI C.
When using the C99 library, the code generator produces calls to ISO C functions when
possible. For example, the generated code calls the function sqrtf(), which operates on
single-precision data, instead of sqrt().

To change the library setting, use the Configuration Parameters>All
Parameters>Standard math library parameter. The command-line equivalent is
TargetLangStandard.

Generate and Inspect ANSI C Code

1. Open the example model rtwdemo_clibsup.

30-18

 Configure Standard Math Library for Target System

2. Generate code.

Starting build procedure for model: rtwdemo_clibsup

Successful completion of code generation for model: rtwdemo_clibsup

3. Examine the code in the generated file rtwdemo_clibsup.c. Note that the code calls
the sqrt function.

 if (rtb_Abs2 < 0.0F) {

 rtb_Abs2 = -(real32_T)sqrt((real32_T)fabs(rtb_Abs2));

 } else {

 rtb_Abs2 = (real32_T)sqrt(rtb_Abs2);

 }

30-19

30 System Target File Configuration

Generate and Inspect ISO C Code

1. Change the setting of All Parameters>Standard math library to C99 (ISO).
Alternatively, at the command line, set TargetLangStandard to C99 (ISO).

2. Regenerate the code.

Starting build procedure for model: rtwdemo_clibsup

Successful completion of code generation for model: rtwdemo_clibsup

3. Rexamine the code in the generated file rtwdemo_clibsup.c. Now the generated
code calls the function sqrtf instead of sqrt.

 if (rtb_Abs2 < 0.0F) {

 rtb_Abs2 = -sqrtf(fabsf(rtb_Abs2));

 } else {

 rtb_Abs2 = sqrtf(rtb_Abs2);

 }

Related Information

• “Standard math library” (Simulink Coder)
• “Select a System Target File” (Simulink Coder)
• “Configure STF-Related Code Generation Parameters” (Simulink Coder)
• “Configure a Code Replacement Library” (Simulink Coder)
• “Compare System Target File Support” (Simulink Coder)
• “Replace Code Generated from Simulink Models” (Simulink Coder)

30-20

 Compare System Target File Support

Compare System Target File Support

A system target file (such as grt.tlc) defines a run-time environment. The code
generator uses the system target file to produce code intended for execution on certain
target hardware or operating system. The system target file invokes other run-time
environment-specific files. For more information on configuring model code generation
parameters for target hardware, see “Configure Run-Time Environment Options”
(Simulink Coder).

Different types of system target files support a selection of generated code features. In
the system target file, the value of the CodeFormat TLC variable and corresponding
rtwgensettings.DerivedFrom field value identify the system target file type and
generated code features. These selections control decisions made at several points in
the code generation process. These decisions include whether and how the model build
generates:

• Certain data structures (for example, SimStruct or rtModel)
• Static or dynamic memory allocation code
• Calling interface for generated model functions

For custom system target file development, follow these guidelines:

• If the system target file does not include a value for the CodeFormat TLC variable,
the default value is RealTime for generic real-time target (GRT). The corresponding
rtwgensettings.DerivedFrom field value is grt.tlc (default value).

• If you are developing a custom system target file and you have a license for
Embedded Coder software, consider setting the CodeFormat TLC variable
value to Embedded-C for embedded real-time target (ERT). The corresponding
rtwgensettings.DerivedFrom field value is ert.tlc. The ERT system target file
supports more generated code features than the GRT system target file.

The following example shows how the value for the CodeFormat TLC variable and
corresponding rtwgensettings.DerivedFrom field value are set in ert.tlc.

%assign CodeFormat = "Embedded-C"

/%

 BEGIN_RTW_OPTIONS

 rtwgensettings.DerivedFrom = 'ert.tlc';

 END_RTW_OPTIONS

%/

30-21

30 System Target File Configuration

Warning: You must use the value for the CodeFormat TLC variable with its
corresponding rtwgensettings.DerivedFrom field value to generated code for
the model. If none are explicitly selected, the default values correspond. For more
information, see “System Target File Structure” (Simulink Coder).

For a description of the optimized call interface generated by default for both the GRT
and ERT system target files, see “Entry-Point Functions and Scheduling” (Simulink
Coder).

The real-time model data structure (rtModel) encapsulates model-specific information in
a much more compact form than the SimStruct. Many efficiencies related to generated
code depend on generation of rtModel rather than SimStruct, including:

• Integer absolute and elapsed timing services
• Independent timers for asynchronous tasks
• Generation of improved C API code for signal, state, and parameter monitoring
• Pruning the data structure to minimize its size (ERT-derived system target files only)

For a description of the rtModeldata structure, see “Use the Real-Time Model Data
Structure” (Simulink Coder).

The following topics provide more information about generated code features:

In this section...

“Evaluate Product System Target Files” on page 30-22
“Compare Code Styles and STF Support” on page 30-25
“Compare Generated Code Features by Product” on page 30-26
“Compare Generated Code Features by STF” on page 30-29

Evaluate Product System Target Files

The following table lists supported system target files.

Note You can select from a range of system target files by using the System Target File
Browser. This selection lets you experiment with configuration options and save your
model with different configurations. However, you cannot build or generate code for

30-22

 Compare System Target File Support

non-GRT system target files, unless you have the required license on your system. For
example, you require Embedded Coder for ERT system target files, require Simulink
Desktop Real-Time for SLDRT system target files, and so on.

Selecting a system target file for your model selects either the toolchain approach or
template makefile approach for build process control. For more information about these
approaches, see “Choose and Configure Build Process” on page 40-14.

30-23

30 System Target File Configuration

System Target Files Available from System Target File Browser

System Target File File Names Reference
Embedded Coder (for PC or
UNIXa platforms)

ert.tlc

ert_shrlib.tlc

“Select a System Target File” on page
30-2

Create Visual C++b Solution
File for Embedded Coder

ert.tlc

(Requires RTW.MSVCBuild
as TMFc)

“Select a System Target File” on page
30-2

Embedded Coder for
AUTOSAR

autosar.tlc “Generate AUTOSAR-Compliant
C Code and Export ARXML
Descriptions”

Generic Real-Time (for PC or
UNIX platforms)

grt.tlc “Compare Generated Code Features
by STF” on page 30-29

Create Visual C++ Solution
File

grt.tlc

(Requires RTW.MSVCBuild
as TMFc)

“Compare Generated Code Features
by STF” on page 30-29

Rapid Simulation (default for
PC or UNIX platforms)

rsim.tlc “Accelerate, Refine, and Test Hybrid
Dynamic System on Host Computer
by Using RSim System Target File” on
page 46-2

Rapid Simulation for LCC
compiler

rsim.tlc “Accelerate, Refine, and Test Hybrid
Dynamic System on Host Computer
by Using RSim System Target File” on
page 46-2

Rapid Simulation for UNIX
platforms

rsim.tlc “Accelerate, Refine, and Test Hybrid
Dynamic System on Host Computer
by Using RSim System Target File” on
page 46-2

Rapid Simulation for Visual
C++ compiler

rsim.tlc “Accelerate, Refine, and Test Hybrid
Dynamic System on Host Computer
by Using RSim System Target File” on
page 46-2

30-24

 Compare System Target File Support

System Target File File Names Reference
S-Function for PC or UNIX
platforms

rtwsfcn.tlc “Accelerate Simulation, Reuse Code, or
Protect Intellectual Property by Using
S-Function Target” (Simulink Coder)

S-Function for LCC rtwsfcn.tlc “Accelerate Simulation, Reuse Code, or
Protect Intellectual Property by Using
S-Function Target” (Simulink Coder)

S-Function for UNIX
platforms

rtwsfcn.tlc “Accelerate Simulation, Reuse Code, or
Protect Intellectual Property by Using
S-Function Target” (Simulink Coder)

S-Function for Visual C++
compiler

rtwsfcn.tlc “Accelerate Simulation, Reuse Code, or
Protect Intellectual Property by Using
S-Function Target” (Simulink Coder)

ASAM-ASAP2 Data
Definition

asap2.tlc “Export ASAP2 File for Data
Measurement and Calibration” on
page 44-2

Simulink Desktop Real-Time sldrt.tlc

sldrtert.tlc

“Set External Mode Code Generation
Parameters” (Simulink Desktop Real-
Time)

Simulink Real-Time slrt.tlc “Simulink Real-Time Options Pane”
(Simulink Real-Time)

IDE Link capability idelink_grt.tlc

idelink_ert.tlc

Embedded IDE or target topics such
as “Model Setup” on page 72-2

a. UNIX is a registered trademark of The Open Group in the United States and other countries.
b. Visual C++ is a registered trademark of Microsoft Corporation.
c. Set RTW.MSVCBuild in the “Template makefile” (Simulink Coder) field. This creates and builds Visual C++ Solution

(.sln) file with Debug configuration.

Compare Code Styles and STF Support

The code generator produces two styles of code. One code style is suitable for rapid
prototyping (and simulation by using code generation). The other style is suitable for
embedded applications. The following table maps system target files to corresponding
code styles.

Code Styles Listed by System Target File

30-25

30 System Target File Configuration

System Target File Code Style Purpose

Embedded Coder
embedded real-time
(ERT)

Embedded A starting point for embedded application
development of C/C++ generated code

Simulink Coder generic
real-time (GRT)

Rapid
prototyping

A starting point for creating a rapid
prototyping target hardware that does not
use real-time operating system tasking
primitives and for verifying the generated
C/C++ code on your desktop computer

Rapid simulation (RSim) Rapid
prototyping

Provides non-real-time simulation on your
desktop computer and a high-speed or
batch simulation tool

S-function Rapid
prototyping

Creates a C MEX S-function for simulation
within another Simulink model

Simulink Desktop Real-
Time

Rapid
prototyping

Runs model in real time at interrupt
level while your desktop computer runs
Microsoft Windows in the background

Simulink Real-Time Rapid
prototyping

Runs model in real time on a desktop
computer running the Simulink Real-Time
kernel

Third-party vendors supply additional system target files for the code generator. For
more information about third-party products, see the MathWorks Connections program
web page: http://www.mathworks.com/products/connections.

Compare Generated Code Features by Product

The code generation process for real-time system target files (such as GRT) provides
many embedded code optimizations. GRT and ERT system target files have many
common features. But, selecting an ERT-based system target file offers more extensive
features. The system target file selection determines the available features for the code
generation product. The following table compares code features available with Simulink
Coder and features available with Embedded Coder.

Compare Code Generation Features for Simulink Coder Versus Embedded Coder

30-26

http://www.mathworks.com/products/connections

 Compare System Target File Support

Feature Simulink Coder Embedded Coder
rtModel data
structure

• Full rtModel structure
generated

• GRT variable declaration:
rtModel_model model_M_;

• rtModel is optimized for the
model

• Optional suppression of error
status field and data logging
fields

• ERT variable declaration:
RT_MODEL_model model_M_;

Custom storage
classes (CSCs)

Code generation ignores CSCs;
objects are assigned a CSC default
to Auto storage class

Code generation with CSCs is
supported

HTML code generation
report

Basic HTML code generation report Enhanced report with additional
detail and hyperlinks to the model

Symbol formatting Symbols (for signals, parameters,
and so on) are generated in
accordance with hard-coded default

Detailed control over generated
symbols.

User-defined
maximum identifier
length for generated
symbols

Supported Supported

Generation of
terminate function

Generated Option to suppress the terminate
function

Combined output/
update function

Separate output/update functions
are generated

Option to generate combined output/
update function

Optimized data
initialization

Not available Options to suppress generation of
unnecessary initialization code for
zero-valued memory, I/O ports, and
so on

Comments generation Basic options to include or suppress
comment generation

Options to include Simulink block
descriptions, Stateflow object
descriptions, and Simulink data
object descriptions in comments

Module Packaging
Features (MPF)

Not supported Extensive code customization
features (See “What Are User-

30-27

30 System Target File Configuration

Feature Simulink Coder Embedded Coder
Defined Data Types?” on page 21-2
and “Custom Storage Classes”.)

System target file-
optimized data types
header file

Requires full tmwtypes.h header
file

Generates optimized rtwtypes.h
header file, including definitions
required by the system target file

User-defined types User-defined types default to base
types in code generation

User-defined data type aliases are
supported in code generation

Rate grouping Not supported Supported
Auto-generation of
main program module

Not supported; static main program
module is provided.

Automated and customizable
generation of main program module
is supported (static main program
also available)

Reusable (multi-
instance) code
generation

Option to generate reusable code
with dynamic memory allocation

Option to generate reusable code
with static or dynamic memory
allocation

Software constraint
options

Support for floating point, complex,
and nonfinite numbers is enabled

Options to enable or disable support
for floating-point, complex, and
nonfinite numbers

Application life span Defaults to inf User-specified; determines most
efficient word size for integer timers

Software-in-the-loop
(SIL) testing

Model reference simulation target
can be used for SIL testing

Additional SIL testing support by
using auto-generation of SIL block

ANSIa-C/C++ code
generation

Supported Supported

ISOb-C/C++ code
generation

Supported Supported

GNU®c-C/C++ code
generation

Supported Supported

Generate scalar
inlined parameters as
#DEFINE statements

Not supported Supported

MAT-file variable
name modifier

Supported Supported

30-28

 Compare System Target File Support

Feature Simulink Coder Embedded Coder
Data exchange: C API,
ASAP2, external mode

Supported Supported

a. ANSI is a registered trademark of the American National Standards Institute, Inc.
b. ISO is a registered trademark of the International Organization for Standardization.
c. GNU is a registered trademark of the Free Software Foundation.

Compare Generated Code Features by STF

The code generator supports a selection of generated code features for different types of
system target files. In each system target file, the value of the CodeFormat TLC variable
identifies the set of features.

The following table summarizes how different system target files support applications:

Application System Target File (STF)
Fixed- or variable-step acceleration RSIM, S-Function, Model Reference
Fixed-step real-time deployment GRT, ERT, Simulink Real-Time, Simulink

Desktop Real-Time, ...

The following table summarizes the various options available for each System target
file selection, with the exceptions noted.

Features Supported in Code Generated for System Target Files (STF)

 System Target Files (STF)

Feature grt.tlc1 ert.tlc1 ert_shrlib.tlc1 rtwsfcn.tlc1 rsim.tlc1 sldrt.tlc1 slrt.tlc1 Other1

Static
memory
allocation

X X X X X

Dynamic
memory
allocation

X4, 5 X4, 5 X X X

Continuous
time

X X X X X X

C/C++ MEX
S-functions

X X X X X X

30-29

30 System Target File Configuration

 System Target Files (STF)

Feature grt.tlc1 ert.tlc1 ert_shrlib.tlc1 rtwsfcn.tlc1 rsim.tlc1 sldrt.tlc1 slrt.tlc1 Other1

(noninlined)
S-function
(inlined)

X X X X X X X

Minimize
RAM/ROM
usage

 X X2 X

Supports
external
mode

X X X X X

Rapid
prototyping

X X X X

Production
code

 X X2 X3

Batch
parameter
tuning and
Monte Carlo
methods

 X X

System-level
Simulator

 X

Executes in
hard real
time

X3 X3 X X X5

Non-
real-time
executable
included

X X X

Multiple
instances of
model

X4, 5 X4, 5 X4 X4, 5 X4, 5

30-30

 Compare System Target File Support

 System Target Files (STF)

Feature grt.tlc1 ert.tlc1 ert_shrlib.tlc1 rtwsfcn.tlc1 rsim.tlc1 sldrt.tlc1 slrt.tlc1 Other1

Supports
variable-
step solvers

 X X

Supports
SIL/PIL

 X X

1 System Target Files: grt.tlc - generic real-time target, ert.tlc - embedded real-time
target, ert_shrlib.tlc - embedded real-time target shared library), rtwsfcn.tlc - S-
Function, rsim.tlc - rapid simulation, sldrt.tlc - Simulink Desktop Real-Time, slrt.tlc
- Simulink Real-Time, and Other - The embedded real-time capabilities in Simulink
Coder support other system target files.

2Does not apply to GRT-based system target files. Applies only to an ERT-based system
target files.

3The default GRT and ERT rt_main files emulate execution of hard real time, and when
explicitly connected to a real-time clock execute in hard real time.

4You can generate code for multiple instances of a Stateflow chart or subsystem
containing a chart, except when the chart contains exported graphical functions or the
Stateflow model contains machine parented events.

5You must select the value Reusable function for Code interface packaging
(Simulink Coder) in the Code Generation > Interface pane of the Configuration
Parameters dialog box.

More About
• “Select a System Target File” on page 30-2
• “Configure STF-Related Code Generation Parameters” on page 30-7
• “Configure a Code Replacement Library” on page 30-17
• “Configure Standard Math Library for Target System” on page 30-18

30-31

31

Internationalization Support in
Simulink Coder

31 Internationalization Support in Simulink Coder

Internationalization and Code Generation

Internationalization support in software development tooling is vital for enabling
efficient globalization. If there is any possibility of future collaboration with others across
locales, consider internationalization from project inception. Internationalization can
prevent rework or having to develop a new model design. The relevant requirement
concerns locale settings.

In this section...

“Locale Settings” on page 31-2
“Prepare to Generate Code for Mixed Languages and Locales” on page 31-2
“Character Set Limitations” on page 31-3
“XML Escape Sequence Replacements” on page 31-3
“Generate and Review Code with Mixed Languages and Mixed Locales” on page
31-3

Locale Settings

On a computer, a locale setting defines the language (character set encoding) for the user
interface and the display formats for information such as time, date, and currency. The
encoding dictates the number of characters that a locale can render. For example, the
US-ASCII coded character set (codeset) defines 128 characters. A Unicode® codeset, such
as UTF-8, defines more than 1,100,000 characters.

For code generation, the locale setting determines the character set encoding of
generated file content. To avoid garbled text or incorrectly displayed characters, the
locale setting for your MATLAB session must be compatible with the setting for your
compiler and operating system. For information on finding and changing the operating
system setting, see “Internationalization” (MATLAB) or see the operating system
documentation.

To check a model for characters that cannot be represented in the locale setting of your
current MATLAB session, use the Simulink Model Advisor check “Check model for
foreign characters” (Simulink).

Prepare to Generate Code for Mixed Languages and Locales

To prepare to generate code for a model, identify:

31-2

 Internationalization and Code Generation

• The operating system locale.
• The locale of the MATLAB session.
• Code generation requirements for:

• Target Language Compiler files
• Code generation template files that include comments (requires Embedded Coder)

Character Set Limitations

Target language compiler files support user default encoding only. To produce
international, custom generated code that is portable, use the 7-bit ASCII character set.

XML Escape Sequence Replacements

The code generator replaces characters that are not represented in the character set
encoding of a model with XML escape sequences. Escape sequence replacements occur for
block, signal, and Stateflow object names that appear in:

• Generated code comments
• Code generation reports
• Block paths logged to MAT-files
• Block paths logged to C API files model_capi.c (or .cpp) and model_capi.h

Generate and Review Code with Mixed Languages and Mixed Locales

This example shows how to use the code generator to generate and review code for use in
mixed languages and mixed locales.

Before using this example, see “Internationalization and Code Generation” (Simulink
Coder) or “Internationalization and Code Generation”.

The rtwdemo_unicode model configuration uses the Embedded Coder (R) ert.tlc
system target file. To see internationalization and localization support with Simulink
Coder®, configure the model to use the grt.tlc system target file. The example
indicates the support that is specific to Embedded Coder® (for example, code generation
templates).

The model configuration specifies files and settings that control how the code generator
handles localization for:

31-3

31 Internationalization Support in Simulink Coder

• C and C++ API interfaces
• Code generation template (CGT) files (requires Embedded Coder®)
• Target Language Compiler (TLC) files that apply code customizations (requires

Embedded Coder®)

Open the example model rtwdemo_unicode.

Labels in the model appear in multiple languages (Arabic, Chinese, English, German,
and Japanese) and various Unicode symbols.

model = 'rtwdemo_unicode';

open_system(model);

Verify Locale Settings

Verify that the locale setting for your MATLAB® software is compatible with your
compiler. See the documentation for your operating system or the following MATLAB
documentation:

• “Set Locale on Windows Platforms” (MATLAB)
• “Set Locale on Linux Platforms” (MATLAB)
• “Set Locale on Mac Platforms” (MATLAB)

Verify Model for Use of Foreign Characters

to verify the model for characters that the code generator cannot represent in the model's
current character set encoding, use the Simulink® Model Advisor check Check model
for foreign characters.

31-4

 Internationalization and Code Generation

1. Open the Model Advisor in Simulink®. Select Analysis > Model Advisor > Model
Advisor. Or, in the Command Window, type:

modeladvisor('rtwdemo_unicode')

Loading Model Advisor cache…

Warning: Cannot load an object of class

'SDRSLHDLWAPlugin':

Its class cannot be found.

Warning: Cannot load an object of class

'SDRSLHDLWAPlugin':

Its class cannot be found.

Model Advisor cache loaded. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

Updating Model Advisor cache…

Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

2. Expand By Product.

3. Expand Simulink.

4. Select Check model for foreign characters

5. Click Run This Check.

6. Review the results. Several warnings appear. Verify that the characters in the model
can be represented in the current character set encoding.

7. Close the Model Advisor.

Code Generation Template Files

To use a code generation template file with unicode characters when generating code,
complete these steps (requires Embedded Coder®). Otherwise, go to the next section.

1. Open the Configuration Parameters dialog box.

2. Navigate to the Code Generation > Template pane. The model is configured to use
the code generation template file rtwdemo_unicode.cgt. That file adds comments
to the top of generated code files. For the code generator to apply escape sequence
replacements for the .cgt file, enable replacements by specifying:

<encodingIn = "encoding-name">

31-5

31 Internationalization Support in Simulink Coder

3. Open the file /toolbox/rtw/rtwdemos/rtwdemo_unicode.cgt.

edit rtwdemo_unicode.cgt

4. Find the line of code that enables escape sequence replacements for the character set
encoding UTF-8.

<encodingIn = "UTF-8">

5. Close the file /toolbox/rtw/rtwdemos/rtwdemo_unicode.cgt.

Generated File Customization Template

To use file customization templates with unicode characters when generating code,
complete these steps (requires Embedded Coder®). Otherwise, go to the next section.

You can specify customizations to generated code files by using TLC code. TLC files
support user default encoding only. To produce international custom generated code that
is portable, use the 7-bit ASCII character set.

1. Open the Configuration Parameters dialog box.

2. Navigate to the Code Generation > Template pane. The model is configured to
use the code customization file example_file_process.tlc. That file customizes the
generated code just before the code generator writes the code files. For example, the file
adds a C source file, corresponding include file, and #define and #include statements.

3. Open the file /toolbox/rtw/rtwdemos/example_file_process.tlc.

edit example_file_process.tlc

4. Before generating code, uncomment the following line of code:

%% %assign ERTCustomFileTest = TLC_TRUE%

5. Close the file /toolbox/rtw/rtwdemos/rtwdemo_unicode.cgt.

Generate C Code

Generate C code and a code generation report.

evalc('rtwbuild(''rtwdemo_unicode'')');

31-6

 Internationalization and Code Generation

Review the Generated Code

For characters that are not in the current MATLAB® character set encoding, the code
generator uses escape sequence replacements to render characters correctly in the code
generation report.

1. If the code generation report for model rtwdemo_unicode is not open, in the
Command Window, type:

coder.report.open('rtwdemo_unicode')

2. Review the generated code in rtwdemo_unicode.c and rtwdemo_unicode.h.
Names of model elements appear in code comments as replacement names in the local
language.

3. Open the Traceability Report. The report maintains traceability information, even
when the name contains characters that are not represented in the current encoding.
Names of model elements appear in the report as replacement names in the local
language.

4. Scroll down to and click the code location link for the first Chart (State
'Selection' <S2>:23). The report view changes to show the corresponding code in
rtwdemo_unicode.c.

5. In the code comment, click the <S2>:23 link. The model window shows the chart in a
new tab.

6. In the model window, right-click that chart. Select C/C++ Code > Navigate to C/C++
Code. The report view changes to show the named constant section of code for that chart.

7. Close the code generation report, Model Advisor, and model. In the Command Window,
type:

coder.report.close();

bdclose('all');

Generate C++ Code

Generate C++ code and a code generation report.

1. Open the model.

model = 'rtwdemo_unicode';

31-7

31 Internationalization Support in Simulink Coder

open_system(model);

2. Change Configuration Parameters > Code Generation > Language to C++. Or, in
the Command Window, type:

set_param('rtwdemo_unicode','TargetLang','C++');

3. Change Configuration Parameters > Code Generation > Interface > Code
interface packaging to C++ class. Or, in the Command Window, type:

set_param('rtwdemo_unicode','CodeInterfacePackaging','C++ class');

4. Generate C++ code and a code generation report.

evalc('rtwrebuild(''rtwdemo_unicode'')');

5. To see internationalization and localization support, review the generated code. See
Review the Generated Code.

6. Close the code generation report and model. In the Command Window, type:

coder.report.close();

bdclose('all');

More About
• “Locale Settings for MATLAB Process” (MATLAB)

31-8

32

Internationalization Support in
Embedded Coder

32 Internationalization Support in Embedded Coder

Internationalization and Code Generation

Internationalization support in software development tooling is vital to enabling
efficient globalization. If there is a remote possibility that you could collaborate in the
future with others across locales, consider internationalization from project inception.
Internationalization can prevent rework or having to develop a new model design. The
relevant requirement concerns locale settings.

In this section...

“Locale Settings” on page 32-2
“Prepare to Generate Code for Mixed Languages and Locales” on page 32-2
“Character Set Limitations” on page 32-3
“XML Escape Sequence Replacements” on page 32-3
“CGT Files and XML Escape Sequence Replacements” on page 32-3
“Generate and Review Code with Mixed Languages and Mixed Locales” on page
32-4

Locale Settings

On a computer, a locale setting defines the language (character set encoding) for the user
interface and the display formats for information such as time, date, and currency. The
encoding dictates the number of characters that a locale can render. For example, the
US-ASCII coded character set (codeset) defines 128 characters. A Unicode codeset, such
as UTF-8, defines more than 1,100,000 characters.

For code generation, the locale setting determines the character set encoding of
generated file content. To avoid garbled text or incorrectly displayed characters, the
locale setting for your MATLAB session must be compatible with the setting for your
compiler and operating system. For information on finding and changing the operating
system setting, see “Internationalization” (MATLAB) or see the operating system
documentation.

To check a model for characters that cannot be represented in the locale setting of your
current MATLAB session, use the Simulink Model Advisor check “Check model for
foreign characters” (Simulink).

32-2

 Internationalization and Code Generation

Prepare to Generate Code for Mixed Languages and Locales

To prepare to generate code for a model, identify:

• The operating system locale.
• The locale of the MATLAB session.
• Code generation requirements for:

• Target Language Compiler files
• Code generation template files that include comments (requires Embedded Coder)

Character Set Limitations

Target language compiler files support user default encoding only. To produce
international, custom generated code that is portable, use the 7-bit ASCII character set.

XML Escape Sequence Replacements

The code generator replaces characters that are not represented in the character set
encoding of a model with XML escape sequences. Escape sequence replacements occur for
block, signal, and Stateflow object names that appear in:

• Generated code comments
• Code generation reports
• Block paths logged to MAT-files
• Block paths logged to C API files model_capi.c (or .cpp) and model_capi.h

CGT Files and XML Escape Sequence Replacements

The code generator replaces characters that are not represented in the character set
encoding for a model with XML escape sequences. Escape sequence replacements occur
for block, signal, and Stateflow object names that appear in Comments in code generation
template (CGT) files.

By default, code generation template files do not contain character set encoding
information. The operating system reads the files, using its current encoding, regardless
of the encoding that you use to write the file. You can enable escape sequence
replacements by adding the following token at the top of the template file:

32-3

32 Internationalization Support in Embedded Coder

<encodingIn = "encoding">

Replace encoding with a string that names a standard character encoding scheme, such
as UTF-8, ISO-8859–1, or windows-1251.

This example shows content from the file rtwdemo_unicode.cgt in a MATLAB session for
windows-1251. The example uses the encodingIn token to set the encoding to UTF–8,
which is the correct value for code generation.

Generate and Review Code with Mixed Languages and Mixed Locales

This example shows how to use the code generator to generate and review code for use in
mixed languages and mixed locales.

Before using this example, see “Internationalization and Code Generation” (Simulink
Coder) or “Internationalization and Code Generation”.

The rtwdemo_unicode model configuration uses the Embedded Coder (R) ert.tlc
system target file. To see internationalization and localization support with Simulink
Coder®, configure the model to use the grt.tlc system target file. The example
indicates the support that is specific to Embedded Coder® (for example, code generation
templates).

The model configuration specifies files and settings that control how the code generator
handles localization for:

32-4

 Internationalization and Code Generation

• C and C++ API interfaces
• Code generation template (CGT) files (requires Embedded Coder®)
• Target Language Compiler (TLC) files that apply code customizations (requires

Embedded Coder®)

Open the example model rtwdemo_unicode.

Labels in the model appear in multiple languages (Arabic, Chinese, English, German,
and Japanese) and various Unicode symbols.

model = 'rtwdemo_unicode';

open_system(model);

Verify Locale Settings

Verify that the locale setting for your MATLAB® software is compatible with your
compiler. See the documentation for your operating system or the following MATLAB
documentation:

• “Set Locale on Windows Platforms” (MATLAB)
• “Set Locale on Linux Platforms” (MATLAB)
• “Set Locale on Mac Platforms” (MATLAB)

Verify Model for Use of Foreign Characters

to verify the model for characters that the code generator cannot represent in the model's
current character set encoding, use the Simulink® Model Advisor check Check model
for foreign characters.

32-5

32 Internationalization Support in Embedded Coder

1. Open the Model Advisor in Simulink®. Select Analysis > Model Advisor > Model
Advisor. Or, in the Command Window, type:

modeladvisor('rtwdemo_unicode')

Loading Model Advisor cache…

Warning: Cannot load an object of class

'SDRSLHDLWAPlugin':

Its class cannot be found.

Warning: Cannot load an object of class

'SDRSLHDLWAPlugin':

Its class cannot be found.

Model Advisor cache loaded. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

Updating Model Advisor cache…

Model Advisor cache updated. For new customizations, to update the cache, use the Advisor.Manager.refresh_customizations method.

2. Expand By Product.

3. Expand Simulink.

4. Select Check model for foreign characters

5. Click Run This Check.

6. Review the results. Several warnings appear. Verify that the characters in the model
can be represented in the current character set encoding.

7. Close the Model Advisor.

Code Generation Template Files

To use a code generation template file with unicode characters when generating code,
complete these steps (requires Embedded Coder®). Otherwise, go to the next section.

1. Open the Configuration Parameters dialog box.

2. Navigate to the Code Generation > Template pane. The model is configured to use
the code generation template file rtwdemo_unicode.cgt. That file adds comments
to the top of generated code files. For the code generator to apply escape sequence
replacements for the .cgt file, enable replacements by specifying:

<encodingIn = "encoding-name">

32-6

 Internationalization and Code Generation

3. Open the file /toolbox/rtw/rtwdemos/rtwdemo_unicode.cgt.

edit rtwdemo_unicode.cgt

4. Find the line of code that enables escape sequence replacements for the character set
encoding UTF-8.

<encodingIn = "UTF-8">

5. Close the file /toolbox/rtw/rtwdemos/rtwdemo_unicode.cgt.

Generated File Customization Template

To use file customization templates with unicode characters when generating code,
complete these steps (requires Embedded Coder®). Otherwise, go to the next section.

You can specify customizations to generated code files by using TLC code. TLC files
support user default encoding only. To produce international custom generated code that
is portable, use the 7-bit ASCII character set.

1. Open the Configuration Parameters dialog box.

2. Navigate to the Code Generation > Template pane. The model is configured to
use the code customization file example_file_process.tlc. That file customizes the
generated code just before the code generator writes the code files. For example, the file
adds a C source file, corresponding include file, and #define and #include statements.

3. Open the file /toolbox/rtw/rtwdemos/example_file_process.tlc.

edit example_file_process.tlc

4. Before generating code, uncomment the following line of code:

%% %assign ERTCustomFileTest = TLC_TRUE%

5. Close the file /toolbox/rtw/rtwdemos/rtwdemo_unicode.cgt.

Generate C Code

Generate C code and a code generation report.

evalc('rtwbuild(''rtwdemo_unicode'')');

32-7

32 Internationalization Support in Embedded Coder

Review the Generated Code

For characters that are not in the current MATLAB® character set encoding, the code
generator uses escape sequence replacements to render characters correctly in the code
generation report.

1. If the code generation report for model rtwdemo_unicode is not open, in the
Command Window, type:

coder.report.open('rtwdemo_unicode')

2. Review the generated code in rtwdemo_unicode.c and rtwdemo_unicode.h.
Names of model elements appear in code comments as replacement names in the local
language.

3. Open the Traceability Report. The report maintains traceability information, even
when the name contains characters that are not represented in the current encoding.
Names of model elements appear in the report as replacement names in the local
language.

4. Scroll down to and click the code location link for the first Chart (State
'Selection' <S2>:23). The report view changes to show the corresponding code in
rtwdemo_unicode.c.

5. In the code comment, click the <S2>:23 link. The model window shows the chart in a
new tab.

6. In the model window, right-click that chart. Select C/C++ Code > Navigate to C/C++
Code. The report view changes to show the named constant section of code for that chart.

7. Close the code generation report, Model Advisor, and model. In the Command Window,
type:

coder.report.close();

bdclose('all');

Generate C++ Code

Generate C++ code and a code generation report.

1. Open the model.

model = 'rtwdemo_unicode';

32-8

 Internationalization and Code Generation

open_system(model);

2. Change Configuration Parameters > Code Generation > Language to C++. Or, in
the Command Window, type:

set_param('rtwdemo_unicode','TargetLang','C++');

3. Change Configuration Parameters > Code Generation > Interface > Code
interface packaging to C++ class. Or, in the Command Window, type:

set_param('rtwdemo_unicode','CodeInterfacePackaging','C++ class');

4. Generate C++ code and a code generation report.

evalc('rtwrebuild(''rtwdemo_unicode'')');

5. To see internationalization and localization support, review the generated code. See
Review the Generated Code.

6. Close the code generation report and model. In the Command Window, type:

coder.report.close();

bdclose('all');

More About
• “Locale Settings for MATLAB Process” (MATLAB)

32-9

33

Source Code Generation in Simulink
Coder

• “Configure Model, Generate Code, and Simulate” on page 33-2
• “Configure Model and Generate Code” on page 33-13
• “Configure Data Interface” on page 33-20
• “Call External C Functions” on page 33-29
• “Reload Generated Code” on page 33-36
• “Manage Build Process Folders” on page 33-37
• “Manage Build Process Files” on page 33-42
• “Manage Build Process File Dependencies” on page 33-52
• “Add Build Process Dependencies” on page 33-62
• “Enable Build Process for Folder Names with Spaces” on page 33-69
• “Code Generation of Matrices and Arrays” on page 33-76
• “Generate Shared Utility Code” on page 33-80
• “Manage the Shared Utility Code Checksum” on page 33-84
• “Generate Shared Utility Code for Fixed-Point Functions” on page 33-89
• “Generate Shared Utility Code for Custom Data Types” on page 33-91
• “Cross-Release Shared Utility Code Reuse” on page 33-93
• “Cross-Release Code Integration” on page 33-96
• “Generate Code Using Simulink® Coder™” on page 33-105

33 Source Code Generation in Simulink Coder

Configure Model, Generate Code, and Simulate

In this section...

“About This Example” on page 33-2
“Functional Design of the Model” on page 33-3
“View the Top Model” on page 33-3
“View the Subsystems” on page 33-4
“Simulation Test Environment” on page 33-5
“Run Simulation Tests” on page 33-10
“Key Points” on page 33-11
“Learn More” on page 33-12

About This Example

Learning Objectives

• Learn about the functional behavior of the example model.
• Learn about the role of the example test harness and its components.
• Run simulation tests on a model.

Prerequisites

• Ability to open and modify Simulink models and subsystems.
• Understand subsystems and how to view subsystem details.
• Understand referenced models and how to view referenced model details.
• Ability to set model configuration parameters.

Required Files

Before you use each example model file, place a copy in a writable location and add it to
your MATLAB path.

• rtwdemo_throttlecntrl model file
• rtwdemo_throttlecntrl_testharness model file

33-2

 Configure Model, Generate Code, and Simulate

Functional Design of the Model

This example uses a simple, but functionally complete, example model of a throttle
controller. The model features redundant control algorithms. The model highlights a
standard model structure and a set of basic blocks in algorithm design.

View the Top Model

Open rtwdemo_throttlecntrl and save a copy as throttlecntrl in a writable
location on your MATLAB path.

Note: This model uses Stateflow software.

The top level of the model consists of the following elements:

Subsystems PI_ctrl_1

PI_ctrl_2

Define_Throt_Param

Pos_Command_Arbitration

Top-level input pos_rqst

fbk_1

fbk_2

33-3

33 Source Code Generation in Simulink Coder

Top-level output pos_cmd_one

pos_cmd_two

ThrotComm1

Signal routing
Omit blocks that change the value of a
signal, such as Sum and Integrator

The layout uses a basic architectural style for models:

• Separation of calculations from signal routing (lines and buses)
• Partitioning into subsystems

You can apply this style to a wide range of models.

View the Subsystems

Explore two of the subsystems in the top model.

1 If not already open, open throttlecntrl.

Two subsystems in the top model represent proportional-integral (PI) controllers,
PI_ctrl_1 and PI_ctrl_2. At this stage, these identical subsystems, use identical
data. If you have Embedded Coder, you can use these subsystems in an example that
shows how to “Customize Function Interface and File Packaging”.

2 Open the PI_ctrl_1 subsystem.

33-4

 Configure Model, Generate Code, and Simulate

The PI controllers in the model are from a library, a group of related blocks or
models for reuse. Libraries provide one of two methods for including and reusing
models. The second method, model referencing, is described in “Simulation Test
Environment” on page 33-5. You cannot edit a block that you add to a model
from a library. Edit the block in the library so that instances of the block in different
models remain consistent.

3 Open the Pos_Command_Arbitration subsystem. This Stateflow chart performs
basic error checking on the two command signals. If the command signals are too far
apart, the Stateflow diagram sets the output to a fail_safe position.

4 Close throttlecntrl.

Simulation Test Environment

To test the throttle controller algorithm, incorporate it into a test harness. A test harness
is a model that evaluates the control algorithm and offers the following benefits:

• Separates test data from the control algorithm.
• Separates the plant or feedback model from the control algorithm.
• Provides a reusable environment for multiple versions of the control algorithm.

The test harness model for this example implements a common simulation testing
environment consisting of the following parts:

33-5

33 Source Code Generation in Simulink Coder

• Unit under test
• Test vector source
• Evaluation and logging
• Plant or feedback system
• Input and output scaling

Explore the simulation testing environment.

1 Open the test harness model rtwdemo_throttlecntrl_testharness and save
a copy as throttlecntrl_testharness in a writable location on your MATLAB
path.

2 Set up your throttlecntrl model as the control algorithm of the test harness.

a Open the Unit_Under_Test block and view the control algorithm.
b View the model reference parameters by right-clicking the Unit_Under_Test

block and selecting Block Parameters (ModelReference).

33-6

 Configure Model, Generate Code, and Simulate

rtwdemo_throttlecntrl appears as the name of the referenced model.
c Change the value of Model name to throttlecntrl.
d Update the test harness model diagram by clicking Simulation > Update

Diagram.

The control algorithm is the unit under test, as indicated by the name of the Model
block, Unit_Under_Test.

The Model block provides a method for reusing components. From the top model, it
allows you to reference other models (directly or indirectly) as compiled functions. By
default, Simulink software recompiles the model when the referenced models change.
Compiled functions have the following advantages over libraries:

33-7

33 Source Code Generation in Simulink Coder

• Simulation time is faster for large models.
• You can directly simulate compiled functions.
• Simulation requires less memory. Only one copy of the compiled model is in

memory, even when the model is referenced multiple times.
3 Open the test vector source, implemented in this test harness as the Test_Vectors

subsystem.

The subsystem uses a Signal Builder block for the test vector source. The block has
data that drives the simulation (PosRequest) and provides the expected results
used by the Verification subsystem. This example test harness uses only one set
of test data. Typically, create a test suite that fully exercises the system.

4 Open the evaluation and logging subsystem, implemented in this test harness as
subsystem Verification.

A test harness compares control algorithm simulation results against golden data
— test results that exhibit the desired behavior for the control algorithm as certified
by an expert. In the Verification subsystem, an Assertion block compares the
simulated throttle value position from the plant against the golden value from the

33-8

 Configure Model, Generate Code, and Simulate

test harness. If the difference between the two signals is greater than 5%, the test
fails and the Assertion block stops the simulation.

Alternatively, you can evaluate the simulation data after the simulation completes
execution. Perform the evaluation with either MATLAB scripts or third-party
tools. Post-execution evaluation provides greater flexibility in the analysis of data.
However, it requires waiting until execution is complete. Combining the two methods
can provide a highly flexible and efficient test environment.

5 Open the plant or feedback system, implemented in this test harness as the Plant
subsystem.

The Plant subsystem models the throttle dynamics with a transfer function in
canonical form. You can create plant models to varying levels of fidelity. It is
common to use different plant models at different stages of testing.

6 Open the input and output scaling subsystems, implemented in this test harness as
Input_Signal_Scaling and Output_Signal_Scaling.

33-9

33 Source Code Generation in Simulink Coder

The subsystems that scale input and output perform the following primary functions:

• Select input signals to route to the unit under test.
• Select output signals to route to the plant.
• Rescale signals between engineering units and units that are writable for the unit

under test.
• Handle rate transitions between the plant and the unit under test.

7 Save and close throttlecntrl_testharness.

Run Simulation Tests

1 Check that your working folder is set to a writable folder, such as the folder into
which you placed copies of the example model files.

2 Open your copy of the test harness model, throttlecntrl_testharness.
3 Start a test harness model simulation. When the simulation is complete, the

following results appear.

33-10

 Configure Model, Generate Code, and Simulate

The lower-right hand plot shows the difference between the expected (golden)
throttle position and the throttle position that the plant calculates. If the difference
between the two values is greater than ±0.05, the simulation stops.

4 Save and close throttle controller and test harness models.

Key Points

• A basic model architecture separates calculations from signal routing and partitions
the model into subsystems

• Two options for model reuse include block libraries and model referencing.
• If you represent your control algorithm in a test harness as a Model block, specify the

name of the control algorithm model in the Model Reference Parameters dialog box.

33-11

33 Source Code Generation in Simulink Coder

• A test harness is a model that evaluates a control algorithm. Typically, a harness
consists of a unit under test, a test vector source, evaluation and logging, a plant or
feedback system, and input and output scaling components.

• The unit under test is the control algorithm being tested.
• The test vector source provides the data that drives the simulation which generates

results used for verification.
• During verification, the test harness compares control algorithm simulation results

against golden data and logs the results.
• The plant or feedback component of a test harness models the environment that is

being controlled.
• When developing a test harness,

• Scale input and output components.
• Select input signals to route to the unit under test.
• Select output signals to route to the plant.
• Rescale signals between engineering units and units that are writable for the unit

under test.
• Handle rate transitions between the plant and the unit under test.

• Before running simulation or completing verification, consider checking a model with
the Model Advisor.

Learn More

• “Support Model Referencing” (Simulink Coder)
• “Code Generation” (Simulink Coder)
• “Signal Groups” (Simulink)

33-12

 Configure Model and Generate Code

Configure Model and Generate Code

In this section...

“About This Example” on page 33-13
“Configure the Model for Code Generation” on page 33-14
“Save Your Model Configuration as a MATLAB Function” on page 33-15
“Check Model Conditions and Configuration Settings” on page 33-16
“Generate Code for the Model” on page 33-16
“Review the Generated Code” on page 33-17
“Generate an Executable” on page 33-18
“Key Points” on page 33-19

About This Example

Learning Objectives

• Configure a model for code generation.
• Apply model checking tools to discover conditions and configuration settings resulting

in generation of inaccurate or inefficient code.
• Generate code from a model.
• Locate and identify generated code files.
• Review generated code.

Prerequisites

• Ability to open and modify Simulink models and subsystems.
• Ability to set model configuration parameters.
• Ability to use the Simulink Model Advisor.
• Ability to read C code.
• An installed, supported C compiler.

Required Files

rtwdemo_throttlecntrl model file

33-13

http://www.mathworks.com/support/compilers/

33 Source Code Generation in Simulink Coder

Configure the Model for Code Generation

Model configuration parameters determine the method for generating the code and the
resulting format.

1 Open rtwdemo_throttlecntrl and save a copy as throttlecntrl in a writable
location on your MATLAB path.

2 Open the Configuration Parameters dialog box, Solver pane. To generate code for a
model, you must configure the model to use a fixed-step solver. The following table
shows the solver configuration for this example.

Parameter Setting Effect on Generated Code

Type Fixed-step Maintains a constant
(fixed) step size, which
is required for code
generation

Solver discrete (no

continuous states)

Applies a fixed-step
integration technique
for computing the state
derivative of the model

Fixed-step size .001 Sets the base rate; must
be the lowest common
multiple of the rates in the
system

3 Open the Code Generation > General pane and note that the System target file
is set to grt.tlc.

Note: The GRT (Generic Real-Time Target) configuration requires a fixed-step
solver. However, the rsim.tlc system target file supports variable step code
generation.

33-14

 Configure Model and Generate Code

The system target file (STF) defines an environment for generating and building
code for execution on a certain hardware or operating system platform. For example,
one property of a system target file is the value for the CodeFormat TLC variable.
The GRT configuration requires a fixed step solver and the rsim.tlc supports variable
step code generation.

4 Open the Code Generation > Custom Code pane and under Include list of
additional, select Include directories. The following path appears in the text
field:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

This folder includes files that are required to build an executable for the model.
5 Close the dialog box.

Save Your Model Configuration as a MATLAB Function

You can save the settings of model configuration parameters as a MATLAB function by
using the getActiveConfigSet function. In the MATLAB Command Window, enter:

thcntrlAcs = getActiveConfigSet('throttlecntrl');

thcntrlAcs.saveAs('throttlecntrlModelConfig');

You can then use the resulting function (for example, throttlecntrlModelConfig) to:

• Archive the model configuration.
• Compare different model configurations by using differencing tools.
• Set the configuration of other models.

For example, you can set the configuration of model myModel to match the configuration
of the throttle controller model by opening myModel and entering:

myModelAcs = throttlecntrlModelConfig;

attachConfigSet('myModel', myModelAcs, true);

setActiveConfigSet('myModel', myModelAcs.Name);

For more information, see “Save a Configuration Set” (Simulink) and “Load a Saved
Configuration Set” (Simulink).

33-15

33 Source Code Generation in Simulink Coder

Check Model Conditions and Configuration Settings

Before generating code for a model, use the Simulink Model Advisor to check the model
for conditions and configuration settings. This check finds issues that can result in
inaccurate or inefficient code.

1 Open throttlecntrl.
2 Start the Model Advisor by selecting Analysis > Model Advisor > Model Advisor.

A dialog box opens showing the model system hierarchy.
3 Click throttlecntrl and then click OK. The Model Advisor window opens.
4 Expand By Product and Embedded Coder. By default, checks that do not trigger

an Update Diagram, with one exception, are selected.
5 In the left pane, select the remaining checks and select Embedded Coder.
6 In the right pane, select Show report after run and click Run Selected Checks.

The report shows a Run Summary that flags check warnings.
7 Review the report. The warnings highlight issues for embedded systems. At this

point, you can ignore them. For more information about reports, see “View Model
Advisor Reports” (Simulink).

Generate Code for the Model

1 Open throttlecntrl.
2 In the Configuration Parameters dialog box, select Code Generation > Generate

code only and click Apply.
3 On the Code Generation > Report pane, select Create code generation report

and click Apply.
4 With the model open, initiate code generation and the build process for the model by

using any of the following options:

• Click the Build Model button.
• Press Ctrl+B.
• Select Code > C/C++ Code > Build Model.
• Invoke the rtwbuild command from the MATLAB command line.
• Invoke the slbuild command from the MATLAB command line.

33-16

 Configure Model and Generate Code

Watch the messages that appear in the MATLAB Command Window. The code
generator produces standard C and header files, and an HTML code generation
report. The code generator places the files in a build folder, a subfolder named
throttlecntrl_grt_rtw under your current working folder.

Review the Generated Code

1 Open Model Explorer, and in the Model Hierarchy pane, expand the node for the
throttlecntrl model, and select the Code for node.

2 In the Contents pane, select HTML Report. Model Explorer displays the HTML
code generation report for the throttle controller model.

3 In the HTML report, click the link for the generated C model file and review the
generated code. Look for these items in the report:

• Identification, version, timestamp, and configuration comments.
• Links to help you navigate within and between files
• Data definitions
• Scheduler code
• Controller code
• Model initialization and termination functions
• Call interface for the GRT system target file — output, update, initialization,

start, and terminate
4 Save and close throttlecntrl.

Consider examining the following files. In the HTML report Contents pane, click the
links. Or, in your working folder, explore the generated code subfolder.

File Description

throttlecntrl.c C file that contains the scheduler,
controller, initialization, and interface code

throttlecntrl_data.c C file that assigns values to generated data
structures

throttlecntrl.h Header file that defines data structures
throttlecntrl_private.h Header file that defines data used only by

the generated code

33-17

33 Source Code Generation in Simulink Coder

File Description

throttlecntrl_types.h Header file that defines the model data
structure

For more information, see “Manage Build Process File Dependencies” (Simulink Coder).

At this point, consider logging data to a MAT-file. For an example, see “Log Data for
Analysis” (Simulink Coder).

Generate an Executable

1 Open throttlecntrl.
2 In the Configuration Parameters dialog box, clear the Code Generation >

Generate code only check box and click Apply.
3 Press Ctrl+B. Watch the messages in the MATLAB Command Window. The

code generator uses a template make file associated with your system target file
selection to create an executable file. You can run this program on your workstation,
independent of external timing and events.

4 Check your working folder for the filethrottlecntrl.exe.
5 Run the executable. In the Command Window, enter !throttlecntrl. The !

character passes the command that follows it to the operating system, which runs
the standalone program.

The program produces one line of output in the Command Window:

** starting the model **

At this point, consider logging data to a MAT-file. For an example, see “Log Data for
Analysis” (Simulink Coder).

Tip: For UNIX platforms, run the executable in the Command Window with the syntax
!./executable_name. If preferred, run the executable from an OS shell with the
syntax ./executable_name. For more information, see “Run External Commands,
Scripts, and Programs” (MATLAB).

33-18

 Configure Model and Generate Code

Key Points

• To generate code, change the model configuration to specify a fixed-step solver then
select a system target file. Using the grt.tlc file requires a fixed-step solver. If the
model contains continuous time blocks, you can use a variable-step solver with the
rsim.tlc system target file.

• After debugging a model, consider configuring a model with parameter inlining
enabled.

• Use the getActiveConfigSet function to save a model configuration for future use
or to apply it to another model.

• Before generating code, consider checking a model with the Model Advisor.
• The code generator places generated files in a subfolder (model_grt_rtw) of your

working folder.

More About
• “Code Generation” (Simulink Coder)
• “Configuration Reuse” (Simulink)
• “Run Model Checks” (Simulink)

33-19

33 Source Code Generation in Simulink Coder

Configure Data Interface

About This Example

Learning Objectives

• Configure the data interface for code generated for a model.
• Control the name, data type, and data storage class of signals and parameters in

generated code.

Prerequisites

• Understanding ways to represent and use data and signals in models.
• Familiarity with representing data constructs as data objects.
• Ability to read C code.

Required File

rtwdemo_throttlecntrl_datainterface model file

Declare Data

Most programming languages require that you declare data before using it. The
declaration specifies the following information:

Data Attribute Description

Scope The region of the program that has access to the data
Duration The period during which the data is resident in memory
Data type The amount of memory allocated for the data
Initialization An initial value, a pointer to memory, or NULL. If you do not

provide an initial value, most compilers assign a zero value or a null
pointer.

The following data types are supported for code generation.

33-20

 Configure Data Interface

Supported Data Types

Name Description

double Double-precision floating point
single Single-precision floating point
int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer
Fixed-point data types 8-, 16-, 32-bit word lengths

A storage class is the scope and duration of a data item. For more information about
storage classes, see

• “Override Default Parameter Behavior by Creating Global Variables in the Generated
Code” (Simulink Coder)

• “Signal Storage Class” (Simulink Coder)
• “Storage Classes for Block States” (Simulink Coder)

Use Data Objects

In Simulink models and Stateflow charts, the following methods are available for
declaring data: data objects and direct specification. This example uses the data object
method. Both methods allow full control over the data type and storage class. You can
mix the two methods in a single model.

In the MATLAB and Simulink environment, you can use data objects in various ways.
This example focuses on the following types of data objects:

• Signal
• Parameter
• Bus

To configure the data interface for your model using the data object method, in the
MATLAB base workspace, you define data objects. Then, associate them with your

33-21

33 Source Code Generation in Simulink Coder

Simulink model or embedded Stateflow chart. When you build your model, the build
process uses the associated base workspace data objects in the generated code.

You can set the values of the data object properties, which include:

• Data type
• Storage class
• Value (parameters)
• Initial value (signals)
• Alias (define a different name in the generated code)
• Dimension (typically inherited for parameters)
• Complexity (inherited for parameters)
• Unit (physical measurement unit)
• Minimum value
• Maximum value
• Description (used to document your data objects — does not affect simulation or code

generation)

You can create and inspect base workspace data objects by entering commands in the
MATLAB Command Window or by using Model Explorer. To explore base workspace
signal data objects, use these steps:

1 Open rtwdemo_throttlecntrl_datainterface and save a copy as
throttlecntrl_datainterface in a writable location on your MATLAB path.

2 Open Model Explorer.
3 Select Base Workspace.
4 Select the pos_cmd_one signal object for viewing.

33-22

 Configure Data Interface

You can also view the definition of a signal object. In the MATLAB Command
Window, enter pos_cmd_one:

pos_cmd_one =

Signal with properties:

 CoderInfo: [1x1 Simulink.CoderInfo]

 Description: 'Throttle position command from the first PI controller'

 DataType: 'double'

 Min: -1

 Max: 1

 Unit: ''

 Dimensions: -1

 DimensionsMode: 'auto'

 Complexity: 'auto'

 SampleTime: -1

 InitialValue: '0'

5 To view other signal objects, in Model Explorer, click the object name or in the
MATLAB Command Window, enter the object name. The following table summarizes
object characteristics for some of the data objects in this model.

33-23

33 Source Code Generation in Simulink Coder

Object
Characteristics

pos_cmd_one pos_rqst P_InErrMap ThrotComm* ThrottleCommands*

Description Top-level
output

Top-level
input

Calibration
parameter

Top-level
output
structure

Bus definition

Data type Double Double Auto Auto Structure
Storage class Exported

global
Imported
extern
pointer

Constant Exported
global

None

* ThrottleCommands defines a Bus object; ThrotComm is an instantiation of the
bus. If the bus is a nonvirtual bus, the signal generates a structure in the C code.

You can use a bus definition (ThrottleCommands) to instantiate multiple instances
of the structure. In a model diagram, a bus object appears as a wide line with central
dashes, as shown.

Add New Data Objects

You can create data objects for named signals, states, and parameters. To associate a
data object with a construct, the construct must have a name.

To find constructs for which you can create data objects, use the Data Object Wizard.
This tool finds the constructs and then creates the objects for you. The model includes
two signals that are not associated with data objects: fbk_1 and pos_cmd_two.

To find the signals and create data objects for them:

1 In the model window, select Code > Data Objects > Data Object Wizard. The
Data Object Wizard dialog box opens.

33-24

 Configure Data Interface

2 To find candidate constructs, click Find. Constructs fbk_1 and pos_cmd_two
appear in the dialog box.

3 To select both constructs, click Select All.
4 In the table, under Class, make sure that each proposed data object uses the class

Simulink.Signal. To change the class of the objects, click Change Class.
5 To create the data objects, click Create. Constructs fbk_1 and pos_cmd_two are

removed from the dialog box.
6 Close the Data Object Wizard.
7 In the Contents pane of the Model Explorer, find the newly created objects fbk_1

and pos_cmd_two.

Enable Data Objects for Generated Code

1 Enable a signal to appear in generated code.

a In the model window, right-click the pos_cmd_one signal line and select
Properties. A Signal Properties dialog box opens.

b Make sure that you select the Signal name must resolve to Simulink signal
object parameter.

2 Enable signal object resolution for the signals in the model. In the MATLAB
Command Window, enter:

disableimplicitsignalresolution('throttlecntrl_datainterface')

3 Save and close throttlecntrl_datainterface.

Effects of Simulation on Data Typing

In the throttle controller model, the data types are set to double. Because Simulink
software uses the double data type for simulation, do not expect changes in the model

33-25

33 Source Code Generation in Simulink Coder

behavior when you run the generated code. You verify this effect by running the test
harness.

Before you run your test harness, update it to include the
throttlecntrl_datainterface model.

Note: The following procedure requires a Stateflow license.

1 Open throttlecntrl_datainterface.
2 Open your copy of test harness, throttlecntrl_testharness.
3 Right-click the Unit_Under_Test Model block and select Block Parameters

(ModelReference).
4 Set Model name to throttlecntrl_datainterface. Click OK.
5 Update the test harness model diagram.
6 Simulate the test harness.

The resulting plot shows that the difference between the golden and simulated
versions of the model remains zero.

33-26

 Configure Data Interface

7 Save and close throttlecntrl_testharness.

Manage Data

Data objects exist in a separate file from the model in the base workspace. To save the
data manually, in the MATLAB Command Window, enter save.

The separation of data from the model provides the following benefits:

33-27

33 Source Code Generation in Simulink Coder

• One model, multiple data sets:

• Use of different parameter values to change the behavior of the control algorithm
(for example, for reusable components with different calibration values)

• Use of different data types to change targeted hardware (for example, for floating-
point and fixed-point targeted hardware)

• Multiple models, one data set:

• Sharing data between models in a system
• Sharing data between projects (for example, transmission, engine, and wheel

controllers can use the same CAN message data set)

Key Points

• You can declare data in Simulink models and Stateflow charts by using data objects
or direct specification.

• From the Model Explorer or from the command line in the MATLAB Command
Window, manage (create, view, configure, and so on) base workspace data.

• The Data Object Wizard provides a quick way to create data objects for constructs
such as signals, buses, and parameters.

• Configure data objects explicitly to appear by name in generated code.
• Separation of data from model provides several benefits.

More About
• “Load Signal Data for Simulation” (Simulink)
• “Data Representation” (Simulink Coder)
• “Custom Storage Classes”
• “Manage Placement of Data Definitions and Declarations” on page 36-100

33-28

 Call External C Functions

Call External C Functions

In this section...

“About This Example” on page 33-29
“Include External C Functions in a Model” on page 33-30
“Create a Block That Calls a C Function” on page 33-30
“Validate External Code in the Simulink Environment” on page 33-32
“Validate C Code as Part of a Model” on page 33-33
“Call a C Function from Generated Code” on page 33-35
“Key Points” on page 33-35

About This Example

Learning Objectives

• Evaluate a C function as part of a model simulation.
• Call an external C function from generated code.

Prerequisites

• Ability to open and modify Simulink models and subsystems.
• Ability to set model configuration parameters.
• Ability to read C code.
• An installed, supported C compiler.

Required Files

• rtwdemo_throttlecntrl_extfunccall model file
• rtwdemo_ValidateLegacyCodeVrsSim model file
• /toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_4_files/

SimpleTable.c

• /toolbox/rtw/rtwdemos/EmbeddedCoderOverview/stage_4_files/

SimpleTable.h

33-29

http://www.mathworks.com/support/compilers/

33 Source Code Generation in Simulink Coder

Include External C Functions in a Model

Simulink models are one part of Model-Based Design. For many applications, a design
also includes a set of pre-existing C functions created, tested (verified), and validated
outside of a MATLAB and Simulink environment. You can integrate these functions
easily into a model and the generated code. You can use external C code in the generated
code to access hardware devices and external data files during rapid simulation runs.

This example shows you how to create a custom block that calls an external C function.
When the block is part of the model, you can take advantage of the simulation
environment to test the system further.

Create a Block That Calls a C Function

To specify a call to an external C function, use an S-Function block. You can automate
the process of creating the S-Function block by using the Simulink Legacy Code Tool.
Using this tool, specify an interface for your external C function. The tool then uses that
interface to automate creation of an S-Function block.

1 Make copies of the files SimpleTable.c and SimpleTable.h, located in the
folder matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/
stage_4_files (open). Put the copies in your working folder.

2 Create an S-Function block that calls the specified function at each time step during
simulation:

a In the MATLAB Command Window, create a function interface definition
structure:

def=legacy_code('initialize')

The data structure def defines the function interface to the external C code.

def =

 SFunctionName: ''

 InitializeConditionsFcnSpec: ''

 OutputFcnSpec: ''

 StartFcnSpec: ''

 TerminateFcnSpec: ''

 HeaderFiles: {}

 SourceFiles: {}

33-30

 Call External C Functions

 HostLibFiles: {}

 TargetLibFiles: {}

 IncPaths: {}

 SrcPaths: {}

 LibPaths: {}

 SampleTime: 'inherited'

 Options: [1x1 struct]

b Populate the function interface definition structure by entering the following
commands:

def.OutputFcnSpec=['double y1 = SimpleTable(double u1,',...

 'double p1[], double p2[], int16 p3)'];

def.HeaderFiles = {'SimpleTable.h'};

def.SourceFiles = {'SimpleTable.c'};

def.SFunctionName = 'SimpTableWrap';

c Create the S-function:

legacy_code('sfcn_cmex_generate', def)

d Compile the S-function:

legacy_code('compile', def)

e Create the S-Function block:

legacy_code('slblock_generate', def)

A new model window opens that contains the SimpTableWrap block.

Tip: Creating the S-Function block is a one-time task. Once the block exists, you
can reuse it in multiple models.

3 Save the model to your working folder as: s_func_simptablewrap.
4 Create a Target Language Compiler (TLC) file for the S-Function block:

legacy_code('sfcn_tlc_generate', def)

The TLC file is the component of an S-function that specifies how the code generator
produces the code for a block.

For more information on using the Legacy Code Tool, see:

• “Integrate C Functions Using Legacy Code Tool” (Simulink)

33-31

33 Source Code Generation in Simulink Coder

• “Import Calls to External Code into Generated Code with Legacy Code Tool”
(Simulink Coder)

Validate External Code in the Simulink Environment

When you integrate external C code with a Simulink model, before using the code,
validate the functionality of the external C function code as a standalone component.

1 Open the model rtwdemo_ValidateLegacyCodeVrsSim. This model validates the
S-function block that you created.

• The Sine Wave block produces output values from [-2 : 2].
• The input range of the lookup table is from [-1 : 1].
• The output from the lookup table is the absolute value of the input.
• The lookup table output clips the output at the input limits.

2 Simulate the model.
3 View the validation results by opening the Validation subsystem and, in that

subsystem, clicking the Scope block.

The following figure shows the validation results. The external C code and the
Simulink Lookup table block provide the same output values.

33-32

 Call External C Functions

4 Close the validation model.

Validate C Code as Part of a Model

After you validate the functionality of the external C function code as a standalone
component, validate the S-function in the model. Use the test harness model to complete
the validation.

Note: The following procedure requires a Stateflow license.

1 Open rtwdemo_throttlecntrl_extfunccall and save a copy to
throttlecntrl_extfunccall in a writable folder on your MATLAB path.

2 Examine the PI_ctrl_1 and PI_ctrl_2 subsystems.

33-33

33 Source Code Generation in Simulink Coder

a Lookup blocks have been replaced with the block you created using the Legacy
Code Tool.

b Note the block parameter settings for SimpTableWrap and SimpTableWrap1.
c Close the Block Parameter dialog boxes and the PI subsystem windows.

3 Open the test harness model, right-click the Unit_Under_Test Model block, and
select Block Parameters (ModelReference).

4 Set Model name to throttlecntrl_extfunccall. Click OK.
5 Update the test harness model diagram.
6 Simulate the test harness.

The simulation results match the expected golden values.

33-34

 Call External C Functions

7 Save and close throttlecntrl_extfunccall and
throttlecntrl_testharness.

Call a C Function from Generated Code

The code generator uses a TLC file to process the S-Function block. Calls to C code
embedded in an S-Function block:

• Can use data objects.
• Are subject to expression folding, an operation that combines multiple computations

into a single output calculation.

1 Open throttlecntrl_extfunccall.
2 Generate code for the model.
3 Examine the generated code in the filethrottlecntrl_extfunccall.c.
4 Close throttlecntrl_extfunccall and throttlecntrl_testharness.

Key Points

• You can easily integrate external functions into a model and generated code by using
the Legacy Code Tool.

• Validate the functionality of external C function code which you integrate into a
model as a standalone component.

• After you validate the functionality of external C function code as a standalone
component, validate the S-function in the model.

More About
• “Integrate C Functions Using Legacy Code Tool” (Simulink)
• “S-Functions and Code Generation” (Simulink Coder)

33-35

33 Source Code Generation in Simulink Coder

Reload Generated Code

You can reload the code generated for a model from the Model Explorer.

1 Click the Code for model node in the Model Hierarchy pane.
2 In the Code pane, click the Refresh link.

The code generator reloads the code for the model from the build folder.

More About
• “Rebuild a Model” (Simulink Coder)
• “Control Regeneration of Top Model Code” (Simulink Coder)

33-36

 Manage Build Process Folders

Manage Build Process Folders

By default, the build process places generated files from Simulink diagram updates and
model builds in a hierarchy of folders. The code generation folder is the root folder of this
folder hierarchy. The default code generation folder is the current working folder (pwd). If
you are building models, artifacts used for simulation and code generation files reside in
subfolders within that code generation folder. If you are building code for more than one
referenced model within the same code generation folder, the model reference files are
added to the existing slprj folder.

For specifying the folder locations, the software provides:

• MATLAB session parameters CacheFolder and CodeGenFolder
• Simulink preferences Simulation cache folder (Simulink) and Code generation

folder (Simulink), which, if specified, provide the initial defaults for the MATLAB
session parameters

• Function Simulink.fileGenControl for directly manipulating the MATLAB
session parameters, for example, overriding or restoring the initial default values for
the current session

For more information about managing build process folders, see these topics:

In this section...

“Select Simulation Cache Folder” on page 33-40
“Select Code Generation Folder” on page 33-40
“Override Build Folder Settings for Current Session” on page 33-41

For more information on organizing your files regarding code generation folders for
referenced models, see “Generate Code for Referenced Models” (Simulink Coder).

The table lists folders where the build process places output files. The build folder
contains the generated code modules model.c, model.h, and the generated makefile
model.mk. In the paths in the table, model is the name of the model being used as a
referenced model. And, target is the system target file acronym (for example, grt, ert,
and rsim).

Folders Description

“Code generation folder”
(Simulink)

The default folder for code generation is the current working
folder, pwd.

33-37

33 Source Code Generation in Simulink Coder

Folders Description

If you choose to generate an executable program file, the code
generator writes the file model.exe (Windows) or model
(UNIX) to your code generation folder. To choose a folder
other than pwd, use Simulink preferences. See “Select Code
Generation Folder” on page 33-40.

When your default folder is set to the root folder of a drive, such
as C:\, the code generator cannot generate code for your model.

“Simulation cache folder”
(Simulink)

The default folder for simulation cache is the current working
folder, pwd.

If you choose to generate code for simulation, the code
generator writes any model build artifacts for simulation to the
simulation cache folder. To choose a folder other than pwd, use
Simulink preferences. See “Select Simulation Cache Folder” on
page 33-40.

model_target_rtw The build folder — model_target_rtw

A subfolder within your code generation folder.
model_target_rtw is the name of the build folder. model
is the name of the source model. The default for target is
name of the selected system target file (for example, grt for
the generic real-time system target file). You can change the
target with the rtwgensettings.BuildDirSuffix field in
the system target file. The build folder stores generated source
code and other files created during the build process (except the
executable program file).

model_target_rtw/html The code generation report folder — model_target_rtw/html

A subfolder within your build folder. model_target_rtw/
html is the name of the code generation report folder. The
report folder stores code generation report files created during
the build process.

33-38

 Manage Build Process Folders

Folders Description

slprj Reference model code and shared utilities folder — slprj

A subfolder within your “Code generation folder” (Simulink).
When referenced models (model blocks) are built for simulation
or code generation, the code generator places files in slprj.

Subfolders in slprj provide separate places for simulation
code, some generated code, utility code shared between models,
and other files.

slprj/sim/model Simulation target files for referenced models.
slprj/sim/model/

tmwinternal

MAT-files used during code generation.

slprj/sim/_sharedutils Utility functions for simulation system target files, shared
across models.

slprj/target/model/

referenced_model_includes

Header files from models referenced by this model.

slprj/target/model Model reference target files.
slprj/target/model/

tmwinternal

MAT-files used during code generation.

slprj/target/_sharedutils Utility functions for model reference system target files, shared
across models.

For an ERT-based system target file, the model configuration has additional shared
utility options. For more information, see “Cross-Release Shared Utility Code Reuse”
(Simulink Coder) and “Cross-Release Code Integration” (Simulink Coder).

• UtilityFuncGeneration parameter places generated shared code in slprj without
the use of model reference.

• ExistingSharedCode parameter specifies the folder that contains previously
generated shared code.

• UseOnlyExistingSharedCode parameter prohibits the build process from
generating new shared code.

• sharedCodeUpdate function integrates shared code from multiple source folders into
an existing shared code folder.

33-39

33 Source Code Generation in Simulink Coder

For more information about using code generation folders, see “Customize Build to Use
Shared Utility Code” (Simulink Coder).

Select Simulation Cache Folder

By default, Simulink diagram updates place generated files in a build folder, the root of
which is the current working folder (pwd). In some situations, you want the generated
files to go to a root folder outside the current working folder. For example:

• You want to keep generated files separate from the models and other source materials
that generate them.

• You want to reuse or share previously built simulation targets without having to set
the current working folder back to a previous working folder.

The Simulink preference Simulation cache folder (Simulink) provides control over the
output location for files generated by Simulink diagram updates. The preference appears
in the General pane, under File generation control. To specify the root folder location
for files generated by Simulink diagram updates, set the preference value by entering
or browsing to a folder path. For example, on Windows, you could set the folder to 'C:
\Work\mymodelsimcache'.

The folder path that you specify provides the initial default for the MATLAB session
parameter CacheFolder. When you initiate a Simulink diagram update, the update
places the generated files in a build folder. This folder is at the root location specified by
CacheFolder (if any), rather than in the current working folder (pwd).

You can choose to override the Simulation cache folder (Simulink) preference value for
the current MATLAB session. See “Override Build Folder Settings for Current Session”
on page 33-41.

Select Code Generation Folder

By default, Simulink model builds place generated files in a build folder, the root of
which is the current working folder (pwd). Model builds potentially generate files for
simulation and code generation system target files, and the resulting build folder
contains artifacts for simulation and code generation. In some situations, you want the
generated files to go to one or more root folders outside the current working folder. For
example:

• You want to keep generated files separate from the models and other source materials
that generate them.

33-40

 Manage Build Process Folders

• You want to separate generated production code from generated simulation artifacts.

The Simulink preference Code generation folder (Simulink) provides control over the
output location for files that model builds generate for system target files. The preference
appears in the General pane, under File generation control. To specify the root folder
location for code generation files generated by model builds, set the preference value by
entering or browsing to a folder path. For example, on Windows, you could set the Code
generation folder (Simulink) to 'C:\test\mymodelgencode'.

The folder path that you specify provides the initial default for the MATLAB session
parameter CodeGenFolder. When you initiate a Simulink model build, the build process
places the generated files in a build folder. This folder is at the root location specified by
CodeGenFolder (if any), rather than in the current working folder (pwd).

You can choose to override the Code generation folder (Simulink) preference value for
the current MATLAB session. See “Override Build Folder Settings for Current Session”
on page 33-41.

Override Build Folder Settings for Current Session

The Simulink preferences Simulation cache folder (Simulink) and Code generation
folder (Simulink) provide initial defaults for the MATLAB session parameters
CacheFolder and CodeGenFolder. These session parameters determine where
Simulink diagram updates and model builds place generated files.

You can override these build folder settings during the current MATLAB session by
using the Simulink.fileGenControl function. With this function, you can manipulate
directly the MATLAB session parameters, for example, overriding or restoring the initial
default values. The values that you set by using Simulink.fileGenControl expire at
the end of the current MATLAB session. For more information and detailed examples,
see Simulink.fileGenControl.

More About
• “Manage Build Process Files” (Simulink Coder)
• “Manage Build Process File Dependencies” (Simulink Coder)
• “Add Build Process Dependencies” (Simulink Coder)
• “Enable Build Process for Folder Names with Spaces” (Simulink Coder)
• “Build and Run a Program” (Simulink Coder)

33-41

33 Source Code Generation in Simulink Coder

Manage Build Process Files

The code generator creates model.* files during the code generation and build process.
The code generator creates additional folders and dependency files to support shared
utilities and model references.

For more information about the folders that the build process creates, see “Manage Build
Process Folders” (Simulink Coder).

The source and header files in the table have dependency relationships. For descriptions
of other file dependencies, see “Manage Build Process File Dependencies” (Simulink
Coder) and “Add Build Process Dependencies” (Simulink Coder).

Depending on model architectures and code generation options, the build process for a
GRT-based system target file can produce files that the build process does not generate
for an ERT-based system target file. Also, for ERT-based system target files, the build
process packages generated files differently than for GRT-based system target files. See
“Manage File Packaging of Generated Code Modules” on page 34-14.

The table describes the principal generated files. Within the generated file names
shown in the table, the model represents the name of the model for which you are
generating code. The subsystem represents the name of a subsystem within the
model. When you select the Create code generation report parameter, the code
generator produces a set of HTML files. There is one HTML file for each source file plus a
model_contents.html index file in the html subfolder within your build folder.

File Description

builtin_typeid_types.h Defines an enumerated type corresponding to built-in data types.

A model build generates this file when one or more of these
conditions apply:

• Your model contains a Stateflow chart that uses messages.
• Your model configuration enables MAT-file logging.
• Your model configuration enables C API options in Code

Generation > Interface.
modelsources.txt Lists additional sources to include in the compilation.
model.bat Contains Windows batch file commands that set the compiler

environment and invoke the make utility.

33-42

 Manage Build Process Files

File Description

For more information about using this file, see “model.bat” on page
33-48.

model.c

model.cpp

Corresponds to the model file.

The Target Language Compiler generates this C or C++ source code
file. The file contains:

• Include files model.h and model_private.h
• Data, except data placed in model_data.c
• Model-specific scheduler code
• Model-specific solver code
• Model registration code
• Algorithm code
• Optional GRT wrapper functions

model.exe (Windows
platform)

model (UNIX and
Macintosh platforms)

Executable program file.

A model build generates this file unless you explicitly specify that
the code generator produce code only. The build generates the
executable in the current folder (not the build folder) under control
of the make utility of your development system.

model.h Defines model data structures and a public interface to the model
entry points and data structures. Provides an interface to the real-
time model data structure (model_rtM) via access macros.

Subsystem .c or .cpp files in the model include model.h. This file
includes:

• Exported Simulink data symbols
• Exported Stateflow machine parented data
• Model data structures, including rtM
• Model entry-point functions

For more information, see “model.h” (Simulink Coder).

33-43

33 Source Code Generation in Simulink Coder

File Description

model.mk Generated makefile that controls compiling and linking the
generated code into the final binary file by the make utility of your
development system.

If you set the MAKEFLAGS environment variable, do not select
options with this variable that conflict with the current make utility
used by the build process.

model.rtw Represents the compiled model.

By default, the build process deletes this ASCII file when the build
process is complete. You can choose to retain the file for inspection.

model_capi.h

model_capi.c

(optional files) Contain data structures that describe the model
signals, states, and parameters without using external mode.

For more information, see “Exchange Data Between Generated and
External Code Using C API” (Simulink Coder).

model_data.c Contains (if conditionally generated) declarations for the parameters
data structure and the constant block I/O data structure, and zero
representations for structure data types that the model uses.

A model build generates this file when the model uses these data
structures. The extern declarations for structures appear in
model.h. When present, this file contains:

• Constant block I/O parameters
• Include files model.h and model_private.h
• Definitions for the zero representations for user-defined structure

data types that the model uses
• Constant parameters

model_dt.h (optional file) Declares structures that contain data type and data
type transition information for generated model data structures for
supporting external mode.

33-44

 Manage Build Process Files

File Description

model_private.h Contains local define constants and local data for the model and
subsystems.

The generated source files from the model build include this file.
When you interface external code with generated code from a model,
include model_private.h. The file contains:

• Imported Simulink data symbols
• Imported Stateflow machine parented data
• Stateflow entry points
• Simulink Coder details (various macros, enums, and so forth, that

are private to the code)

For more information, see “Manage Build Process File
Dependencies” (Simulink Coder).

model_reference_types.hContains type definitions for timing bridges.

A model build generates this file for a referenced model or a model
containing model reference blocks.

model_targ_data_map.m (optional file) Contains MATLAB language commands that external
mode uses to initialize the external mode connection.

model_types.h Provides forward declarations for the real-time model data structure
and the parameters data structure.

The generated header files from the model build include this file.
Function declarations of reusable functions can use these structures.

33-45

33 Source Code Generation in Simulink Coder

File Description

multiword_types.h Contains type definitions for multiple-word wide data types and
their word-size chunks. If your code uses multiword data types,
include this header file.

A model build generates this file when one or more of these
conditions apply:

• Your model uses multiword data types.
• Your model configuration enables MAT-file logging.
• Your model configuration enables Code Generation >

Interface > External mode.
rtGetInf.c

rtGetInf.h

rtGetNaN.c

rtGetNaN.h

rt_nonfinite.c

rt_nonfinite.h

Declares and initializes global nonfinite values for inf, minus inf,
and nan. Provides nonfinite comparison functions.

A model build generates these files when one or more of these
conditions apply:

• The model contains S-functions.
• The generated code from the model requires nonfinite numbers.
• Your model configuration enables MAT-file logging.
• Your model configuration selects grt.tlc as the System target

file and enables the Classic call interface.
rtmodel.h Contains #include directives required by static main program

modules such as rt_main.c.

The build process does not create these modules at code generation
time. The modules include rt_model.h to access model-specific
data structures and entry points. If you create your own main
program module, make sure to include rtmodel.h.

33-46

 Manage Build Process Files

File Description

rtwtypes.h Provides the essential type definitions, #define statements, and
enumerations.

For GRT-based system target files, rtwtypes.h includes
simstruc_types.h which, in turn, includes tmwtypes.h.

For ERT-based system target files that do not generate a GRT
interface and do not have noninlined S-functions, rtwtypes.h does
not include simstruc_types.h.

For more information, see “rtwtypes.h” (Simulink Coder) and
“Manage Build Process File Dependencies” (Simulink Coder).

rtw_proj.tmw

sl_proj.tmw

Marker files.

The build process generates these files to help the make utility
determine when to recompile and link the generated code.

rt_defines.h Contains type definitions for special mathematical constants (such
as π and e) and defines the UNUSED_PARAMETER macro.

A model build generates this file when the generated code requires a
mathematical constant definition or when the function body does not
access a required model function argument.

rt_sfcn_helper.h

rt_sfcn_helper.c

(optional files) Provide functions that the noninlined S-functions use
in a model.

The noninlined S-functions use functions rt_CallSys,
rt_enableSys, and rt_DisableSys to call downstream function-
call subsystems.

subsystem.c (optional file) Contains C source code for each noninlined nonvirtual
subsystem or copy the code when the subsystem is configured to
place code in a separate file.

subsystem.h (optional file) Contains exported symbols for noninlined nonvirtual
subsystems.

33-47

33 Source Code Generation in Simulink Coder

model.bat

This file contains Windows batch file commands that set the compiler environment and
invoke the make utility.

If you are using the toolchain approach for the build process, you also can use this batch
file to extract information from the generated makefile, model.mk. The information
includes macro definitions and values that appear in the makefile, such as CFLAGS
(C compiler flags) and CPP_FLAGS (C++ compiler flags). With the folder containing
model.bat selected as the current working folder, in the Command Window, type:

>> system('model.bat info')

On UNIX and Macintosh platforms, the code generator does not create the model.bat
file. To extract information for toolchain approach builds from the generated makefile on
these systems, in the Command Window, type:

>> system('gmake –f model.mk info')

model.h

The header file model.h declares model data structures and a public interface to the
model entry points and data structures. This header file also provides an interface to the
real-time model data structure (model_M) by using access macros. If your code interfaces
to model functions or model data structures, include model.h:

• Exported global signals

extern int32_T INPUT; /* '<Root>/In' */

• Global structure definitions

/* Block parameters (auto storage) */

extern Parameters_mymodel mymodel_P;

• Real-time model (RTM) macro definitions

#ifndef rtmGetSampleTime

define rtmGetSampleTime(rtm, idx)

((rtm)->Timing.sampleTimes[idx])

#endif

• Model entry point functions (ERT example)

extern void mymodel_initialize(void);

33-48

 Manage Build Process Files

extern void mymodel_step(void);

extern void mymodel_terminate(void);

The main.c (or .cpp) file includes model.h. If the model build generates the main.c (or
.cpp) file from a TLC script, the TLC source can include model.h.

#include "%<CompiledModel.Name>.h"

If main.c is a static source file, you can use the fixed header file name rtmodel.h. This
file includes the model.h header file:

#include "model.h" /* If main.c is generated */

or

#include "rtmodel.h" /* If static main.c is used */

Other external source files can require to include model.h to interface to model data,
for example exported global parameters or signals. The model.h file itself can have
additional header dependencies due to requirements of generated code. See “System
Header Files” (Simulink Coder) and “Code Generator Header Files” (Simulink Coder).

To reduce dependencies and reduce the number of included header files, see “Manage
Build Process File Dependencies” (Simulink Coder).

rtwtypes.h

The header file rtwtypes.h defines data types, structures, and macros required by the
generated code. You include rtwtypes.h for GRT and ERT system target files, instead
of including tmwtypes.h or simstruc_types.h.

Often, the generated code requires that integer operations overflow or underflow at
specific values. For example, when the code expects a 16-bit integer, the code does not
accept an 8-bit or a 32-bit integer type. The C language does not set a standard for
the number of bits in types such as char, int, and others. So, there is no universally
accepted data type in C to use for sized-integers.

To accommodate this feature of the C language, the generated code uses sized integer
types, such as int8_T, uint32_T, and others, which are not standard C types. In
rtwtypes.h, the generated code maps these sized-integer types to the corresponding C
keyword base type using information in the Hardware Implementation pane of the
configuration parameters.

33-49

33 Source Code Generation in Simulink Coder

The code generator produces the optimized version of rtwtypes.h for ERT-based system
target files when these conditions exist:

• The model has a cleared Classic call interface option in the All Parameters tab of
the Configuration Parameters dialog box.

• The model does not contain noninlined S-functions.

Include rtwtypes.h. If you include it for GRT system target files, for example, it is
easier to use your code with ERT-based system target files.

For GRT and ERT system target files, the location of rtwtypes.h depends on whether
the build process uses the shared utilities location. If it uses a shared location, the code
generator places rtwtypes.h in slprj/target/_sharedutils; otherwise, it places
rtwtypes.h in the build folder (model_target_rtw). See “Specify Generated Code
Interfaces” (Simulink Coder).

Source files include the rtwtypes.h header file when the source files use code generator
type names or other code generator definitions. A typical example is for files that declare
variables by using a code generator data type, for example, uint32_T myvar.

A source file that the code generator and an S-function use can use the preprocessor
macro MATLAB_MEX_FILE. The macro definition comes from the mex function:
#ifdef MATLAB_MEX_FILE

#include "tmwtypes.h"

#else

#include "rtwtypes.h"

#endif

A source file for the code generator main.c (or .cpp) file includes rtwtypes.h without
preprocessor checks.
#include "rtwtypes.h"

Custom source files that the Target Language Compiler generates can also emit these
include statements into their generated file.

See “Control Placement of rtwtypes.h for Shared Utility Code” (Simulink Coder).

More About
• “Manage Build Process Folders” (Simulink Coder)
• “Manage Build Process File Dependencies” (Simulink Coder)

33-50

 Manage Build Process Files

• “Add Build Process Dependencies” (Simulink Coder)
• “Enable Build Process for Folder Names with Spaces” (Simulink Coder)
• “Build and Run a Program” (Simulink Coder)

33-51

33 Source Code Generation in Simulink Coder

Manage Build Process File Dependencies

The dependency relationships among generated source and header files appear in the
figure. Arrows coming from a file point to files it includes. Other dependencies exist, for
example, on Simulink header files tmwtypes.h and simstruc_types.h, plus C or C
++ library files. The figure maps inclusion relations between only those files that are
generated in the build folder. These files can reference utility and model reference code
located in a code generation folder. For more information about the folders and files that
the build process creates, see “Manage Build Process Folders” (Simulink Coder) and
“Manage Build Process Files” (Simulink Coder).

The two tables identify the conditions that control creation of dependency files for GRT
and ERT targets. To manage build-related dependencies, consider how these conditions
apply to your model and code generation process. Then, configure model parameters and
code generation options to manage build process file dependencies.

Due to differences in file packaging options for code generated with ERT-based system
target files, the file dependencies differ slightly from file packaging for code generated
with GRT-based system target files. See “Manage File Packaging of Generated Code
Modules” on page 34-14.

The parent system header files (model.h) include child subsystem header files
(subsystem.h). In more layered models, subsystems similarly include their children's
header files in the model hierarchy. As a consequence, subsystems are able to view
recursively into their descendant subsystems and view into the root system because
every subsystem.c or subsystem.cpp includes model.h and model_private.h.

In the figure, files model.h, model_private.h, and subsystem.h depend on the
header file rtwtypes.h. If you use system target files that are not based on the ERT
system target file, the source files that you generate can have additional dependencies on
tmwtypes.h and simstruc_types.h.

33-52

 Manage Build Process File Dependencies

rtmodel.h is a place

holder include �le

for code generated

with the GRT system

target �le

For information about file dependencies in header files, see the following:

In this section...

“System Header Files” on page 33-53
“Code Generator Header Files” on page 33-56

System Header Files

The system header files make function declarations, type definitions, and macro
definitions available to the legacy or external code. Some code generation scenarios
require including header files that are specific to the code generator product.

The code generator includes some system header files for broadly defined cases. For
example, generated code includes <stddef.h> when the model contains a utility
function that requires this header file. This approach helps identify header file
dependencies:

33-53

33 Source Code Generation in Simulink Coder

1 Set the Shared code placement parameter to 'Shared location' and build the
model. The code generator places the utility functions in __sharedutils folder.

2 Use a find-in-file utility (for example, grep utility) to search the .c and .h files in
the __sharedutils folder for #include. The search results list the utilities with
header file dependencies.

3 Use this information to identify utilities to remove from the model and reduce header
file dependencies in the generated code.

For more information, see “Generate Shared Utility Code for Fixed-Point Functions”
(Simulink Coder).

System Header File Description and Inclusion Conditions for GRT or ERT System Target Files

<math.h> Defines math constants

GRT—Generated code does not include this file.

ERT—Generated code includes this file when the code honors your
model configuration for solver Stop time and either:

• Your model configuration enables MAT-file logging. See “MAT-
file logging” (Simulink Coder).

• Your model configuration enables Code Generation >
Interface > External mode.

<float.h> Provides floating-point math functions

GRT—Generated code includes this file when your model contains a
floating-point math function.

ERT—Generated code includes this file when your model contains
a floating-point math function, unless a code replacement library
entry overrides the function. For more information, see “Choose a
Code Replacement Library” (Simulink Coder).

<stddef.h> Defines NULL

GRT and ERT—Generated code includes this file when your model
contains a utility function that requires this file.

<stdio.h> Provides file I/O functions

33-54

 Manage Build Process File Dependencies

System Header File Description and Inclusion Conditions for GRT or ERT System Target Files

GRT—Generated code includes this file when your model includes a
To File block.

ERT—Generated code includes this file when either:

• Your model includes a To File block.
• Your model configuration enables MAT-file logging. See “MAT-

file logging” (Simulink Coder).
<stdlib.h> Provides utility functions such as the integer versions of div() and

abs()

GRT—Generated code includes this file when either:

• Your model includes a Stateflow chart.
• Your model includes a math function block configured for mod()

or rem(), which generate calls to div().

ERT—Generated code includes this file when either:

• Your model includes a Stateflow chart, and you select Support:
floating-point numbers.

• Your model includes a math function block configured for mod()
or rem(), which generate calls to div().

<string.h> Provides memory functions such as memset() and memcpy()

GRT—Generated code includes this file when your model
initialization code calls memset().

ERT—Generated code includes this file when a block or model
initialization code calls memcpy() or memset().

For a list of relevant blocks, in the Command Window, type:

showblockdatatypetable

Look for blocks with the N2 note. To omit calls to memset() from
model initialization code, select the Remove root level I/O zero
initialization and Remove internal data zero initialization
optimization configuration parameters.

33-55

33 Source Code Generation in Simulink Coder

Code Generator Header Files

Dependencies in the table for generated header files apply to the system target files
grt.tlc and ert.tlc. System target files derived from these base system target files
can have additional header dependencies. Code generation for blocks from blocksets,
embedded targets, and custom S-functions can introduce additional header dependencies.

Header File Description and Inclusion Conditions for GRT or ERT System Target Files

builtin_typeid_types.h Defines an enumerated type corresponding to built-in data types

GRT and ERT—Generated code includes this file when one or more
of these conditions apply:

• Your model contains a Stateflow chart that uses messages.
• Your model configuration enables: MAT-file logging. See “MAT-

file logging” (Simulink Coder).
• Your model configuration selects C API options at Code

Generation > Interface.
dt_info.h Defines data structures for external mode

GRT and ERT—Generated code includes this file when your model
configuration enables external mode.

ext_work.h Defines external mode functions

GRT and ERT—Generated code includes this file when your model
configuration enables external mode.

fixedpoint.h Provides fixed-point support for noninlined S-functions

GRT—Generated code includes this file.

ERT—Generated code includes this file when either:

• Your model uses noninlined S-functions.
• Your model configuration selects Classic call interface.

model_reference_types.hContains type definitions for timing bridges

GRT and ERT—Generated code includes this file when building a
reference model or building a model that contains model blocks.

33-56

 Manage Build Process File Dependencies

Header File Description and Inclusion Conditions for GRT or ERT System Target Files

model_types.h Defines model-specific data types

GRT and ERT—Generated code includes this file.
multiword_types.h Contains type definitions for multiword-wide data types and their

word-size chunks

GRT and ERT—Generated code includes this file when one or more
of these conditions apply:

• Your model uses multiword data types.
• Your model configuration enables MAT-file logging. See “MAT-

file logging” (Simulink Coder).
• Your model configuration enables Code Generation >

Interface > External mode.
rtGetInf.h

rtGetNaN.h

rt_nonfinite.h

Support nonfinite numbers

GRT—Generated code includes this file when one or more of these
conditions apply:

• Your model contains S-functions.
• The generated code requires nonfinite numbers.
• Your model configuration enables MAT-file logging. See “MAT-

file logging” (Simulink Coder).
• Your model configuration selects the Classic call interface.

ERT—Generated code includes this file when one or more of these
conditions apply:

• Your model contains S-functions.
• The generated code requires nonfinite numbers.
• Your model configuration enables MAT-file logging. See “MAT-

file logging” (Simulink Coder).

33-57

33 Source Code Generation in Simulink Coder

Header File Description and Inclusion Conditions for GRT or ERT System Target Files

rt_defines.h Contains type definitions for special mathematical constants (such
as π and e) and defines the UNUSED_PARAMETER macro

GRT and ERT—Generated code includes this file when either:

• The generated code requires a mathematical constant definition.
• The function body does not access a required model function

argument.
rt_logging.h Supports MAT-file logging and includes:

rtwtypes.h

builtin_typeid_types.h

multiword_types.h

rt_mxclassid.h

rtw_matlogging.h

GRT—Generated code includes this file.

ERT—Generated code includes this file when you model
configuration enables MAT-file logging. See “MAT-file logging”
(Simulink Coder).

rt_mxclassid.h Defines mxArray class ID enumerations

GRT and ERT—Generated code includes this file when the code
includes rt_logging.c.

rtw_continuous.h Supports continuous time

GRT—Generated code includes this file when the code includes
simstruc_types.h.

ERT—Generated code includes this file when your model
configuration selects Support: continuous time and when the code
does not already include simstruc.h.

33-58

 Manage Build Process File Dependencies

Header File Description and Inclusion Conditions for GRT or ERT System Target Files

rtw_extmode.h Supports external mode

GRT—Generated code includes this file when the code includes
simstruc_types.h.

ERT—Generated code includes this file when your model
configuration selects external mode and when the code does not
already include simstruc.h.

rtw_matlogging.h Supports MAT-file logging

GRT—Generated code includes this file when the code includes
simstruc_types.h and rt_logging.h.

ERT—Generated code includes this file when the code includes
rt_logging.h.

rtw_solver.h Supports continuous states

GRT—Generated code includes this file when the code includes
simstruc_types.h.

ERT—Generated code includes this file when your model
configuration selects Support: continuous time and when the code
does not already include simstruc.h.

rtwtypes.h Defines code generator data types

GRT—Generated code includes this file. Use the complete version of
the file, which includes tmwtypes.h and simstruc_types.h. See
simstruc_types.h for dependencies.

ERT—Generated code includes this file. Use the complete or
optimized version of the file. See “rtwtypes.h” on page 33-49.

If you include rtwtypes.h and tmwtypes.h in external code that
you integrate with generated code, the #include for rtwtypes.h
must precede the #include for tmwtypes.h. This ordering of
#include statements preserves target-specific type definitions. If
you reverse the order, a compiler error occurs.

33-59

33 Source Code Generation in Simulink Coder

Header File Description and Inclusion Conditions for GRT or ERT System Target Files

simstruc.h Supports calling noninlined S-functions that use the Simstruct
definition; also includes:

limits.h

string.h

tmwtypes.h

simstruc_types.h

GRT—Generated code includes this file.

ERT—Generated code includes this file when either:

• Your model uses noninlined S-functions.
• Your model configuration selects Classic call interface.

simstruc_types.h Provides definitions that the generated code uses and includes the
header files:

rtw_matlogging.h

rtw_extmode.h

rtw_continuous.h

rtw_solver.h

sysran_types.h

GRT—Generated code includes this file when the code includes
rtwtypes.h.

ERT—Generated code does not include this file. For ERT,
rtwtypes.h contains definitions, and model.h contains header
files.

sysran_types.h Supports external mode

GRT—Generated code includes this file when the code includes
simstruc_types.h.

ERT—Generated code includes this file when your model
configuration selects external mode and when the code does not
already include simstruc.h.

33-60

 Manage Build Process File Dependencies

More About
• “Manage Build Process Folders” (Simulink Coder)
• “Manage Build Process Files” (Simulink Coder)
• “Add Build Process Dependencies” (Simulink Coder)
• “Enable Build Process for Folder Names with Spaces” (Simulink Coder)
• “Build and Run a Program” (Simulink Coder)

33-61

33 Source Code Generation in Simulink Coder

Add Build Process Dependencies
When you specify a system target file for code generation, the code generator can build
a standalone executable program that can run on the development computer. To build
the executable program, the code generator uses the selected compiler and the generated
makefile for a toolchain approach or for a template makefile (TMF) approach build
processes. Part of the makefile generation process is to add source file, header file, and
library file information (the dependencies) in the generated makefile for a compilation.
Or, for a specific application, you can add the generated files and file dependencies
through a configuration management system.

The generated code for a model consists of a small set of files. (See “Manage Build
Process Files” (Simulink Coder).) These files have dependencies on other files, which
occur due to:

• Header file inclusions
• Macro declarations
• Function calls
• Variable declarations

The model or external code introduces dependencies for various reasons:

• Blocks in a model generate code that makes function calls. These calls can occur in
several forms:

• Included source files (not generated) declare the called functions. In cases such as
a blockset, manage these source file dependencies by compiling them into a library
file.

• The generated code makes calls to functions in the run-time library provided by
the compiler.

• Some function dependencies also are generated files, which are referred to as
shared utilities. Some examples are fixed-point utilities and non-finite support
functions. These dependencies are referred to as shared utilities. The generated
functions can appear in files in the build folder for standalone models or in the
_sharedutils folder under the slprj folder for builds that involve model
reference.

• Models with continuous time require solver source code files.
• Code generator options such as external mode, C API, and MAT-file logging.
• External code specifies dependencies.

33-62

 Add Build Process Dependencies

For information about adding file dependencies in information for the build process, see
the following:

In this section...

“File Dependency Information for the Build Process” on page 33-63
“Folder Dependency Information for the Build Process” on page 33-66

File Dependency Information for the Build Process

The code generator provides several mechanisms to input file dependency information
into the build process. The mechanisms depend on whether your dependencies are block-
based or are model- or system target file-based.

For block dependencies, consider using:

• S-functions and blocksets

• Add folders that contain S-function MEX-files that the model uses to the header
include path.

• Create makefile rules for these folders to allow for finding source code.
• Specify additional source file names with the S-Function block parameter

SFunctionModules.
• Specify additional dependencies with the rtwmakecfg.m mechanism. See “Use

rtwmakecfg.m API to Customize Generated Makefiles” (Simulink Coder).

For more information on applying these approaches to legacy or external code
integration, see “Import Calls to External Code into Generated Code with Legacy
Code Tool” (Simulink Coder).

• S-Function Builder block, which provides its own UI for specifying dependency
information

For model- or system target file-based dependencies, such as external header files,
consider using:

• The Code Generation > Custom Code pane in the Configuration Parameters dialog
box. You can specify additional libraries, source files, and include folders.

• TLC functions LibAddToCommonIncludes() and LibAddToModelSources().
You can specify dependencies during the TLC phase. See
“LibAddToCommonIncludes(incFileName)” (Simulink Coder) and

33-63

33 Source Code Generation in Simulink Coder

“LibAddSourceFileCustomSection(file, builtInSection, newSection)” (Simulink Coder).
The Embedded Coder product also provides a TLC-based customization template for
generating additional source files.

Generated Makefile Dependencies

For toolchain approach or template makefile (TMF) approach build processes, the code
generator generates a makefile. For TMFs, the generated makefile provides token
expansion in which the build process expands different tokens in the makefile to include
the additional dependency information. The resulting makefile contains the complete
dependency information. See “Customize Template Makefiles” (Simulink Coder).

The generated makefile contains:

• Names of the source file dependencies
• Folders where source files are located
• Location of the header files
• Precompiled library dependencies
• Libraries that the make utility compiles and creates

A property of make utilities is that you do not have to specify the specific location for
a given source C or C++ file. If a rule exists for that folder and the source file name is
a prerequisite in the makefile, the make utility can find the source file and compile it.
The C or C++ compiler (preprocessor) does not require absolute paths to the headers.
The compiler finds header file with the name of the header file by using an #include
directive and an include path. The generated C or C++ source code depends on this
standard compiler capability.

Libraries are created and linked against, but occlude the specific functions that the
program calls.

These properties can make it difficult to determine the minimum list of file dependencies
manually. You can use the makefile as a starting point to determine the dependencies
in the generated code. For an example that shows how to identify dependencies, see
“Relocate Code to Another Development Environment with packNGo” (Simulink Coder).

Another approach to determining the dependencies is using linker information, such
as a linker map file, to determine the symbol dependencies. The map file provides the
location of code generator and blockset source and header files to help in locating the
dependencies.

33-64

 Add Build Process Dependencies

Code Generator Static File Dependencies

Several locations in the MATLAB folder tree contain static file dependencies specific to
the code generator:

• matlabroot/rtw/c/src (open)

This folder has subfolders and contains additional files must be compiled. Examples
include solver functions (for continuous time support), external mode support files, C
API support files, and S-function support files. Include source files in this folder into
the build process with the SRC variables of the makefile.

• Header files in the folder matlabroot/rtw/extern/include
• Header files in the folder matlabroot/simulink/include

These folders contain additional header file dependencies such as tmwtypes.h,
simstruc_types.h, and simstruc.h.

Note For ERT-based system target files, you can avoid several header dependencies.
ERT-based system target files generate the minimum set of type definitions, macros,
and so on, in the file rtwtypes.h.

Blockset Static File Dependencies

Blockset products with S-function code apply the rtwmakecfg.m mechanism to provide
the code generator with dependency information. The rtwmakecfg.m file from the
blockset contains the list of include path and source path dependencies for the blockset.
Typically, blocksets create a library from the source files to which the generated model
code can link. The libraries are created and identified when you use the rtwmakecfg.m
mechanism.

To locate the rtwmakecfg.m files for blocksets in your MATLAB installed tree, use the
following command:

>> which -all rtwmakecfg.m

If the model that you are compiling uses one or more of the blocksets listed by the which
command, you can determine folder and file dependency information from the respective
rtwmakecfg.m file.

33-65

33 Source Code Generation in Simulink Coder

Folder Dependency Information for the Build Process

You can add #include statements to generated code. Such references can come from
several sources, including TLC scripts for inlining S-functions, custom storage classes,
bus objects, and data type objects. The included files consist of header files for external
code or other customizations. You can specify compiler include paths with the -I
compiler option. The build process uses the specified paths to search for included header
files.

Usage scenarios for the generated code include, but are not limited to, the following:

• A custom build process compiles generated code that requires an environment-specific
set of #include statements.

In this scenario, the build process invokes the code generator when you select the
Generate code only check box. Consider using fully qualified paths, relative paths,
or just the header file names in the #include statements. Use include paths.

• The build process compiles the generated code.

In this case, you can specify compiler include paths (-I) for the build process in
several ways:

• Specify additional include paths on the Code Generation > Custom Code pane
in the Configuration Parameters dialog box. The code generator propagates the
include paths into the generated makefile.

• The rtwmakecfg.m mechanism allows S-functions to introduce additional include
paths into the build process. The code generator propagates the include paths into
the generated makefile.

• When building a model that uses a custom system target file and is makefile-
based, you can directly add the include paths into the template makefile that the
system target file uses.

• Use the make command to specify a USER_INCLUDES make variable that defines a
folder in which the build process searches for included files. For example:

make_rtw USER_INCLUDES=-Id:\work\feature1

The build process passes the custom includes to the command-line invocation of
the make utility, which adds them to the overall flags passed to the compiler.

33-66

 Add Build Process Dependencies

Use #include Statements and Include Paths

Consider the following approaches for using #include statements and include
paths with the build process to generate code that remains portable and minimizes
compatibility problems with future versions.

Assume that additional header files are:
c:\work\feature1\foo.h

c:\work\feature2\bar.h

• An approach is to include in the #include statements only the file name, such as:
#include "foo.h"

#include "bar.h"

Then, the include path passed to the compiler contains folders in which the headers
files exist:
cc -Ic:\work\feature1 -Ic:\work\feature2 ...

• Another approach is to use relative paths in #include statements and provide an
anchor folder for these relative paths using an include path, for example:
#include "feature1\foo.h"

#include "feature2\bar.h"

Then, specify the anchor folder (for example \work) to the compiler:
 cc -Ic:\work ...

Avoid These Folder Dependencies

When using the build process, avoid dependencies on folders in the build process “Code
generation folder” (Simulink), such as the model_ert_rtw folder or the slprj folder. Do
not use paths in #include statements that are relative to the location of the generated
source file. For example, if your MATLAB code generation folder is c:\work, the build
process generates the model.c source file into a subfolder such as:
c:\work\model_ert_rtw\model.c

The model.c file has #include statements of the form:
#include "..\feature1\foo.h"

#include "..\feature2\bar.h"

It is preferable to use one of the other suggested approaches because the relative path
creates a dependency on the code generator folder structure.

33-67

33 Source Code Generation in Simulink Coder

More About
• “Manage Build Process Folders” (Simulink Coder)
• “Manage Build Process Files” (Simulink Coder)
• “Manage Build Process File Dependencies” (Simulink Coder)
• “Enable Build Process for Folder Names with Spaces” (Simulink Coder)
• “Build and Run a Program” (Simulink Coder)

33-68

 Enable Build Process for Folder Names with Spaces

Enable Build Process for Folder Names with Spaces
The code generator uses alternate folder name support, which is specific to your
operating system, to process folder names that include spaces. On Windows systems, the
code generator maps a drive corresponding to the MATLAB installation folder for either
of these conditions:

• The matlabroot folder is a UNC location.
• The path the matlabroot folder contains spaces, and the system has no alternate

name support.

The build process provides similar support for other build-related folders. For a summary
of support and limitations, see “Build Process Folder Support on Windows” (Simulink
Coder).

Spaces in folder names can appear in the paths to build-related locations:

• matlabroot—path to your MATLAB installation folder.

An example is a matlabroot similar to C:\Program Files\MATLAB\R2015b.
• pwd—current working folder from which you start the build.

An example is a pwd at the start of a build similar to C:\Users\username
\Documents\My Work.

• The installation folder for a compiler that the build process uses.

If your work environment includes one or more of the preceding scenarios, use the
following support mechanisms for the build process:

• If you are using the toolchain approach to build generated code, the toolchain
manages spaces in folder names by using alternate names from the platform
(for example, Windows or UNIX). For more information about how the toolchain
TransformPathsWithSpaces method manages these names, see addAttribute
(coder.make.ToolchainInfo) (MATLAB Coder).

• If you are using the template makefile approach to build generated code, the template
makefile (.tmf) requires code to manage spaces in folder names. When the alternate
folder names (Windows short names) differ from the file system folder names
(Windows long names), add this code to the makefile.
ALT_MATLAB_ROOT = |>ALT_MATLAB_ROOT<|

ALT_MATLAB_BIN = |>ALT_MATLAB_BIN<|

!if "$(MATLAB_ROOT)" != "$(ALT_MATLAB_ROOT)"

33-69

33 Source Code Generation in Simulink Coder

MATLAB_ROOT = $(ALT_MATLAB_ROOT)

!endif

!if "$(MATLAB_BIN)" != "$(ALT_MATLAB_BIN)"

MATLAB_BIN = $(ALT_MATLAB_BIN)

!endif

When the values of the location tokens are not equal, this code replaces MATLAB_ROOT
with ALT_MATLAB_ROOT. The replacement indicates that the path to your MATLAB
installation folder includes spaces. This code applies the same type of replacement
for MATLAB_BIN with ALT_MATLAB_BIN. The preceding code is specific to nmake. For
platform-specific examples, see the supplied template makefiles.

With either build approach, when there is an issue with support for creation of alternate
names (short names), build errors can occur on Windows. If a build generates an error
message similar to the following message, see “Troubleshooting Errors When Folder
Names Have Spaces” (Simulink Coder).

NMAKE : fatal error U1073: don't know how to make ' ...

When using operating system commands, such as system or dos, enclose paths that
specify executable files or command parameters in double quotes (" "). For example:
system('dir "D:\Applications\Common Files"')

Build Process Folder Support on Windows

Build Process
Folders

Approach for Paths with UNC or
Spaces

Support for Windows Platform

matlabroot

folder

Note: The
matlabroot

value is derived
from the
MATLAB
installation
location.

During a build, a UNC location
such as:
\\networkdrive\matlab\R20xxb

could be remapped as:
T:\

During a build on a Windows
system with short file name
(8.3) support (default for
Windows using NTFS), the build
process uses the Windows API
getShortPathName() for the
folder location.

Build process folder support
available independent of file
system (NTFS or ReFS) or file
system configuration for short file
name support.

Limitations:

On systems that require drive
mapping for the installation
location, the build process requires
that a drive letter is available for
mapping.

33-70

 Enable Build Process for Folder Names with Spaces

Build Process
Folders

Approach for Paths with UNC or
Spaces

Support for Windows Platform

During a build on a Windows
system without short file name
(8.3) support (systems using ReFS
or using NTFS with 8.3 support
disabled), a location with spaces in
the path such as:
C:\Program Files\MATLAB\R20xxb

could be remapped as:
T:\R20xxb

On systems without short file
name (8.3) support (using ReFS
or using NTFS with 8.3 support
disabled), the final folder in
the installation location cannot
contain spaces. For example, a
final folder name:
C:\Program Files\MATLAB\R20xxb sp1

is not supported.

33-71

33 Source Code Generation in Simulink Coder

Build Process
Folders

Approach for Paths with UNC or
Spaces

Support for Windows Platform

For UNC locations, build process
temporarily maps a drive by using
the shell commands pushd and
popd.

Build process folder support is
available independent of file
system (NTFS or ReFS) or file
system configuration for short
path name support.

Code generation
folder

Simulation
cache folder

Custom code
source file
locations—
among others,
these locations
include folders
specified by:

• rtwmakecfg.m

• Configuration
Parameters
> Code
Generation
> Custom
Code >
Additional
build
information

• Code
replacement
library

For paths with spaces, build
process uses the Windows short
path name (8.3) by using the
Windows API:
getShortPathName()

Build process folder support
depends on NTFS file system and
requires Windows default support.
Registry sets value of 2 or 0 for:
NtfsDisable8dot3NameCreation

Limitations: Build process does
not support spaces in the path to
these folders for:

• NTFS file system with short
path name support disabled

• ReFS file system (this file
system does not support short
path names)

Troubleshooting Errors When Folder Names Have Spaces

On Windows, when there is an issue with support for creation of short file names, build
process errors can occur. When this issue affects a build, you see an error message
similar to:
NMAKE : fatal error U1073: don't know how to make 'C:\Work\My'

This message can occur if a space in the folder name (C:\Work\My Models) prevents
the build process from finding the model or a file to build. For descriptions of the build-

33-72

 Enable Build Process for Folder Names with Spaces

related folders that are sensitive to a space in the folder name or path, see “Build Process
Folder Support on Windows” (Simulink Coder).

To avoid issues from folder names with spaces when Windows short file name support
for file names is disabled, do not use paths with spaces. For example, install third-party
software to paths without spaces. Do not use paths with spaces for folders containing
your models, source files, or libraries.

An issue can occur with builds that use folder names with spaces, because it is possible
to disable Windows alternate name support. The build process uses this alternate
name support on Windows systems. There are many terms for this file, folder, and path
alternate name support:

• 8.3 name
• DOS path
• short file name (SFN, ShortFileName)
• long name alias
• Windows path alias

Verify the type of file system that the drive uses. In Windows Explorer, right-click the
drive icon and select properties.

• If the file system is ReFS (Resilient File System), it is an issue. The ReFS does not
provide short file name support. Except for the MATLAB installation folder, the
build process does not support folder names with spaces for the ReFS file system. If
your work environment requires short file name support for the build folder or for
additional external code folders, do not use ReFS.

• If the file system is NTFS (New Technology File System), it is possible that the build
error is related to a registry setting incompatibility. Continue with troubleshooting
steps.

The error could stem from an issue with short file name support on a system using
NTFS. Check the Windows registry setting that enables the creation of short names for
files, folders, and paths.

1 From the Windows Start menu, type cmd, right-click the cmd.exe icon, and select
Run as administrator.

2 Change to the windows\system32 folder and query the
NtfsDisable8dot3NameCreation status by typing:
> fsutil 8dot3name query

33-73

https://en.wikipedia.org/wiki/ReFS
https://en.wikipedia.org/wiki/NTFS

33 Source Code Generation in Simulink Coder

3 If the registry state of NtfsDisable8dot3NameCreation is not 2, the default
(Volume level setting), change the value to 2 by typing:
> fsutil 8dot3name set 2

For more information about enabling creation of short names. See http://
technet.microsoft.com/en-us/library/ff621566.aspx.

Changing the registry setting enables creation of short names only for files and
folders that are created after the change.

4 To create short names for files created while short name creation was disabled, at
the Windows command line, use the fsutil utility.

To set the short name, the syntax is:
> fsutil file setshortname <FileName> <ShortName>

For example, to create the short name PROGRA~1 for the long name C:\Program
Files, type:
> fsutil file setshortname "C:\Program Files" PROGRA~1

The C:\Program Files folder name is in quotations because it has spaces.
5 To verify that the short name was created, use the dir command with /x option to

show short names.
> dir C:\ /x

See Also
addAttribute (coder.make.ToolchainInfo) (MATLAB Coder)

More About
• “Manage Build Process Folders” (Simulink Coder)
• “Manage Build Process Files” (Simulink Coder)
• “Manage Build Process File Dependencies” (Simulink Coder)
• “Add Build Process Dependencies” (Simulink Coder)
• “Build and Run a Program” (Simulink Coder)

External Websites
• MATLAB Answers: “Why is the build process failing ...?”

33-74

http://technet.microsoft.com/en-us/library/ff621566.aspx
http://technet.microsoft.com/en-us/library/ff621566.aspx
http://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

 Enable Build Process for Folder Names with Spaces

• http://technet.microsoft.com/en-us/library/cc788058.aspx
• http://technet.microsoft.com/en-us/library/cc788058.aspx

33-75

http://technet.microsoft.com/en-us/library/cc959352.aspx
http://technet.microsoft.com/en-us/library/cc788058.aspx

33 Source Code Generation in Simulink Coder

Code Generation of Matrices and Arrays

In this section...

“Code Generator Matrix Parameters” on page 33-78
“Internal Data Storage for Complex Number Arrays” on page 33-79

MATLAB, Simulink, and the code generator store matrix data and arrays (1–D, 2–D, ...)
in column-major format as a vector. Column-major format orders elements in a matrix
starting from the first column, top to bottom, and then moving on to the next column. For
example, the following 3x3 matrix:

A =

 1 2 3

 4 5 6

 7 8 9

translates to an array of length 9 in the following order:

A(1) = A(1,1) = 1;

A(2) = A(2,1) = 4;

A(3) = A(3,1) = 7;

A(4) = A(1,2) = 2;

A(5) = A(2,2) = 5;

and so on.

In column-major format, the next element of an array in memory is accessed by
incrementing the first index of the array. For example, these element pairs are stored
sequentially in memory:

• A(i) and A(i+1)
• B(i,j) and B(i+1,j)
• C(i,j,k) and C(i+1,j,k)

For more information on the internal representation of MATLAB data, see “MATLAB
Data” (MATLAB) in the MATLAB External Interfaces document.

Code generation software uses column-major format for several reasons:

• The world of signal and array processing is largely column major: MATLAB, LAPack,
Fortran90, DSP libraries.

33-76

 Code Generation of Matrices and Arrays

• A column is equivalent to a channel in frame-based processing. In this case, column-
major storage is more efficient.

• A column-major array is self-consistent with its component submatrices:

• A column-major 2–D array is a simple concatenation of 1–D arrays.
• A column-major 3–D array is a simple concatenation of 2–D arrays.
• The stride is the number of memory locations to index to the next element in the

same dimension. The stride of the first dimension is one element. The stride of the
nth dimension element is the product of sizes of the lower dimensions.

• Row-major n-D arrays have their stride of 1 for the highest dimension. Submatrix
manipulations are typically accessing a scattered data set in memory, which does
not allow for efficient indexing.

C typically uses row-major format. MATLAB and Simulink use column-major format.
You cannot configure the code generation software to generate code with row-major
ordering. If you are integrating external C code with the generated code, consider the
following:

To Consider

Integrate row-major
data in external C code
with Simulink generated
functions.

• Transposing the row-major data in your external C
code into column-major format as a 1–D array.

• Using “Access Data Through Functions with Custom
Storage Class GetSet” on page 23-92. The GetSet
custom storage class replaces get (read from) and
set (write to) with user-specified GetSet functions.
The user-specified GetSet function has a single
index argument, requiring the function to process the
argument and access the targeted row and column
data element. Using the GetSet function impacts code
efficiency.

Integrate external C code
functions requiring row-
major data with Simulink
generated data.

Using the Legacy Code Tool option
convert2DMatrixToRowMajor to create an S-
function that integrates external code functions with
Simulink generated data. See legacy_code. The
generated code stores the data as a 1–D array. Using
convert2DMatrixToRowMajor impacts code efficiency.

33-77

33 Source Code Generation in Simulink Coder

Code Generator Matrix Parameters

The compiled model file, model.rtw, represents matrices as character vectors in
MATLAB syntax, without an implied storage format. This format allows you to copy the
character vector out of an .rtw file, paste it into a MATLAB file, and have it recognized
by MATLAB.

The code generator declares Simulink block matrix parameters as scalar or 1-D array
variables

real_T scalar;

real_T mat[nRows * nCols];

real_T can be a data type supported by Simulink. It matches the variable type given in
the model file.

For example, the 3-by-3 matrix in the 2–D Look-Up Table block

 1 2 3

 4 5 6

 7 8 9

is stored in model.rtw as

Parameter {

 Name "OutputValues"

 Value Matrix(3,3)

[[1.0, 2.0, 3.0]; [4.0, 5.0, 6.0]; [7.0, 8.0, 9.0];]

 String "t"

 StringType "Variable"

 ASTNode {

 IsNonTerminal 0

 Op SL_NOT_INLINED

 ModelParameterIdx 3

 }

}

and results in this definition in model.h.

typedef struct Parameters_tag {

 real_T s1_Look_Up_Table_2_D_Table[9];

 /* Variable:s1_Look_Up_Table_2_D_Table

 * External Mode Tunable:yes

 * Referenced by block:

33-78

 Code Generation of Matrices and Arrays

 * <S1>/Look-Up Table (2-D

 */

 [... other parameter definitions ...]

} Parameters;

The model.h file declares the actual storage for the matrix parameter. You can see that
the format is column-major.

1 2 3

4 5 6

7 8 9

Parameters model_P = {

 /* 3 x 3 matrix s1_Look_Up_Table_2_D_Table */

 { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 },

 [... other parameter declarations ...]

};

Internal Data Storage for Complex Number Arrays

Simulink and code generator internal data storage formatting differs from MATLAB
internal data storage formatting only in the storage of complex number arrays. In
MATLAB, the real and imaginary parts are stored in separate arrays. In Simulink and
the code generator, the parts are stored in an "interleaved" format. The numbers in
memory alternate real, imaginary, real, imaginary, and so forth. This convention allows
efficient implementations of small signals on Simulink lines, for Mux blocks, and other
"virtual" signal manipulation blocks. For example, the signals do not actively copy their
inputs, just the references.

33-79

33 Source Code Generation in Simulink Coder

Generate Shared Utility Code

Blocks in a model can require common functionality to implement their algorithm.
Consider modularizing this functionality into standalone support or helper functions.
This approach can be more efficient than inlining the code for the functionality for each
block instance. These points help with the decision to use a library or a shared utility:

• Package functions that can have multiple callers into a library when the functions are
defined statically. That is, the function source code exists in a file before you use the
code generator to produce code for your model.

• Package functions that can have multiple callers as shared utilities (produced during
code generation) when the functions cannot be defined statically. For example, several
model- and block-specific properties specify which functions are used and their
behavior. Also, these properties determine type definitions (for example, typedef)
in shared utility header files. The number of possible combinations of properties
that determine unique behavior make it impractical to define statically the possible
function files before code generation.

In this section...

“Control Placement of Shared Utility Code” on page 33-80
“Control Placement of rtwtypes.h for Shared Utility Code” on page 33-81
“Avoid Duplicate Header Files for Exported Data” on page 33-82
“Reduce Shared Utility Code Generation with Incremental Builds” on page 33-82

Control Placement of Shared Utility Code

Control placement of shared utility code with the Shared code placement option in
Configuration Parameters > Code Generation > Interface pane. The default option
value is Auto. For this setting, the code generator places code required for fixed-point
and other utilities in the model.c file, the model.cpp file, or a separate file in the build
folder (for example, vdp_grt_rtw) if a model does not contain existing shared utility
code or one of the following blocks:

• Model blocks
• Simulink Function blocks
• Function Caller blocks

33-80

 Generate Shared Utility Code

• calls to Simulink Functions from Stateflow or MATLAB Function blocks

If a model contains one or more of the above blocks, the code generator creates and uses a
shared utilities folder within slprj. The naming convention for shared utility folders is
slprj/target/_sharedutils. target is sim for simulations with Model blocks or the
name of the system target file for code generation.
slprj/sim/_sharedutils % folder used with simulation

slprj/grt/_sharedutils % folder used with grt.tlc STF

slprj/ert/_sharedutils % folder used with ert.tlc STF

slprj/mytarget/_sharedutils % folder used with mytarget.tlc STF

To force a model build to use the slprj folder for shared utility generation, even when
the current model does not contain existing shared utility code or one of the blocks
listed above, set the Shared code placement option to Shared location. The code
generator places utilities under the slprj folder rather than in the normal build folder.
This setting is useful when you are manually combining code from several models, as it
prevents symbol collisions between the models.

Control Placement of rtwtypes.h for Shared Utility Code

The generated rtwtypes.h header file provides fundamental type definitions, #define
statements, and enumerations. For more information, see “rtwtypes.h” on page 33-49.

Control placement of rtwtypes.h file by selecting whether the build process uses the
shared utilities folder. If the model build uses a shared utilities folder, the build process
places rtwtypes.h in slprj/target/_sharedutils. Otherwise, the software places
rtwtypes.h in model_target_rtw.

Adding a model to a model hierarchy or changing an existing model in the hierarchy can
result in updates to the shared rtwtypes.h file during code generation. If updates occur,
recompile and, depending on your development process, reverify previously generated
code. To minimize updates to the rtwtypes.h file, make the following changes in the
Configuration Parameters dialog box:

• On the Interface pane, select Support: complex numbers even if the model does
not currently use complex data types. Selecting this option protects against a future
requirement to add support for complex data types when integrating code.

• On the All Parameters tab, clear Support: non-inlined S-functions. If you use
noninlined S-functions in the model, this option generates an error.

• On the All Parameters tab, clear Classic call interface. Disables use of the GRT
interface.

33-81

33 Source Code Generation in Simulink Coder

Avoid Duplicate Header Files for Exported Data

The exported header files appear in the shared utility folder when:

• You control the file placement of declarations for signals, parameters, and states by
applying storage classes and custom storage classes.

• The code generator places utility code in a shared location.

For example, you can specify a header file for a piece of data through:

• The Code Generation tab in a Signal Properties dialog box.
• The HeaderFile property of a data object. Data objects are objects of the classes

Simulink.Signal and Simulink.Parameter.

If you want the declaration to appear in the file model.h, it is a best practice to leave the
header file name unspecified. By default, the code generator places data declarations in
model.h.

If you specify model.h as the header file name, and if the code generator places utility
code in a shared location, you cannot generate code from the model. The code generator
cannot create the file model.h in both the model build folder and the shared utility
folder.

Reduce Shared Utility Code Generation with Incremental Builds

You can specify that the model build generates C source files in a shared utilities folder.
See “Control Placement of Shared Utility Code” on page 33-80. These files include
C source files that contain function definitions and header files that contain macro
definitions. For this discussion, the term functions means functions and macros.

Blocks within the same model and blocks in different models can use a shared function
when you use model reference or when you build multiple standalone models from the
same start build folder. The code generator produces the code for a given function only
once for the block that first triggers code generation. As the product determines the
requirement to generate function code for subsequent blocks, it performs a file existence
check. If the file exists, the model build does not regenerate the function. The shared
utility code mechanism requires that a given function and file name represent the same
functional behavior regardless of which block or model generates the function. To satisfy
this requirement:

33-82

 Generate Shared Utility Code

• Model properties that determine function behavior contribute to the shared utility
checksum or determine the function and file name.

• Block properties that determine the function behavior also determine the function
and file name.

During compilation, makefile rules for the shared utilities folder select compilation of
only new C files and incrementally archive the object file into the shared utility library,
rtwshared.lib, or rtwshared.a. Incremental compilation also occurs.

More About
• “Manage the Shared Utility Code Checksum” (Simulink Coder)
• “Generate Shared Utility Code for Fixed-Point Functions” (Simulink Coder)
• “Generate Shared Utility Code for Custom Data Types” (Simulink Coder)
• “Cross-Release Shared Utility Code Reuse” (Simulink Coder)

33-83

33 Source Code Generation in Simulink Coder

Manage the Shared Utility Code Checksum
When a model configuration sets Configuration Parameters > Code Generation >
Interface > Shared code placement as Shared location or when the model contains
Model blocks, the code generator places the shared code in the shared utilities folder. The
build process generates a shared utilities checksum of the code generation configuration
for the shared code.

During subsequent code generation, if the checksum file slprj/target/
_sharedutils/checksummap.mat exists relative to the current folder, the code
generator reads that file. The code generator verifies that the current model that
you are building has configuration properties that match the checksum of properties
from the shared utility model. If mismatches occur between the properties defined in
checksummap.mat and the current model properties, you see an error. Use the error
message to manage the checksum (for example, diagnose and resolve the configuration
issues with the current model).

For more information, see “Reduce Shared Utility Code Generation with Incremental
Builds” on page 33-82.

In this section...

“View the Shared Utility Checksum Hash Table” on page 33-84
“Relate the Shared Utility Checksum to Configuration Parameters” on page 33-86

View the Shared Utility Checksum Hash Table

It is helpful to view the property values that contribute to the checksum. This example
uses the rtwdemo_lct_start_term.slx model. To load the checksum.mat file
into MATLAB and view the targetInfoStruct that defines the checksum-related
properties:

1 Open the rtwdemo_lct_start_term.slx model. In the Command Window, type:
rtwdemo_lct_start_term

2 Create and move to a new working folder.
mkdir C:\Temp\demo

cd C:\Temp\demo

3 Save a copy of the model in the folder.
4 Build the model by using the Simulink > Code > C/C++ Code > Build Model

command. This model is already set up to produce shared utilities.

33-84

 Manage the Shared Utility Code Checksum

5 Move to the _sharedutils folder created by the build process.
cd C:\Temp\demo\slprj\grt_sharedutils

6 Load the checksummap.mat file into MATLAB.
load checksummap

7 Display the contents of hashTbl.targetInfoStruct and examine the checksum-
related property values.
hashTbl.targetInfoStruct

For this example, the Command Window displays hashTbl.targetInfoStruct for the
shared utilities that you generated from the model:
 ShiftRightIntArith: 'on'

 ProdShiftRightIntArith: 'on'

 Endianess: 'LittleEndian'

 ProdEndianess: 'LittleEndian'

 wordlengths: '8,16,32,32,64,32,64,64,64,64'

 Prodwordlengths: '8,16,32,32,64,32,64,64,64,64'

 TargetWordSize: '64'

 ProdWordSize: '64'

 TargetHWDeviceType: 'Custom Processor->MATLAB Host Computer'

 ProdHWDeviceType: 'Intel->x86-64 (Windows64)'

 TargetIntDivRoundTo: 'Zero'

 ProdIntDivRoundTo: 'Zero'

 tmfName: ''

 toolchainName: ''

 computer: 'PCWIN64'

 UseDivisionForNetSlopeComputation: 'off'

 PurelyIntegerCode: 'off'

 PortableWordSizes: 'off'

 SupportNonInlinedSFcns: ''

 TargetLibSuffix: ''

 RTWReplacementTypes: ''

 MaxIdInt8: 'MAX_int8_T'

 MinIdInt8: 'MIN_int8_T'

 MaxIdUint8: 'MAX_uint8_T'

 MaxIdInt16: 'MAX_int16_T'

 MinIdInt16: 'MIN_int16_T'

 MaxIdUint16: 'MAX_uint16_T'

 MaxIdInt32: 'MAX_int32_T'

 MinIdInt32: 'MIN_int32_T'

 MaxIdUint32: 'MAX_uint32_T'

 BooleanTrueId: 'true'

 BooleanFalseId: 'false'

 TypeLimitIdReplacementHeaderFile: ''

 SharedCodeRepository: ''

 TargetLang: 'C'

 PreserveExternInFcnDecls: 'on'

 EnableSignedRightShifts: 'on'

 EnableSignedLeftShifts: 'on'

 TflName: 'None'

33-85

33 Source Code Generation in Simulink Coder

 TflCheckSum: [1.6615e+09 521991164 2.2147e+09 1.7704e+09]

 UtilMemSecName: 'Default'

 CodeCoverageChecksum: [3.6498e+09 78774415 2.5508e+09 2.1183e+09]

 TargetLargestAtomicInteger: 'Char'

 TargetLargestAtomicFloat: 'None'

 ProdLargestAtomicInteger: 'Char'

 ProdLargestAtomicFloat: 'Float'

 LongLongMode: 'on'

 ProdLongLongMode: 'off'

 CollapseNonTrivialExpressions: 'false'

Relate the Shared Utility Checksum to Configuration Parameters

Examine the targetInfoStruct hash table from the shared utility model. Some key-
value pairs relate directly to a model property. Other pairs relate to groups of properties.

The following table describes the key-value pairs.

Key Names Model Properties

ShiftRightIntArith TargetShiftRightIntArith

ProdShiftRightIntArith ProdShiftRightIntArith

Endianess TargetEndianess

ProdEndianess ProdEndianess

wordlengths

TargetBitPerChar,
TargetBitPerShort,
TargetBitPerInt, TargetBitPerLong,
TargetBitPerLongLong,
TargetBitPerFloat,
TargetBitPerDouble,
TargetBitPerPointer

Prodwordlengths

ProdBitPerChar, ProdBitPerShort,
ProdBitPerInt, ProdBitPerLong,
ProdBitPerLongLong,
ProdBitPerFloat, ProdBitPerDouble,
ProdBitPerPointer

TargetWordSize TargetWordSize

ProdWordSize ProdWordSize

TargetHWDeviceType TargetHWDeviceType

ProdHWDeviceType ProdHWDeviceType

33-86

 Manage the Shared Utility Code Checksum

Key Names Model Properties

TargetIntDivRoundTo TargetIntDivRoundTo

ProdIntDivRoundTo ProdIntDivRoundTo

tmfName TemplateMakefile

toolchainName Toolchain

computer return value of the computer command
UseDivisionForNetSlopeComputation UseDivisionForNetSlopeComputation

PurelyIntegerCode PurelyIntegerCode

PortableWordSizes PortableWordSizes

SupportNonInlinedSFcns SupportNonInlinedSFcns

TargetLibSuffix Removed (not used)

RTWReplacementTypes EnableUserReplacementTypes,

ReplacementTypes

MaxIdInt8 MaxIdInt8

MinIdInt8 MinIdInt8

MaxIdUint8 MaxIdUint8

MaxIdInt16 MaxIdInt16

MinIdInt16 MinIdInt16

MaxIdUint16 MaxIdUint16

MaxIdInt32 MaxIdInt32

MinIdInt32 MinIdInt32

MaxIdUint32 MaxIdUint32

BooleanTrueId BooleanTrueId

BooleanFalseId BooleanFalseId

TypeLimitIdReplacementHeaderFile TypeLimitIdReplacementHeaderFile

SharedCodeRepository reserved (internal use only)
TargetLang TargetLang

PreserveExternInFcnDecls PreserveExternInFcnDecls

EnableSignedRightShifts EnableSignedRightShifts

33-87

33 Source Code Generation in Simulink Coder

Key Names Model Properties

EnableSignedLeftShifts EnableSignedLeftShifts

TflName CodeReplacementLibrary

TflCheckSum reserved (internal use only)

UtilMemSecName MemSecFuncSharedUtil,
MemSecPackage

CodeCoverageChecksum reserved (internal use only)
TargetLargestAtomicInteger TargetLargestAtomicInteger

TargetLargestAtomicFloat TargetLargestAtomicFloat

ProdLargestAtomicInteger ProdLargestAtomicInteger

ProdLargestAtomicFloat ProdLargestAtomicFloat

LongLongMode TargetLongLongMode

ProdLongLongMode ProdLongLongMode

CollapseNonTrivialExpressions reserved (internal use only)

More About
• “Generate Shared Utility Code” (Simulink Coder)
• “Generate Shared Utility Code for Fixed-Point Functions” (Simulink Coder)
• “Generate Shared Utility Code for Custom Data Types” (Simulink Coder)
• “Cross-Release Shared Utility Code Reuse” (Simulink Coder)

33-88

 Generate Shared Utility Code for Fixed-Point Functions

Generate Shared Utility Code for Fixed-Point Functions

An important set of generated functions that the model build places in the shared utility
folder are the fixed-point support functions. Based on model and block properties, there
are many possible versions of fixed-point utilities functions that make it impractical to
provide a complete set as static files. Generating only the required fixed-point utility
functions during the code generation process is an efficient alternative.

The shared utility checksum mechanism makes sure that several critical properties are
identical for models that use the shared utilities. For the fixed-point functions, there
are additional properties that determine function behavior. The mechanism codes these
properties into the functions and file names to maintain requirements. The additional
properties include:

Category Function/Property

Block properties • Fixed-point operation that the block performs
• Fixed-point data type and scaling (Slope, Bias) of function

inputs and outputs
• Overflow handling mode (Saturation, Wrap)
• Rounding Mode (Floor, Ceil, Zero)

Model properties get_param(bdroot, 'NoFixptDivByZeroProtection')

The property-based naming convention for the fixed-point utilities is as follows:
operation + [zero protection] + output data type + output bits +

[input1 data] + input1 bits + [input2 data type + input2 bits] +

[shift direction] + [saturate mode] + [round mode]

The file names shown are examples of generated fixed-point utility files. The function or
macro names in the file are identical to the file name without the extension.
FIX2FIX_U12_U16.c

FIX2FIX_S9_S9_SR99.c

ACCUM_POS_S30_S30.h

MUL_S30_S30_S16.h

div_nzp_s16s32_floor.c

div_s32_sat_floor.c

For these examples, the table shows how the respective fields correspond.

The ACCUM_POS example uses the output variable as one of the input variables. So, the
file and macro name only contain the output and second input.

33-89

33 Source Code Generation in Simulink Coder

The second div example has identical data type and bits for both inputs and the output.
So, the file and function name only include the output.

Operation FIX2FIX FIX2FIX ACCUM_POS MUL div div

Zero protection NULL NULL NULL NULL _nzp NULL

Output data type _U _S _S _S _s _s

Output bits 12 9 30 30 16 32

Input data type _U _S _S _S [and _S] s NULL

Input bits 16 9 30 30 [and 16] 32 NULL

Shift direction NULL SR99 NULL NULL NULL NULL

Saturate mode NULL NULL NULL NULL NULL _sat

Round mode NULL NULL NULL NULL _floor _floor

More About
• “Generate Shared Utility Code” (Simulink Coder)
• “Manage the Shared Utility Code Checksum” (Simulink Coder)
• “Generate Shared Utility Code for Custom Data Types” (Simulink Coder)
• “Cross-Release Shared Utility Code Reuse” (Simulink Coder)
• “Control the Generation of Fixed-Point Utility Functions” (Fixed-Point Designer)

33-90

 Generate Shared Utility Code for Custom Data Types

Generate Shared Utility Code for Custom Data Types

By default, if a model employs a custom data type (such as a Simulink.AliasType
object or an enumeration class), the code generator places the corresponding type
definition (typedef) in the model_types.h file. When you generate code from multiple
models, each model duplicates the type definition. These duplicate definitions can
prevent you from compiling the bodies of generated code together.

However, you can configure the code generator to place a single type definition in a
header file in the _sharedutils folder. Then, when you generate code from a model, if
the type definition already exists in the _sharedutils folder, the code generator does
not duplicate the definition, but instead reuses it through inclusion (#include).

Through this mechanism, you can share:

• Simulink data type objects that you instantiate from the classes
Simulink.AliasType, Simulink.Bus, and Simulink.NumericType. For basic
information about creating and using these objects, see “What Are User-Defined Data
Types?” on page 21-2 and Simulink.Bus.

• Enumerations that you define, for example, by authoring an enum class in a script
file or by using the function Simulink.defineIntEnumType. For basic information
about defining enumerations in Simulink, see “Use Enumerated Data in Simulink
Models” (Simulink).

To share a custom data type across multiple models:

1 Define the data type. For example, create the Simulink.AliasType object.
2 Set data scope and header file properties to specific values that enable sharing.

For a data type object, set the DataScope property to 'Exported' and, optionally,
specify the header file name through the HeaderFile property.

For an enumeration that you define as an enum class in a script file, implement the
getDataScope method (with return value 'Exported') and, optionally, implement
the getHeaderFile method.

For an enumeration that you define by using the Simulink.defineIntEnumType
function, set the 'DataScope' pair argument to 'Exported' and, optionally,
specify the 'HeaderFile' pair argument

3 Use the data type in the models.

33-91

33 Source Code Generation in Simulink Coder

4 Before generating code from each model, set Configuration Parameters > Code
Generation > Interface > Shared code placement to Shared location.

5 Generate code from the models.

Note: You can configure the definition of the custom data type to appear in a header
file in the _sharedutils folder. The shared utility functions that the model build
generates into the _sharedutils folder do not use the custom data type name. Only
model code located in code folders for each model uses the custom data type name.

More About
• “Generate Shared Utility Code” (Simulink Coder)
• “Manage the Shared Utility Code Checksum” (Simulink Coder)
• “Generate Shared Utility Code for Fixed-Point Functions” (Simulink Coder)
• “Cross-Release Shared Utility Code Reuse” (Simulink Coder)
• “Control File Placement of User-Defined Types” on page 21-6

33-92

 Cross-Release Shared Utility Code Reuse

Cross-Release Shared Utility Code Reuse

In this section...

“Workflow to Reuse Shared Utility Code” on page 33-93
“Required Edits to Reuse Shared Utility Code” on page 33-94

When you generate code for a model, the code generator by default creates shared
utility files that the model requires. When you generate code with different releases,
the code generators can produce functionally identical shared files that contain some
nonfunctional differences. For example, different comments and different coding style.
When you use the same release to generate code for different models in different folders,
you can also produce shared files with nonfunctional differences. For example, if you
specify different ParenthesesLevel or ExpressionFolding values for the models,
the code generator can produce shared files that contain different comments or different
coding styles.

Integrated code that includes functionally identical shared files:

• Is more expensive to verify because each shared file requires verification.
• Produces compilation errors if the shared files define duplicate symbols.

If you have an Embedded Coder license, you can avoid these issues by specifying the
reuse of shared code from an existing folder, for example, a read-only library of verified
code. In this case, the code generator does not create new shared utility files. The build
process uses external code or previously generated shared utility code from the folder. An
administrator maintains and updates the read-only library.

Workflow to Reuse Shared Utility Code

1 In the Configuration Parameters > All Parameters > Existing shared code
field, enter the full path to your shared code folder.

2 Verify that the Configuration Parameters > All Parameters > Use only
existing shared code diagnostic is set to error (default).

3 Remove the slprj folder or move to a new working folder.
4 Build your model. If you do not see an error, your shared code folder contains the

required shared utility files.
5 If files are missing from the shared code folder, you see an error. To continue code

generation with a locally generated version of the missing shared utility files:

33-93

33 Source Code Generation in Simulink Coder

a Set Configuration Parameters > All Parameters > Use only existing
shared code to warning.

b Rebuild your model. The code generation process uses a locally generated
version of the missing shared utility files.

c Provide the administrator of the verified code library with your model
and information about missing shared utility files. With the model,
the administrator generates the required shared utility files. Using
sharedCodeUpdate, the administrator adds the files to the shared code folder.

d When the files are available in the shared code folder, repeat steps 1–4.

If the shared utility code is generated from library subsystems that are shared across
models (Simulink Coder), you cannot reuse the code across releases because the code
is release-specific—the symbol name and file name mangling includes the release
number. The administrator must add the shared utility code generated for each
release to the shared code folder.

The sharedCodeUpdate function can add files to the shared code folder that have
identical content but different file and function names. This behavior is useful when
you have different model components that require their own shared utility functions.
Although some code is duplicated, the different model components can access the
shared utility functions with which they were verified. To force model components to
have their own versions of shared utility functions, configure naming rules to insert
the model name into shared utility identifiers (Simulink Coder).

Required Edits to Reuse Shared Utility Code

For most shared utility code files, you can specify master copies that you can reuse across
releases without modifying the files. With some files, for example, rtwtypes.h, and
zero_crossing_types.h, there are situations where manual editing is required to
produce master copies that you can use with generated code from different releases. For
example:

• The rtwtypes.h file generated by R2010a contains a checksum.

/* This ID is used to detect inclusion of an incompatible rtwtypes.h */

#define RTWTYPES_ID_C08S16I32L64N64F0

For each R2010a version of rtwtypes.h that you want to include in your integration,
copy the corresponding #define statement into your master copy of rtwtypes.h.

33-94

 Cross-Release Shared Utility Code Reuse

• In R2015a, the zero-crossing definitions moved from rtwtypes.h into
zero_crossing_types.h. To create an rtwtypes.h file that is compatible with
generated model code from different releases, in your master copy of rtwtypes.h,
insert this statement.

#include "zero_crossing_types.h"

Remove definitions from rtwtypes.h that zero_crossing_types.h provides.

See Also
crossReleaseImport | crossReleaseExport | sharedCodeUpdate

Related Examples
• “Cross-Release Code Integration” on page 33-96

More About
• “Generate Shared Utility Code” (Simulink Coder)
• “Manage the Shared Utility Code Checksum” (Simulink Coder)
• “Generate Shared Utility Code for Fixed-Point Functions” (Simulink Coder)
• “Generate Shared Utility Code for Custom Data Types” (Simulink Coder)

33-95

33 Source Code Generation in Simulink Coder

Cross-Release Code Integration

In this section...

“Workflow” on page 33-96
“Limitations” on page 33-99
“Incorporate Model Reference Code” on page 33-100
“Simulink.Bus Support” on page 33-100
“Parameter Tuning” on page 33-102
“Compare Simulation Behavior of Model Component in Current Release and Generated
Code from Previous Release” on page 33-103

If you have an Embedded Coder license, you can integrate generated C code from
previous releases (R2010a and later) with generated code from the current release when:

• The source models are single-rate.
• The source models are set to generate nonreusable code with function prototype

control (root-level Inport and Outport blocks are mapped to step function arguments).
• The generated C code is from top-model and subsystem build processes.

If you can reuse existing code without modification, you can reduce the cost of
reverification.

Workflow

Consider this control system model.

33-96

 Cross-Release Code Integration

The Controller Model block references a model that consists of three components:

• P1 is a Model block, which references a model developed with a previous release, for
example, R2015b. The generated model code, with the standalone code interface, is in
the folder P1_ert_rtw.

• C1 is a Model block, which references a model that you are developing in the current
release.

• P2 is a subsystem block developed with a previous release, for example, R2016a. The
generated subsystem code is in the folder P2_ert_rtw.

33-97

33 Source Code Generation in Simulink Coder

To integrate code from previous releases with generated code from the current release,
use this workflow:

1 Export components from previous releases

a Add the crossReleaseExport function to the search paths for previous
releases. For example, in the Command Window of a previous release, run this
command:

addpath(fullfile(matlabRootCR, 'toolbox','coder','xrelexport'));

matlabRootCR is the matlabroot value for your current release.
b Using the previous releases, export generated component code. For example:

• From R2015b, run:

crossReleaseExport(fullfile(folderPath,’P1_ert_rtw’))

• From R2016a, run:

crossReleaseExport(fullfile(folderPath,’P2_ert_rtw’))

The crossReleaseExport function creates export artifacts in new folders
P1_R2015b and P2_R2016a.

2 Specify an existing shared code folder

You can specify the reuse of shared code from an existing folder, for example, a
library of verified code that an administrator maintains and updates. Specify the
shared code folder for model components that require code generation in the current
release, for example, Controller and C1.

In the Configuration Parameters > All Parameters > Existing shared code
field, enter the full path to the shared code folder.

3 Import components into current release

From the current release, using export artifacts created in step 2, import generated
component code from previous releases as software-in-the-loop (SIL) blocks or
processor-in-the-loop (PIL) blocks. For example:

crossReleaseImport(P1_R2015bFullPath,'Controller', ...

'SimulationMode','SIL');

crossReleaseImport(P2_R2016aFullPath,'Controller', ...

'SimulationMode','SIL');

P1_R2015bFullPath and P2_R2016aFullPath are paths to the export artifact
folders, P1_R2015b and P2_R2016a, created in step 1.

33-98

 Cross-Release Code Integration

The crossReleaseImport function creates software-in-the-loop (SIL) blocks and
subfolders:

• P1_R2015b_sil and P1_R2015b_sil_resources
• P2_R2016a_sil and P2_R2016a_sil_resources

4 Incorporate components into current release model

To replace components with SIL or PIL blocks, use the Simulink Editor or the
pil_block_replace command. For example:

• Replace P1 with P1_R2015b_sil.
• Replace P2 with P1_R2016a_sil.

When you run a model simulation, the simulation runs the previous release code
through the SIL or PIL blocks.

When you build the Controller model (rtwbuild('Controller')), the code
generator does not generate new code for the components represented by the SIL or
PIL blocks. The model code calls code generated by previous releases.

Limitations

The cross-release code integration workflow does not support:

• Export-function models.
• Model blocks inside the exported component. For a workaround, see “Incorporate

Model Reference Code” on page 33-100.
• AUTOSAR code generation.
• Simulink Function, Function Caller, and Data Store Memory blocks across the

boundaries of code generated by different releases.
• Parameter tuning through the SIL or PIL blocks.
• The integration of generated code from releases before R2010a.
• The import of generated code from the current release into a previous release (forward

compatibility).
• The export of files located in the MATLAB root folder of the previous release, for

example, blockset library files.
• The export and import of generated code from models with non-inlined S-functions.

33-99

33 Source Code Generation in Simulink Coder

• C-API on page 43-2.

You can export a Model block component only if the referenced model has these settings:

• ModelReferenceNumInstancesAllowed is Single.
• SuppressErrorStatus is on.

At the end of the model build process, the code generation report displays shared files
that are directly used by the integration model, for example, Controller. The report
does not display shared files used by the components of the model, for example, P1 and
P2.

Incorporate Model Reference Code

Suppose a Model block in a component references a model through the model reference
code interface. When you use crossReleaseExport to export generated code from
a previous release, the function does not export the referenced model code. You see a
warning:
Cross-release export does not support model references. Generated code

for the following models will not be exported:

To work around this limitation, before running crossReleaseImport, use the
sharedCodeUpdate function to import the generated code for the referenced model into
your specified shared code folder.
sharedCodeUpdate(referencedModelCodeFolder,existingSharedCodeFolder);

The function creates a subfolder for the copied referenced model code.

If you try to import the component code without the referenced model code,
crossReleaseImport produces a build error.

Simulink.Bus Support

To use a bus object as a data type in cross-release code integration, use one of these
approaches.

Approach Details

Exported
bus

In the previous release, before generating code, specify these properties of the
Simulink.Bus object:

• DataScope — Set to Exported.

33-100

 Cross-Release Code Integration

Approach Details

• HeaderFile — Specify a file name, for example, prevRelBusType.

The code generator creates prevRelBusType.h in the shared utility code
folder. This header file contains the definition for the Simulink.Bus data
type. Use sharedCodeUpdate to add prevRelBusType.h to the shared code
folder that ExistingSharedCode specifies.

For R2010a and R2010b, the DataScope property is not available. Do not
assign a value to the HeaderFile property. The code generator creates the
Simulink.Bus data type definition in modelName_types.h, which is located
in the code generation folder for the model.
In the current release, before running crossReleaseImport, set the
DataScope property of the Simulink.Bus object to Imported.

When you build the integration model that incorporates the imported SIL or
PIL block, the build process uses the Simulink.Bus data type definition in
prevRelBusType.h.

If the imported code is from R2010a or R2010b, specify these properties of the
Simulink.Bus object:

• DataScope — Set to Imported.
• HeaderFile — Set to file path for modelName_types.h, which is in the

imported code folder.

When you build the integration model, the build process uses the
Simulink.Bus data type definition in modelName_types.h.

Imported
bus

In the previous release, before generating code, specify these properties of the
Simulink.Bus object:

• DataScope — Set to Imported.
• HeaderFile — Specify a path to a file that contains the Simulink.Bus

data type definition, for example, aBusType.h.

For R2010a and R2010b, the DataScope property is not available. For
the HeaderFile property, specify a path to a file that contains the
Simulink.Bus data type definition, for example, aBusType.h.

33-101

33 Source Code Generation in Simulink Coder

Approach Details

In the current release, after importing generated code, you do not have to
change the Simulink.Bus.

When you build the integration model that incorporates the imported SIL or
PIL block, the build process uses the Simulink.Bus data type definition from
aBusType.h.

If the imported code is from R2010a or R2010b, specify these properties of the
Simulink.Bus object:

• DataScope — Set to Imported.
• HeaderFile — Set to aBusType.h.

When you build the integration model, the build process uses the
Simulink.Bus data type definition in aBusType.h.

Parameter Tuning

For a component from a previous release, you can export a block parameter P as an inline
value in generated code. Before generating code:

• For R2015a and earlier releases, set InlineParameters or InlineParams to on.
• For R2015b and later releases, set DefaultParameterBehavior to Inlined.

To control tunability in the integration model through a single instance of P:

1 Before generating code in the previous release, apply the ExportedGlobal storage
class to the Simulink.Parameter object for P.

2 In the integration model, use the ImportedExtern storage class to reference P.

You can use the SimulinkGlobal storage class for the exported component and
integration model. This approach produces separate parameter definitions and values for
P: one set for the component from the previous release and another set for the rest of the
integration model.

On a Macintosh OS X system, which supports the Clang compiler, a top-model SIL or PIL
simulation of the integration model with default Build configuration settings produces
a compilation error. To work around this limitation, modify the default settings:

33-102

 Cross-Release Code Integration

1 Get the build tool from the default toolchain.
tc = coder.make.getDefaultToolchain;

cComp = tc.getBuildTool('C Compiler');

2 Extract the C compiler standard options.
stdMaps = cComp.SupportedStandard.getLangStandardMaps;

optionValues = stdMaps.getCompilerOptions('*');

3 Remove -fno-common from the standard options for the C and C++ compilers.
optionToRemove = '-fno-common';

optionsToKeep = strrep(optionValues, optionToRemove, '');

c_standard_opts_id = '$(C_STANDARD_OPTS)';

custToolChainOpts = get_param(model,'CustomToolchainOptions');

custToolChainOpts{2} = strrep(custToolChainOpts{2}, c_standard_opts_id, optionsToKeep);

set_param(model, 'CustomToolchainOptions',custToolChainOpts);

Compare Simulation Behavior of Model Component in Current Release
and Generated Code from Previous Release

In a previous release, suppose that you developed a model component, generated code
for the component, and tested and deployed the generated code. Now, in the current
release, you want to add features to the model component and use the model component
in system development and code generation. Before you proceed, you can compare the
functional behavior of the model component and the generated code from the previous
release.

To test the numerical equivalence between the model component and the generated code
from the previous release, use Simulink Test. With the Test Manager (Simulink Test),
you can perform back-to-back tests and output comparisons:

1 Bring the model component into the current release as a Model block with the
Simulation mode block parameter set to Normal.

2 With the Model block, create a top model that specifies test input data.
3 Import the code generated in the previous release into the current release as a SIL

block.
4 With the SIL block, create another top model that specifies the same the test input

data.
5 In the Test Manager, create an equivalence test case that runs simulations of the top

models and compares outputs.

33-103

33 Source Code Generation in Simulink Coder

6 Run the test case and review results.

For more information, see Test Manager examples in “Simulink Test Examples”
(Simulink Test).

Note: If you want to compare the behavior of generated code from the current and
previous release, in step 1, specify these Model block parameters:

• Set Simulation mode to Software-in-the-loop (SIL) or Processor-in-the-
loop (PIL).

• Set Code interface to Top model.

See Also
crossReleaseImport | crossReleaseExport | sharedCodeUpdate

Related Examples
• “Cross-Release Shared Utility Code Reuse” on page 33-93

More About
• “Generate Shared Utility Code” (Simulink Coder)
• “Manage the Shared Utility Code Checksum” (Simulink Coder)
• “Generate Shared Utility Code for Fixed-Point Functions” (Simulink Coder)
• “Generate Shared Utility Code for Custom Data Types” (Simulink Coder)

33-104

 Generate Code Using Simulink® Coder™

Generate Code Using Simulink® Coder™

This example shows how to select a target for a Simulink® model, generate C code for
real-time simulation, and view generated files.

The model represents an 8-bit counter that feeds a triggered subsystem that is
parameterized by constant blocks INC, LIMIT, and RESET. Input and Output represent
I/O for the model. The Amplifier subsystem amplifies the input signal by gain factor K,
which updates when signal equal_to_count is true.

1. Open the model. For example, type the following commands at the MATLAB®
command prompt.

model='rtwdemo_rtwintro';

open_system(model)

33-105

33 Source Code Generation in Simulink Coder

2. Open the Configuration Parameters dialog box from the model editor by clicking
Simulation > Configuration Parameters.

Alternately, type the following commands at the MATLAB® command prompt.

cs = getActiveConfigSet(model);

openDialog(cs);

3. Select the Code Generation node.

4. In the Target Selection pane, click Browse to select a target.

You can generate code for a particular target environment or purpose. Some built-
in targeting options are provided using system target files, which control the code
generation process for a target.

33-106

 Generate Code Using Simulink® Coder™

5. Select the Generic Real-Time (GRT) target and click Apply.

Optionally, in the Code Generation Advisor pane set the Select objective field
to Execution efficiency or Debugging. Then click Check model... to identify and
systematically change parameters to meet your objectives.

6. In the model window, initiate code generation and the build process for the model by
using any of the following options:

33-107

33 Source Code Generation in Simulink Coder

• Click the Build Model button.
• Press Ctrl+B.
• Select Code > C/C++ Code > Build Model.
• Invoke the rtwbuild command from the MATLAB command line.
• Invoke the slbuild command from the MATLAB command line.

7. View the code generation report that appears.

The report includes links to model files such as rtwdemo_rtwintro.c and associated
utility and header files.

33-108

 Generate Code Using Simulink® Coder™

The figure below contains a portion of rtwdemo_rtwintro.c

33-109

33 Source Code Generation in Simulink Coder

33-110

 Generate Code Using Simulink® Coder™

8. Close the model.

bdclose(model)

rtwdemoclean;

33-111

34

Source Code Generation in Embedded
Coder

• “Generate Code Using Embedded Coder®” on page 34-2
• “Generate Code with the Quick Start Tool” on page 34-10
• “Manage File Packaging of Generated Code Modules” on page 34-14
• “Generate Reentrant Code from Top-Level Models” on page 34-20

34 Source Code Generation in Embedded Coder

Generate Code Using Embedded Coder®
This example shows how to select a target for a Simulink® model, configure options,
generate C code for embedded systems, and view generated files.

The model represents an 8-bit counter that feeds a triggered subsystem that is
parameterized by constant blocks INC, LIMIT, and RESET. Input and Output represent
I/O for the model. The Amplifier subsystem amplifies the input signal by gain factor K,
which updates when signal equal_to_count is true.

1. Open the model.

model='rtwdemo_rtwecintro';

open_system(model)

2. Open the Configuration Parameters dialog box from the model editor by clicking
Simulation > Model Configuration Parameters.

34-2

 Generate Code Using Embedded Coder®

Alternately, type the following commands at the MATLAB® command prompt.

cs = getActiveConfigSet(model);

openDialog(cs);

3. Select the Code Generation node.

4. In the Target Selection pane, click Browse to select a target.

You can generate code for a particular target environment or purpose. Some built-
in targeting options are provided using system target files, which control the code
generation process for a target.

34-3

34 Source Code Generation in Embedded Coder

34-4

 Generate Code Using Embedded Coder®

5. Select the Embedded Real-Time (ERT) target and click Apply.

The ERT target includes a utility to specify and prioritize code generation settings based
on your application objectives.

6. In the Code Generation Advisor pane, click Set Objectives.

34-5

34 Source Code Generation in Embedded Coder

You can set and prioritize objectives for the generated code. For example, while code
traceability might be a very important criterion for your application, you might not want
to prioritize it at the cost of code execution efficiency.

7. In the Set Objectives pane, select Execution efficiency and Traceability. Click
OK.

You can select and prioritize a combination of objectives before generating code.

8. In the model window, initiate code generation and the build process for the model by
using any of the following options:

• Click the Build Model button.
• Press Ctrl+B.
• Select Code > C/C++ Code > Build Model.
• Invoke the rtwbuild command from the MATLAB command line.
• Invoke the slbuild command from the MATLAB command line.

9. View the code generation report that appears.

The report includes rtwdemo_rtwecintro.c, associated utility and header files, and
traceability and validation reports.

34-6

 Generate Code Using Embedded Coder®

The figure below contains a portion of rtwdemo_rtwecintro.c

34-7

34 Source Code Generation in Embedded Coder

34-8

 Generate Code Using Embedded Coder®

10. Close the model.

bdclose(model)

rtwdemoclean;

More About
• “Generate Code with the Quick Start Tool” on page 34-10

34-9

34 Source Code Generation in Embedded Coder

Generate Code with the Quick Start Tool

The Quick Start tool helps you prepare a model for generating readable, efficient code. To
start the tool, from the model window, select Code > C/C++ > Embedded Coder Quick
Start.

After you start the tool, you must answer these questions about the code that you want to
generate:

• What is the model or subsystem for code generation?
• What is the type of code output for your generated code?
• What is the target hardware processor type?
• What is your primary code generation objective?

The tool validates your choices against the model and presents the parameter changes
required to generate code. If you choose to generate code, the tool applies the changes to
your configuration set and generates the code. After code generation, you can view the
code generation report and find information on building, customizing, optimizing, and
packaging the code.

Quick Start Model Analysis

At each step of the Quick Start process, the tool validates your model against your
selections. The tool determines if there are model conditions that prevent you from
proceeding with code generation. During the analysis step, the tool must also examine
your model or subsystem for answers to the following questions. The answers help
determine the best configuration for the deployment of your code.

How many sample rates are in your system?

The Quick Start tool evaluates your model to determine the number of periodic sample
rates in your system.

Single rate Your model has only one periodic sample rate. The generated code has a single-
entry point function that runs at the time interval of the sample rate.

Multirate Your model has more than one periodic sample rate. It is possible that the
generated code does not execute at the same time intervals. Following the
analysis step, you can choose to generate a single-entry point function for each

34-10

 Generate Code with the Quick Start Tool

of the sample rates, or generate a different entry point function for each sample
rate.

If you choose to generate multitasking code, the code generator produces multiple
entry-point functions. These functions run as multiple tasks. Each entry point
function is called at an interval defined by the sample rate that is configured in
the model.

Note: If your model contains an asynchronous rate, an additional entry point function is
generated to run at the specific interrupt time.

For more information about sample rates, see “Time-Based Scheduling and Code
Generation” (Simulink Coder).

Does your system contain continuous states?

The Quick Start tool evaluates your model for continuous blocks to determine the correct
solver to use.

No If your system does not contain continuous states, the Quick Start tool configures
your model to use a fixed-step discrete solver for code generation if you have not
selected one.

Yes If your system does contain continuous states, the Quick Start tool configures
your model to use a fixed-step continuous solver for code generation if you
have not selected one. It also selects the SupportContinuous configuration
parameter.

For more information on solvers, see “About Solvers” (Simulink).

Did you configure your system for export function calls?

The Quick Start tool evaluates your model to see if scheduler code must be generated.

No If you did not configure your system for export function calls, the generated code
includes code for the system algorithm and scheduler code.

Yes If you configured your system for export function calls, the generated code
includes code for the system algorithm. You can manually write the scheduler
code or generate it from other models.

34-11

34 Source Code Generation in Embedded Coder

For more information, see “Export-Function Models” (Simulink).

Does your system contain referenced models?

The Quick Start tool evaluates your model to see if it depends on code from other models.

No If your system does not contain referenced models, the generated code does not
depend on code from other models.

Yes If your system contains referenced models, the generated code for your model
depends on other modules generated from referenced models. The code generator
can optimize the generated code because it is aware of the relationship between
your model and the referenced models.

For more information, see “Code Generation of Referenced Models” (Simulink Coder).

Configuration Parameter Changes for Models with a Configuration
Reference

To apply configuration parameter changes to a model with an active configuration
reference, the Quick Start tool:

• Creates a new Simulink.ConfigSet object, QuickStart_timestamp, in the
workspace or data dictionary that contains the original configuration set. The new
object is a copy of the original configuration set with the parameter changes applied.

• Creates a new Simulink.ConfigSetRef object that points to the new configuration
set object.

• Attaches the new configuration reference to the model and makes it the active
configuration.

To restore the original configuration set, activate the original Simulink.ConfigSetRef
object.

Note: If the Quick Start tool creates the new configuration set object in the MATLAB
workspace, you must save it to preserve the configuration set after the MATLAB session
ends. For more information, see “Save a Configuration Set” (Simulink).

Next Steps

After you have generated code by using Quick Start, possible next steps are:

34-12

 Generate Code with the Quick Start Tool

• “Open Code Generation Report” on page 35-8
• “Code Appearance”
• “Build Process”
• “Application Objectives Using Code Generation Advisor” (Simulink Coder)
• “Manage a Configuration Set” (Simulink)
• “Configure Model and Generate Code” (Simulink Coder)
• “Relocate Code to Another Development Environment” (Simulink Coder)

34-13

34 Source Code Generation in Embedded Coder

Manage File Packaging of Generated Code Modules

The code generator produces code modules. The file packaging configuration controls
where the code generator places code into code modules and header files.

To locate and examine the generated code files, use the HTML code generation report.
The code generation report provides a table of hyperlinks that you click to view the
generated code in the MATLAB Help browser. For more information, see “Traceability in
Code Generation Report” on page 35-15.

In this section...

“Generated Code Modules” on page 34-14
“User-Written Code Modules” on page 34-17
“Customize Generated Code Modules” on page 34-17

Generated Code Modules

The code generator creates a build folder in your working folder to store generated source
code. The build folder contains object files, a makefile, and other files created during the
code generation process. The default name of the build folder is model_ert_rtw.

Code Modules and Header Files Affected by File Packaging summarizes the structure of
source code that the code generator produces.

You can customize the generated set of files in several ways:

• File packaging formats: Manage the number of source files generated for your
model. In the Configuration Parameter dialog box, on the Code Generation >
Code Placement pane, specify the File packaging format parameter. For more
information, see “Customize Generated Code Modules” on page 34-17.

• Nonvirtual subsystem code generation: Instruct the code generation software to
generate separate functions within separate code files for nonvirtual subsystems. You
can control the names of the functions and of the code files. For further information,
see “Code Generation of Subsystems” (Simulink Coder).

• Custom storage classes: Use custom storage classes to partition generated data
structures into different files based on file names that you specify. For further
information, see “Introduction to Custom Storage Classes” on page 23-2.

34-14

 Manage File Packaging of Generated Code Modules

• Module Packaging Features (MPF): Direct the generated code into a required set of .c
or .cpp and .h files, and control the internal organization of the generated files. For
details, see “Data, Function, and File Definition”.

Code Modules and Header Files Affected by File Packaging

File Description

model.c or .cpp Contains entry points for code implementing the model
algorithm (for example, model_step, model_initialize, and
model_terminate).

model_private.h Contains local macros and local data that the model and subsystems
require. This file is included in the model.c file as a #include
statement. You do not need to include model_private.h when
interfacing handwritten code to the generated code of a model.

model.h Declares model data structures and a public interface to the model
entry-points and data structures. Provides an interface to the real-
time model data structure (model_M) with accessor macros.

The code generator:

• Produces a separate header file for each Simulink Function block
in a model.

• Includes model.h in the subsystem .c or .cpp files of a model.

If you interface handwritten code to generated code for one or more
models, include model.h for each of those models.

model_data.c or .cpp Contains (if conditionally generated) the declarations for the
parameters data structure, the constant block I/O data structure,
and any zero representations for the model structure data
types. If the model does not use these data structures and zero
representations, model_data.c or .cpp is not generated. These
structures and zero representations are declared extern in
model.h.

model_types.h Provides forward declarations for the real-time model data structure
and the parameters data structure. Function declarations of
reusable functions can require these declarations. Provides type
definitions for user-defined types that the model uses.

34-15

34 Source Code Generation in Embedded Coder

File Description

rtwtypes.h Defines data types, structures, and macros required by generated
code. For more information, see “Control Placement of rtwtypes.h for
Shared Utility Code” (Simulink Coder).

multiword_types.h Contains type definitions for wide data types and their chunks. File
is generated when multiword data types are used or when you select
one or more of these configuration parameters:

• All Parameters > MAT-file logging
• Code Generation > Interface > External mode

model_reference_types.hContains type definitions for timing bridges. File is generated for a
model reference target or a model containing model reference blocks.

builtin_typeid_types.h Defines an enumerated type corresponding to built-in data types.
File is generated when your model contains a Stateflow chart that
uses messages or when you select one or more of these configuration
parameters:

• All Parameters > MAT-file logging
• Any C API option at Code Generation > Interface

zero_crossing_types.h Contains zero-crossing definitions for models with triggered
subsystems where the trigger is rising, falling, or either. File
is generated only if required by the model.

ert_main.c or .cpp (optional file) If the Generate an example main program option
is on (default), this file is generated. For more information, see
“Generate an example main program”.

rtmodel.h (optional file) If the Generate an example main program option
is off, this file is generated. For more information, see “Generate an
example main program”.

Contains #include directives required by the rt_main.c or
rt_cppclass_main.cpp static main program module. Includes
rtmodel.h to access model-specific data structures and entry
points, because the static main program module is not created at
code generation time.

For more information, see “Static Main Program Module” on page
49-10.

34-16

 Manage File Packaging of Generated Code Modules

File Description

model_capi.c or .cpp

model_capi.h

(optional file) Provides data structures that enable a running
program to access model signals, states, and parameters without
external mode. To learn how to generate and use the model_capi.c
or .cpp and .h files, see “Exchange Data Between Generated and
External Code Using C API” (Simulink Coder) in the Simulink
Coder documentation.

User-Written Code Modules

Code that you write to interface with generated model code usually includes a customized
main module. Base this module on a main program provided by the code generation
software. This customized main module can also include interrupt handlers, device driver
blocks and other S-functions, and other supervisory or supporting code.

Establish a working folder for your own code modules. Put your working folder on
the MATLAB path. At minimum, inform the build process about the location of your
source and object files with Additional build information in the Code Generation
> Custom Code pane. Your development process could require generating code for
a particular microprocessor or development board and deploying the code on target
hardware with a cross-development system. To accomplish these goals, make more
extensive modifications to the ERT-based system target file.

For information on how to customize your ERT-based system target file for your
production requirements, see “Target Development” (Simulink Coder).

Customize Generated Code Modules

A configuration parameter is available to specify how the code generator packages
generated source code into files. The configuration parameter File packaging format
options are located in the Configuration Parameter dialog box, on the Code Generation
> Code Placement pane, in the Code packaging section. The options are Modular,
Compact (with separate data file), and Compact. The table describes the files
generated for each file packaging format and the files that have been removed.

Generated Files According to File Packaging Format

File Packaging Format Generated Files Removed Files

Modular (default) model.c None

34-17

34 Source Code Generation in Embedded Coder

File Packaging Format Generated Files Removed Files

subsystem files (optional)

model.h

model_types.h

model_private.h

model_data.c

(conditional)
Compact (with

separate data file)

model.c

model.h

model_data.c

(conditional)

model_private.h

model_types.h (conditional,
see Removed Files According to
File Packaging Format)

Compact model.c

model.h

model_data.c

model_private.h

model_types.h (conditional,
see Removed Files According to
File Packaging Format)

The table describes content placement from the removed files.

Removed Files According to File Packaging Format

Removed File Generated Content In File

model_private.h model.c and model.h
model_types.h model.h

model_data.c model.c

You can specify a different file packaging format for each referenced model.

The Configuration Parameter > Code Generation > Interface > Shared code
placement selection interacts with file packaging operations. If you specify Shared
code placement as Shared location, the code generator generates separate files for
utility code in a shared location, regardless of the file packaging format. If you specify

34-18

 Manage File Packaging of Generated Code Modules

the Shared code placement as Auto, the code generator generates code for utilities
according to the file packaging format selection.

• Modular: Some shared utility files are in the build folder.
• Compact (with separate data file): Utility code is generated in model.c.
• Compact: Utility code is generated in model.c.

File packaging formats Compact and Compact (with separate data file)
generate model_types.h for models containing:

• A Model Variants block or a Variant Subsystem block. The model_types.h file
includes preprocessor directives defining the variant objects associated with a variant
block.

• Custom storage classes generating a separate header file.

File packaging formats Compact and Compact (with separate data file) are not
compatible with:

• A model containing a subsystem, which is configured to generate separate source files
• A model containing a noninlined S-function
• A model for which Shared code placement is set to Auto, which uses data objects

for which Data scope is set to Exported

More About
• “Manage Build Process Folders” on page 33-37
• “Manage Build Process Files” on page 33-42
• “Manage Build Process File Dependencies” on page 33-52

34-19

34 Source Code Generation in Embedded Coder

Generate Reentrant Code from Top-Level Models

To generate reentrant multi-instance code from a model, select Reusable function
code interface packaging. When you select the Reusable function code interface for an
ERT-based model:

• By default, the generated model.c source file does not contain an allocation function
that dynamically allocates model data for each instance of the model. Use the Use
dynamic memory allocation for model initialization option to control whether
an allocation function is generated.

• The generated code passes the real-time model data structure in, by reference, as an
argument to model_step and the other model entry point functions.

• The real-time model data structure is exported with the model.h header file.
• By default, root-level input and output arguments are passed to the reusable model

entry-point functions as individual arguments. Use the Pass root-level I/O as
parameter to control whether root-level input and output arguments are passed.
This selection chooses whether this I/O is included in the real-time model data
structure that is passed to the functions, passed as individual arguments, or passed as
references to an input structure and an output structure.

To configure an ERT-based model to generate reusable, reentrant code:

1 In the Code Generation > Interface pane of the Configuration Parameters dialog
box, set Code interface packaging (Simulink Coder) to the value Reusable
function. This action enables the parameters Multi-instance code error
diagnostic, Pass root-level I/O as, and All Parameters > Use dynamic
memory allocation for model initialization.

2 Examine the setting of Multi-instance code error diagnostic (Simulink Coder).
Leave the parameter at its default value Error unless you have a specific need to
alter the severity level for diagnostics displayed when a model violates requirements
for generating multi-instance code.

3 Configure Pass root-level I/O as (Simulink Coder) to control how root-level model
input and output are passed to model_step and the other generated model entry-
point functions.

When you set Code interface packaging to Reusable function, model data
(such as block I/O, DWork, and parameters) is packaged into the real-time model
data structure, and the model structure is passed to the model entry-point functions.
If you set Pass root-level I/O as to Part of model data structure, the

34-20

 Generate Reentrant Code from Top-Level Models

root-level model input and output also are packaged into the real-time model data
structure.

4 If you want the generated model code to contain a function that dynamically
allocates memory for model instance data, on the All Parameters tab, select the
option Use dynamic memory allocation for model initialization (Simulink
Coder). If you do not select this option, the generated code statically allocates
memory for model data structures.

5 Generate model code.
6 Examine the model entry-point function interfaces in the generated files and the

HTML code generation report. For more information about generating and calling
model entry-point functions, see “Entry-Point Functions and Scheduling” (Simulink
Coder).

For an example of a model configured to generate reusable, reentrant code, open the
example model rtwdemo_reusable. Click the button View Interface Configuration and
examine the Code interface parameters on the Code Generation > Interface pane.

More About
• “Entry-Point Functions and Scheduling” (Simulink Coder)

34-21

35

Report Generation in Embedded
Coder

• “Reports for Code Generation” on page 35-2
• “Generate a Code Generation Report” on page 35-5
• “Generate Code Generation Report After Build Process” on page 35-6
• “Open Code Generation Report” on page 35-8
• “Generate Code Generation Report Programmatically” on page 35-10
• “View Code Generation Report in Model Explorer” on page 35-11
• “Package and Share the Code Generation Report” on page 35-13
• “Traceability in Code Generation Report” on page 35-15
• “Web View of Model in Code Generation Report” on page 35-17
• “Analyze the Generated Code Interface” on page 35-21
• “Static Code Metrics” on page 35-34
• “Generate Static Code Metrics Report for Simulink Model” on page 35-38
• “Generate a Static Code Metrics Report for MATLAB Code” on page 35-43
• “Analyze Code Replacements in Generated Code” on page 35-50
• “Document Generated Code with Simulink Report Generator” on page 35-52

35 Report Generation in Embedded Coder

Reports for Code Generation

In this section...

“HTML Code Generation Report Location” on page 35-2
“HTML Code Generation Report for Referenced Models” on page 35-3
“HTML Code Generation Report Extensions” on page 35-3

The code generator software produces an HTML code generation report so that you can
view and analyze the generated code. When your model is built, the code generation
process produces an HTML file that is displayed in an HTML browser or in the Model
Explorer. The code generation report includes:

• The Summary section that contains model and code information, including
Author, Tasking Mode, System Target File, Hardware Device Type, and code
generation objectives information. The Configuration settings at the time of code
generation link opens a noneditable view of the Configuration Parameters dialog
box. The dialog box shows the Simulink model settings at the time of code generation,
including TLC options.

• The Subsystem Report section that contains information on nonvirtual subsystems
in the model.

• In the Generated Files section on the Contents pane, you can click the names of
source code files generated from your model to view their contents in a MATLAB Web
browser window. In the displayed source code, global variables are hypertext that
links to their definitions.

For an example, see “Generate a Code Generation Report” on page 35-5.

If you have a Simulink Report Generator license, you can document your code generation
project in multiple formats, including HTML, PDF, RTF, Microsoft Word, and XML. For
an example of how to create a Microsoft Word report, see “Document Generated Code
with Simulink Report Generator” on page 35-52.

HTML Code Generation Report Location

The default location for the code generation report files is in the html subfolder of the
build folder, model_target_rtw/html/. target is the name of the System target
file specified on the Code Generation pane. The default name for the top-level HTML
report file is model_codegen_rpt.html or subsystem_codegen_rpt.html. For

35-2

 Reports for Code Generation

more information on the location of the build folder, see “Manage Build Process Folders”
(Simulink Coder).

HTML Code Generation Report for Referenced Models

To generate a code generation report for a top model and code generation reports for each
referenced model, you need to specify the Create code generation report on the Code
Generation > Report pane for the top model and each referenced model. You can open
the code generation report of a referenced model in one of two ways:

• From the top-model code generation report, you can access the referenced model code
generation report by clicking a link under Referenced Models in the left navigation
pane. Clicking a link opens the code generation report for the referenced model in
the browser. To navigate back to the top model code generation report, use the Back
button at the top of the left navigation pane.

• From the referenced model diagram window, select Code > C/C++ Code > Code
Generation Report > Open Model Report.

For more information, see “Generate Code for Referenced Models” (Simulink Coder)

HTML Code Generation Report Extensions

If you have an Embedded Coder license, the code generator enhances the HTML code
generation report. Configure your model to include the following sections in the report:

• The Code Interface Report section provides information about the generated code
interface, including model entry-point functions and input/output data. For more
information, see “Analyze the Generated Code Interface” on page 35-21.

• The Traceability Report section allows you to account for Eliminated / Virtual
Blocks that are untraceable versus the listed Traceable Simulink Blocks /
Stateflow Objects / MATLAB Scripts. This provides a complete mapping between
model elements and code. For more information, see “Customize Traceability Reports”
on page 61-29.

• The Static Code Metrics Report section provides statistics of the generated
code. Metrics are estimated from static analysis of the generated code. For more
information, see “Static Code Metrics” on page 35-34.

• The Code Replacements Report section allows you to account for code replacement
library (CRL) functions that were used during code generation, providing a mapping
between each replacement instance and the Simulink block that triggered the

35-3

35 Report Generation in Embedded Coder

replacement. For more information, see “Analyze Code Replacements in Generated
Code” on page 35-50.

• The model Web view displays an interactive model diagram within the code
generation report and supports traceability between the source code and the model.
Therefore, you can share your model and generated code outside of the MATLAB
environment. For more information, see “Web View of Model in Code Generation
Report” on page 35-17.

On the Contents pane, in the Generated Files section, you can click the names of
source code files generated from your model to view their contents in a MATLAB Web
browser window. In the displayed source code:

• If you enable code-to-model traceability, hyperlinks within the displayed source code
navigate to the blocks or subsystems from which the code is generated. For more
information, see “Traceability in Code Generation Report” on page 35-15 and
“Trace Code to Model Objects by Using Hyperlinks” on page 61-6.

• If you enable model-to-code traceability, you can navigate to the generated code for
a block in the model. For more information, see “Trace Model Objects to Generated
Code” on page 61-8.

• If you set the Code coverage tool parameter on the Code Generation >
Verification pane, you can view the code coverage data and annotations. For more
information, see “Configure Code Coverage with Third-Party Tools” on page 67-10.

• If you select the Static code metrics check box on the Code Generation > Report
pane, you can view code metrics information and navigate to code definitions and
declarations in the generated code. For more information, see “View Static Code
Metrics and Definitions Within the Generated Code” on page 35-36.

Related Examples
• “Traceability in Code Generation Report” on page 35-15

35-4

 Generate a Code Generation Report

Generate a Code Generation Report

To generate a code generation report when the model is built:

1 In the Simulink Editor, select Code > C/C++ Code > Code Generation Report
> Options. The Configuration Parameters dialog box opens with the Code
Generation > Report pane visible.

2 Select the Create code generation report (Simulink Coder) parameter.
3 If you want the code generation report to automatically open after generating code,

select the Open report automatically (Simulink Coder) parameter (which is
enabled by selecting Create code generation report).

4 Generate code.

The build process writes the code generation report files to the html subfolder of the
build folder (see “HTML Code Generation Report Location” on page 35-2). Next, the build
process automatically opens a MATLAB Web browser window and displays the code
generation report.

To open an HTML code generation report at any time after a build, see “Open Code
Generation Report” on page 35-8 and “Generate Code Generation Report After Build
Process” on page 35-6.

35-5

35 Report Generation in Embedded Coder

Generate Code Generation Report After Build Process

After generating code, if you did not configure your model to create a code generation
report, you can generate a code generation report without rebuilding your model.

1 In the model diagram window, select Code > C/C++ Code > Code Generation
Report > Open Model Report.

2 If your current working folder contains the code generation files the following dialog
opens.

Click Generate Report.
3 If the code generation files are not in your current working directory, the following

dialog opens.

Enter the full path of the build folder for your model, ../model_target_rtw and
click Open Report.

35-6

 Generate Code Generation Report After Build Process

The software generates a report, model_codgen_rpt.html, from the code generation
files in the build folder you specified.

Note: An alternative method for generating the report after the build process is complete
is to configure your model to generate a report and build your model. In this case, the
software generates the report without regenerating the code.

35-7

35 Report Generation in Embedded Coder

Open Code Generation Report

You can refer to existing code generation reports at any time. If you generated a code
generation report, in the Simulink Editor, you can open the report by selecting the menu
option Code > C/C++ Code > Code Generation Report > Open Model Report. If
you are opening a report for a subsystem, select Open Subsystem Report. A Simulink
Coder license is required to view the code generation report. An Embedded Coder license
is required to view a code generation report enhanced with Embedded Coder features.

If your current working folder does not contain the code generation files and the code
generation report, the following dialog box opens:

Enter the full path of the build folder for your model, ../model_target_rtw and click
Open Report.

Alternatively, you can open the code generation report (model_codegen_rpt.html or
subsystem_codegen_rpt.html) manually into a MATLAB Web browser window, or
in another Web browser. For the location of the generated report files, see “HTML Code
Generation Report Location” on page 35-2.

Limitation

After building your model or generating the code generation report, if you modify
legacy or custom code, you must rebuild your model or regenerate the report for the
code generation report to include the updated legacy source files. For example, if you
modify your legacy code, and then use the Code > C/C++ Code > Code Generation

35-8

 Open Code Generation Report

Report > Open Model Report menu to open an existing report, the software does not
check if the legacy source file is out of date compared to the generated code. Therefore,
the code generation report is not regenerated and the report includes the out-of-date
legacy code. This issue also occurs if you open a code generation report using the
coder.report.open function.

To regenerate the code generation report, do one of the following:

• Rebuild your model.
• Generate the report using the coder.report.generate function.

35-9

35 Report Generation in Embedded Coder

Generate Code Generation Report Programmatically

At the MATLAB command line, you can generate, open, and close an HTML Code
Generation Report with the following functions:

• coder.report.generate generates the code generation report for the specified
model.

• coder.report.open opens an existing code generation report.
• coder.report.close closes the code generation report.

35-10

 View Code Generation Report in Model Explorer

View Code Generation Report in Model Explorer

After generating an HTML code generation report, you can view the report in the right
pane of the Model Explorer. You can also browse the generated files directly in the Model
Explorer.

When you generate code, or open a model that has generated code for its current target
configuration in your working folder, the Hierarchy (left) pane of Model Explorer
contains a node named Code for model. Under that node are other nodes, typically
called This Model and Shared Code. Clicking This Model displays in the Contents
(middle) pane a list of generated source code files in the build folder of that model. The
next figure shows code for the rtwdemo_counter model.

In this example, the file S:/rtwdemo_counter_grt_rtw/rtwdemo_counter.c is
being displayed. To view a file in the Contents pane, click it once.

The views in the Document (right) pane are read only. The code listings there contain
hyperlinks to functions and macros in the generated code. Clicking the file hyperlink
opens that source file in a text editing window where you can modify its contents.

If an open model contains Model blocks, and if generated code for these models exists in
the current slprj folder, nodes for the referenced models appear in the Hierarchy pane

35-11

35 Report Generation in Embedded Coder

one level below the node for the top model. Such referenced models do not need to be open
for you to browse and read their generated source files.

If the code generator produces shared utility code for a model, a node named Shared
Code appears directly under the This Model node. It collects source files that exist in
the ./slprj/target/_sharedutils subfolder.

Note You cannot use the Search tool built into Model Explorer toolbar to search
generated code displayed in the Code Viewer. On PCs, typing Ctrl+F when focused on
the Document pane opens a Find dialog box that you can use to search for text in the
currently displayed file. You can also search for text in the HTML report window, and
you can open the files in the editor.

35-12

 Package and Share the Code Generation Report

Package and Share the Code Generation Report

In this section...

“Package the Code Generation Report” on page 35-13
“View the Code Generation Report” on page 35-14

Package the Code Generation Report

To share the code generation report, you can package the code generation report files and
supporting files into a zip file for transfer. The default location for the code generation
report files is in two folders:

• /slprj

• html subfolder of the build folder, model_target_rtw, for example
rtwdemo_counter_grt_rtw/html

To create a zip file from the MATLAB command window:

1 In the Current Folder browser, select the two folders:

• /slprj

• Build folder: model_target_rtw
2 Right-click to open the context menu.
3 In the context menu, select Create Zip File. A file appears in the Current Folder

browser.
4 Name the zip file.

Alternatively, you can use the MATLAB zip command to zip the code generation report
files:

zip('myzip',{'slprj','rtwdemo_counter_grt_rtw'})

Note: If you need to relocate the static and generated code files for a model to another
development environment, such as a system or an integrated development environment
(IDE) that does not include MATLAB and Simulink products, use the code generator
pack-and-go utility. For more information, see “Relocate Code to Another Development
Environment” (Simulink Coder).

35-13

35 Report Generation in Embedded Coder

View the Code Generation Report

To view the code generation report after transfer, unzip the file and save the two folders
at the same folder level in the hierarchy. Navigate to the model_target_rtw/html/
folder and open the top-level HTML report file named model_codgen_rpt.html or
subsystem_codegen_rpt.html in a Web browser.

35-14

 Traceability in Code Generation Report

Traceability in Code Generation Report
This example shows how to create an HTML code generation report which includes links
to trace between the source code and the Simulink model window.

1 With your ERT-based model open, open the Configuration Parameters dialog box or
Model Explorer and navigate to the Code Generation > Report pane.

2 Select Create code generation report if it is not already selected. By default,
Open report automatically and Code-to-model on the All Parameters tab are
selected. Model-to-code is not selected.

3 Select the Model-to-code parameter on the All Parameters tab.
4 If your model contains referenced models and you want to enable traceability for

the referenced model’s code generation report, repeat steps 2–3 for each referenced
model.

5 Press Ctrl+B to generate code for your model. The build process opens the code
generation report in a MATLAB Web browser.

6 In the left navigation pane, select a source code file. The source code and line
numbers in the right pane contain hyperlinks to blocks in the model.

7 Click a code or line number hyperlink. The model diagram window displays and
highlights the corresponding block or blocks in the model.

8 To highlight the generated code for a block in your Simulink model, right-click the
block and select C/C++ Code > Navigate to C/C++ Code. This selection highlights
the generated code for the block in the HTML code generation report.

9 If you have a referenced model in your model, in the left navigation pane, below
Reference Models, click the link to a referenced model. The code generation report
for the referenced model is now displayed in the window.

10 In the left navigation pane, click the Back button to go back to the previous code
generation report.

Related Examples
• “Trace Model Objects to Generated Code” on page 61-8
• “Trace Code to Model Objects by Using Hyperlinks” on page 61-6
• “Trace Stateflow Objects in Generated Code” on page 61-10

More About
• “What Is Code Tracing?” on page 61-2

35-15

35 Report Generation in Embedded Coder

• “Traceability Limitations” on page 61-32

35-16

 Web View of Model in Code Generation Report

Web View of Model in Code Generation Report

In this section...

“About Model Web View” on page 35-17
“Generate HTML Code Generation Report with Model Web View” on page 35-17
“Model Web View Limitations” on page 35-20

About Model Web View

To review and analyze the generated code, it is helpful to navigate between the code
and model. You can include a Web view of the model within the HTML code generation
report. You can then share your model and generated code outside of the MATLAB
environment. When you generate the report, the Web view includes the block diagram
attributes displayed in the Simulink Editor, such as, block sorted execution order, signal
properties, and port data types.

A Simulink Report Generator license is required to include a Web view (Simulink Report
Generator) of the model in the code generation report.

Browser Requirements for Web View

Web view requires a Web browser that supports Scalable Vector Graphics (SVG). Web
view uses SVG to render and navigate models.

You can use the following Web browsers:

• Mozilla Firefox Version 1.5 or later, which has native support for SVG. To download
the Firefox browser, go to www.mozilla.com/.

• The Microsoft Internet Explorer® Web browser with the Adobe® SVG Viewer plug-in.
To download the Adobe SVG Viewer plug-in, go to www.adobe.com/svg/.

• Apple Safari Web browser

Generate HTML Code Generation Report with Model Web View

This example shows how to create an HTML code generation report which includes a
Web view of the model diagram.

1 Open the rtwdemo_mdlreftop model.

35-17

http://www.mozilla.com/
http://www.adobe.com/svg/

35 Report Generation in Embedded Coder

2 Open the Configuration Parameters dialog box or Model Explorer and navigate to
the Code Generation pane.

3 Specify ert.tlc for the System target file parameter.
4 Open the Code Generation > Report pane.
5 Select the following parameters:

• Create code generation report
• Open report automatically
• Generate model Web view

6 On the All Parameters tab, select the parameters Code-to-model and Model-to-
code.

Note: These settings specify only the top model, not referenced models.
7 Open the Configuration Parameters for the referenced model, rtwdemo_mdlrefbot

and perform steps 3–6.
8 Save the models, rtwdemo_mdlreftop and rtwdemo_mdlrefbot.
9 From the top model diagram, press Ctrl+B. After building the model and generating

code, the code generation report for the top model opens in a MATLAB Web browser.
10 In the left navigation pane, select a source code file. The corresponding source code is

displayed in the right pane and includes hyperlinks.

35-18

 Web View of Model in Code Generation Report

11 Click a link in the code. The model Web view displays and highlights the
corresponding block in the model.

12 To highlight the generated code for a referenced model block in your model, click
CounterB. The corresponding code is highlighted in the source code pane.

Note: You cannot open the referenced model diagram in the Web view by double-
clicking the referenced model block in the top model.

13 To open the code generation report for a referenced model, in the left navigation
pane, below Referenced Models, click the link, rtwdemo_mdlrefbot. The
source files for the referenced model are displayed along with the Web view of the
referenced model.

14 To go back to the code generation report for the top model, at the top of the left
navigation pane, click the Back button until the top model’s report is displayed.

35-19

35 Report Generation in Embedded Coder

For more information about exploring a model in a Web view, see “Navigate the Web
View” (Simulink Report Generator).

For more information about navigating between the generated code and the model
diagram, see :

• “Trace Model Objects to Generated Code” on page 61-8
• “Trace Code to Model Objects by Using Hyperlinks” on page 61-6

Model Web View Limitations

The HTML code generation report includes the following limitations when using the
model Web view:

• Code is not generated for virtual blocks. In the model Web view of the code generation
report, when tracing between the model and the code, when you click a virtual block,
it is highlighted yellow.

• In the model Web view, you cannot open a referenced model diagram by double-
clicking the referenced model block in the top model. Instead, open the code
generation report for the referenced model by clicking a link under Referenced
Models in the left navigation pane.

• Stateflow truth tables, events, and links to library charts are not supported in the
model Web view.

• Searching in the code generation report does not find or highlight text in the model
Web view.

• If you navigate from the actual model diagram (not the model Web view in the
report), to the source code in the HTML code generation report, the model Web view
is disabled and not visible. To enable the model Web view, open the report again, see
“Open Code Generation Report” (Simulink Coder).

• For a subsystem build, the traceability hyperlinks of the root level inport and outport
blocks are disabled.

• “Traceability Limitations” on page 61-32 that apply to tracing between the code
and the actual model diagram.

35-20

 Analyze the Generated Code Interface

Analyze the Generated Code Interface

In this section...

“Code Interface Report Overview” on page 35-21
“Generating a Code Interface Report” on page 35-22
“Navigating Code Interface Report Subsections” on page 35-24
“Interpreting the Entry Point Functions Subsection” on page 35-25
“Interpreting the Inports and Outports Subsections” on page 35-28
“Interpreting the Interface Parameters Subsection” on page 35-30
“Interpreting the Data Stores Subsection” on page 35-31
“Code Interface Report Limitations” on page 35-32

Code Interface Report Overview

When you select the Create code generation report option for an ERT-based model,
a Code Interface Report section is automatically included in the generated HTML
report. The Code Interface Report section provides documentation of the generated
code interface, including model entry-point functions and interface data, for consumers of
the generated code. The information in the report can help facilitate code review and code
integration.

The code interface report includes the following subsections:

• Entry point functions — interface information about each model entry-
point function, including model_initialize, model_step, and (if applicable)
model_reset and model_terminate.

• Inports and Outports — interface information about each model inport and outport.
• Interface Parameters — interface information about tunable parameters that are

associated with the model.
• Data Stores — interface information about global data stores and data stores with

non-auto storage that are associated with the model.

For limitations that apply to code interface reports, see “Code Interface Report
Limitations” on page 35-32.

35-21

35 Report Generation in Embedded Coder

For illustration purposes, this section uses the following models:

• rtwdemo_basicsc (with the ExportedGlobal Storage Class button selected in the
model window) for examples of report subsections

• rtwdemo_mrmtbb for examples of timing information
• rtwdemo_fcnprotoctrl for examples of function argument and return value

information

Generating a Code Interface Report

To generate a code interface report for your model:

1 Open your model, go to the Code Generation pane of the Configuration Parameters
dialog box, and select ert.tlc or an ERT-based System target file, if one is not
already selected.

2 Go to the Code Generation > Report pane of the Configuration Parameters dialog
box and select the option Create code generation report, if it is not already
selected. The rtwdemo_basicsc, rtwdemo_mrmtbb, and rtwdemo_fcnprotoctrl
models used in this section select multiple Report pane options by default. But
selecting only Create code generation report, generates a Code Interface
Report section in the HTML report.

Alternatively, you can programmatically select the option by issuing the following
MATLAB command:

set_param(bdroot, 'GenerateReport', 'on')

If the All parameters tab option Code-to-model is selected, the generated report
contains hyperlinks to the model. Leave this value selected unless you plan to use
the report outside the MATLAB environment.

3 Build the model. If you selected the Report pane option Open report
automatically, the code generation report opens automatically after the build
process is complete. (Otherwise, you can open it manually from within the model
build folder.)

4 To display the code interface report for your model, go to the Contents pane of
the HTML report and click the Code Interface Report link. For example, here
is the generated code interface report for the model rtwdemo_basicsc (with the
ExportedGlobal Storage Class button selected in the model window).

35-22

 Analyze the Generated Code Interface

35-23

35 Report Generation in Embedded Coder

For help navigating the content of the code interface report subsections, see “Navigating
Code Interface Report Subsections” on page 35-24. For help interpreting the content
of the code interface report subsections, see the sections beginning with “Interpreting the
Entry Point Functions Subsection” on page 35-25.

Navigating Code Interface Report Subsections

To help you navigate code interface descriptions, the code interface report provides
collapse/expand tokens and hyperlinks, as follows:

• For a large subsection, the report provides [-] and [+] symbols that allow you to
collapse or expand that section. In the example in the previous section, the symbols
are provided for the Inports and Interface Parameters sections.

• Several forms of hyperlink navigation are provided in the code interface report. For
example:

• The Table of Contents located at the top of the code interface report provides
links to each subsection.

• You can click each function name to go to its definition in model.c.
• You can click each function's header file name to go to the header file source

listing.
• If you selected the All Parameters tab option Code-to-model for your model, to

go to the corresponding location in the model display, you can click hyperlinks for
any of the following:

• Function argument
• Function return value
• Inport
• Outport
• Interface parameter (if the parameter source is a block)
• Data store (if the data store source is a Data Store Memory block)

For backward and forward navigation within the HTML code generation report, use the
Back and Forward buttons above the Contents section in the upper-left corner of the
report.

35-24

 Analyze the Generated Code Interface

Interpreting the Entry Point Functions Subsection

The Entry Point Functions subsection of the code interface report provides
the following interface information about each model entry-point function,
including model_initialize, model_step, and (if applicable) model_reset and
model_terminate.

Field Description

Function: Lists the function name. You can click the function name to go to
its definition in model.c.

Prototype Displays the function prototype, including the function return
value, name, and arguments.

Description Provides a text description of the function's purpose in the
application.

Timing Describes the timing characteristics of the function, such as how
many times the function is called, or if it is called periodically,
and at what time interval. For a multirate timing example, see
the following rtwdemo_mrmtbb report excerpt.

Arguments If the function has arguments, displays the number, name,
data type, and Simulink description for each argument. If you
select the All Parameters tab option Code-to-model for your
model, you can click the hyperlink in the description to go to the
block corresponding to the argument in the model display. For
argument examples, see the rtwdemo_fcnprotoctrl report
excerpt below.

Return value If the function has a return value, this field displays the return
value data type and Simulink description. If you selected the
All Parameters tab option Code-to-model for your model,
you can click the hyperlink in the description to go to the block
corresponding to the return value in the model display. For a
return value example, see the following rtwdemo_fcnprotoctrl
report excerpt.

Header file Lists the name of the header file for the function. You can click
the header file name to go to the header file source listing.

For example, here is the Entry Point Functions subsection for the model
rtwdemo_basicsc.

35-25

35 Report Generation in Embedded Coder

To illustrate how timing information might be listed for a multirate model, here are the
Entry Point Functions and Inports subsections for the model rtwdemo_mrmtbb.
This multirate, discrete-time, multitasking model contains Inport blocks 1 and 2,
which specify 1-second and 2-second sample times, respectively. The sample times are
constrained to the specified times by the Periodic sample time constraint option on
the Solver pane of the Configuration Parameters dialog box.

35-26

 Analyze the Generated Code Interface

35-27

35 Report Generation in Embedded Coder

To illustrate how function arguments and return values are displayed in the report,
here is the entry-point function description of the model step function for model
rtwdemo_fcnprotoctrl.

Interpreting the Inports and Outports Subsections

The Inports and Outports subsections of the code interface report provide the following
interface information about each inport and outport in the model.

Field Description

Block Name Displays the Simulink block name of the inport or outport. If you
selected the All Parameters tab option Code-to-model for your
model, you can click on each inport or outport Block Name value
to go to its location in the model display.

Code Identifier Lists the identifier associated with the inport or outport data in
the generated code, as follows:

• If the data is defined in the generated code, the field displays
the identifier text.

35-28

 Analyze the Generated Code Interface

Field Description

• If the data is declared but not defined in the generated code —
for example, if the data is resolved with an imported storage
class — the field displays the identifier text prefixed with the
label 'Imported data:'.

• If the data is neither defined nor declared in the generated
code — for example, if Reusable function code interface
packaging is selected for the model — the field displays the
text 'Defined externally'.

Data Type Lists the data type of the inport or outport.
Scaling For fixed-point entries, lists the data type and fraction length

using Simulink fixed-point data type notation.

Note: You must have a Fixed-Point Designer license to see fixed-
point scaling information in the report. For more information on
how scaling is represented in the table, see “Fixed-Point Data
Type and Scaling Notation” (Fixed-Point Designer).

Dimension Lists the dimensions of the inport or outport (for example, 1 or
[4, 5]).

For example, here are the Inports and Outports subsections for the model
rtwdemo_basicsc.

35-29

35 Report Generation in Embedded Coder

Interpreting the Interface Parameters Subsection

The Interface Parameters subsection of the code interface report provides the following
interface information about tunable parameters that are associated with the model.

Field Description

Parameter Source Lists the source of the parameter value, as follows:

• If the source of the parameter value is a block, the field
displays the block name, such as <Root>/Gain2 or <S1>/
Lookup1. If you selected the All Parameters tab option
Code-to-model for your model, you can click the Parameter
Source value to go to the parameter's location in the model
display.

• If the source of the parameter value is a workspace variable,
the field displays the name of the workspace variable.

Code Identifier Lists the identifier associated with the tunable parameter data in
the generated code, as follows:

• If the data is defined in the generated code, the field displays
the identifier text.

• If the data is declared but not defined in the generated code —
for example, if the data is resolved with an imported storage
class — the field displays the identifier text prefixed with the
label 'Imported data:'.

• If the data is neither defined nor declared in the generated
code — for example, if Reusable function code interface
packaging is selected for the model — the field displays the
text 'Defined externally'.

Data Type Lists the data type of the tunable parameter.
Scaling For fixed-point entries, lists the data type and fraction length

using Simulink fixed-point data type notation.

Note: You must have a Fixed-Point Designer license to see fixed-
point scaling information in the report. For more information on
how scaling is represented in the table, see “Fixed-Point Data
Type and Scaling Notation” (Fixed-Point Designer).

35-30

 Analyze the Generated Code Interface

Field Description

Dimension Lists the dimensions of the tunable parameter (for example, 1 or
[4, 5, 6]).

For example, here is the Interface Parameters subsection for the model
rtwdemo_basicsc (with the ExportedGlobal Storage Class button selected in the
model window).

Interpreting the Data Stores Subsection

The Data Stores subsection of the code interface report provides the following interface
information about global data stores and data stores with non-auto storage that are
associated with the model.

Field Description

Data Store Source Lists the source of the data store memory, as follows:

• If the data store is defined using a Data Store Memory block,
the field displays the block name, such as <Root>/DS1. If you
selected the All Parameters tab option Code-to-model for
your model, you can click on the Data Store Source value to
go to the data store's location in the model display.

• If the data store is defined using a Simulink.Signal object,
the field displays the name of the Simulink.Signal object.

Code Identifier Lists the identifier associated with the data store data in the
generated code, as follows:

• If the data is defined in the generated code, the field displays
the identifier text.

35-31

35 Report Generation in Embedded Coder

Field Description

• If the data is declared but not defined in the generated code —
for example, if the data is resolved with an imported storage
class — the field displays the identifier text prefixed with the
label 'Imported data:'.

• If the data is neither defined nor declared in the generated
code — for example, if Reusable function code interface
packaging is selected for the model — the field displays the
text 'Defined externally'.

Data Type Lists the data type of the data store.
Scaling For fixed-point entries, lists the data type and fraction length

using Simulink fixed-point data type notation.

Note: You must have a Fixed-Point Designer license to see fixed-
point scaling information in the report. For more information on
how scaling is represented in the table, see “Fixed-Point Data
Type and Scaling Notation” (Fixed-Point Designer).

Dimension Lists the dimensions of the data store (for example, 1 or [1, 2]).

For example, here is the Data Stores subsection for the model rtwdemo_basicsc (with
the ExportedGlobal Storage Class button selected in the model window).

Code Interface Report Limitations

The following limitations apply to the code interface section of the HTML code generation
reports.

• The code interface report does not support the GRT interface with an ERT target or C
++ class code interface packaging. For these configurations, the code interface report
is not generated and does not appear in the HTML code generation report Contents
pane.

• The code interface report supports data resolved with most custom storage classes
(CSCs), except when the CSC properties are set in any of the following ways:

35-32

 Analyze the Generated Code Interface

• The CSC property Type is set to FlatStructure. For example, the BitField
and Struct CSCs in the Simulink package have Type set to FlatStructure.

• The CSC property Type is set to Other. For example, the GetSet CSC in the
Simulink package has Type set to Other.

• The CSC property Data access is set to Pointer, indicating that imported
symbols are declared as pointer variables rather than simple variables. This
property is accessible only when the CSC property Data scope is set to Imported
or Instance-specific.

In these cases, the report displays empty Data Type and Dimension fields.
• For outports, the code interface report cannot describe the associated memory (data

type and dimensions) if the memory is optimized. In these cases, the report displays
empty Data Type and Dimension fields.

• The code interface report does not support data type replacement using the Code
Generation > Data Type Replacement pane of the Configuration Parameters
dialog box. The data types listed in the report will link to built-in data types rather
than their specified replacement data types.

Related Examples
• “Design Data Interface by Configuring Inport and Outport Blocks” on page 19-134

35-33

35 Report Generation in Embedded Coder

Static Code Metrics

In this section...

“About Static Code Metrics” on page 35-34
“Static Code Metrics Analysis” on page 35-35
“View Static Code Metrics and Definitions Within the Generated Code” on page
35-36

About Static Code Metrics

The code generator performs static analysis of the generated C or C++ code and provides
these metrics in the Static Code Metrics Report section of the HTML Code Generation
Report.

You can use the information in the report to:

• Find the number of files and lines of code in each file.
• Estimate the number of lines of code and stack usage per function.
• Compare the difference in terms of how many files, functions, variables, and lines of

code are generated every time you change the model or MATLAB algorithm.
• Determine a target platform and allocation of RAM to the stack, based on the size of

global variables plus the estimated stack size.
• Determine possible performance slow points, such as the largest global variables or

the most costly call path in terms of stack usage.
• View the cyclomatic complexity of a function, which counts the number of linearly

independent paths through a function.
• View the function call tree. Determine the longest call path to estimate the worst case

execution timing.
• View how target functions, provided by the selected code replacement library, are

used in the generated code.

For examples, see

• “Generate Static Code Metrics Report for Simulink Model” on page 35-38
• “Generate a Static Code Metrics Report for MATLAB Code” on page 35-43

35-34

 Static Code Metrics

Static Code Metrics Analysis

Static analysis of the generated code is performed only on the source code without
executing the program. The results of the static code metrics analysis are included in the
Static Code Metrics section of the HTML Code Generation Report. The report is not
available if you generate a MEX function from MATLAB code.

Static analysis of the generated source code files:

• Uses the specified C data types. For Simulink models, you specify these data
types in the Hardware Implementation > Production hardware pane of the
Configuration Parameters dialog box. For code generation from MATLAB code, you
specify them in the Hardware tab of the MATLAB Coder project settings dialog box
or using a code generation configuration object. Actual object code metrics might differ
due to target-specific compiler and platform settings.

• Includes custom code only if you specify it. For Simulink models, you specify custom
code on the Code Generation > Custom Code pane in the model configuration.
For code generation from MATLAB code, you specify it on the Debugging tab of the
MATLAB Coder project settings dialog box or using a code generation configuration
object. An error report is generated if the generated code includes platform-specific
files not contained in the standard C run-time library.

• For Simulink models, includes the generated code from referenced models.
• Uses 1-byte alignment for all members of a structure for estimating global and local

data structure sizes. The size of a structure is calculated by summing the sizes of all
of its fields. This estimation represents the smallest possible size for a structure.

• Calculates the self stack size of a function as the size of local data within a function,
excluding input arguments. The accumulated stack size of a function is the self stack
size plus the maximum of the accumulated stack sizes of its called functions. For
example, if the accumulated stacks sizes for the called functions are represented as
accum_size1...accum_sizeN, then the accumulated stack size for a function is
accumulated_stack_size = self_stack_size + max(accum_size1,...,accum_sizeN)

• When estimating the stack size of a function, static analysis stops at the first instance
of a recursive call. The Function Information table indicates when recursion occurs
in a function call path. Code generation generates only recursive code for Stateflow
event broadcasting and for graphical functions if it is written as a recursive function.

• Calculates the cyclomatic complexity of a function as the number of decisions plus
one:

CC = Number of decisions + 1

35-35

35 Report Generation in Embedded Coder

The following constructs add a decision:

• If statement
• Else-If statement
• Switch statement (1 decision for each case branch)
• Loop statements: While, For, Do-while

Note: Boolean operators in the above constructs do not add extra decisions.

• Does not include ert_main.c, because you have the option to provide your own
main.c.

View Static Code Metrics and Definitions Within the Generated Code

When you view code in the code generation report, to get access to code metrics and
definitions, you can use the following tools:

• On the Code Generation > Report pane, if you select the Static code metrics
check box you can hover your cursor over global variables and functions in the code
window to see code metrics information.

• In the code window, if you click linked variables or functions, the code inspect window
is displayed. The window provides links to definitions for the variables or functions.
On the Code Generation > Report pane, if you selected the Static code metrics
check box, you can also see code metrics information for the variable or function.

35-36

 Static Code Metrics

35-37

35 Report Generation in Embedded Coder

Generate Static Code Metrics Report for Simulink Model

The Static Code Metrics Report is a section included in the HTML Code Generation
Report. For more information on the static analysis of the generated code, see “Static
Code Metrics Analysis” on page 35-35.

1 Before generating the HTML Code Generation Report, open the Configuration
Parameters dialog box for your model. On the Code Generation > Report pane,
select the “Static code metrics” (Simulink Coder) check box.

If your model includes referenced models, select the Static code metrics check box
in each referenced model’s configuration set. Otherwise, you cannot view a separate
static code metrics report for a referenced model.

2 Press Ctrl+B to build your model and generate the HTML code generation report.
For more information, see “Traceability in Code Generation Report” on page 35-15.

3 If the HTML Code Generation Report is not already open, open the report. On the
left navigation pane, in the Contents section, select Static Code Metrics Report.

4 To see the generated files and how many lines of code are generated per file, look at
the File Information section.

35-38

 Generate Static Code Metrics Report for Simulink Model

5 Hover your cursor over column titles and some column values to see a description of
the corresponding data.

6 If your model includes referenced models, the File information section includes a
Referenced Model column. In this column, click the referenced model name to open
its static code metrics report. If the static code metrics report is not available for
a referenced model, specify the Static code metrics parameter in the referenced
model’s configuration set and rebuild your model.

7 To view the global variables in the generated code, their size, and the number of
accesses, see the Global Variables section.

The Reads/Writes column displays the total number of read and write accesses
to the global variable. The Reads/Writes in a Function column displays the
maximum number of read and write accesses to the global variable within a function.
You use this information is to estimate the benefit of turning on optimizations, which

35-39

35 Report Generation in Embedded Coder

reduce the number of global references. For more information, see “Optimize Global
Variable Usage” on page 55-2.

Click [+] to expand structures.

8 To navigate from the report to the source code, click a global variable or function
name. These names are hyperlinks to their definitions.

9 To view the function call tree of the generated code, in the Function Information
section, click Call Tree at the top of the table.

35-40

 Generate Static Code Metrics Report for Simulink Model

ert_main.c is not included in the code metrics analysis, therefore it is not shown in
the call tree format. The Complexity column includes the cyclomatic complexity of
each function.

10 To view the functions in a table format, click Table.

The second column, Called By, lists functions that call the function listed in the first
column, using the following criteria:

• If a function is called by multiple functions, all functions are listed.
• If a function has no called function, this column is empty.

35-41

35 Report Generation in Embedded Coder

For example, Fueling_Mode is called by Fail and fuel_rate_control_step.
The number of call sites is included in parentheses. Fail calls Fueling_Mode twice.

35-42

 Generate a Static Code Metrics Report for MATLAB Code

Generate a Static Code Metrics Report for MATLAB Code

Generate a Static Code Metrics Report Using the MATLAB Coder App

This example shows how to generate a static code metrics report for a static C library
that is generated from MATLAB code using the MATLAB Coder app.

By default, if you have an Embedded Coder license, when you use MATLAB Coder to
generate standalone C/C++ code, the code generation report includes a static code metrics
report. The static code metrics report is not available for generated MEX functions.

Create the Example Files

1 In a local, writable folder, create a MATLAB file, moving_average.m, that contains:

function [avg,z] = moving_average(x,z)

 %#codegen

 z(2:end) = z(1:end-1); % Update buffer

 z(1) = x; % Add new value

 avg = mean(z); % Compute moving average

end

2 In the same local, writable folder, create a test file, moving_average_test.m, that
contains:

function moving_average_test()

 z = zeros(10,1);

 for i = 1:10

 [avg, z] = moving_average(i,z);

 end

 disp(avg)

end

Set Up the MATLAB Coder Project

1 To open the MATLAB Coder app and set up a project, at the command line, enter:

coder -new moving_average.prj

The app adds moving_average to the list of entry-point functions.
2 Click Next to go to the Define Input Types step.

35-43

35 Report Generation in Embedded Coder

Define Input Types

1 To automatically define the input types, select or enter the test file
moving_average_test.m. Click Autodefine Input Types.

The app determines that x is double(1x1) and z is double(10x1).
2 Click Next to go to the Check for Run-Times Issues step.

The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However,
it is a best practice to perform this step. You can detect and fix run-time errors that
are harder to diagnose in the generated C code.

Check for Run-Time Issues

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues

arrow .

The app populates the test file field with moving_average_test.m, the test file
that you used to define input types.

2 Click Check for Issues.

The app does not detect issues.
3 Click Next to go to the Generate Code step.

Configure the Build Settings

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to Static library.

The default output file name is moving_average.
3 Click More Settings.
4 On the Debugging tab, verify that the Static code metrics check box is selected.
5 Click Close.

Generate C Code

1 To generate the library, click Generate.

35-44

 Generate a Static Code Metrics Report for MATLAB Code

MATLAB Coder generates a C static library and supporting files in the default
folder, codegen/lib/moving_average.

2 Click Next to go to the Finish Workflow step.

View the Static Code Metrics Report

1 To open the code generation report, under Generated Output, click Code
Generation Report.

2 In the code generation report, click Static Code Metrics Report.
3 To see the generated files and the number of lines of code per file, click File

Information.

35-45

35 Report Generation in Embedded Coder

4 To see the global variables in the generated code, go to the Global Variables
section.

35-46

 Generate a Static Code Metrics Report for MATLAB Code

To navigate from the report to the source code, click a global variable name.
5 To view the function call tree of the generated code, in the Function Information

section, click Call Tree.

To navigate from the report to the function code, click a function name.
6 To view the functions in a table format, click Table.

35-47

35 Report Generation in Embedded Coder

The second column, Called By, lists functions that call the function listed in the first
column. If multiple functions call the function, all functions are listed. If no functions
call the function, this column is empty.

Enable a Static Code Metrics Report at the Command Line

To enable a static code metrics report at the command line:

1 Create a code generation configuration object for standalone code generation. For
example, to generate a static library, use:

cfg = coder.config('lib', 'ecoder', true);

2 Generate code, passing the configuration object as a parameter and specifying the -
report option. For example:

codegen -config cfg -report foo

Alternatively, you can:

1 Create a code generation configuration object for standalone code generation. For
example, to generate a static library:

cfg = coder.config('lib', 'ecoder', true);

2 Set the configuration object GenerateReport and GenerateCodeMetricsReport
parameters to true.

cfg.GenerateReport = true;

35-48

 Generate a Static Code Metrics Report for MATLAB Code

cfg.GenerateCodeMetricsReport = true;

3 Generate code, passing the configuration object as a parameter. For example:

codegen -config cfg foo

35-49

35 Report Generation in Embedded Coder

Analyze Code Replacements in Generated Code

When you select the check box Summarize which blocks triggered code
replacements (Simulink Coder) for an ERT-based model, a Code Replacements Report
section is automatically included in the generated HTML report. The Code Replacements
Report section documents the code replacement library (CRL) functions that were
used for code replacements during code generation, providing a mapping between each
replacement instance and the Simulink block that triggered the replacement. To enable
display of the Simulink block information, select the Code Generation > Comments
check box Include comments. On the same pane, select either the Simulink block /
Stateflow object comments check box or the Simulink block descriptions check box
if present, or both.

You can use the report to:

• Determine which replacement functions were used in the generated code.
• Trace each replacement instance back to the block that triggered the replacement.

The figure below shows a Code Replacements Report generated for the CRL model
rtwdemo_crladdsub. Each replacement function used is listed with a link to the block
that triggered the replacement.

35-50

 Analyze Code Replacements in Generated Code

If you click a block path in the report, the block that triggered the replacement is
highlighted in the model diagram. If the replacement was triggered by a Stateflow chart
or a MATLAB function, a window opens to display the chart or function.

For more information, see Trace Code Replacements Generated Using Your Code
Replacement Library on page 51-82.

35-51

35 Report Generation in Embedded Coder

Document Generated Code with Simulink Report Generator

In this section...

“Generate Code for the Model” on page 35-53
“Open the Report Generator” on page 35-53
“Set Report Name, Location, and Format” on page 35-55
“Include Models and Subsystems in a Report” on page 35-56
“Customize the Report” on page 35-57
“Generate the Report” on page 35-58

The Simulink Report Generator software creates documentation from your model in
multiple formats, including HTML, PDF, RTF, Microsoft Word, and XML. This example
shows one way to document a code generation project in Microsoft Word. The generated
report includes:

• System snapshots (model and subsystem diagrams)
• Block execution order list
• Simulink Coder and model version information for generated code
• List of generated files
• Optimization configuration parameter settings
• System target file selection and build process configuration parameter settings
• Subsystem map
• File name, path, and generated code listings for the source code

To adjust Simulink Report Generator settings to include custom code and then generate
a report for a model, complete the following tasks:

1 “Generate Code for the Model” on page 35-53
2 “Open the Report Generator” on page 35-53
3 “Set Report Name, Location, and Format” on page 35-55
4 “Include Models and Subsystems in a Report” on page 35-56
5 “Customize the Report” on page 35-57
6 “Generate the Report” on page 35-58

35-52

 Document Generated Code with Simulink Report Generator

A Simulink Report Generator license is required for the following report formats: PDF,
RTF, Microsoft Word, and XML. For more information on generating reports in these
formats, see the Simulink Report Generator documentation.

Generate Code for the Model

Before you use the Report Generator to document your project, generate code for the
model.

1 In the MATLAB Current Folder browser, navigate to a folder where you have write
access.

2 Create a working folder from the MATLAB command line by typing:

mkdir report_ex

3 Make report_ex your working folder:

cd report_ex

4 Open the slexAircraftExample model by entering the model name on the
MATLAB command line.

5 In the model window, choose File > Save As, navigate to the working folder,
report_ex, and save a copy of the slexAircraftExample model as myModel.

6 Open the Configuration Parameters dialog box by selecting Model Configuration
Parameters from the Simulation menu.

7 Select the Solver pane. In the Solver options section, specify the Type parameter
as Fixed-step.

8 Select the Code Generation pane. Select Generate code only.
9 Click Apply.
10 In the model window, press Ctrl+B. The build process generates code for the model.

Open the Report Generator

After you generate the code, open the Report Generator.

1 In the model diagram window, select Tools > Report Generator.
2 In the Report Explorer window, in the options pane (center), click the folder rtw

(\toolbox\rtw). Click the setup file that it contains, codegen.rpt.

35-53

35 Report Generation in Embedded Coder

3
Double-click codegen.rpt or select it and click the Open report button . The
Report Explorer displays the structure of the setup file in the outline pane (left).

35-54

 Document Generated Code with Simulink Report Generator

Set Report Name, Location, and Format

Before generating a report, you can specify report output options, such as the folder,
file name, and format. For example, to generate a Microsoft Word report named
MyCGModelReport.rtf:

1 In the properties pane, under Report Options, review the options listed.

35-55

35 Report Generation in Embedded Coder

2 Leave the Directory field set to Present working directory.
3 For Filename, select Custom: and replace index with the name

MyModelCGReport.
4 For File format, specify Rich Text Format and replace Standard Print with

Numbered Chapters & Sections.

Include Models and Subsystems in a Report

Specify the models and subsystems that you want to include in the generated report by
setting options in the Model Loop component.

1 In the outline pane (left), select Model Loop. Report Generator displays Model Loop
component options in the properties pane.

2 If not already selected, select Current block diagram for the Model name
option.

3 In the outline pane, click Report - codegen.rpt*.

35-56

 Document Generated Code with Simulink Report Generator

Customize the Report

After specifying the models and subsystems to include in the report, you can customize
the sections included in the report.

1 In the outline pane (left), expand the node Chapter - Generated Code. By default,
the report includes two sections, each containing one of two report components.

2 Expand the node Section 1 — Code Generation Summary.
3 Select Code Generation Summary. Options for the component are displayed in the

properties pane.
4 Click Help to review the report customizations that you can make with the Code

Generation Summary component. For this example, do not customize the component.
5 In the Report Explorer window, expand the node Section 1 — Generated Code

Listing.
6 Select Import Generated Code. Options for the component are displayed in the

properties pane.
7 Click Help to review the report customizations that you can make with the Import

Generated Code component.

35-57

35 Report Generation in Embedded Coder

Generate the Report

After you adjust the report options, from the Report Explorer window, generate the
report by clicking File > Report. A Message List dialog box opens, which displays
messages that you can monitor as the report is generated. Model snapshots also appear
during report generation. The Message List dialog box might be hidden behind other
dialog boxes.

When the report is complete, open the report, MyModelCGReport.rtf in the folder
report_ex (in this example).

35-58

36

Code Appearance in Embedded
Coder

• “Add Custom Comments to Generated Code” on page 36-3
• “Add Custom Comments for Variables in the Generated Code” on page 36-5
• “Add Global Comments” on page 36-8
• “Specify Comment Style” on page 36-14
• “Customize Generated Identifier Naming Rules” on page 36-15
• “Identifier Format Control” on page 36-22
• “Control Name Mangling in Generated Identifiers” on page 36-28
• “Avoid Identifier Name Collisions with Referenced Models” on page 36-30
• “Maintain Traceability for Generated Identifiers” on page 36-32
• “Exceptions to Identifier Formatting Conventions” on page 36-33
• “Identifier Format Control Parameters Limitations” on page 36-34
• “Control Code Style” on page 36-36
• “Customize Code Organization and Format” on page 36-54
• “Specify Templates For Code Generation” on page 36-56
• “Code Generation Template (CGT) Files” on page 36-57
• “Custom File Processing (CFP) Templates” on page 36-63
• “Change the Organization of a Generated File” on page 36-65
• “Generate Source and Header Files with a Custom File Processing (CFP) Template”

on page 36-67
• “Comparison of a Template and Its Generated File” on page 36-75
• “Code Template API Summary” on page 36-79
• “Generate Custom File and Function Banners” on page 36-82
• “Template Symbols and Rules” on page 36-90

36 Code Appearance in Embedded Coder

• “Annotate Code for Justifying Polyspace Checks” on page 36-98
• “Manage Placement of Data Definitions and Declarations” on page 36-100
• “Enhance Readability of Code for Flow Charts” on page 36-127
• “Generate Inlined Subsystem Code” on page 36-140

36-2

 Add Custom Comments to Generated Code

Add Custom Comments to Generated Code

You can include auto-generated comments in the generated code as described in
“Configure Code Comments” (Simulink Coder). For ERT targets, include additional
custom comments by setting parameters on the Code Generation > Comments pane
in the Configuration Parameters dialog box. With these parameters, you can enable or
suppress generation of descriptive information in comments for blocks and other model
elements.

Goal Specify

Include the text specified in the Description
field of a block's Block Properties dialog box as
comments in the code generated for each block.

Simulink block descriptions

Add a comment that includes the block name at
the start of the code for each block.

Simulink block descriptions

Include the text specified in the Description
field of a Simulink data object (such as a signal,
parameter, data type, or bus) in the Simulink
Model Explorer as comments in the code
generated for each object.

Simulink data object descriptions

Include comments just above signals and
parameter identifiers in the generated code as
specified in the MATLAB or TLC function.

Custom comments (MPT objects only)

Include the text specified in the Description
field in the Properties dialog box for a Stateflow
object as comments just above the code
generated for each object.

Stateflow object descriptions

Include requirements assigned to Simulink
blocks in the generated code comments (for more
information, see “Generate Code for Models with
Requirements Links” (Simulink Verification and
Validation)).

Requirements in block comments

When you select Simulink block descriptions:

• The code generator includes strings for model parameters, block names, signal names,
and Stateflow object names in the generated code comments. If those strings are
unrepresented in the character set encoding for the model, the code generator replaces

36-3

36 Code Appearance in Embedded Coder

the strings with XML escape sequences. For example, the code generator replaces the
Japanese full-width Katakana letter ア with the escape sequence ア. For more
information, see “Internationalization and Code Generation” (Simulink Coder).

• The code generation software automatically inserts comments into the generated
code for custom blocks. Therefore, you do not need to include block comments in the
associated TLC file for a custom block.

Note: If you have existing TLC files with manually inserted comments for block
descriptions, the code generation process emits these comments instead of the
automatically generated comments. Consider removing existing block comments
from your TLC files. Manually inserted comments might be poorly formatted in the
generated code and code-to-model traceability might not work.

• For virtual blocks or blocks that have been removed due to block reduction, comments
are not generated.

For more information, see “Model Configuration Parameters: Code Generation
Comments” (Simulink Coder).

36-4

 Add Custom Comments for Variables in the Generated Code

Add Custom Comments for Variables in the Generated Code

To control code generation options for signals, states, and parameters in a model, you
can create data objects in a workspace or data dictionary. You can generate comments in
the code that help you to document the purpose and properties of the data in each object.
Associate handwritten comments with each object, or write a function that generates
comments based on the properties of the object.

For more information about data objects, see “Data Objects” (Simulink).

In this section...

“Embed Handwritten Comments for Signals or Parameters” on page 36-5
“Generate Dynamic Comments Based on Data Properties” on page 36-6

Embed Handwritten Comments for Signals or Parameters

To embed handwritten comments in the generated code near the definition of a signal,
state, or parameter:

1 Create a data object to represent a signal, state, or parameter. You can use
a data object from any package. For example, use a data object of the classes
Simulink.Signal or Simulink.Parameter, which are defined in the package
Simulink.

myParam = Simulink.Parameter(15.23);

2 Set the storage class of the data object so that optimizations do not eliminate the
signal or parameter from the generated code. For example, use the storage class
ExportedGlobal.

myParam.StorageClass = 'ExportedGlobal';

3 Set the Description property of the object. The description that you specify
appears in the generated code as lines of comments.

myParam.Description = 'This parameter represents wind speed.';

4 Set Configuration Parameters > Code Generation > System target file to an
ERT-based target such as ert.tlc.

To generate comments from data object descriptions, you must use an ERT-based
target.

36-5

36 Code Appearance in Embedded Coder

5 Select Configuration Parameters > Code Generation > Comments > Simulink
data object descriptions.

6 Generate code from the model. In the code, the data object description appears near
the definition of the corresponding variable.

/* Exported block parameters */

real_T myParam = 15.23; /* Variable: myParam

 * Referenced by: '<S1>/Gain'

 * This parameter represents wind speed.

 */

Generate Dynamic Comments Based on Data Properties

You can generate dynamic comments that include the properties of the data object such
as data type, units, and dimensions. If you change the properties of the data object in
Simulink, the code generator maintains the accuracy of the comments. For example, this
comment displays some of the property values for a data object named MAP:

/* Unit: psi */

/* Owner: */

/* DefinitionFile: specialDef */

real_T MAP = 0.0;

1 Create a data object from the package mpt and apply a custom storage class to the
object. The default storage class for objects that you create from the package mpt is
the custom storage class Global (Custom).

MAP = mpt.Signal;

To generate dynamic comments, you must use a data object from the package mpt,
and you must apply a custom storage class to the object.

2 Write a MATLAB or TLC function that generates the comment text. For an example
MATLAB function, see the function matlabroot/toolbox/rtw/rtwdemos/
rtwdemo_comments_mptfun.m.

The function must accept three input arguments that correspond to objectName,
modelName, and request. If you write a TLC file, you can use the library function
LibGetSLDataObjectInfo to get the property values of the data object.

3 Save the function as a MATLAB file or a TLC file, and place the file in a folder that
is on your MATLAB path.

36-6

 Add Custom Comments for Variables in the Generated Code

4 In the model, select Configuration Parameters > Code Generation >
Comments > Custom comments (MPT objects only).

5 Set Custom comments function to the name of the MATLAB file or TLC file that
you created.

6 Generate code from the model. The comments that your function generates appear
near the code that represents each data object.

Limitations

• To generate comments by using the Custom comments (MPT objects only) and
Custom comments function options, you must create data objects from the package
mpt. The data objects must use a custom storage class.

• Only the custom storage classes from the mpt package that create unstructured
variables support a custom comments function.

Related Examples
• “Add Custom Comments to Generated Code” on page 36-3
• “Control Data Representation by Applying Custom Storage Classes” on page 23-58

More About
• “Data Objects” (Simulink)
• “Introduction to Custom Storage Classes” on page 23-2
• “MPT Data Object Properties” on page 22-2

36-7

36 Code Appearance in Embedded Coder

Add Global Comments

In this section...

“Use a Simulink DocBlock to Add a Comment” on page 36-8
“Use a Simulink Annotation to Add a Comment” on page 36-11
“Use a Stateflow Note to Add a Comment” on page 36-11
“Use Sorted Notes to Add Comments” on page 36-12

The following examples show how to add a global comment to a Simulink model so
that the comment text appears in the generated file or files where you want. Specify a
template symbol name with a Simulink DocBlock, a Simulink annotation, or a Stateflow
note. You can also use a sorted-notes capability that works with Simulink annotations or
Stateflow notes (but not DocBlocks). For more information about template symbols, see
“Template Symbols and Rules” on page 36-90.

Note Template symbol names Description and ModifiedHistory also are fields
in the Model Properties dialog box. If you use one of these symbol names for global
comment text, and its Model Properties field also has text in it, both names appear in the
generated files.

Use a Simulink DocBlock to Add a Comment

1 With the model open, from the View menu, select Library Browser.
2 Drag the DocBlock from Model-Wide Utilities in the Simulink library into the

model.
3 Double-click the DocBlock and type the comment that you want in the editor. Save

and close the editor.
4 Right-click the DocBlock and select Mask > Mask Parameters.
5 In the Code generation template symbol box, type one of the following:

• Abstract

• Description

• History

• ModifiedHistory

36-8

 Add Global Comments

• Notes

Click OK. Template symbol names are case sensitive.

If you are using a DocBlock to add comments to your code, set the Document type
to Text. If you set Document type to RTF or HTML, your comments will not appear
in the code.

6 In the Block Properties dialog box, on the Block Annotation tab, select
%<ECoderFlag> and click OK. The symbol name that you typed in the previous step
now appears under the DocBlock in the model.

36-9

36 Code Appearance in Embedded Coder

7 Save the model. After you generate code, the code generator places the comment in
each generated file whose template has the symbol name that you typed. The code
generator places the comment in the generated file at the location that corresponds
to where the symbol name is located in the template file.

8 To add more comments to the generated files, repeat steps 1–7.

36-10

 Add Global Comments

Use a Simulink Annotation to Add a Comment

1 Double-click the unoccupied area on the model where you want to place the
comment. See “Describe Models Using Annotations” (Simulink).

2 Type <S:Symbol_name> followed by the comment. Symbol_name is one of the
following:

• Abstract

• Description

• History

• ModifiedHistory

• Notes

For example, type <S:Description>This is the description I want.
Template symbol names are case sensitive. (The "S" before the colon indicates
"symbol.") If you want the code generator to sort multiple comments for the Notes
symbol name, replace the next step with “Use Sorted Notes to Add Comments” on
page 36-12.

3 Click outside the rectangle and save the model. After you generate code, the code
generator places the comment in each generated file whose template has the symbol
name that you typed. The code generator places the comment in the generated file
at the location that corresponds to where the symbol name is located in the template
file. If you want the code generator to sort multiple comments for the Notes symbol
name, replace the next step with “Use Sorted Notes to Add Comments” on page
36-12.

4 To add one or more other comments to the generated files, repeat steps 1–3.

Use a Stateflow Note to Add a Comment

1 Right-click the unoccupied area on the Stateflow chart where you want to place the
comment.

2 Select the annotation icon from the palette.
3 Type <S:Symbol_name> followed by the comment. Symbol_name is one of the

following:

• Abstract

• Description

36-11

36 Code Appearance in Embedded Coder

• History

• ModifiedHistory

• Notes

For example, type <S:Description>This is the description I want.
Template symbol names are case sensitive. If you want the code generator to sort
multiple comments for the Notes symbol name, replace the next step with “Use
Sorted Notes to Add Comments” on page 36-12.

4 Click outside the note and save the model. After you generate code, the code
generator places the comment in each generated file whose template has the symbol
name that you typed. The code generator places the comment in the generated file
at the location that corresponds to where the symbol name is located in the template
file.

5 To add one or more other comments to the generated files, repeat steps 1–4.

Use Sorted Notes to Add Comments

The sorted-notes capability allows you to add automatically sorted comments to the
generated files. The code generator places these comments in each generated file at the
location that corresponds to where the Notes symbol is located in the template file.

The code generator uses the following sorting order:

• Numbers before letters.
• Among numbers, 0 is first.
• Among letters, uppercase are before lowercase.

You can use sorted notes with a Simulink annotation or a Stateflow note, but not with a
DocBlock.

• In the Simulink annotation or the Stateflow note, type <S:NoteY> followed by the
first comment. Y is a number or a letter.

• Repeat for as many additional comments you want. Replace Y with a subsequent
number or letter.

The figure illustrates sorted notes on a model, and where the code generator places each
note in a generated file.

36-12

 Add Global Comments

The relevant fragment from the generated file for this model is:

** NOTES

** Note1: This is the first comment I want

associated with the Notes symbol.

Note2: This is the second comment I want under Notes.

Noteb: This is the third comment.

**

36-13

36 Code Appearance in Embedded Coder

Specify Comment Style

For ERT-based models, the comment style used in generated code is determined by the
programming language selected for the model:

• C code uses /*...*/ notation for both single-line and multiple-line comments.
• C++ code uses //... notation and contains only single-line comments.

If you have an Embedded Coder license, you can modify the comment style for generated
code using the command-line parameter CommentStyle. The parameter takes the
following values:

Value Description

Auto (default) For C, generate single or multiple-line comments delimited by /*
and */. For C++, generate single-line comments preceded by //.

Multi-line Generate single or multiple-line comments delimited by /* and */.
Single-line Generate single-line comments preceded by //.

For example, the following command sets the comment style to single-line comments:
>> set_param('rtwdemo_counter','CommentStyle','Single-line')

Here is an example of code generated using the single-line comment style:
// Sum: '<Root>/Sum' incorporates:

// Constant: '<Root>/INC'

// UnitDelay: '<Root>/X'

rtb_sum_out = (uint8_T)(1U + rtwdemo_counter_DW.X);

Note: For C code generation, select Single-line only if your compiler supports it

36-14

 Customize Generated Identifier Naming Rules

Customize Generated Identifier Naming Rules

In this section...

“Apply Naming Rules to Identifiers Globally” on page 36-15
“Apply Naming Rules to Simulink Data Objects” on page 36-16

For GRT and RSim targets, the code generator constructs identifiers for variables and
functions in the generated code. For ERT targets, you can customize the naming of
identifiers in the generated code by specifying parameters on the Code Generation
> Symbols pane in the Configuration Parameters dialog box. You can also specify
parameters that control identifiers generated from Simulink data objects. For detailed
information about these parameters, see “Model Configuration Parameters: Code
Generation Symbols” (Simulink Coder).

Apply Naming Rules to Identifiers Globally

Goal Specify

Set the maximum number of characters that the
code generator uses for function, typedef, and
variable names (default 31) .

An integer value for the “Maximum identifier
length” (Simulink Coder) parameter. For
more information, see “Specify Identifier
Length to Avoid Naming Collisions” (Simulink
Coder). If you expect your model to generate
lengthy identifiers (due to use of long signal or
parameter names, for example), or if identifiers
are mangled more than you expect, increase the
value of this parameter.

Define a macro that specifies certain text
included within generated identifiers for:

• Global variables
• Global types
• Field names of global types
• Subsystem methods
• Subsystem method arguments
• Local temporary variables
• Local block output variables

A macro for the Identifier format control
parameters. For more information, see
“Identifier Format Control” on page 36-22.
See also “Exceptions to Identifier Formatting
Conventions” on page 36-33 and “Identifier
Format Control Parameters Limitations” on
page 36-34.

36-15

36 Code Appearance in Embedded Coder

Goal Specify

• Constant macros
• Shared utilities
Set the minimum number of characters that the
code generator uses for the mangling text.

An integer value for the “Minimum mangle
length” (Simulink Coder) parameter. For more
information, see “Control Name Mangling in
Generated Identifiers” on page 36-28

Control whether the software uses shortened
names for system-generated identifiers.

Shortened for the “System-generated
identifiers” (Simulink Coder) parameter. This
setting:

• Provides more space for user names.
• Provides a more predictable and consistent

naming system that uses camel case.
• Does not include underscores or plurals.
• Provides consistent abbreviations for both a

type and a variable.
Control whether the generated code expresses
scalar inlined parameter values as literal values
or as macros.

The value Literals or Macros for the
“Generate scalar inlined parameters as”
(Simulink Coder) parameter.

• Literals: If you set Default parameter
behavior to Inlined, parameters are
expressed as numeric constants.

• Macros: Parameters are expressed as
variables (with #define macros). This
setting makes code more readable.

Apply Naming Rules to Simulink Data Objects

When your model uses Simulink data objects from the Simulink package,
identifiers in generated code copy the names of the objects by default. For example, a
Simulink.Signal object named Speed appears as the identifier Speed in generated
code.

You can control these identifiers by specifying naming rules that are specific to
Simulink data objects. On the Code Generation > Symbols pane of the Configuration

36-16

 Customize Generated Identifier Naming Rules

Parameters dialog box, adjust the settings in the Simulink data object naming rules
section .

When you specify naming rules for generated code, follow ANSI C5/C++ rules for naming
identifiers.

Specify Naming Rule Using a Function

This example shows how to customize identifiers in generated code by defining a
MATLAB function.

1 Write a MATLAB function that returns an identifier by modifying a data object
name, and save the function in your working folder. For example, the following
function returns an identifier name by appending the text _param to a data object
name.

function revisedName = append_text(name, object)

% APPEND_TEXT: Returns an identifier for generated

% code by appending text to a data object name.

%

% Input arguments:

% name: data object name as spelled in model

% object: target data object

%

% Output arguments:

% revisedName: altered identifier returned for use in

% generated code.

%

%

text = '_param';

revisedName = [name,text];

2 Open the model rtwdemo_namerules.
3 Double-click the yellow box labeled View Symbols Configuration to open the

Code Generation > Symbols pane in the Configuration Parameters dialog box.
4 From the Parameter naming (Simulink Coder) drop-down list, select Custom M-

function.

5. ANSI is a registered trademark of the American National Standards Institute, Inc.

36-17

36 Code Appearance in Embedded Coder

5 In the M-function field, type the name of the file that defines the MATLAB
function, append_text.m.

6 Click Apply.
7 Generate code for the model.
8 Inspect the code generation report to confirm the parameter object naming rule.

For example, the generated file rtwdemo_namerules.h represents the parameter
objects G1, G2, and G3 with the variables G1_param, G2_param, and G3_param.

Specify Naming Rule for Storage Class Define

You can specify a naming rule that applies only to Simulink data objects whose storage
class you set to Define. For these data objects, the specified naming rule overrides the
other parameter and signal object naming rules. On the Code Generation > Symbols
pane in the Configuration Parameters dialog box, adjust the #define naming (Simulink
Coder) setting.

Override Data Object Naming Rules

This example shows how to override a data object naming rule for a single data object.

You can override data object naming rules by specifying the Alias property of an
individual Simulink data object. Generated code uses the text that you specify as the
identifier to represent the data object, regardless of naming rules.

1 Open the model rtwdemo_namerules.
2 Open Model Explorer and navigate to the base workspace.
3 Click the parameter object G1 and specify the Alias property as mySpecialParam.

Click Apply.

36-18

 Customize Generated Identifier Naming Rules

4 Generate code for the model.
5 In the code generation report, confirm the alias for the parameter object G1.

The generated file rtwdemo_namerules.h represents G1 with the variable
mySpecialParam.

Apply Custom Naming Conventions to Identifiers

This example shows how to apply uniform naming rules for Simulink® data objects,
including signals, parameters, and data store memory variables.

model='rtwdemo_namerules';

open_system(model)

36-19

36 Code Appearance in Embedded Coder

% Cleanup

rtwdemoclean;

36-20

 Customize Generated Identifier Naming Rules

close_system(model,0)

See Also
“Signal naming” (Simulink Coder)

36-21

36 Code Appearance in Embedded Coder

Identifier Format Control
You can customize generated identifiers by specifying the Identifier format control
parameters on the Code Generation > Symbols pane in the Configuration Parameters
dialog box. For each parameter, you can enter a macro that specifies whether, and in
what order, certain text is included within generated identifiers. For example, you can
specify that the root model name be inserted into each identifier using the $R token.

The macro can include:

• Valid tokens, which are listed in Identifier Format Tokens. You can use or omit
tokens depending on what you want to include in the identifier name. The Shared
utilities parameter requires you to specify the checksum token, $C . The other
parameters require the mangling token, $M. For more information, see “Control Name
Mangling in Generated Identifiers” on page 36-28. The mangling token is subject
to the use and ordering restrictions noted in Identifier Format Control Parameter
Values.

• Token decorators, which are listed in “Control Case with Token Decorators” on page
36-25. You can use token decorators to control the case of generated identifiers for
each token.

• Valid C or C++ language identifier characters (a-z, A-Z, _ , 0-9).

The build process generates each identifier by expanding tokens and inserting the
resultant text into the identifier. The tokens are expanded in the order listed in Identifier
Format Tokens. Groups of characters are inserted in the positions that you specify
around tokens directly into the identifier. Contiguous token expansions are separated by
the underscore (_) character.

Identifier Format Tokens

Token Description

$C This token is required for Shared utilities. If the identifier exceeds the
Maximum identifier length, the code generator inserts an 8-character
checksum to avoid naming collisions. The position of the $C token in
the Identifier format control parameter specification determines the
position of the checksum in the generated identifier. For example, if you
use the specification NC, the checksum is appended to the end of the
identifier. This token is available only for shared utilities.

$M This token is required. If necessary, the code generator inserts name-
mangling text to avoid naming collisions. The position of the $M token

36-22

 Identifier Format Control

Token Description

in the Identifier format control parameter specification determines
the position of the name-mangling text in the generated identifier. For
example, if you use the specification RN$M, the name-mangling text is
appended (if required) to the end of the identifier. For more information,
see “Control Name Mangling in Generated Identifiers” on page 36-28
.

$U Insert text that you specify for the $U token. Use the Custom token text
parameter to specify this text. This parameter is on the All Parameters
tab of the Configuration Parameters dialog box. See “Custom token text”.

$F Insert method name (for example, _Update for update method). This
token is available only for subsystem methods.

$N Insert name of object (block, signal or signal object, state, parameter,
shared utility function or parameter object) for which identifier is being
generated.

$R Insert root model name into identifier, replacing unsupported characters
with the underscore (_) character. When you use referenced models, this
token is required in addition to $M (see “Avoid Identifier Name Collisions
with Referenced Models” on page 36-30).

Note: This token replaces the Prefix model name to global identifiers
option in previous releases.

$H Insert tag indicating system hierarchy level. For root-level blocks, the tag
is the text root_. For blocks at the subsystem level, the tag is of the form
sN_. N is a unique system number assigned by the Simulink software. This
token is available only for subsystem methods and field names of global
types.

Note: This token replaces the Include System Hierarchy Number in
Identifiers option in previous releases.

$A Insert data type acronym (for example, i32 for integers) to signal and
work vector identifiers. This token is available for local block output
variables, local temporary variables, and field names of global types.

Note: This token replaces the Include data type acronym in identifier
option in previous releases.

$I • Insert u if the argument is an input.

36-23

36 Code Appearance in Embedded Coder

Token Description

• Insert y if the argument is an output.
• Insert uy if the argument is an input and output.

For example, rtu_ for an input argument, rty_ for an output argument,
and rtuy_ for an input and output argument. This token is available only
for subsystem method arguments.

Identifier Format Control Parameter Values lists the default macro value, the supported
tokens, and the applicable restrictions for each Identifier format control parameter.

Identifier Format Control Parameter Values

Parameter Default Value Supported
Tokens

Restrictions

Global variables
(Simulink Coder)

rtNM $R, $N, $M,$U $F, $H, $A, and $I are not allowed.

Global types
(Simulink Coder)

NR$M_T $N, $R, $M, $U $F, $H, $A, and $I are not allowed.

Field name of
global types
(Simulink Coder)

NM $N, $M, $H,
$A, $U

$R, $F, and $I are not allowed.

Subsystem
methods (Simulink
Coder)

FN$M $R, $N, $M,
$F, $H, $U

$F and $H are empty for Stateflow
functions; $A and $I are not
allowed.

Subsystem method
arguments
(Simulink Coder)

rtIN$M $N, $M, $I, $U $R, $F, $H, and $A are not allowed.

Local temporary
variables (Simulink
Coder)

NM $N, $M, $R,
$A, $U

$F, $H, and $I are not allowed.

Local block output
variables (Simulink
Coder)

rtb_NM $N, $M, $A, $U $R, $F, $H, and $I are not allowed.

Constant macros
(Simulink Coder)

RN$M $R, $N, $M, $U $F, $H, $A, and $I are not allowed.

36-24

 Identifier Format Control

Parameter Default Value Supported
Tokens

Restrictions

Shared utilities NC $N, $C, $N, $U $C is required. $M, $F, $H, $A , and
$I are not allowed.

EMX array
utility functions
identifier format
(Simulink Coder)

emxMN $M, $N,$R $C, $U, $F, $H, $A , and $I are not
allowed.

EMX array types
identifier format
(Simulink Coder)

emxArray_

MN

$M, $N,$R $C, $U, $F, $H, $A , and $I are not
allowed.

Non-ERT-based targets (such as the GRT target) implicitly use a default RN$M
specification. This default specification consists of the root model name, followed by the
name of the generating object (signal, parameter, state, and so on), followed by name-
mangling text.

For limitations that apply to Identifier format control parameters, see “Exceptions
to Identifier Formatting Conventions” on page 36-33 and “Identifier Format Control
Parameters Limitations” on page 36-34.

Control Case with Token Decorators

On the Code Generation > Symbols pane, you can use token decorators to control
the case of generated identifiers. Place a decorator immediately after the target token
and enclose the decorator in square brackets []. For example, you can set Global
variables to $R[uL]$N$M, which capitalizes the first letter of the model name and forces
the remaining characters in the model name to lowercase.

The table shows how to manipulate the expansion of the $R token for a model whose
name is modelName.

Desired
Expansion

Description Token and Decorator

ModelName First letter of model name is
uppercase. Remaining characters
are not modified.

$R[u]

36-25

36 Code Appearance in Embedded Coder

Desired
Expansion

Description Token and Decorator

Modelname First letter of model name is
uppercase. Remaining characters
are lowercase.

$R[uL]

MODELNAME All characters are uppercase. $R[U]

modelname All characters are lowercase. $R[L]

mODELNAME First letter of model name is
lowercase. Remaining characters
are uppercase.

$R[lU]

modelName First letter of model name is
lowercase. Remaining characters
are not modified.

$R[l]

When you use a decorator, the code generator removes the underscore character (_)
that appears between tokens by default. However, you can append each decorator with
an underscore: $R[U_]$N. For example, if you set the Global variables parameter to
$R[u_]$N[uL]$M for a model named modelName and a DWork structure represented by
DW, the result is ModelName_Dw.

Control Formatting of Identifiers

This example shows how you can customize generated identifiers by specifying the
Identifier format control parameters on the Code Generation > Symbols pane in
the Configuration Parameters dialog box.

model='rtwdemo_symbols';

open_system(model)

36-26

 Identifier Format Control

% Cleanup

rtwdemoclean;

close_system(model,0)

36-27

36 Code Appearance in Embedded Coder

Control Name Mangling in Generated Identifiers
The position of the $M token in the Identifier format control parameter specification
determines the position of the name-mangling text in the generated identifiers. For
example, if you use the specification RN$M, the name-mangling text is appended
(if required) to the end of the identifier. For more information, see “Identifier Format
Control” on page 36-22.

Name-Mangling Text Per Object

Object Type Source of Mangling Text

Block diagram Name of block diagram
Simulink block Simulink identifier (for details, see “Locate Diagram

Components Using Simulink Identifiers” (Simulink))
Simulink parameter Full name of parameter owner (model or block) and parameter

name
Simulink signal Signal name, full name of source block, and port number
Stateflow objects Complete path to Stateflow block and Stateflow computed name

(unique within chart)

The length of the name-mangling text is specified by the Minimum mangle length
(Simulink Coder) parameter. The default value is 1, but this automatically increases
during code generation as a function of the number of collisions. To minimize disturbance
to the generated code during development, specify a larger Minimum mangle length.
A Minimum mangle length of 4 is a conservative value. A value of 4 allows for over 1.5
million collisions for a particular identifier before the mangle length is increased.

Minimize Name Mangling

The length of generated identifiers is limited by the Maximum identifier length
(Simulink Coder) parameter. When a name collision exists, the $M token is expanded
to the minimum number of characters required to avoid the collision. Other tokens are
expanded in the order listed in Identifier Format Tokens. If the Maximum identifier
length is not large enough to accommodate full expansions of the other tokens, partial
expansions are used. To avoid partial expansions, it is good practice to:

• Avoid name collisions. One way to avoid name collisions is to not use default block
names (for example, Gain1, Gain2...) when there are many blocks of the same type
in the model.

36-28

 Control Name Mangling in Generated Identifiers

• Where possible, increase the Maximum identifier length to accommodate the
length of the identifiers that you expect to generate.

• Set the Maximum identifier length parameter to reserve at least three characters
for the name-mangling text. The length of the name-mangling text increases as the
number of name collisions increases.

If changes to the model create more or fewer collisions, existing name-mangling text
increases or decreases in length. If the length of the name-mangling text increases,
additional characters are appended to the existing text. For example, the mangling
text 'xyz' can change to 'xyzQ'. For fewer collisions, the name-mangling text
'xyz' changes to 'xy'.

36-29

36 Code Appearance in Embedded Coder

Avoid Identifier Name Collisions with Referenced Models

Within a model that uses referenced models, collisions between the names of the models
are not allowed. When generating code from a model that uses model referencing:

• You must include the $R token in the Identifier format control parameter
specifications (in addition to the $M token).

• The Maximum identifier length must be large enough to accommodate full
expansions of the $R and $M tokens. If Maximum identifier length is too small, a
code generation error occurs.

When a name conflict occurs between an identifier within the scope of a higher-level
model and an identifier within the scope of a referenced model, the identifier from the
referenced model is preserved. Name mangling is performed on the identifier from the
higher-level model.

If your model contains two referenced models with the same input or output port
names, and one of the referenced models contains an atomic subsystem with “Function
packaging” (Simulink) set to Nonreuseable function, a name conflict can occur and
the build process produces an error.

Use Model Advisor to Detect Identifier Names Changed During Code
Generation

For a referenced model, if the following Configuration Parameters > Code
Generation > Symbols parameters have settings that do not contain a $R token (which
represents the name of the reference model), code generation prepends the $R token to
the identifier format.

• Global variables
• Global types
• Subsystem methods
• Constant macros

You can use the Model Advisor to identify referenced models in a model referencing
hierarchy for which code generation changes these configuration parameter settings.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

36-30

 Avoid Identifier Name Collisions with Referenced Models

3 Run the Check code generation identifier formats used for model reference
check.

36-31

36 Code Appearance in Embedded Coder

Maintain Traceability for Generated Identifiers

To verify your model, you can trace back and forth between generated identifiers and
corresponding entities within the model. To maintain traceability, it is important that
incremental revisions to a model have minimal impact on the identifier names that
appear in generated code. There are two ways to minimally impact the identifier names:

• Choose unique names for Simulink objects (blocks, signals, states, and so on) as much
as possible.

• Use name mangling when conflicts cannot be avoided.

The position of the name-mangling text is specified by the placement of the $M token in
the Identifier format control parameters. Mangle characters consist of alphanumeric
characters that are unique to each object. For more information, see “Control Name
Mangling in Generated Identifiers” on page 36-28.

36-32

 Exceptions to Identifier Formatting Conventions

Exceptions to Identifier Formatting Conventions

There are some exceptions to the identifier formatting conventions described in
“Identifier Format Control” on page 36-22.

• Type name generation: name mangling conventions do not apply to type names (that
is, typedef statements) generated for global data types. If the $R token is included in
the Identifier format control parameter specification, the model name is included
in the typedef. When generating type definitions, the Maximum identifier length
parameter is not respected.

• Non-Auto storage classes: the Identifier format control parameters specification
does not affect objects (such as signals and parameters) that have a storage class
other than Auto (such as ImportedExtern or ExportedGlobal).

• For shared utilities, code generation inserts the checksum specified by $C to prevent
name collisions in the following situations:

• $C is specified without $N.
• The length of $N plus the length of the text that you specify exceeds the

Maximum identifier length. Code generation truncates $N and inserts an 8-
character checksum where you specified $C in the formatting scheme.

.

36-33

36 Code Appearance in Embedded Coder

Identifier Format Control Parameters Limitations

The following limitations apply to the Identifier format control parameters:

• The following autogenerated identifiers currently do not fully comply with the setting
of the Maximum identifier length parameter on the Code Generation > Symbols
pane of the Configuration Parameters dialog box.

• Model methods

• The applicable format scheme is RF, and the longest $F is _derivatives,
which is 12 characters long. The model name can be up to 19 characters
without exceeding the default Maximum identifier length of 31.

• Local functions generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

• Local variables generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

• DW identifiers generated by S-functions in referenced models
• Fixed-point shared utility macros or shared utility functions
• Simulink rtm macros

• Most are within the default Maximum identifier
length of 31, but some exceed the limit. Examples are
RTMSpecAccsGetStopRequestedValStoredAsPtr,
RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

• Define protection guard macros

• Header file guards, such as _RTW_HEADER_$(filename)_h_, which can
exceed the default Maximum identifier length of 31 given a filename such as
$R_private.h.

• Include file guards, such as _$R_COMMON_INCLUDES_.
• typedef guards, such as _CSCI_$R_CHARTSTRUCT_.

• In some situations, the following identifiers potentially can conflict with others.

• Model methods
• Reentrant model function arguments

36-34

 Identifier Format Control Parameters Limitations

• Local functions generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

• Local variables generated by S-functions or by add-on products such as DSP
System Toolbox that rely on S-functions

• Fixed-point shared utility macros or shared utility functions
• Include header guard macros

• The following external identifiers that are unknown to the Simulink software might
conflict with autogenerated identifiers.

• Identifiers defined in custom code
• Identifiers defined in custom header files
• Identifiers introduced through a non-ANSI C standard library
• Identifiers defined by custom TLC code

• Identifiers generated for simulation targets might exceed the Maximum identifier
length. Simulation targets include the model reference simulation target, the
accelerated simulation target, the RSim target, and the S-function target.

• Identifiers generated using a model name and bus object data type name, which are
both long names, might exceed the Maximum identifier length. For example, a
ground value variable name is generated as <model_name>_rtZ<bus_name>. If the
model_name and bus_name are close to the maximum identifier length, the name
exceeds the maximum identifier length.

36-35

36 Code Appearance in Embedded Coder

Control Code Style

In this section...

“Control Parentheses in Generated Code” on page 36-37
“Optimize Code by Reordering Commutable Operands” on page 36-39
“Suppress Generation of Default Cases for Unreachable Stateflow Switch Statements”
on page 36-40
“Replace Multiplication by Powers of Two with Signed Bitwise Shifts” on page 36-43
“Generate Code with Right Shifts on Signed Integers” on page 36-45
“Control Indentation Style in Generated Code” on page 36-46
“Control Cast Expressions in Generated Code” on page 36-48

You can change the code style, cast expressions, and indentation of your generated code
to conform to certain coding standards. Modify style options by setting parameters on the
Code Generation > Code Style pane.

In the generated code, you can control the following style aspects:

• Level of parenthesization, see “Control Parentheses in Generated Code” on page
36-37.

• Order of operands in expressions, see “Optimize Code by Reordering Commutable
Operands” on page 36-39.

• Empty primary condition expressions in if statements, see “Preserve condition
expression in if statement”.

• Whether to generate code for if-elseif-else decision logic as switch-case
statements, see “Convert if-elseif-else patterns to switch-case statements”.

• Whether to include the extern keyword in function declarations, see “Preserve
extern keyword in function declarations”.

• Whether to generate default cases for switch-case statements in the code
for Stateflow charts, see “Suppress Generation of Default Cases for Unreachable
Stateflow Switch Statements” on page 36-40.

• Whether to replace multiplications by powers of two with signed bitwise shifts,
see “Replace Multiplication by Powers of Two with Signed Bitwise Shifts” on page
36-43. Whether to allow right shifts on signed integers, see “Generate Code with
Right Shifts on Signed Integers” on page 36-45. Some coding standards, such

36-36

 Control Code Style

as MISRA, do not allow bitwise operations on signed integers. Clearing this option
increases the likelihood of generating MISRA C:2012 compliant code.

• Cast expressions, see “Control Cast Expressions in Generated Code” on page
36-48.

• Indentation style, see “Control Indentation Style in Generated Code” on page
36-46.

Control Parentheses in Generated Code

C code contains some syntactically required parentheses, and can contain additional
parentheses that change semantics by overriding default operator precedence. C code can
also contain optional parentheses that have no functional significance, but only increase
the readability of the code. Optional C parentheses vary between two stylistic extremes:

• Include the minimum parentheses required by C syntax and precedence overrides so
that C precedence rules specify all semantics unless overridden by parentheses.

• Include the maximum parentheses that can exist without duplication so that
C precedence rules become irrelevant. Parentheses alone completely specify all
semantics.

Understanding code with minimum parentheses can require applying nonobvious
precedence rules. Maximum parentheses can hinder code reading by belaboring obvious
precedence rules. Various parenthesization standards exist that specify one or the other
extreme, or define an intermediate style useful to people who read code.

For more information on this parameter, see “Parentheses level”.

Control Use of Parentheses

This example shows that Embedded Coder® provides three levels of control for
parentheses in the generated code.

model='rtwdemo_parentheses';

open_system(model)

36-37

36 Code Appearance in Embedded Coder

rtwdemoclean;

36-38

 Control Code Style

close_system(model,0)

Optimize Code by Reordering Commutable Operands

This example shows how to reorder commutable operands to make expressions left-
recursive. This optimization improves code efficiency.

Example Model

To reorder commutable operands, create the following model and name it
operand_order. In this model, the output signal is the result of multiplying the signal
from Inport block In1 by the sum of the signals from Inport blocks In2 and In3.

Generate Code

1 Open the Model Configuration Parameters dialog box. On the Code Style tab, select
the Preserve operand order in expression parameter.

2 Generate code for the model.

In the operand_order.c file, the operand_order_step function contains the
following code:

operand_order_Y.Out1 = operand_order_U.In1 * (operand_order_U.In2 +

36-39

36 Code Appearance in Embedded Coder

 operand_order_U.In3);

The code generator preserves the specified expression order in the model. Preserving
the specified expression order increases the readability of the code for code traceability
purposes.

Generate Code with Optimization

1 Open the Model Configuration Parameters dialog box. On the Code Style tab, clear
the Preserve operand order in expression parameter.

2 Generate code for the model.

In the operand_order.c file, the operand_order_step function contains the
following code:

operand_order_Y.Out1 = (operand_order_U.In2 + operand_order_U.In3) *

 operand_order_U.In1;

The code generator optimizes the code by reordering the commutable operands to make
the expression left-recursive. Left-recursive expressions improve code efficiency.

For more information on the Preserve operand order in expression parameter, see
“Preserve operand order in expression”.

Suppress Generation of Default Cases for Unreachable Stateflow Switch
Statements

This example shows how to specify whether to generate default cases for switch-case
statements in the code for Stateflow charts. Generated code that does not contain default
cases conserves ROM consumption and enables better code coverage because every
branch in the generated code is falsifiable.

Some coding standards, such as MISRA, require the default case for switch-case
statements. If you want to increase your chances of producing MISRA C compliant code,
generate default cases for unreachable Stateflow switch statements.

Example

Figures 1, 2, and 3 show relevant portions of the sldemo_fuelsys model, a closed-loop
system containing a plant and controller. The Air-fuel rate controller logic is a Stateflow
chart that specifies the different operation modes.

36-40

 Control Code Style

Figure 1: Top-level model of the plant and controller

Figure 2: Fuel rate controller subsystem

36-41

36 Code Appearance in Embedded Coder

Figure 3: Fuel rate controller logic

Generate Code with Default Cases for Unreachable Stateflow Switch Statements

1 In the MATLAB Command Window, to open sldemo_fuelsys via
rtwdemo_fuelsys enter:

rtwdemo_fuelsys

2 Open the Model Configuration parameters dialog box. On the Code Generation >
Code Style tab, clear the Suppress generation of default cases for Stateflow
statements if unreachable parameter.

3 In the MATLAB Command Window, to build the model, enter:

rtwbuild('sldemo_fuelsys/fuel_rate_control');

36-42

 Control Code Style

For the different operation modes, the fuel_rate_control.c file contains default
cases for unreachable switch statements. For example, for the Shutdown operation mode,
the generated code contains this default statement:

default:

 /* Unreachable state, for coverage only */

 rtDWork.bitsForTID0.is_Fuel_Disabled = IN_NO_ACTIVE_CHILD;

 break;

For the Warmup operation mode, the generated code contains this default statement:

default:

 /* Unreachable state, for coverage only */

 rtDWork.bitsForTID0.is_Low_Emissions = IN_NO_ACTIVE_CHILD;

 break;

Suppress Default Cases for Unreachable Stateflow Switch Statements

1 Open the Configuration Parameters dialog box. On the Code Generation > Code
Style tab, select the Suppress generation of default cases for Stateflow
statements if unreachable parameter.

2 Build the model.

Read through the fuel_rate_control.c file. The default cases for unreachable switch
statements are not in the generated code.

For more information on the Suppress generation of default cases for Stateflow
statements if unreachable parameter, see “Suppress generation of default cases for
Stateflow switch statements if unreachable”.

Replace Multiplication by Powers of Two with Signed Bitwise Shifts

This example shows how to generate code that replaces multiplication by powers of two
with signed bitwise shifts. Code that contains bitwise shifts is more efficient than code
that contains multiplication by powers of two.

Some coding standards, such as MISRA, do not allow bitwise operations on signed
integers. If you want to increase your chances of producing MISRA C compliant code, do
not replace multiplication by powers of two with bitwise shifts.

Example

To replace multiplication by powers of two with bitwise shifts, create the following model.
In this model, a signal of Data type int16 feeds into a Shift Arithmetic block. In the

36-43

36 Code Appearance in Embedded Coder

Shift Arithmetic Block Parameters dialog box, the Bits to shift > Direction parameter
is set to Left. The Bits to shift > Number parameter is set to 3. This parameter
corresponds to a value of 8, or raising 2 to the power of 3.

Generate Code with Signed Bitwise Shifts

1 Open the Model Configuration Parameters dialog box and select the Code Style
tab. The Replace multiplications by powers of two with signed bitwise shifts
parameter is on by default.

2 Generate code for the model.

In the bitwise_multiplication.c file, the bitwise_multiplication step function
contains this code:

bitwise_multiplication_Y.Out1 = (int16_T)(bitwise_multiplication_U.In1 << 3);

The signed integer, bitwise_multiplication_U.In1, is shifted three bits to the left.

Generate Code with Multiplication by Powers of Two

1 Open the Model Configuration Parameters dialog box and select the Code Style tab.
2 Clear the Replace multiplications by powers of two with signed bitwise

shifts parameter.
3 Generate code for the model.

In the bitwise_multiplication.c file, the bitwise_multiplication step function
contains this code:

bitwise_multiplication_Y.Out1 = (int16_T)(bitwise_multiplication_U.In1 * 8);

The signed integer bitwise_multiplication_U.In1 is multiplied by 8.

36-44

 Control Code Style

For more information on the Replace multiplications by powers of two with signed
bitwise shifts parameter, see “Replace multiplications by powers of two with signed
bitwise shifts”.

Generate Code with Right Shifts on Signed Integers

This example shows how to control whether the generated code contains right shifts on
signed integers. Generated code that does not contain right shifts on signed integers
first casts the signed integers to unsigned integers, and then right shifts the unsigned
integers.

Some coding standards, such as MISRA, do not allow right shifts on signed integers
because different hardware can store negative integers differently. For negative integers,
you can get different answers depending on the hardware. If you want to increase your
chances of producing MISRA C compliant code, do not allow right shifts on signed
integers.

Example Model

To generate code with right shifts on signed integers, create the following model. In this
model, a signal of Data type int16 feeds into a Shift Arithmetic block. In the Shift
Arithmetic Block Parameters dialog box, the Bits to shift > Direction parameter is set
to Right. The Bits to shift > Number parameter is set to 3.

Generate Code with Right Shifts on Signed Integers

1 Open the Model Configuration Parameters dialog box and select the Code Style tab.
The Allow right shifts on signed integers parameter is on by default.

2 Generate code for the model.

In the rightshift.c file, the rightshift_step function contains this code:

36-45

36 Code Appearance in Embedded Coder

rightshift_Y.Out1 = (int16_T)(rightshift_U.In1 >> 3);

The signed integer rightshift_U.In1 is shifted three bits to the right.

Generate Code That Does Not Allow Right Shifts on Signed Integers

1 Open the Model Configuration Parameters dialog box and select the Code Style tab.
Clear the Allow right shifts on signed integers parameter.

2 Generate code for the model.

In the rightshift.c file, the rightshift_step function contains this code:

rightshift_Y.Out1 = (int16_T)asr_s32(rightshift_U.In1, 3U);

When you clear the Allow right shifts on signed integers parameter, the generated
code contains a function call instead of a right shift on a signed integer. The function
asr_s32 contains this code:

int32_T asr_s32(int32_T u, uint32_T n)

{

 int32_T y;

 if (u >= 0) {

 y = (int32_T)((uint32_T)u >> n);

 } else {

 y = -(int32_T)((uint32_T)-(u + 1) >> n) - 1;

 }

 return y;

}

The asr_s32 function casts a signed integer to an unsigned integer, and then right shifts
the unsigned integer.

For more information on the Allow right shifts on signed integers parameter, see
“Allow right shifts on signed integers”.

Control Indentation Style in Generated Code

For code indentation, you can set the following parameters:

• “Indent style” controls the placement of braces in generated code.

36-46

 Control Code Style

• “Indent size” controls the number of characters per indent level in generated code (2–
8 characters).

You can set Indent style to K&R or Allman style.

K&R

K&R stands for Kernighan and Ritchie. Each function has the opening and closing brace
on its own line at the same level of indentation as the function header. Code within the
function is indented according to the Indent size.

For blocks within a function, opening braces are on the same line as the control
statement. Closing braces are on a new line at the same level of indentation as the
control statement. Code within the block is indented according to the Indent size.

For example, here is generated code with the Indent style set to K&R with an Indent
size of 2:

void rt_OneStep(void)

{

 static boolean_T OverrunFlag = 0;

 if (OverrunFlag) {

 rtmSetErrorStatus(rtwdemo_counter_M, "Overrun");

 return;

 }

 OverrunFlag = TRUE;

 rtwdemo_counter_step();

 OverrunFlag = FALSE;

}

Allman

Each function has the opening and closing brace on its own line at the same level of
indentation as the function header. Code within the function is indented according to the
Indent size.

For blocks within a function, opening and closing braces for control statements are on
a new line at the same level of indentation as the control statement. This is the key
difference between K&R and Allman styles. Code within the block is indented according
to the Indent size.

For example, here is generated code with the Indent style set to Allman with an
Indent size of 4:

36-47

36 Code Appearance in Embedded Coder

void rt_OneStep(void)

{

 static boolean_T OverrunFlag = 0;

 if (OverrunFlag)

 {

 rtmSetErrorStatus(rtwdemo_counter_M, "Overrun");

 return;

 }

 OverrunFlag = TRUE;

 rtwdemo_counter_step();

 OverrunFlag = FALSE;

}

Control Cast Expressions in Generated Code

You can choose how the code generator specifies data type casts in the generated code.
In the Configuration Parameters dialog box, select Code Generation > Code Style.
From the Casting modes drop-down list, three parameter options control how the code
generator casts data types.

• Nominal instructs the code generator to generate code that has minimal data type
casting. When you do not have special data type information requirements, choose
Nominal.

• Standards Compliant instructs the code generator to cast data types to conform to
MISRA standards when it generates code. The MISRA data type casting eliminates
common MISRA standard violations, including address arithmetic and assignment. It
reduces 10.1, 10.2, 10.3, and 10.4 violations.

For more information, see “MISRA C Guidelines” on page 12-5.
• Explicit instructs the code generator to cast data type values explicitly when it

generates code. You can see how a value is stored, which tells you how much memory
space the code uses for the variable. The data type informs you how much precision is
possible in calculations involving the variable.

Open the example model rtwdemo_rtwecintro.

36-48

 Control Code Style

Enable Nominal Casting Mode and Generate Code

When you choose Nominal casting mode, the code generator does not create data type
casts for variables in the generated code.

1 On the Code Generation > Code Style pane, from the Casting modes drop-down
list, select Nominal.

2 On the Code Generation > Report pane, select Create code generation report.
3 On the Code Generation pane, select Generate code only.
4 Click Apply.
5 In the model window, press Ctrl+B to generate code.
6 In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the

code.

/* Model step function */

void rtwdemo_rtwecintro_step(void)

{

 boolean_T rtb_equal_to_count;

 /* Sum: 'XRootX/Sum' incorporates:

 * Constant: 'XRootX/INC'

 * UnitDelay: 'XRootX/X'

 */

 rtDWork.X++;

 /* RelationalOperator: 'XRootX/RelOpt' incorporates:

 * Constant: 'XRootX/LIMIT'

 */

36-49

36 Code Appearance in Embedded Coder

 rtb_equal_to_count = (rtDWork.X != 16);

 /* Outputs for Triggered SubSystem: 'XRootX/Amplifier' incorporates:

 * TriggerPort: 'XS1X/Trigger'

 */

 if (rtb_equal_to_count && (rtPrevZCSigState.Amplifier_Trig_ZCE != POS_ZCSIG))

 {

 /* Outport: 'XRootX/Output' incorporates:

 * Gain: 'XS1X/Gain'

 * Inport: 'XRootX/Input'

 */

 rtY.Output = rtU.Input << 1;

 }

 rtPrevZCSigState.Amplifier_Trig_ZCE = (uint8_T)(rtb_equal_to_count ? (int32_T)

 POS_ZCSIG : (int32_T)ZERO_ZCSIG);

 /* End of Outputs for SubSystem: 'XRootX/Amplifier' */

 /* Switch: 'XRootX/Switch' */

 if (!rtb_equal_to_count) {

 /* Update for UnitDelay: 'XRootX/X' incorporates:

 * Constant: 'XRootX/RESET'

 */

 rtDWork.X = 0U;

 }

 /* End of Switch: 'XRootX/Switch' */

}

Enable Standards Compliant Casting Mode and Generate Code

When you choose Standards Compliant casting mode, the code generator creates
MISRA standards compliant data type casts for variables in the generated code.

1 On the Code Style pane, from the Casting modes drop-down list, select
Standards Compliant.

2 On the Code Generation pane, click Apply.
3 In the model window, press Ctrl+B to generate code.
4 In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the

code.

void rtwdemo_rtwecintro_step(void)

36-50

 Control Code Style

{

 boolean_T rtb_equal_to_count;

 /* Sum: '<Root>/Sum' incorporates:

 * Constant: '<Root>/INC'

 * UnitDelay: '<Root>/X'

 */

 rtDWork.X++;

 /* RelationalOperator: '<Root>/RelOpt' incorporates:

 * Constant: '<Root>/LIMIT'

 */

 rtb_equal_to_count = (boolean_T)(int32_T)((int32_T)rtDWork.X != (int32_T)16);

 /* Outputs for Triggered SubSystem: '<Root>/Amplifier' incorporates:

 * TriggerPort: '<S1>/Trigger'

 */

 if (((int32_T)rtb_equal_to_count) && (rtPrevZCSigState.Amplifier_Trig_ZCE !=

 POS_ZCSIG)) {

 /* Outport: '<Root>/Output' incorporates:

 * Gain: '<S1>/Gain'

 * Inport: '<Root>/Input'

 */

 rtY.Output = (int32_T)(uint32_T)((uint32_T)rtU.Input << (uint32_T)(int8_T)1);

 }

 rtPrevZCSigState.Amplifier_Trig_ZCE = (uint8_T)(int32_T)(rtb_equal_to_count ?

 (int32_T)(uint8_T)POS_ZCSIG : (int32_T)(uint8_T)ZERO_ZCSIG);

 /* End of Outputs for SubSystem: '<Root>/Amplifier' */

 /* Switch: '<Root>/Switch' */

 if (!rtb_equal_to_count) {

 /* Update for UnitDelay: '<Root>/X' incorporates:

 * Constant: '<Root>/RESET'

 */

 rtDWork.X = 0U;

 }

 /* End of Switch: '<Root>/Switch' */

}

36-51

36 Code Appearance in Embedded Coder

Enable Explicit Casting Mode and Generate Code

When you choose Explicit casting mode, the code generator creates explicit data type
casts for variables in the generated code.

1 On the Code Style pane, from the Casting modes drop-down list, select Explicit.
2 On the Code Generation pane, click Apply.
3 In the model window, press Ctrl+B to generate code.
4 In the Code Generation report left pane, click rtwdemo_rtwecintro.c to see the

code.

/* Model step function */

void rtwdemo_rtwecintro_step(void)

{

 boolean_T rtb_equal_to_count;

 /* Sum: '<Root>/Sum' incorporates:

 * Constant: '<Root>/INC'

 * UnitDelay: '<Root>/X'

 */

 rtDWork.X = (uint8_T)(1U + (uint32_T)(int32_T)rtDWork.X);

 /* RelationalOperator: '<Root>/RelOpt' incorporates:

 * Constant: '<Root>/LIMIT'

 */

 rtb_equal_to_count = (boolean_T)((int32_T)rtDWork.X != 16);

 /* Outputs for Triggered SubSystem: '<Root>/Amplifier' incorporates:

 * TriggerPort: '<S1>/Trigger'

 */

 if (((int32_T)rtb_equal_to_count) && ((int32_T)((int32_T)

 rtPrevZCSigState.Amplifier_Trig_ZCE != (int32_T)POS_ZCSIG))) {

 /* Outport: '<Root>/Output' incorporates:

 * Gain: '<S1>/Gain'

 * Inport: '<Root>/Input'

 */

 rtY.Output = rtU.Input << 1;

 }

 rtPrevZCSigState.Amplifier_Trig_ZCE = (uint8_T)(rtb_equal_to_count ? (int32_T)

 POS_ZCSIG : (int32_T)ZERO_ZCSIG);

 /* End of Outputs for SubSystem: '<Root>/Amplifier' */

36-52

 Control Code Style

 /* Switch: '<Root>/Switch' */

 if (!(int32_T)rtb_equal_to_count) {

 /* Update for UnitDelay: '<Root>/X' incorporates:

 * Constant: '<Root>/RESET'

 */

 rtDWork.X = 0U;

 }

 /* End of Switch: '<Root>/Switch' */

}

Related Examples
• “Conform to Coding Standards by Replacing and Renaming Data Types” on page

21-22

More About
• “Model Configuration Parameters: Code Generation Code Style”

36-53

36 Code Appearance in Embedded Coder

Customize Code Organization and Format

In this section...

“Custom File Processing Components” on page 36-54
“Custom File Processing Configuration” on page 36-55

Custom file processing (CFP) tools allow you to customize the organization and
formatting of your generated code. With these tools, you can:

• Generate a source (.c or .cpp) or header (.h) file. Using a custom file processing
template (CFP template), you can control how code emits to the standard generated
model files (for example, model.c or .cpp, model.h) or generate files that are
independent of model code.

• Organize generated code into sections (such as includes, typedefs, functions, and
more). Your CFP template can emit code (for example, functions), directives (such as
#define or #include statements), or comments into each section.

• Generate custom file banners (comment sections) at the start and end of generated
code files and custom function banners that precede functions in the generated code.

• Generate code to call model functions, such as model_initialize, model_step,
and so on.

• Generate code to read and write model inputs and outputs.
• Generate a main program module.
• Obtain information about the model and the generated files from the model.

Custom File Processing Components

The custom file processing features are based on the following interrelated components:

• Code generation template (CGT) files: a CGT file defines the top-level organization
and formatting of generated code. See “Code Generation Template (CGT) Files” on
page 36-57.

• The code template API: a high-level Target Language Compiler (TLC) API that
provides functions with which you can organize code into named sections and
subsections of generated source and header files. The code template API also provides
utilities that return information about generated files, generate standard model calls,
and perform other functions. See “Code Template API Summary” on page 36-79.

36-54

 Customize Code Organization and Format

• Custom file processing (CFP) templates: a CFP template is a TLC file that manages
the process of custom code generation. A CFP template assembles code to be
generated into buffers. A CFP template also calls the code template API to emit the
buffered code into specified sections of generated source and header files. A CFP
template interacts with a CGT file, which defines the ordering of major sections of the
generated code. See “Custom File Processing (CFP) Templates” on page 36-63.

To use CFP templates, you must understand TLC programming, for more information,
see “Target Language Compiler” (Simulink Coder).

Custom File Processing Configuration

Customize generated code by specifying code and data templates on the Code
Generation > Templates pane:

Goal Action

Specify a template that defines
the top-level organization and
formatting of generated source
code (.c or .cpp) files

Enter a code generation template (CGT) file for the Source
file (*.c) template parameter.

Specify a template that defines
the top-level organization and
formatting of generated header
(.h) files

Enter a CGT file for the Header file (*.h) template
parameter. This template file can be the same template file
that you specify for Source file (.c) template. If you use the
same template file, source and header files contain identical
banners. The default template is matlabroot/toolbox/
rtw/targets/ecoder/ert_code_template.cgt.

Specify a template that organizes
generated code into sections (such
as includes, typedefs, functions,
and more)

Enter a custom file processing (CFP) template file for the
“File customization template” parameter. A CFP template can
emit code, directives, or comments into each section. For more
information, see “Custom File Processing (CFP) Templates” on
page 36-63.

Generate a model-specific example
main program module

Select Generate an example main program. For more
information, see “Generate a Standalone Program” on page
49-2.

Note: Place the template files that you specify on the MATLAB path.

36-55

36 Code Appearance in Embedded Coder

Specify Templates For Code Generation

To use custom file processing features, create CGT files and CFP templates. These files
are based on default templates provided by the code generation software. Once you have
created your templates, you must integrate them into the code generation process.

Select and edit CGT files and CFP templates, and specify their use in the code generation
process in the Code Generation > Templates pane of a model configuration set. The
following figure shows options configured for their defaults.

The options related to custom file processing are:

• The Source file (.c) template field in the Code templates and Data templates
sections. This field specifies the name of a CGT file to use when generating source (.c
or .cpp) files. You must place this file on the MATLAB path.

• The Header file (.h) template field in the Code templates and Data templates
sections. This field specifies the name of a CGT file to use when generating header
(.h) files. You must place this file on the MATLAB path.

By default, the template for both source and header files is matlabroot/toolbox/rtw/
targets/ecoder/ert_code_template.cgt.

• The File customization template edit field in the Custom templates section. This
field specifies the name of a CFP template file to use when generating code files. You
must place this file on the MATLAB path. The default CFP template is matlabroot/
toolbox/rtw/targets/ecoder/example_file_process.tlc.

In each of these fields, click Browse to navigate to and select an existing CFP template
or CGT file. Click Edit to open the specified file into the MATLAB editor where you can
customize it.

36-56

 Code Generation Template (CGT) Files

Code Generation Template (CGT) Files

Code Generation Template (CGT) files define the top-level organization and formatting of
generated source code and header files. CGT files have the following applications:

• Generation of custom banners (comments sections) in code files. See “Generate
Custom File and Function Banners” on page 36-82.

• Generation of custom code using a CFP template requires a CGT file. To use CFP
templates, you must understand the CGT file structure. In many cases, however, you
can use the default CGT file without modifying it.

Default CGT file

The code generation software provides a default CGT file, matlabroot/toolbox/rtw/targets/
ecoder/ert_code_template.cgt. Base your custom CGT files on the default file.

CGT File Structure

A CGT file consists of one required section and four optional sections:

Code Insertion Section

(Required) This section contains tokens that define an ordered partitioning of the
generated code into a number of sections (such as Includes and Defines sections).
Tokens have the form of:

%<SectionName>

For example,

%<Includes>

The code generation software defines a minimal set of required tokens. These tokens
generate C or C++ source or header code. They are built-in tokens (see “Built-In Tokens
and Sections” on page 36-58). You can also define custom tokens and custom sections.

Each token functions as a placeholder for a corresponding section of generated code. The
ordering of the tokens defines the order in which the corresponding sections appear in
the generated code. If you do not include a token, then the corresponding section is not

36-57

36 Code Appearance in Embedded Coder

generated. To generate code into a given section, explicitly call the code template API
from a CFP template, as described in “Custom File Processing (CFP) Templates” on page
36-63.

The CGT tokens define the high-level organization of generated code. Using the code
template API, you can partition each code section into named subsections, as described in
“Subsections” on page 36-60.

In the code insertion section, you can also insert C or C++ comments between tokens.
Such comments emit directly into the generated code.

File Banner Section

(Optional) This section contains comments and tokens you use in generating a custom file
banner.

Function Banner Section

(Optional) This section contains comments and tokens for use in generating a custom
function banner.

Shared Utility Function Banner Section

(Optional) This section contains comments and tokens for use in generating a custom
shared utility function banner.

File Trailer Section

(Optional) This section contains comments for use in generating a custom trailer banner.

For more information on these sections, see “Generate Custom File and Function
Banners” on page 36-82.

Built-In Tokens and Sections

The following code extract shows the required code insertion section of the default CGT
file with the required built-in tokens.
%%%

%% Code insertion section (required)

%% These are required tokens. You can insert comments and other tokens in

%% between them, but do not change their order or remove them.

%%

36-58

 Code Generation Template (CGT) Files

%<Includes>

%<Defines>

%<Types>

%<Enums>

%<Definitions>

%<Declarations>

%<Functions>

Note the following requirements for customizing a CGT file:

• Do not remove required built-in tokens.
• Built-in tokens must appear in the order shown because each successive section has

dependencies on previous sections.
• Only one token per line.
• Do not repeat tokens.
• You can add custom tokens and comments to the code insertion section as long as you

do not violate the previous requirements.

Note: If you modify a CGT file and then rebuild your model, the code generation process
does not force a top model build. To regenerate the code, see “Force Regeneration of Top
Model Code” (Simulink Coder).

The following table summarizes the built-in tokens and corresponding section names,
and describes the code sections.

Built-In CGT Tokens and Corresponding Code Sections

Token and Section
Name

Description

Includes #include directives section
Defines #define directives section
Types typedef section.Typedefs can depend on a previously defined

type
Enums Enumerated types section
Definitions Data definitions (for example, double x = 3.0;)
Declarations Data declarations (for example, extern double x;)
Functions C or C++ functions

36-59

36 Code Appearance in Embedded Coder

Subsections

You can define one or more named subsections for any section. Some of the built-in
sections have predefined subsections summarized in table Subsections Defined for Built-
In Sections.

Note: Sections and subsections emit to the source or header file in the order listed in the
CGT file.

Using the custom section feature, you can define additional sections. See “Generate a
Custom Section” on page 36-72.

Subsections Defined for Built-In Sections

Section Subsections Subsection Description

Includes N/A
Defines N/A
Types IntrinsicTypes Intrinsic typedef section. Intrinsic types depend

only on intrinsic C or C++ types.
Types PrimitiveTypedefs Primitive typedef section. Primitive typedefs

depend only on intrinsic C or C++ types
and on typedefs previously defined in the
IntrinsicTypes section.

Types UserTop You can place any type of code in this section,
including code that has dependencies on the
previous sections.

Types Typedefs typedef section. Typedefs can depend on
previously defined types

Enums N/A
Definitions N/A
Declarations N/A
Functions C or C++ functions
Functions CompilerErrors #error directives
Functions CompilerWarnings #warning directives

36-60

 Code Generation Template (CGT) Files

Section Subsections Subsection Description

Functions Documentation Documentation (comment) section
Functions UserBottom You can place any code in this section.

Format Generated Code Files Using Templates

This example shows how to use code generation templates to add custom code banners,
rearrange data and functions, and insert additional code segments and documentation
into generated code files.

model='rtwdemo_codetemplate';

open_system(model)

36-61

36 Code Appearance in Embedded Coder

rtwdemoclean;

close_system(model,0)

36-62

 Custom File Processing (CFP) Templates

Custom File Processing (CFP) Templates
The files provided to support custom file processing are:

• matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc: A TLC function library that implements
the code template API. codetemplatelib.tlc also provides the comprehensive
documentation of the API in the comments headers preceding each function.

• matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc: An example custom
file processing (CFP) template, which you should use as the starting point for creating
your own CFP templates. Guidelines and examples for creating a CFP template are
provided in “Generate Source and Header Files with a Custom File Processing (CFP)
Template” on page 36-67.

• TLC files supporting generation of single-rate and multirate main program modules
(see “Customizing Main Program Module Generation” on page 36-71).

Once you have created a CFP template, you must integrate it into the code generation
process, using the File customization template edit field. See “Specify Templates For
Code Generation” on page 36-56.

Custom File Processing (CFP) Template Structure

A custom file processing (CFP) template imposes a simple structure on the code
generation process. The template, a code generation template (CGT) file, partitions the
code generated for each file into a number of sections. These sections are summarized
in Built-In CGT Tokens and Corresponding Code Sections and Subsections Defined for
Built-In Sections.

Code for each section is assembled in buffers and then emitted, in the order listed, to the
file being generated.

To generate a file section, your CFP template must first assemble the code to be
generated into a buffer. Then, to emit the section, your template calls the TLC function

LibSetSourceFileSection(fileH, section, tmpBuf)

where

• fileH is a file reference to a file being generated.
• section is the code section or subsection to which code is to be emitted. section must

be one of the section or subsection names listed in Subsections Defined for Built-In
Sections.

36-63

36 Code Appearance in Embedded Coder

Determine the section argument as follows:

• If Subsections Defined for Built-In Sections does not define subsections for a given
section, use the section name as the section argument.

• If Subsections Defined for Built-In Sections defines one or more subsections for
a given section, you can use either the section name or a subsection name as the
section argument.

• If you have defined a custom token denoting a custom section, do not call
LibSetSourceFileSection. Special API calls are provided for custom sections
(see “Generate a Custom Section” on page 36-72).

• tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of the available sections. Your template need only
generate the sections you require in a particular file.

Note that legality or syntax checking is not performed on the custom code within each
section.

See “Generate Source and Header Files with a Custom File Processing (CFP) Template”
on page 36-67, for typical usage examples.

36-64

 Change the Organization of a Generated File

Change the Organization of a Generated File
The files created during code generation are organized according to the general code
generation template. This template has the filename ert_code_template.cgt, and
is specified by default in Code Generation > Templates pane of the Configuration
Parameters dialog box.

The following fragment shows the rtwdemo_basicsc.c file header that is generated
using this default template:

/*

* File: rtwdemo_basicsc.c

*

* Code generated for Simulink model 'rtwdemo_basicsc'.

*

* Model version : 1.299

* Simulink Coder version : 8.11 (R2017a) 01-Aug-2016

* C/C++ source code generated on : Fri Aug 19 12:45:59 2016

*

* Target selection: ert.tlc

* Embedded hardware selection: Intel->x86-64 (Windows64)

* Code generation objectives: Unspecified

* Validation result: Not run

*/

You can change the organization of generated files using code templates and data
templates. Code templates organize the files that contain functions, primarily. Data
templates organize the files that contain identifiers. In this procedure, you organize the
generated files, using the supplied code and data templates:

1 Display the active Templates configuration parameters.
2 In the Code templates section of the Templates pane, type

code_c_template.cgt into the Source file (*.c) templates text box.
3 Type code_h_template.cgt into the Header file (*.h) templates text box.
4 In the Data templates section, type data_c_template.cgt into the Source file

(*.c) templates text box.
5 Type data_h_template.cgt into the Header file (*.h) templates text box, and

click Apply.
6 In the model window, press Ctrl+B. Now the files are organized using the templates

you specified. For example, the rtwdemo_basicsc.c file header now is organized
like this:

36-65

36 Code Appearance in Embedded Coder

/**

 ** FILE INFORMATION:

 ** Filename: rtwdemo_basicsc.c

 ** File Creation Date: 19-Aug-2016

 **

 ** ABSTRACT:

 **

 **

 ** NOTES:

 **

 **

 ** MODEL INFORMATION:

 ** Model Name: rtwdemo_basicsc

 ** Model Description: Specifying Storage Class Within a Diagram

 This model shows how to define data storage class as part of

 the diagram.

 ** Model Version: 1.299

 ** Model Author: The MathWorks, Inc. - Mon Nov 27 14:36:56 2000

 **

 ** MODIFICATION HISTORY:

 ** Model at Code Generation: user - Fri Aug 19 12:47:36 2016

 **

 ** Last Saved Modification: The MathWorks, Inc. - Sat Aug 06 14:37:49 2016

 **

 **

 **/

36-66

 Generate Source and Header Files with a Custom File Processing (CFP) Template

Generate Source and Header Files with a Custom File Processing
(CFP) Template

In this section...

“Generate Code with a CFP Template” on page 36-67
“Analysis of the Example CFP Template and Generated Code” on page 36-69
“Generate a Custom Section” on page 36-72
“Custom Tokens” on page 36-74

This example shows you the process of generating a simple source (.c or .cpp) and
header (.h) file using the example CFP template. Then, it examines the template and the
code generated by the template.

The example CFP template, matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, demonstrates some of the capabilities of the code template API,
including

• Generation of simple source (.c or .cpp) and header (.h) files
• Use of buffers to generate file sections for includes, functions, and so on
• Generation of includes, defines, into the standard generated files (for example,

model.h)
• Generation of a main program module

Generate Code with a CFP Template

This section sets up a CFP template and configures a model to use the template in code
generation. The template generates (in addition to the standard model files) a source file
(timestwo.c or .cpp) and a header file (timestwo.h).

Follow the steps below to become acquainted with the use of CFP templates:

1 Copy the example CFP template, matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, to a folder outside of the MATLAB folder structure (that is,
not under matlabroot). If the folder is not on the MATLAB path or the TLC path,
then add it to the MATLAB path. It is good practice to locate the CFP template in
the same folder as your system target file, which is on the TLC path.

36-67

36 Code Appearance in Embedded Coder

2 Rename the copied example_file_process.tlc to
test_example_file_process.tlc.

3 Open test_example_file_process.tlc into the MATLAB editor.
4 Uncomment the following line:

%% %assign ERTCustomFileTest = TLC_TRUE

It now reads:

 %assign ERTCustomFileTest = TLC_TRUE

If ERTCustomFileTest is not assigned as shown, the CFP template is ignored in
code generation.

5 Save your changes to the file. Keep test_example_file_process.tlc open, so
you can refer to it later.

6 Open the rtwdemo_udt model.
7 Open the Simulink Model Explorer. Select the active configuration set of the model,

and open the Code Generation pane of the active configuration set.
8 On the Templates tab, in the File customization template field, specify

test_example_file_process.tlc. This is the file you previously edited and is
now the specified CFP template for your model.

9 On the General tab, select the Generate code only check box.
10 Click Apply.
11 In the model window, press Ctrl+B. During code generation, notice the following

message in the Diagnostic Viewer:

Warning: Overriding example ert_main.c!

This message is displayed because test_example_file_process.tlc generates
the main program module, overriding the default action of the ERT target. This is
explained in greater detail below.

12 The rtwdemo_udt model is configured to generate an HTML code generation report.
After code generation is complete, view the report.

Notice that the Generated Code list contains the following files:

• Under Main file, ert_main.c.
• Under Other files, timestwo.c and timestwo.h.

36-68

 Generate Source and Header Files with a Custom File Processing (CFP) Template

The files were generated by the CFP template. The next section examines the
template to learn how this was done.

13 Keep the model, the code generation report, and the
test_example_file_process.tlc file open so you can refer to them in the next
section.

Analysis of the Example CFP Template and Generated Code

This section examines excerpts from test_example_file_process.tlc and
some of the code it generates. Refer to the comments in matlabroot/rtw/c/tlc/mw/
codetemplatelib.tlc while reading the following discussion.

Generating Code Files

Source (.c or .cpp) and header (.h) files are created by calling LibCreateSourceFile,
as in the following excerpts:
%assign cFile = LibCreateSourceFile("Source", "Custom", "timestwo")

...

%assign hFile = LibCreateSourceFile("Header", "Custom", "timestwo")

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers

The code template API lets you partition the code generated to each file into sections,
tagged as Definitions, Includes, Functions, Banner, and so on. You can append
code to each section as many times as required. This technique gives you a great deal of
flexibility in the formatting of your custom code files.

Subsections Defined for Built-In Sections describes the available file sections and their
order in the generated file.

For each section of a generated file, use %openfile and %closefile to store the text
for that section in temporary buffers. Then, to write (append) the buffer contents to a
file section, call LibSetSourceFileSection, passing in the desired section tag and
file reference. For example, the following code uses two buffers (typesBuf and tmpBuf)
to generate two sections (tagged "Includes" and "Functions") of the source file
timestwo.c or .cpp (referenced as cFile):

36-69

36 Code Appearance in Embedded Coder

%openfile typesBuf

#include "rtwtypes.h"

%closefile typesBuf

%<LibSetSourceFileSection(cFile,"Includes",typesBuf)>

 %openfile tmpBuf

 /* Times two function */

 real_T timestwofcn(real_T input) {

 return (input * 2.0);

}

%closefile tmpBuf

%<LibSetSourceFileSection(cFile,"Functions",tmpBuf)>

These two sections generate the entire timestwo.c or .cpp file:

#include "rtwtypes.h"

/* Times two function */

FLOAT64 timestwofcn(FLOAT64 input)

{

 return (input * 2.0);

}

Adding Code to Standard Generated Files

The timestwo.c or .cpp file generated in the previous example was independent
of the standard code files generated from a model (for example, model.c or .cpp,
model.h, and so on). You can use similar techniques to generate custom code within
the model files. The code template API includes functions to obtain the names of the
standard models files and other model-related information. The following excerpt calls
LibGetMdlPubHdrBaseName to obtain the name for the model.h file. It then obtains a
file reference and generates a definition in the Defines section of model.h:
%% Add a #define to the model's public header file model.h

%assign pubName = LibGetMdlPubHdrBaseName()

%assign modelH = LibCreateSourceFile("Header", "Simulink", pubName)

%openfile tmpBuf

36-70

 Generate Source and Header Files with a Custom File Processing (CFP) Template

 #define ACCELERATION 9.81

 %closefile tmpBuf

%<LibSetSourceFileSection(modelH,"Defines",tmpBuf)>

Examine the generated rtwdemo_udt.h file to see the generated #define directive.

Customizing Main Program Module Generation

Normally, the ERT target determines whether and how to generate an ert_main.c
or .cpp module based on the settings of the Generate an example main program
and Target operating system options on the Templates pane of the Configuration
Parameters dialog box. You can use a CFP template to override the normal behavior and
generate a main program module customized for your target environment.

To support generation of main program modules, two TLC files are provided:

• bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by a single
TLC function, FcnSingleTaskingMain.

• bareboard_mrmain.tlc: TLC code to generate a multirate main program module
for a bareboard target environment. Code is generated by a single TLC function,
FcnMultiTaskingMain.

In the example CFP template file matlabroot/toolbox/rtw/targets/ecoder/
example_file_process.tlc, the following code generates either a single- or multitasking
ert_main.c or .cpp module. The logic depends on information obtained from the code
template API calls LibIsSingleRateModel and LibIsSingleTasking:
%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

 %if LibIsSingleRateModel() || LibIsSingleTasking()

 %include "bareboard_srmain.tlc"

 %<FcnSingleTaskingMain()>

 %else

 %include "bareboard_mrmain.tlc"

 %<FcnMultiTaskingMain()>

 %endif

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code template
API to generate ert_main.c or .cpp.

When generating your own main program module, you disable the default generation of
ert_main.c or .cpp. The TLC variable GenerateSampleERTMain controls generation

36-71

36 Code Appearance in Embedded Coder

of ert_main.c or .cpp. You can directly force this variable to TLC_FALSE. The
examples bareboard_mrmain.tlc and bareboard_srmain.tlc use this technique, as
shown in the following excerpt from bareboard_srmain.tlc.

%if GenerateSampleERTMain

 %assign CompiledModel.GenerateSampleERTMain = TLC_FALSE

 %warning Overriding example ert_main.c!

%endif

Alternatively, you can implement a SelectCallback function for your target. A
SelectCallback function is a MATLAB function that is triggered during model loading,
and also when the user selects a target with the System Target File browser. Your
SelectCallback function should deselect and disable the Generate an example
main program option. This prevents the TLC variable GenerateSampleERTMain from
being set to TLC_TRUE.

See the “rtwgensettings Structure” (Simulink Coder) section for information on creating
a SelectCallback function.

The following code illustrates how to deselect and disable the Generate an example
main program option in the context of a SelectCallback function.

slConfigUISetVal(hDlg, hSrc, 'GenerateSampleERTMain', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'GenerateSampleERTMain',0);

Note Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you need to attach rt_OneStep
to a timer interrupt. It is expected that you will customize either the generated code,
the generating TLC code, or both. See “Guidelines for Modifying the Main Program” on
page 49-4 and “Guidelines for Modifying rt_OneStep” on page 49-9 for further
information.

Generate a Custom Section

You can define custom tokens in a CGT file and direct generated code into an associated
built-in section. This feature gives you additional control over the formatting of
code within each built-in section. For example, you could add subsections to built-in
sections that do not already define subsections. Custom sections must be associated
with one of the built-in sections: Includes, Defines, Types, Enums, Definitions,
Declarations, or Functions. To create custom sections, you must

36-72

 Generate Source and Header Files with a Custom File Processing (CFP) Template

• Add a custom token to the code insertion section of your CGT file.
• In your CFP file:

• Assemble code to be generated to the custom section into a buffer.
• Declare an association between the custom section and a built-in section, with the

code template API function LibAddSourceFileCustomSection.
• Emit code to the custom section with the code template API function

LibSetSourceFileCustomSection.

The following code examples illustrate the addition of a custom token, Myincludes, to
a CGT file, and the subsequent association of the custom section Myincludes with the
built-in section Includes in a CFP file.

Note: If you have not already created custom CGT and CFP files for your model, copy the
default template files matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt and
matlabroot/toolbox/rtw/targets/ecoder/example_file_process.tlc to a work folder that is
outside the MATLAB folder structure but on the MATLAB or TLC path, rename them
(for example, add the prefix test_ to each file), and update the Templates pane of the
Configuration Parameters dialog box to reference them.

First, add the token Myincludes to the code insertion section of your CGT file. For
example:

%<Includes>

%<Myincludes>

%<Defines>

%<Types>

%<Enums>

%<Definitions>

%<Declarations>

%<Functions>

Next, in the CFP file, add code to generate include directives into a buffer. For example,
in your copy of the example CFP file, you could insert the following section between the
Includes section and the Create a simple main section:

%% Add a custom section to the model's C file model.c

%openfile tmpBuf

#include "moretables1.h"

36-73

36 Code Appearance in Embedded Coder

#include "moretables2.h"

%closefile tmpBuf

%<LibAddSourceFileCustomSection(modelC,"Includes","Myincludes")>

%<LibSetSourceFileCustomSection(modelC,"Myincludes",tmpBuf)>

The LibAddSourceFileCustomSection function call declares an association
between the built-in section Includes and the custom section Myincludes.
Myincludes is a subsection of Includes. The LibSetSourceFileCustomSection
function call directs the code in the tmpBuf buffer to the Myincludes section of the
generated file. LibSetSourceFileCustomSection is syntactically identical to
LibSetSourceFileSection.

In the generated code, the include directives generated to the custom section appear after
other code directed to Includes.

#include "rtwdemo_udt.h"

#include "rtwdemo_udt_private.h"

/* #include "mytables.h" */

#include "moretables1.h"

#include "moretables2.h"

Note: The placement of the custom token in this example CGT file is arbitrary. By
locating %<Myincludes> after %<Includes>, the CGT file specifies only that the
Myincludes code appears after Includes code.

Custom Tokens

Custom tokens are automatically translated to TLC syntax as a part of the build process.
To escape a token, that is to prepare it for normal TLC expansion, use the '!' character.
For example, the token %<!TokenName> is expanded to %<TokenName> by the template
conversion program. You can specify valid TLC code, including TLC function calls: %<!
MyTLCFcn()>.

36-74

 Comparison of a Template and Its Generated File

Comparison of a Template and Its Generated File

This figure shows part of a user-modified custom file processing (CFP) template and the
resulting generated code. The figure illustrates how you can use a template to:

• Define what code the code generation software should add to the generated file
• Control the location of code in the file
• Optionally insert comments in the generated file

Notice %<Includes>, for example, on the template. The term Includes is a symbol
name. A percent sign and brackets (%< >) must enclose every symbol name. You can
add the desired symbol name (within the %< > delimiter) at a particular location in
the template. This is how you control where the code generator places an item in the
generated file.

36-75

36 Code Appearance in Embedded Coder

Template and Generated File

/*#INCLUDES*/
%<Includes>
/*#DEFINES*/
%<Defines>
#pragma string1
/*DEFINITIONS*/
%<Definitions>
#pragma string2
%<Declarations>
%<Functions>

Portion of
Example Template Corresponding Portion of Generated File

.

.

.

.

.

.

(1)

(2)

(3)
(4)

(5)
(6)
(7)

26 /*#INCLUDES*/
27 #include "rtwdemo_codetemplate.h"
28 #include "rtwdemo_codetemplate_private.h"
29
30 /*#DEFINES*/
31 #pragma string1
32 /*DEFINITIONS*/
33 /* Block states (auto storage) */
34 rtDWork;
35
36 /* External output (fed by signals with auto storage) */
37 rtY;
38
39 /* Real-time model */
40 rtM_;
41 *rtM = &rtM_;
42 #pragma string2
43
44 /* Model step function */
45 void rtwdemo_codetemplate_step(void)
46 {
47
48 /* local block i/o variables */
49
50 rtb_Switch;
51 rtb_RelOpt;
52
53 /* Sum: '' incorporates:
54 * UnitDelay: ''
55 */
56 rtb_Switch = ()(()rtDWork.X + 1U);
57
58 /* RelationalOperator: '' */
59 rtb_RelOpt = (rtb_Switch != 16U);
60
61 /* Outport: '' */
62 rtY.Out = rtb_RelOpt;
63
64 /* Switch: '' */
65 if(rtb_RelOpt) {
66 } else {
67 rtb_Switch = 0U;
68 }
69
70 /* Update for UnitDelay: '' */
71 rtDWork.X = rtb_Switch;
72
73 /* (no update code required) */
74 }
.
.
.

None

None

Mapping Template Specification to Code Generation

36-76

 Comparison of a Template and Its Generated File

Generates in the file...This part of the template...

Line Description

Explanation

(1) /*#INCLUDES*/

%<Includes>
26–28 An /*#INCLUDES*/

comment, followed
by #include
statements

The code generator adds the C/
C++ comment as a header, and
then interprets the %<Includes>
template symbol to list the
required #include statements
in the file. This code is first in
this section of the file because the
template entries are first.

(2) /*#DEFINES*/

%<Defines>

30 A /*#DEFINES*/
comment, but no
#define statements

Next, the code generator places
the comment as a header for
#define statements, but the file
does not need #define. No code
is added.

(3) #pragma string1 31
(5) #pragma string2 42

#pragma statements While the code generator requires
%<> delimiters for template
symbols, it can also interpret C/
C++ statements in the template
without delimiters. In this case,
the generator adds the specified
statements to the code, following
the order in which the statements
appear in the template.

(4) /*DEFINITIONS*/

%<Definitions>

32–41 /*DEFINITIONS*/

comment, followed by
definitions

The code generator places the
comment and definitions in
the file between the #pragma
statements, according to the
order in the template. It also
inserts comments (lines 33 and
36) that are preset in the model's
Configuration Parameters dialog
box.

(6) %<Declarations> 43 No declarations The file needs no declarations,
so the code generator does not
generate declarations for this
file. The template does not have

36-77

36 Code Appearance in Embedded Coder

Generates in the file...This part of the template...

Line Description

Explanation

a comment to provide a header.
Line 43 is left blank.

(7) %<Functions> 44–74 Functions Finally, the code generator adds
functions from the model, plus
comments that are preset in the
Configuration Parameters dialog
box. But it adds no comments
as a header for the functions,
because the template does
not have one. This code is last
because the template entry is
last.

For a list of template symbols and the rules for using them, see “Template Symbol
Groups” on page 36-90, “Template Symbols” on page 36-93, and “Rules for
Modifying or Creating a Template” on page 36-96. To set comment options, from the
Simulation menu, select Model Configuration Parameters. On the Configuration
Parameters dialog box, select the Code Generation > Comments pane. For details, see
“Configure Code Comments” (Simulink Coder).

36-78

 Code Template API Summary

Code Template API Summary

Code Template API Functions summarizes the code template API. See the source code in
matlabroot/rtw/c/tlc/mw/codetemplatelib.tlc for detailed information on the arguments,
return values, and operation of these calls.

Code Template API Functions

Function Description

LibClearFileSectionContents Clears a file section with custom values
before writing file to disk.

LibGetNumSourceFiles Returns the number of created source files
(.c or .cpp and .h).

LibGetSourceFileTag Returns <filename>_h and <filename>_c
for header and source files, respectively,
where filename is the name of the model
file.

LibCreateSourceFile Creates a new C or C++ file and returns its
reference. If the file already exists, simply
returns its reference.

LibGetFileRecordName Returns a model file name (including the
path) without the extension.

LibGetSourceFileFromIdx Returns a model file reference based on its
index. This is useful for a common operation
on all files, such as to set the leading file
banner of all files.

LibSetSourceFileSection Adds to the contents of a specified section
within a specified file (see also “Custom File
Processing (CFP) Template Structure” on
page 36-63).

LibIndentSourceFile Indents a file (from within the TLC
environment).

LibCallModelInitialize Returns code for calling the model's
model_initialize function (valid for ERT
only).

36-79

36 Code Appearance in Embedded Coder

Function Description

LibCallModelStep Returns code for calling the model's
model_step function (valid for ERT only).

LibCallModelTerminate Returns code for calling the model's
model_terminate function (valid for ERT
only).

LibCallSetEventForThisBaseStep Returns code for calling the model's set
events function (valid for ERT only).

LibWriteModelData Returns data for the model (valid for ERT
only).

LibSetRTModelErrorStatus Returns the code to set the model error
status.

LibGetRTModelErrorStatus Returns the code to get the model error
status.

LibIsSingleRateModel Returns true if model is single rate and false
otherwise.

LibGetModelName Returns name of the model (without an
extension).

LibGetMdlSrcBaseName Returns the name of model's main source file
(for example, model.c or .cpp).

LibGetMdlPubHdrBaseName Returns the name of model's public header
file (for example, model.h).

LibGetMdlPrvHdrBaseName Returns the name of the model's
private header file (for example,
model_private.h).

LibIsSingleTasking Returns true if the model is configured for
single-tasking execution.

LibWriteModelInput Returns the code to write to a particular root
input (that is, a model inport block). (valid
for ERT only).

LibWriteModelOutput Returns the code to write to a particular root
output (that is, a model outport block). (valid
for ERT only).

36-80

 Code Template API Summary

Function Description

LibWriteModelInputs Returns the code to write to root inputs (that
is, all model inport blocks). (valid for ERT
only)

LibWriteModelOutputs Returns the code to write to root outputs
(that is, all model outport blocks). (valid for
ERT only).

LibNumDiscreteSampleTimes Returns the number of discrete sample
times in the model.

LibSetSourceFileCodeTemplate Set the code template to be used for
generating a specified source file.

LibSetSourceFileOutputDirectory Set the folder into which a specified source
file is to be generated.

LibAddSourceFileCustomSection Add a custom section to a source file. The
custom section must be associated with
one of the built-in (required) sections:
Includes, Defines, Types, Enums,
Definitions, Declarations, or
Functions.

LibSetSourceFileCustomSection Adds to the contents of a specified custom
section within a specified file. The custom
section must have been previously created
with LibAddSourceFileCustomSection.

36-81

36 Code Appearance in Embedded Coder

Generate Custom File and Function Banners
Using code generation template (CGT) files, you can specify custom file banners and
function banners for the generated code files. File banners are comment sections in
the header and trailer sections of a generated file. Function banners are comment
sections for each function in the generated code. Use these banners to add a company
copyright statement, specify a special version symbol for your configuration management
system, remove time stamps, and for many other purposes. These banners can contain
characters, which propagate to the generated code.

To specify banners, create a custom CGT file with customized banner sections. The build
process creates an executable TLC file from the CGT file. The code generation process
then invokes the TLC file.

You do not need to be familiar with TLC programming to generate custom banners. You
can modify example files that are supplied with the ERT target.

Note Prior releases supported direct use of customized TLC files as banner templates.
You specified these with the Source file (.c) banner template and Header file (.h)
banner template options of the ERT target. You can still use a custom TLC file banner
templates, however, you can now use CGT files instead.

ERT template options on the Code Generation > Templates pane of a configuration
set, in the Code templates section, support banner generation.

The options for function and file banner generation are:

• “Code templates: Source file (*.c) template”: CGT file to use when generating source
(.c or .cpp) files. Place this file on the MATLAB path.

• “Code templates: Header file (*.h) template”: CGT file to use when generating header
(.h) files. You must place this file on the MATLAB path. This file can be the same
template specified in the Code templates: Source file (*.c) template field, in which
case identical banners are generated in source and header files.

By default, the template for both source and header files is matlabroot/toolbox/rtw/
targets/ecoder/ert_code_template.cgt.

• In each of these fields, click Browse to navigate to and select an existing CGT file
for use as a template. Click Edit to open the specified file into the MATLAB editor,
where you can customize it.

36-82

 Generate Custom File and Function Banners

Create a Custom File and Function Banner Template

To customize a CGT file for custom banner generation, make a local copy of the default
code template and edit it, as follows:

1 Activate the configuration set that you want to work with.
2 Open the Code Generation pane of the active configuration set.
3 Click the Templates tab.
4 By default, the code template specified in the Code templates: Source file (*.c)

template and Code templates: Header file (*.h) template fields is matlabroot/
toolbox/rtw/targets/ecoder/ert_code_template.cgt.

5 If you want to use a different template as your starting point, click Browse to locate
and select a CGT file.

6 Click Edit button to open the CGT file into the MATLAB editor.
7 Save a local copy of the CGT file. Store the copy in a folder that is outside of the

MATLAB folder structure, but on the MATLAB path. If required, add the folder to
the MATLAB path.

8 If you intend to use the CGT file with a custom target, locate the CGT file in a folder
under your target root folder.

9 Rename your local copy of the CGT file. When you rename the CGT file, update
the associated Code templates: Source file (*.c) template or Code templates:
Header file (*.h) template field to match the new file name.

10 Edit and customize the local copy of the CGT file for banner generation, using the
information provided in “Customize a Code Generation Template (CGT) File for File
and Function Banner Generation” on page 36-84.

11 Save your changes to the CGT file.
12 Click Apply to update the configuration set.
13 Save your model.
14 Generate code. Examine the generated source and header files to confirm that they

contain the banners specified by the template or templates.

36-83

36 Code Appearance in Embedded Coder

Customize a Code Generation Template (CGT) File for File and Function
Banner Generation

This section describes how to edit a CGT file for custom file and function banner
generation. For a description of CGT files, see “Code Generation Template (CGT) Files”
on page 36-57.

Components of the File and Function Banner Sections in the CGT file

In a CGT file, you can modify the following sections: file banner, function banner, shared
utility function banner, and file trailer. Each section is defined by open and close tags.
The tags specific to each section are shown in the following table.

CGT File Section Open Tag Close Tag

File Banner <FileBanner> </FileBanner>

Function Banner <FunctionBanner> </FunctionBanner>

Shared-utility Banner <SharedUtilityBanner> </SharedUtilityBanner>

File Trailer <FileTrailer> </FileTrailer>

You can customize your banners by including tokens and comments between the
open and close tag for each section. Tokens are typically TLC variables, for example
<ModelVersion>, which are replaced with values in the generated code.

Note: Including C comment indicators, '/*' or a '*/', in the contents of your banner might
introduce an error in the generated code.

An open tag includes tag attributes. Enclose the value of the attribute in double quotes.
The attributes available for an open tag are:

• width: specifies the width of the file or function banner comments in the generated
code. The default value is 80.

• style: specifies the boundary for the file or function banner comments in the
generated code.

The open tag syntax is as follows:

<OpenTag style = “style_value” width = “num_width”>

36-84

 Generate Custom File and Function Banners

Note: If the Configuration Parameters > Code Generation > Language parameter
is set to C++, to select a comment style that uses C comment notation (/*...*/), you
must also set the Configuration Parameters > All Parameters > Comment style
parameter to Multi-line. For more information, see “Specify Comment Style” on page
36-14.

The built-in style options for the style attribute are:

• classic

/* single line comments */

/*

 * multiple line comments

 * second line

 */

• classic_cpp

// single line comments

//

// multiple line comments

// second line

//

• box

/**/

/* banner contents */

/**/

• box_cpp

//

// banner contents //

//

• open_box

/**

 * banner contents

 **/

• open_box_cpp

//

// banner contents

36-85

36 Code Appearance in Embedded Coder

//

• doxygen

/** single line comments */

/**

 * multiple line comments

 * second line

 */

• doxygen_cpp

/// single line comments

///

/// multiple line comments

/// second line

///

• doxygen_qt

/*! single line comments */

/*!

 * multiple line comments

 * second line

 */

• doxygen_qt_cpp

//! single line comments

//!

//! multiple line comments

//! second line

//!

File Banner

This section contains comments and tokens for use in generating a custom file banner.
The file banner precedes C or C++ code generated by the model. If you omit the file
banner section from the CGT file, then no file banner emits to the generated code.

Note: If you customize your file banner, the software does not emit the customized
banner for the file const_params.c.

36-86

 Generate Custom File and Function Banners

The following section is the file banner section provided with the default CGT file,
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.
%%%

%% Custom file banner section (optional)

%%

<FileBanner style="classic">

File: %<FileName>

Code generated for Simulink model %<ModelName>.

Model version : %<ModelVersion>

Simulink Coder version : %<RTWFileVersion>

TLC version : %<TLCVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

%<CodeGenSettings>

</FileBanner>

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example,
"rtwdemo_udt.c").

FileType Either "source" or "header". Designates whether
generated file is a .c or .cpp file or an .h file.

FileTag Given file names file.c or .cpp and file.h; the file
tags are "file_c" and "file_h", respectively.

ModelName Name of generating model.
ModelVersion Version number of model.
RTWFileVersion Version number of model.rtw file.
RTWFileGeneratedOn Timestamp of model.rtw file.
TLCVersion Version of Target Language Compiler.
SourceGeneratedOn Timestamp of generated file.
CodeGenSettings Code generation settings for model: target language,

target selection, production hardware selection, test
hardware selection, code generation objectives (in priority
order), and Code Generation Advisor validation result.

Function Banner

This section contains comments and tokens for use in generating a custom function
banner. The function banner precedes C or C++ function generated during the build

36-87

36 Code Appearance in Embedded Coder

process. If you omit the function banner section from the CGT file, the default function
banner emits to the generated code. The following section is the default function banner
section provided with the default CGT file, matlabroot/toolbox/rtw/targets/ecoder/
ert_code_template.cgt.
%%%

%% Custom function banner section (optional)

%% Customize function banners by using the following predefined tokens:

%% %<ModelName>, %<FunctionName>, %<FunctionDescription>, %<Arguments>,

%% %<ReturnType>, %<GeneratedFor>, %<BlockDescription>.

%%

<FunctionBanner style="classic">

%<FunctionDescription>

%<BlockDescription>

</FunctionBanner>

Summary of Tokens for Function Banner Generation

FunctionName Name of function
Arguments List of function arguments
ReturnType Return type of function
ModelName Name of generating model
FunctionDescription Short abstract about the function
GeneratedFor Full block path for the generated function
BlockDescription User input from the Block Description parameter of the

block properties dialog box. BlockDescription contains
an optional token attribute, style. The only valid value
forstyle is content_only, which is case-sensitive and
enclosed in double quotes. Use the content_only style
when you want to include only the block description
content that you entered in the block parameter dialog.
The syntax for the token attribute style is:

%<BlockDescription style = ”content_only”>

Shared Utility Function Banner

The shared utility function banner section contains comments and tokens for use in
generating a custom shared utility function banner. The shared utility function banner
precedes C or C++ shared utility function generated during the build process. If you omit
the shared utility function banner section from the CGT file, the default shared utility
function banner emits to the generated code. The following section is the default shared

36-88

 Generate Custom File and Function Banners

utility function banner section provided with the default CGT file, matlabroot/toolbox/
rtw/targets/ecoder/ert_code_template.cgt.
%%%

%% Custom shared utility function banner section (optional)

%% Customize banners for functions generated in shared location by using the

%% following predefined tokens: %<FunctionName>, %<FunctionDescription>,

%% %<Arguments>, %<ReturnType>.

%%

<SharedUtilityBanner style="classic">

%<FunctionDescription>

</SharedUtilityBanner>

Summary of Tokens for Shared Utility Function Banner Generation

FunctionName Name of function
Arguments List of function arguments
ReturnType Return type of function
FunctionDescription Short abstract about function

File Trailer

The file trailer section contains comments for generating a custom file trailer. The file
trailer follows C or C++ code generated from the model. If you omit the file trailer section
from the CGT file, no file trailer emits to the generated code. The following section is the
default file trailer provided in the default CGT file.
%%%

%% Custom file trailer section (optional)

%%

<FileTrailer style="classic">

File trailer for generated code.

[EOF]

</FileTrailer>

Tokens available for the file banner are available for the file trailer. See Summary of
Tokens for File Banner Generation.

36-89

36 Code Appearance in Embedded Coder

Template Symbols and Rules

In this section...

“Introduction” on page 36-90
“Template Symbol Groups” on page 36-90
“Template Symbols” on page 36-93
“Rules for Modifying or Creating a Template” on page 36-96

Introduction

“Template Symbol Groups” on page 36-90 and “Template Symbols” on page 36-93
describe custom file processing (CFP) template symbols and rules for using them. The
location of a symbol in one of the supplied template files (code_c_template.cgt,
code_h_template.cgt, data_c_template.cgt, or data_h_template.cgt)
determines where the items associated with that symbol are located in the corresponding
generated file. “Template Symbol Groups” on page 36-90 identifies the symbol
groups, starting with the parent (“Base”) group, followed by the children of each parent.
“Template Symbols” on page 36-93 lists the symbols alphabetically.

Note: If you are using custom CGT sections, for files generated to the _sharedutils
folder, you can only use symbol names in the Base symbol group.

Template Symbol Groups

Symbol Group Symbol Names in This Group

Base (Parents) Declarations

Defines

Definitions

Documentation

Enums

Functions

36-90

 Template Symbols and Rules

Symbol Group Symbol Names in This Group

Includes

Types

Declarations ExternalCalibrationLookup1D

ExternalCalibrationLookup2D

ExternalCalibrationScalar

ExternalVariableScalar

Defines LocalDefines

LocalMacros

Definitions FilescopeCalibrationLookup1D

FilescopeCalibrationLookup2D

FilescopeCalibrationScalar

FilescopeVariableScalar

GlobalCalibrationLookup1D

GlobalCalibrationLookup2D

GlobalCalibrationScalar

GlobalVariableScalar

36-91

36 Code Appearance in Embedded Coder

Symbol Group Symbol Names in This Group

Documentation Abstract

Banner

Created

Creator

Date

Description

FileName

History

LastModifiedDate

LastModifiedBy

ModelName

ModelVersion

ModifiedBy

ModifiedComment

ModifiedHistory

 Notes

ToolVersion

Functions CFunctionCode

Types This parent has no children.

36-92

 Template Symbols and Rules

Template Symbols

Symbol Name* Symbol Group Symbol
Scope

Symbol Description (What the
symbol puts in the generated file)

Abstract Documentation N/A User-supplied description of
the model or file. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Banner Documentation N/A Comments located near top of
the file. Contains information
that includes model and
software versions, and date file
was generated.

CFunctionCode Functions File C/C++ functions. Must be at the
bottom of the template.

Created Documentation N/A Date when model was created.
From Created on field on
Model Properties dialog box.

Creator Documentation N/A User who created model. From
Created by field on Model
Properties dialog box.

Date Documentation N/A Date file was generated. Taken
from computer clock.

Declarations Base Data declaration of a signal
or parameter. For example,
extern real_T globalvar;.

Defines Base File Required #defines of .h files.
Definitions Base File Data definitions of signals or

parameters.
Description Documentation N/A Description of model. From

Model description field on
Model Properties dialog box.**

36-93

36 Code Appearance in Embedded Coder

Symbol Name* Symbol Group Symbol
Scope

Symbol Description (What the
symbol puts in the generated file)

Documentation Base N/A Comments about how to
interpret the generated files.

Enums Base File Enumerated data type
definitions.

ExternalCalibrationLookup1D Declarations External ***
ExternalCalibrationLookup2D Declarations External ***
ExternalCalibrationScalar Declarations External ***
ExternalVariableScalar Declarations External ***
FileName Documentation N/A Name of the generated file.
FilescopeCalibrationLookup1DDefinitions File ***
FilescopeCalibrationLookup2DDefinitions File ***
FilescopeCalibrationScalar Definitions File ***
FilescopeVariableScalar Definitions File ***
Functions Base File Generated function code.
GlobalCalibrationLookup1D Definitions Global ***
GlobalCalibrationLookup2D Definitions Global ***
GlobalCalibrationScalar Definitions Global ***
GlobalVariableScalar Definitions Global ***
History Documentation N/A User-supplied revision history

of the generated files. Placed
in the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

Includes Base File #include preprocessor
directives.

LastModifiedDate Documentation N/A Date when model was last
saved. From Last saved on
field on Model Properties dialog
box.

36-94

 Template Symbols and Rules

Symbol Name* Symbol Group Symbol
Scope

Symbol Description (What the
symbol puts in the generated file)

LastModifiedBy Documentation N/A User who last saved model.
From Last saved by field on
Model Properties dialog box.

LocalDefines Defines File #define preprocessor directives
from code-generation data
objects.

LocalMacros Defines File C/C++ macros local to the file.
ModelName Documentation N/A Name of the model.
ModelVersion Documentation N/A Version number of the Simulink

model. From Model version
field on Model Properties dialog
box.

ModifiedBy Documentation N/A Name of user who last modified
the model.

ModifiedComment Documentation N/A Comment user enters in the
Modified Comment field on
the Log Change dialog box.
For more information, see “Log
Comments History” (Simulink).

ModifiedHistory Documentation N/A Text from Model history field
on Model Properties dialog
box.**

Notes Documentation N/A User-supplied miscellaneous
notes about the model or
generated files. Placed in
the generated file based on
the Stateflow note, Simulink
annotation, or DocBlock on the
model.**

ToolVersion Documentation N/A A list of the versions of the
toolboxes used in generating the
code.

Types Base Data types of generated code.

36-95

36 Code Appearance in Embedded Coder

* Symbol names must be enclosed between %< >. For example, %<Functions>.

** This symbol can be used to add a comment to the generated files. See “Add Global
Comments” on page 36-8. The code generator places the comment in each generated file
whose template has this symbol name. The code generator places the comment at the
location that corresponds to where the symbol name is located in the template file.

*** The description can be deduced from the symbol name. For example,
GlobalCalibrationScalar is a symbol that identifies a scalar. It contains data of
global scope that you can calibrate .

Rules for Modifying or Creating a Template

The following are the rules for creating a MPF template. “Comparison of a Template and
Its Generated File” on page 36-75 illustrates several of these rules.

1 Place a symbol on a template within the %< > delimiter. For example, the symbol
named Includes should look like this on a template: %<Includes>. Note that
symbol names are case sensitive.

2 Place a symbol on a template where desired. Its location on the template determines
where the item associated with this symbol is located in the generated file. If no item
is associated with it, the symbol is ignored.

3 Place a C/C++ statement outside of the %< > delimiter, and on a different line than
a %< > delimiter, for that statement to appear in the generated file. For example,
#pragma message ("my text") in the template results in #pragma message
("my text") at the corresponding location in the generated file. Note that the
statement must be compatible with your C/C++ compiler.

4 Use the .cgt extension for every template filename. ("cgt" stands for code
generation template.)

5 Note that %% $Revision: 1.1.4.10.4.1 $ appears at the top of the MathWorks
supplied templates. This is for internal MathWorks use only. It does not need to be
placed on a user-defined template and does not show in a generated file.

6 Place a comment on the template between /* */ as in standard ANSI C6. This
results in /*comment*/ on the generated file.

7 Each MPF template must have all of the Base group symbols, in predefined order.
They are listed in “Template Symbol Groups” on page 36-90. Each symbol in the
Base group is a parent. For example, Declarations is a parent symbol.

6. ANSI is a registered trademark of the American National Standards Institute, Inc.

36-96

 Template Symbols and Rules

8 Each symbol in a non-Base group is a child. For example, LocalMacros is a child.
9 Except for Documentation children, children must be placed after their parent,

before the next parent, and before the Functions symbol.
10 Documentation children can be located before or after their parent in any order

anywhere in the template.
11 If a non-Documentation child is missing from the template, the code generator places

the information associated with this child at its parent location in the generated file.
12 If a Documentation child is missing from the template, the code generator omits the

information associated with that child from the generated file.

36-97

36 Code Appearance in Embedded Coder

Annotate Code for Justifying Polyspace Checks
With the Polyspace Code Prover product you can apply Polyspace verification to
Embedded Coder generated code. The software detects run-time errors in the generated
code and helps you to locate and fix model faults.

Polyspace might highlight overflows for certain operations that are legitimate because of
the way the code generator implements these operations. Consider the following model
and the corresponding generated code.

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 + sat_add_U.In2;

37 if ((sat_add_U.In1 < 0) && ((sat_add_U.In2 < 0) && (qY_0 >= 0))) {

38 qY_0 = MIN_int32_T;

39 } else {

40 if ((sat_add_U.In1 > 0) && ((sat_add_U.In2 > 0) && (qY_0 <= 0))) {

41 qY_0 = MAX_int32_T;

42 }

43 }

The code generator recognizes that the largest built-in data type is 32-bit. It is not
possible to saturate the results of the additions and subtractions using MIN_INT32 and
MAX_INT32 and a bigger single-word integer data type. Instead the software detects the
results overflow and the direction of the overflow, and saturates the result.

If you do not provide justification for the addition operator on line 36, Polyspace
verification generates an orange check that indicates a potential overflow. The
verification does not take into account the saturation function of lines 37 to 43. In
addition, the trace-back functionality of Polyspace Code Prover does not identify the
reason for the orange check.

To justify overflows from operators that are legitimate, on the Configuration
Parameters > Code Generation > Comments pane:

36-98

 Annotate Code for Justifying Polyspace Checks

• Under Overall control, select the Include comments check box.
• Under Auto generate comments, select the Operator annotations check box.

The code generator annotates generated code with comments for Polyspace. For example:

32 /* Sum: '<Root>/Sum' incorporates:

33 * Inport: '<Root>/In1'

34 * Inport: '<Root>/In2'

35 */

36 qY_0 = sat_add_U.In1 +/*MW:OvOk*/ sat_add_U.In2;

When you run a verification using Polyspace Code Prover, the Polyspace software uses
the annotations to justify the operator-related orange checks and assigns the Not a
defect classification to the checks.

36-99

36 Code Appearance in Embedded Coder

Manage Placement of Data Definitions and Declarations

In this section...

“Overview of Data Placement” on page 36-100
“Priority and Usage” on page 36-101
“Ownership Settings” on page 36-106
“Memory Section Settings” on page 36-107
“Data Placement Rules” on page 36-107
“Settings for a Data Object” on page 36-107
“Data Placement Rules and Results” on page 36-115
“Specify Default #include Syntax for Data Header Files” on page 36-125

Overview of Data Placement

This chapter focuses on module packaging features (MPF) settings that are
interdependent. Their combined values, along with Simulink partitioning, determine the
file placement of data definitions and declarations, or data placement. This includes

• The number of files generated.
• Whether or not the generated files contain definitions for a model's global identifiers.

And, if a definition exists, the settings determine the files in which MPF places them.
• Where MPF places global data declarations (extern).

The following six MPF settings are distributed among the main procedures and form an
important interdependency:

• The Data definition field on the Code Placement pane of the Configuration
Parameters dialog box.

• The Data declaration field on the Code Placement pane of the Configuration
Parameters dialog box.

• The Owner field of the data object in the Model Explorer and the checkbox for Use
owner from data object for data definition placement on the Code Placement
pane of the Configuration Parameters dialog box. The term "ownership settings"
refers to these fields together.

• The Definition file field of the data object on the Model Explorer.
• The Header file field of the data object on the Model Explorer.

36-100

 Manage Placement of Data Definitions and Declarations

• The Memory section field of the data object on the Model Explorer.

Priority and Usage

• “Overview” on page 36-101
• “Read-Write Priority” on page 36-102
• “Global Priority” on page 36-105
• “Definition File, Header File, and Ownership Priorities” on page 36-106

Overview

There is a priority order among interdependent MPF settings. From highest to lowest,
the priorities are

• Definition File priority
• Header File priority
• Ownership priority
• Read-Write priority or Global priority

Priority order varies inversely with frequency of use, as illustrated below. For example,
Definition File is highest priority but least used.

Override Global or Read-Write
for selected data object.

Highest priority

Lowest priority

Least used

Most used

Definition File

Header File

Ownership

Read-Write Global

MPF Settings Priority and Usage

36-101

36 Code Appearance in Embedded Coder

Unless they are overridden, the Read-Write and Global priorities place in the generated
files all of the model's MPF-derived data objects that you selected using Data Object
Wizard. (See “Create Data Objects for Code Generation with Data Object Wizard”
on page 24-2 for details.) Before generating the files, you can use the higher priority
Definition file, Header file, and Ownership, as desired, to override Read-Write or Global
priorities for single data objects. Most users will employ Read-Write or Global, without
an override. A few users, however, will want to do an override for certain data objects.
We expect that those users whose applications include multiple modules will want to use
the Ownership priority.

The priorities are used only for those data objects that are derived from
Simulink.Signal and Simulink.Parameter, and whose custom storage classes are
specified using the Custom Storage Class Designer. (For details, see “Design Custom
Storage Classes and Memory Sections” on page 23-34.) Otherwise, the build process
determines the data placement.

Read-Write Priority

This is the lowest priority. Consider that a model consists of one or more Simulink
blocks or Stateflow diagrams. There can be subsystems within these. For the purpose of
illustration, think of a model with one top-level block called fuelsys. You double-clicked
the block and now see three subsystems labeled subsys1, subsys2 and subsys3, as
shown in the next figure. Signals a and b are outputs from the top-level block (fuelsys).
Signal a is an input to subsys1 and b is input to subsys2. Signal c is an output from
subsys1. Notice the other inputs and outputs (d and e). Signals a through e have
corresponding data objects.

As explained in “Data Definition and Declaration Management”, MPF provides you
with the means of selecting a data object that you want defined as an identifier in the
generated code. MPF also allows you to specify property values for each data object.

36-102

 Manage Placement of Data Definitions and Declarations

Model

subsys1

subsys2

subsys3

fuelsys

a

b

c

d

e

a b

The Generated Files

We generate code for this model. As shown in the figure below, this results in a .c
source file corresponding to each of the subsystems. (In actual applications, there could
be more than one .c source file for a subsystem. This is based on the file partitioning
previously selected for the model. But for our illustration, we only need to show one
for each subsystem.) Data objects a through e have corresponding identifiers in the
generated files.

A .c source file has one or more functions in it, depending on the internal operations
(functions) of its corresponding subsystem. An identifier in a generated .c file has local
scope when it is used only in one function of that .c file. An identifier has file scope when
more than one function in the same .c file uses it. An identifier has global scope when
more than one of the generated files uses it.

A subsystem's source file contains the definitions for that subsystem's data objects that
have local scope or file scope. (These definitions are not shown in the figure.) But where
are the definitions and declarations for data objects of global scope? These are shown in
the next figure.

36-103

36 Code Appearance in Embedded Coder

Model

subsys1

subsys2

subsys3

fuelsys

a

b

c

d

e

a b

Generated Files

Results of Read-Write Priority

subsys1.c subsys3.c

subsys2.c fuelsys.c

int c;

extern int a;

int e;

extern int c;

extern int d;

int d;

extern int b;

int a;

int b;

For the Read-Write priority, this source file contains the definitions for the subsystem's
global data objects, if this is the file that first writes to the data object's address. Other
files that read (use) that data object only include a reference to it. This is why this
priority is called Read-Write. Since a read and a write of a file are analogous to input
and output of a model's block, respectively, there is another way of saying this. The
definitions of a block's global data objects are located in the corresponding generated file,
if that data object is an output from that block. The declarations (extern) of a block's
global data objects are located in the corresponding generated file, if that data object is
an input to that block.

Settings for Read-Write Priority

The generated files and what they include, as just described, occur when the Read-Write
priority is used. For this to be the case, the other priorities are turned off. That is,

• The Data definition field on the Code Placement pane is set to Data defined in
source file.

• The Data declaration field on the Code Placement pane is set to Data declared
in source file.

36-104

 Manage Placement of Data Definitions and Declarations

• The Owner field on the Model Explorer is blank, and the checkbox for the Use
owner from data object for data definition placement field on the Code
Placement pane is not checked.

• Definition file and Header file on the Model Explorer are blank.

Global Priority

This has the same priority as Read-Write (the lowest) priority. The settings for this are
the same as for Read-Write Priority, except

• The Data definition field on the Code Placement pane is set to Data defined in
single separate source file.

• The Data declaration field on the Code Placement pane is set to Data declared
in single separate header file.

The generated files that result are shown in the next figure. A subsystem's data objects
of local or file scope are defined in the .c source file where the subsystem's functions are
located (not shown). The data objects of global scope are defined in another .c file (called
global.c in the figure). The declarations for the subsystem's data objects of global scope
are placed in a .h file (called global.h).

For example, data objects of local and file scope for subsys1 are defined in subsys1.c.
Signal c in the model is an output of subsys1 and an input to subsys2. So c is used by
more than one subsystem and thus is a global data object. Because of the global priority,
the definition for c (int c;) is in global.c. The declaration for c (extern int c;) is
in global.h. Since subsys2 uses (reads) c, #include "global.h" is in subsys2.c.

36-105

36 Code Appearance in Embedded Coder

Model

subsys1

subsys2

subsys3

fuelsys

a

b

c

d

e

a b

Generated Files

Results of Global Priority

subsys1.c subsys3.c

subsys2.c fuelsys.c

#include 'global.h'

int a;

int b;

int c;.

int d;

int e;

global.c global.h

extern int a;

extern int b;

extern int c;

extern int d;

extern int e;

#include 'global.h'

#include 'global.h' #include 'global.h'

Definition File, Header File, and Ownership Priorities

While the Read-Write and Global priorities operate on all MPF-derived data objects that
you want defined in the generated code, the remaining priorities allow you to override
the Read-Write or Global priorities for one or more particular data objects. There is a
high-to-low priority among these remaining priorities — Definition File, Header File, and
Ownership — for a particular data object, as shown in MPF Settings Priority and Usage

Ownership Settings

Ownership settings refers to the on or off setting specified using the Use owner from
data object for data definition placement checkbox on the Code Placement pane
of the Configuration Parameters dialog box, and the Owner field of a data object in
the Model Explorer. These settings control the file placement of data definition and

36-106

 Manage Placement of Data Definitions and Declarations

initialization by specifying a model that owns the data. The settings do not control what
files are generated. There are four possible configurations, as shown in “Ownership
Settings” on page 36-116.

Memory Section Settings

Memory sections allow you to specify storage directives for a data object. As shown in
Parameter and Signal Property Values, the possible values for the Memory section
property of a parameter or signal object are Default, MemConst, MemVolatile or
MemConstVolatile.

If you specify a filename for Definition file, and select Default, MemConst,
MemVolatile or MemConstVolatile for the Memory section property, the code
generation software generates a .c file and an .h file. The .c file contains the definition
for the data object with the pragma statement or qualifier associated with the Memory
section selection. The .h file contains the declaration for the data object. The .h file can
be included, using the preprocessor directive #include, in files that need to reference
the data object.

You can add more memory sections. For more information, see “Design Custom Storage
Classes and Memory Sections” on page 23-34 and “Control Data and Function Placement
in Memory by Inserting Pragmas” on page 27-2.

Data Placement Rules

For a complete set of data placement rules in convenient tabular form, based on the
priorities discussed in this chapter, see “Data Placement Rules and Results” on page
36-115.

Settings for a Data Object

• “Introduction” on page 36-108
• “Read-Write” on page 36-109
• “Ownership” on page 36-111
• “Header File” on page 36-112
• “Definition File” on page 36-114

36-107

36 Code Appearance in Embedded Coder

Introduction

“Settings and Resulting Generated Files” on page 36-116 provides example settings for
one data object of a model. Eight examples are listed so that you can see the generated
files that result from a wide variety of settings. Four examples from this table are
discussed below in more detail. These discussions provide information for understanding
settings you might choose. For illustration purposes, the four examples assume that we
are dealing with an overall system that controls engine idle speed.

The next figure shows that the software component of this example system consists of
two modules, IAC (Idle Air Control), and IO (Input-Output).

Engine Idle Speed Control System

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Depends on MPF Settings

Depends on MPF Settings

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

The code in the IO module controls the system's IO hardware. Code is generated only for
the IAC module. (Some other means produced the code for the IO module, such as hand-
coding.) So the code in IO is external to MPF, and can illustrate legacy code. To simplify
matters, the IO code contains one source file, called IO.c, and one header file, called
IO.h.

36-108

 Manage Placement of Data Definitions and Declarations

The IAC module consists of two Stateflow charts, spd_filt and iac_ctrl. The
spd_filt chart has two signals (meas_spd) and filt_spd), and one parameter (a).
The iac_ctrl chart also has two signals (filt_spd and iac_cmd) and a parameter
(ref_spd). (The parameters are not visible in the top-level charts.) One file for each
chart is generated. This example system allows us to illustrate referencing from file to
file within the MPF module, and model to external module. It also illustrates the case
where there is no such referencing.

Proceed to the discussion of the desired example settings:

• “Read-Write” on page 36-109
• “Ownership” on page 36-111
• “Header File” on page 36-112
• “Definition File” on page 36-114

Read-Write

These settings and the generated files that result are shown as Example Settings 1 in
“Settings and Resulting Generated Files” on page 36-116. As you can see from the
table, this example illustrates the case in which only one .c source file (for each chart) is
generated.

So, for the IAC model, select the following settings. Accept the Data defined in
source file in the Data definition field and the Data declared in source
file in the Data declaration field on the Code Placement pane of the Configuration

36-109

36 Code Appearance in Embedded Coder

Parameters dialog box. Accept the default unchecked Use owner from data object
for data definition placement field. Accept the default blank settings for the Owner,
Definition file and Header file fields on the Model Explorer. For Memory section,
accept Default. Now the Read-Write priority is active. Generate code. The next figure
shows the results in terms of definition and declaration statements.

Engine Idle Speed Control System (Read-Write Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Definitions*/

const real_T a = 0.9;

real_T filt_spd = 0.0;

real_T meas_spd = 0.0;

/* Definitions*/

const real_T ref_spd = 0.0;

real_T iac_cmd = 0.0;

/*Declarations*/

extern real_T filt_spd;

The code generator generated a spd_filt.c for the spd_filt chart and iac_ctrl.c
for the iac_ctrl chart. As you can see, MPF placed definitions of data objects for the
spd_filt chart in spd_filt.c. It placed definitions of data objects for the iac_ctrl
chart in iac_ctrl.c.

However, notice real_T filt_spd. This data object is defined in spd_filt.c and
declared in iac_ctrl.c. That is, since the Read-Write priority is active, filt_spd is
defined in the file that first writes to its address. And, it is declared in the file that reads
(uses) it. Further, real_T meas_spd is defined in both spd_filt.c and the external
IO.c. And, real_T iac_cmd is defined in both iac_ctrl.c and IO.c.

36-110

 Manage Placement of Data Definitions and Declarations

Ownership

See tables “Ownership Settings” on page 36-116 and “Settings and Resulting
Generated Files” on page 36-116. In the “Read-Write” on page 36-109, there are
several instances where the same data object is defined in more than one .c source file,
and there is no declaration (extern) statement. This would result in compiler errors
during link time. But in this example, we configure MPF Ownership rules so that linking
can take place. Notice the Example Settings 2 row in “Settings and Resulting Generated
Files” on page 36-116. Except for the ownership settings, assume these are the settings
you made for the model in the IAC module. Since this example has no Definition file or
Header file specified, now Ownership takes priority. (If you specified a Definition file
or Header file, MPF ignores the ownership settings.)

On the Code Placement pane of the Configuration Parameters dialog box, check the box
for the Use owner from data object for data definition placement field. Open the
Model Explorer (by issuing the MATLAB command daexplr) and, for all data objects
except meas_spd and iac_cmd, type IAC in the Owner field (case sensitive). Then, only
for the meas_spd and iac_cmd data objects, type IO as their Owner (case sensitive).
Generate code.

The results are shown in the next figure. Notice the extern real_T meas_spd
statement in spd_filt.c, and extern real_T iac_cmd in iac_ctrl.c. MPF placed
these declaration statements in the files where these data objects are used. This allows
the generated source files (spd_filt.c and iac_ctrl.c) to be compiled and linked
with IO.c.

36-111

36 Code Appearance in Embedded Coder

Engine Idle Speed Control System (Ownership Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Definitions*/

const real_T a = 0.9;

real_T filt_spd = 0.0;

/*Declarations*/

extern real_T meas_spd;

/* Definitions*/

const real_T ref_spd = 0.0;

/*Declarations*/

extern real_T filt_spd;

extern real_T iac_cmd;

Header File

These settings and the generated files that result are shown as Example Settings 3
in “Settings and Resulting Generated Files” on page 36-116. This example has no
Definition file specified. If you specified a Definition file, MPF ignores the Header
file setting. The focus of this example is to show how the Header file settings result in
the linking of the two chart source files to the external IO files, shown in the next figure.
(Also, ownership settings will be used to link the two chart files with each other.)

As you can see in the figure, the meas_spd and iac_cmd identifiers are defined in IO.c
and declared in IO.h. Both of these identifiers are external to the generated .c files.
You open the Model Explorer and select both the meas_spd and iac_cmd data objects.
For each of these data objects, in the Header file field, specify IO.h, since this is where
these two objects are declared. This setting allows the spd_filt.c source file to compile
and link with the external IO.c file.

36-112

 Manage Placement of Data Definitions and Declarations

Now we configure the ownership settings. In the Model Explorer, select the filt_spd
data object and set its Owner field to IAC. Then, on the Code Placement pane of the
Configuration Parameters dialog box, check the box for the Use owner from data
object for data definition placement field. Now the spd_filt source file links to the
iac_ctrl source file. Generate code. See the figure below.

Engine Idle Speed Control System (Header File Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)
Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Includes*/

#include <IO.h>

/* Definitions*/

const real_T a = 0.9;

real_T filt_spd = 0.0;

/* Includes*/

#include <IO.h>

/* Definitions*/

const real_T ref_spd = 0.0;

/* Declarations*/

extern real_T filt_spd;

Since you specified the IO.h filename for the Header file field for the meas_spd and
iac_ctrl objects, the code generator assumed that their declarations are in IO.h.
So the code generator placed #include IO.h in each source file: spd_filt.c and
iac_ctrl.c. So these two files will link with the external IO files. Also, due to the
ownership settings that were specified, the code generator places the real_T filt_spd
= 0.0; definition in spd_filt.c and declares the filt_spd identifier in iac_ctrl.c
with extern real_T iac_cmd;. Consequently, the two source files will link together.

36-113

36 Code Appearance in Embedded Coder

Definition File

These settings and the generated files that result are shown as Example Settings 4 in
“Settings and Resulting Generated Files” on page 36-116. Notice that a definition
filename is specified. The settings in the table only apply to the data object called a. You
have decided that you do not want this object defined in spd_filt.c, the generated
source file for the spd_filt chart. (There are many possible organizational reasons
one might want an object declared in another file. It is not important for this example to
specify the reason.)

For this example, assume the settings for all data objects are the same as those indicated
in “Header File” on page 36-112, except for the data object a. The description below
identifies only the differences that result from this.

Open the Model Explorer, and select data object a. In the Definition file field specify a
filename. Choose filter_constants.c. Generate code. The results are shown in the
next figure.

36-114

 Manage Placement of Data Definitions and Declarations

Engine Idle Speed Control System (Definition File Example)

IAC (Idle Air Control) Module IO Module

(External to MPF)Generated File for Chart spd_filt

Generated File for Chart iac_ctrl

/* Definitions*/

real_T meas_spd = 0.0;

real_T iac_cmd = 0.0;

/* External Data*/

extern real_T meas_spd;

extern real_T iac_cmd;

IO.c

IO.h

spd_filt.c

iac_ctrl.c

/* Includes*/

#include "IO.h"

#include "filter_constants.h"

/* Definitions*/

real_T filt_spd = 0.0;

/* Includes*/

#include <IO.h>

/* Definitions*/

constr real_T ref_spd = 0.0;

/* Declarations*/

extern real_T filt_spd;

extern real_T iac_cmd;

filter constants.c

global.h

/* Definitions */

const real_T a = 0.9;

/* Declarations */

extern real_T a;

The code generator generates the same files as in the “Header File” on page 36-112,
and adds a new file, filter_constants.c. Data object a now is defined in
filter_constants.c, rather than in the source file spd_filt.c, as it is in the
example. This data object is declared with an extern statement in global.h

Data Placement Rules and Results

• “Ownership Settings” on page 36-116

36-115

36 Code Appearance in Embedded Coder

• “Settings and Resulting Generated Files” on page 36-116
• “Data Placement Rules” on page 36-118

Ownership Settings

Row
Number

Enable Data Ownership
Checkbox

Owner Setting Result*

1 Off** Blank** The code generator determines
whether the current model defines
and initializes data.

2 Off** A name is specified. The code generator determines
whether the current model defines
and initializes data.

3 On Blank** The code generator determines
whether the current model defines
and initializes data.

4 On A name is specified. The model specified in the Owner
setting defines and initializes data.

* See also “Ownership Settings” on page 36-106.** Default.

Settings and Resulting Generated Files

 Data Defined
In...

Data
Declared In...

Owner-
ship*

Defined
File**

Header
File

Generated Files

Example
Settings 1
(Rd-Write
Example)

Source file Source file Blank Blank Blank .c/.cpp source file

Example
Settings 2
(Owner- ship
Example)

Source file Source file Name of
module
specified

Blank Blank .c/.cpp source file

Example
Settings 3
(Header File
Example)

Source file Source file Blank Blank Desired
include
filename
specified.

.c/.cpp source file

.h definition file

36-116

 Manage Placement of Data Definitions and Declarations

 Data Defined
In...

Data
Declared In...

Owner-
ship*

Defined
File**

Header
File

Generated Files

Example
Settings 4
(Def. File
Example)

Source file Source file Blank Desired
definition
filename
specified.

Desired
include
filename
specified.

.c/.cpp source file

.c/.cpp definition
file* .h definition
file*

Example
Settings 5

Single
separate
source file

Source file Blank Blank Blank .c/.cpp source file
global .c/.cpp

Example
Settings 6

Single
separate
source file

Single
separate
header file

Blank Blank Blank .c/.cpp source file
global .c/.cpp

global.h

Example
Settings 7

Single
separate
source file

Single
separate
header file

Name of
module
specified

Blank Blank .c/.cpp source file
global.c/.cppglobal.h

Example
Settings 8

Single
separate
source file

Single
separate
header file

Blank Blank Desired
include
filename
specified.

.c/.cpp source file
global.c/.cppglobal.h

.h definition file

* "Blank" in ownership setting means that the check box for the Use owner from data
object for data definition placement field on the Code Placement pane is Off and
the Owner field on the Model Explorer is blank. "Name of module specified" can be a
variety of ownership settings as defined in “Ownership Settings” on page 36-116.

** The code generator generates a definition .c/.cpp file for every data object for
which you specified a definition filename (unless you selected #DEFINE for the Memory
section field). For example, if you specify the same definition filename for all data
objects, only one definition .c/.cpp file is generated. The code generator places
declarations in model.h by default, unless you specify Data declared in single
separate header file for the Data declaration option on the Code Generation
> Code Placement pane of the Configuration Parameter dialog box. If you select
that data placement option, the code generator places declarations in global.h. If
you specify a definition filename for each data object, the code generator generates one
definition .c/.cpp file for each data object and places declarations in model.h by
default, unless you specify Data declared in single separate header file for
Data declaration. If you select that data placement option, the code generator places
declarations in global.h.

36-117

36 Code Appearance in Embedded Coder

Note: If you generate C++ rather than C code, the .c files listed in the following table
will be .cpp files.

Data Placement Rules

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

mpt or Simulink Noncustom Storage Classes:
auto N/A N/A N/A N/A N/A Note 12 model.h Note 1
Exported-

Global

N/A N/A N/A N/A N/A model.c model.h Note 1

Imported-

Extern,

Imported-

Extern-

Pointer

N/A N/A N/A N/A N/A None.
External

model_private.hNote 2

Simulink-

Global

N/A N/A N/A N/A N/A Note 13 model.h Note 1

mpt or Simulink Custom Storage Class: Imported Data:
Imported-

FromFile

D/C D/C D/C N/A null None model_private.hNote 3

Imported-

FromFile

D/C D/C D/C N/A hdr.h None model_private.hNote 4

Simulink Custom Storage Class: #define Data:
Define D/C D/C N/A N/A N/A N/A #define,

model.h

Note 5

mpt Custom Storage Class: #define Data:
Define D/C D/C N/A N/A null N/A #define,

model.h

Note 5

36-118

 Manage Placement of Data Definitions and Declarations

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Define D/C D/C N/A N/A hdr.h N/A #define,
model.h

Note 6

mpt or Simulink Custom Storage Class: GetSet:
GetSet D/C D/C N/A N/A hdr.h N/A External

hdr.h

Note 4

mpt or Simulink Custom Storage Class: Bitfield, Struct:
Bitfield,
Struct

D/C D/C N/A N/A N/A model.c model.h Note 7

mpt or Simulink Custom Storage Class: Global, Const, ConstVolatile, Volatile:
Global,
Const, Const-
Volatile,
Volatile

auto auto null null or
locally
owned

null model.c model.h Note 1

Global,
Const, Const-
Volatile,
Volatile

src auto null null or
locally
owned

null src.c model.h Note 1

Global,
Const, Const-
Volatile,
Volatile

sep auto null null or
locally
owned

null gbl.c model.h Note 1

Global,

Const, Const-

Volatile,

Volatile

auto src null null or
locally
owned

null model.c src.c Note 8

Global,
Const, Const-
Volatile,
Volatile

src src null null or
locally
owned

null src.c src.c Note 8

36-119

36 Code Appearance in Embedded Coder

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Global,
Const, Const-
Volatile,
Volatile

sep src null null or
locally
owned

null gbl.c src.c Note 8

Global,
Const, Const-
Volatile,
Volatile

auto sep null null or
locally
owned

null model.c gbl.h Note 9

Global,
Const, Const-
Volatile,
Volatile

src sep null null or
locally
owned

null src.c gbl.h Note 9

Global,
Const, Const-
Volatile,
Volatile

sep sep null null or
locally
owned

null gbl.c gbl.h Note 9

Global,
Const, Const-
Volatile,
Volatile

D/C D/C data.c D/C null data.c See Note
10.

Note 10

Global,
Const, Const-
Volatile,
Volatile

D/C D/C data.c D/C hdr.h data.c hdr.h Note 11

Global,
Const, Const-
Volatile,
Volatile

auto D/C null null hdr.h model.c hdr.h Note 11

36-120

 Manage Placement of Data Definitions and Declarations

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Global,
Const, Const-
Volatile,
Volatile

src D/C null null hdr.h src.c hdr.h Note 11

Global,
Const, Const-
Volatile,
Volatile

sep D/C null null hdr.h gbl.c hdr.h Note 11

Global,
Const, Const-
Volatile,
Volatile

D/C auto null External
owner

null External
user-
supplied
file

model.h Note 1

Global,
Const, Const-
Volatile,
Volatile

D/C src null External
owner

null External
user-
supplied
file

src.c Note 8

Global,
Const, Const-
Volatile,
Volatile

D/C sep null External
owner

null External
user-
supplied
file

gbl.h Note 9

Global,
Const, Const-
Volatile,
Volatile

D/C D/C null External
owner

header.h External
user-
supplied
file

hdr.h Note 11

Global,
Const, Const-
Volatile,
Volatile

D/C D/C null External
owner

header.h External
user-
supplied
file

hdr.h Note 11

mpt Custom Storage Class: Exported Data:
ExportTo-File auto auto null null null model.c model.h Note 1

36-121

36 Code Appearance in Embedded Coder

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

ExportTo-File src auto null null null src.c model.h Note 1
ExportTo-File sep auto null null null gbl.c model.h Note 1
ExportTo-File auto src null null null model.c src.c Note 8
ExportTo-File src src null null null src.c src.c Note 8
ExportTo-File sep src null null null gbl.c src.c Note 8
ExportTo-File auto sep null null null model.c gbl.h Note 9
ExportTo-File src sep null null null src.c gbl.h Note 9
ExportTo-File sep sep null null null gbl.c gbl.h Note 9
ExportTo-File D/C D/C data.cnull null data.c See Note

10.
Note 10

ExportTo-File D/C D/C data.cnull hdr.h model.c hdr.h Note 11
ExportTo-File auto D/C null null hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C null null hdr.h gbl.c hdr.h Note 11
Simulink Custom Storage Class: Default, Const, ConstVolatile, Volatile:
Default,
Const, Const-
Volatile,
Volatile

auto auto N/A N/A N/A model.c model.h Note 1

Default,
Const, Const-
Volatile,
Volatile

src auto N/A N/A N/A src.c model.h Note 1

Default,
Const, Const-
Volatile,
Volatile

sep auto N/A N/A N/A gbl.c model.h Note 1

36-122

 Manage Placement of Data Definitions and Declarations

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

Default,
Const, Const-
Volatile,
Volatile

auto src N/A N/A N/A model.c src.c Note 8

Default,
Const, Const-
Volatile,
Volatile

src src N/A N/A N/A src.c src.c Note 8

Default,
Const, Const-
Volatile,
Volatile

sep src N/A N/A N/A gbl.c src.c Note 8

Default,
Const, Const-
Volatile,
Volatile

auto sep N/A N/A N/A model.c gbl.h Note 9

Default,
Const, Const-
Volatile,
Volatile

src sep N/A N/A N/A src.c gbl.h Note 9

Default,
Const, Const-
Volatile,
Volatile

sep sep N/A N/A N/A gbl.c gbl.h Note 9

Simulink Custom Storage Class: Exported Data:
ExportTo-File auto auto N/A N/A null model.c model.h Note 1
ExportTo-File src auto N/A N/A null src.c model.h Note 1
ExportTo-File sep auto N/A N/A null gbl.c model.h Note 1
ExportTo-File auto src N/A N/A null model.c src.c Note 8

36-123

36 Code Appearance in Embedded Coder

 Global Settings: Override Settings for Specific
Data Object:

Results in Generated Files:

Storage Class
Setting

Data
Def.

Data
Dec.

Def.
File

Owner Header
File

Where
Data Def.
Is

Where
Data Dec.
Is

Dec.
Inclusion

ExportTo-File src src N/A N/A null src.c src.c Note 8
ExportTo-File sep src N/A N/A null gbl.c src.c Note 8
ExportTo-File auto sep N/A N/A null model.c gbl.h Note 9
ExportTo-File src sep N/A N/A null src.c gbl.h Note 9
ExportTo-File sep sep N/A N/A null gbl.c gbl.h Note 9
ExportTo-File auto D/C N/A N/A hdr.h model.c hdr.h Note 11
ExportTo-File src D/C N/A N/A hdr.h src.c hdr.h Note 11
ExportTo-File sep D/C N/A N/A hdr.h gbl.c hdr.h Note 11

Notes

In the previous table:

• A Declaration Inclusion Approach is a file in which the header file that contains the
data declarations is included.

• D/C stands for don't care.
• Dec stands for declaration.
• Def stands for definition.
• gbl stands for global.
• hdr stands for header.
• N/A stands for not applicable.
• null stands for field is blank.
• sep stands for separate.

Note 1: model.h is included directly in all source files.

Note 2: model_private.h is included directly in all source files.

Note 3: extern is included in model_private.h, which is in source.c.

36-124

 Manage Placement of Data Definitions and Declarations

Note 4: header.h is included in model_private.h, which is in source.c.

Note 5: model.h is included directly in all source files that use #define.

Note 6: header.h is included in model.h, which is in source files that use #define.

Note 7: model.h is included in all source.c files.

Note 8: extern is inlined in source files where data is used.

Note 9: global.h is included in model.h, which is in all source files.

Note 10: When you specify a definition filename for a data object, a header file is not
generated for that data object. The code generator declares the data object according to
the data placement priorities.

Note 11: header.h is included in model.h, which is in all source files.

Note 12: Signal: Either not defined because it is expression folded, or local data, or
defined in a structure in model.c, all depending on model's code generation settings.
Parameter: Either inlined in the code, or defined in model_data.c.

Note 13: Signal: In a structure that is defined in model.c. Parameter: In a structure
that is defined in model_data.c.

Specify Default #include Syntax for Data Header Files

To control the file placement of a data item such as a signal line or block state in the
generated code, you can apply a custom storage class to the data item (see “Introduction
to Custom Storage Classes” on page 23-2). You then use the HeaderFile custom
attribute to specify the generated or custom header file that contains the declaration of
the data.

To reduce maintenance effort and data entry, when you specify HeaderFile, you can
omit delimiters (" or <>) and use only the file name. You can then control the default
delimiters that the generated code uses for the corresponding #include directives. To
use angle brackets by default, set Configuration Parameters > Code Generation >
Code Placement > #include file delimiters to #include <header.h>.

Related Examples
• “Introduction to Custom Storage Classes” on page 23-2

36-125

36 Code Appearance in Embedded Coder

• “Block Parameter Representation in the Generated Code” on page 19-47
• “Signal Representation in Generated Code” on page 19-112

36-126

 Enhance Readability of Code for Flow Charts

Enhance Readability of Code for Flow Charts

In this section...

“Appearance of Generated Code for Flow Charts” on page 36-127
“Convert If-Elseif-Else Code to Switch-Case Statements” on page 36-130
“Example of Converting Code to Switch-Case Statements” on page 36-132

Appearance of Generated Code for Flow Charts

If you have an Embedded Coder license and you generate code for models that include
Stateflow objects, the code from a flow chart resembles the samples that follow.

The following characteristics apply:

• By default, the generated code uses if-elseif-else statements to represent
switch patterns. To convert the code to use switch-case statements, see “Convert
If-Elseif-Else Code to Switch-Case Statements” on page 36-130.

• By default, variables that appear in the flow chart do not retain their names in the
generated code. Modified identifiers make sure that no naming conflicts occur.

• Traceability comments for the transitions appear between each set of /* and */
markers. To learn more about traceability, see “Trace Stateflow Objects in Generated
Code” on page 61-10.

36-127

36 Code Appearance in Embedded Coder

if (modelname_U.In1 == 1.0) {

 /* Transition: '<S1>:11' */

 /* Transition: '<S1>:12' */

 modelname_Y.Out1 = 10.0;

 /* Transition: '<S1>:15' */

 /* Transition: '<S1>:16' */

} else {

 /* Transition: '<S1>:10' */

 if (modelname_U.In1 == 2.0) {

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:14' */

 modelname_Y.Out1 = 20.0;

 /* Transition: '<S1>:16' */

 } else {

 /* Transition: '<S1>:17' */

 modelname_Y.Out1 = 30.0;

 }

}

Sample Code for a Decision Logic Pattern

36-128

 Enhance Readability of Code for Flow Charts

for (sf_i = 0; sf_i < 10; sf_i++) {

 /* Transition: '<S1>:40' */

 /* Transition: '<S1>:41' */

 modelname_B.y = modelname_B.y +

 modelname_U.In1;

 /* Transition: '<S1>:39' */

}

Sample Code for an Iterative Loop Pattern

36-129

36 Code Appearance in Embedded Coder

if (modelname_U.In1 == 1.0) {

 /* Transition: '<S1>:149' */

 /* Transition: '<S1>:150' */

 modelname_Y.Out1 = 1.0;

 /* Transition: '<S1>:151' */

 /* Transition: '<S1>:152' */

 /* Transition: '<S1>:158' */

 /* Transition: '<S1>:159' */

} else {

 /* Transition: '<S1>:156' */

 if (modelname_U.In1 == 2.0) {

 /* Transition: '<S1>:153' */

 /* Transition: '<S1>:154' */

 modelname_Y.Out1 = 2.0;

 /* Transition: '<S1>:155' */

 /* Transition: '<S1>:158' */

 /* Transition: '<S1>:159' */

 } else {

 /* Transition: '<S1>:161' */

 modelname_Y.Out1 = 3.0;

 }

}

Sample Code for a Switch Pattern

Convert If-Elseif-Else Code to Switch-Case Statements

When you generate code for embedded real-time targets, you can choose to convert
if-elseif-else code to switch-case statements. This conversion can enhance
readability of the code. For example, when a flow chart contains a long list of conditions,
the switch-case structure:

• Reduces the use of parentheses and braces
• Minimizes repetition in the generated code

How to Convert If-Elseif-Else Code to Switch-Case Statements

The following procedure describes how to convert generated code for the flow chart from
if-elseif-else to switch-case statements.

36-130

 Enhance Readability of Code for Flow Charts

Step Task Reference

1 Verify that your flow chart follows the
rules for conversion.

“Verify the Contents of the Flow Chart”
on page 36-134

2 Enable the conversion. “Enable the Conversion” on page
36-135

3 Generate code for your model. “Generate Code for Your Model” on
page 36-136

4 Troubleshoot the generated code.

• If you see switch-case
statements for your flow chart, you
can stop.

• If you see if-elseif-else
statements for your flow chart,
update the chart and repeat the
previous step.

“Troubleshoot the Generated Code” on
page 36-136

Rules of Conversion

For the conversion to occur, the following rules must hold. LHS and RHS refer to the left-
hand side and right-hand side of a condition, respectively.

Construct Rules to Follow

Flow chart Must have two or more unique conditions, in addition to a default.

For more information, see “How the Conversion Handles Duplicate
Conditions” on page 36-132.
Must test equality only.Each

condition Must use the same variable or expression for the LHS.

Note: You can reverse the LHS and RHS.
Must be a single variable or expression.
Cannot be a constant.
Must have an integer or enumerated data type.

Each LHS

Cannot have any side effects on simulation.

36-131

36 Code Appearance in Embedded Coder

Construct Rules to Follow

For example, the LHS can read from but not write to global variables.
Must be a constant.Each RHS
Must have an integer or enumerated data type.

How the Conversion Handles Duplicate Conditions

If a flow chart has duplicate conditions, the conversion preserves only the first condition.
The code discards the other instances of duplicate conditions.

After removal of duplicates, two or more unique conditions must exist. If not, the
conversion does not occur and the code contains all duplicate conditions.

Example of Generated Code Code After Conversion

if (x == 1) {

 block1

} else if (x == 2) {

 block2

} else if (x == 1) { // duplicate

 block3

} else if (x == 3) {

 block4

} else if (x == 1) { // duplicate

 block5

} else {

 block6

}

switch (x) {

 case 1:

 block1; break;

 case 2:

 block2; break;

 case 3:

 block4; break;

 default:

 block6; break;

}

if (x == 1) {

 block1

} else if (x == 1) { // duplicate

 block2

} else {

 block3

}

No change, because only one
unique condition exists

Example of Converting Code to Switch-Case Statements

Suppose that you have the following model with a single chart.

36-132

 Enhance Readability of Code for Flow Charts

The chart contains a flow chart and four MATLAB functions:

The MATLAB functions in the chart contain the code in the following table. In each case,
the Function Inline Option is Auto. For more information about function inlining, see
“Specify Graphical Function Properties” (Stateflow).

MATLAB Function Code

stop function stop

%#codegen

coder.extrinsic('disp');

disp('Not moving.')

36-133

36 Code Appearance in Embedded Coder

MATLAB Function Code

traffic_speed = 0;

slowdown function slowdown

%#codegen

coder.extrinsic('disp')

disp('Slowing down.')

traffic_speed = 1;

accelerate function accelerate

%#codegen

coder.extrinsic('disp');

disp('Moving along.')

traffic_speed = 2;

light function color = light(x)

%#codegen

if (x < 20)

 color = TrafficLights.GREEN;

elseif (x >= 20 && x < 25)

 color = TrafficLights.YELLOW;

else

 color = TrafficLights.RED;

end

The output color of the function light uses the enumerated type TrafficLights. The
enumerated type definition in TrafficLights.m is:

classdef TrafficLights < Simulink.IntEnumType

 enumeration

 RED(0)

 YELLOW(5)

 GREEN(10)

 end

end

For more information, see “Define Enumerated Data in a Chart” (Stateflow).

Verify the Contents of the Flow Chart

Check that the flow chart in your chart follows the rules in “Rules of Conversion” on page
36-131.

36-134

 Enhance Readability of Code for Flow Charts

Construct How the Construct Follows the Rules

Flow chart Two unique conditions exist, in addition to the default:

• [light(intersection) == RED]

• [light(intersection) == YELLOW]

Each condition Each condition:

• Tests equality
• Uses the same function call light(intersection) for the LHS

Each LHS Each LHS:

• Contains a single expression
• Is the output of a function call and therefore not a constant
• Is of enumerated type TrafficLights, which you define

in TrafficLights.m on the MATLAB path (see “Define
Enumerated Data in a Chart” (Stateflow))

• Uses a function call that does not have side effects
Each RHS Each RHS:

• Is an enumerated value and therefore a constant
• Is of enumerated type TrafficLights

Enable the Conversion

1 Open the Model Configuration Parameters dialog box.
2 In the Code Generation pane, select ert.tlc for the System target file.

This step specifies an ERT-based target for your model.
3 In the Code Generation > Code Style pane, select the Convert if-elseif-else

patterns to switch-case statements check box.

Tip: This conversion works on a per-model basis. If you select this check box, the
conversion applies to:

• Flow charts in all charts of a model
• MATLAB functions in all charts of a model

36-135

36 Code Appearance in Embedded Coder

• All MATLAB Function blocks in that model

Generate Code for Your Model

In the model, select Code > C/C++ Code > Build Model to generate source code from
the model.

Troubleshoot the Generated Code

The generated code for the flow chart appears something like this:

if (sf_color == RED) {

 /* Transition: '<S1>:11' */

 /* Transition: '<S1>:12' */

 /* MATLAB Function 'stop': '<S1>:23' */

 /* '<S1>:23:6' */

 rtb_traffic_speed = 0;

 /* Transition: '<S1>:15' */

 /* Transition: '<S1>:16' */

} else {

 /* Transition: '<S1>:10' */

 /* MATLAB Function 'light': '<S1>:19' */

 if (ifelse_using_enums_U.In1 < 20.0) {

 /* '<S1>:19:3' */

 /* '<S1>:19:4' */

 sf_color = GREEN;

 } else if ((ifelse_using_enums_U.In1 >= 20.0) &&

 (ifelse_using_enums_U.In1 < 25.0)) {

 /* '<S1>:19:5' */

 /* '<S1>:19:6' */

 sf_color = YELLOW;

 } else {

 /* '<S1>:19:8' */

 sf_color = RED;

 }

 if (sf_color == YELLOW) {

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:14' */

 /* MATLAB Function 'slowdown': '<S1>:24' */

 /* '<S1>:24:6' */

 rtb_traffic_speed = 1;

36-136

 Enhance Readability of Code for Flow Charts

 /* Transition: '<S1>:16' */

 } else {

 /* Transition: '<S1>:17' */

 /* MATLAB Function 'accelerate': '<S1>:25' */

 /* '<S1>:25:6' */

 rtb_traffic_speed = 2;

 }

}

Because the MATLAB function light appears inlined, inequality comparisons appear in
these lines of code:

if (ifelse_using_enums_U.In1 < 20.0) {

....

} else if ((ifelse_using_enums_U.In1 >= 20.0) &&

 (ifelse_using_enums_U.In1 < 25.0)) {

....

Because inequalities appear in the body of the if-elseif-else code for the flow chart,
the conversion to switch-case statements does not occur. To prevent this behavior, do
one of the following:

• Specify that the function light does not appear inlined. See “Change the Inlining
Property for the Function” on page 36-137.

• Modify the flow chart. See “Modify the Flow Chart to Ensure Switch-Case
Statements” on page 36-139.

Change the Inlining Property for the Function

If you do not want to modify your flow chart, change the inlining property for the
function light:

1 Right-click the function box for light and select Properties.

The properties dialog box appears.
2 For Function Inline Option, select Function.
3 Click OK to close the dialog box.

Note: You do not have to change the inlining property for the other three MATLAB
functions in the chart. Because the flow chart does not call those functions during
evaluation of conditions, the inlining property for those functions can remain Auto.

36-137

36 Code Appearance in Embedded Coder

When you regenerate code for your model, the code for the flow chart now appears
something like this:

switch (ifelse_using_enums_light(ifelse_using_enums_U.In1)) {

 case RED:

 /* Transition: '<S1>:11' */

 /* Transition: '<S1>:12' */

 /* MATLAB Function 'stop': '<S1>:23' */

 /* '<S1>:23:6' */

 ifelse_using_enums_Y.Out1 = 0.0;

 /* Transition: '<S1>:15' */

 /* Transition: '<S1>:16' */

 break;

 case YELLOW:

 /* Transition: '<S1>:10' */

 /* Transition: '<S1>:13' */

 /* Transition: '<S1>:14' */

 /* MATLAB Function 'slowdown': '<S1>:24' */

 /* '<S1>:24:6' */

 ifelse_using_enums_Y.Out1 = 1.0;

 /* Transition: '<S1>:16' */

 break;

 default:

 /* Transition: '<S1>:17' */

 /* MATLAB Function 'accelerate': '<S1>:25' */

 /* '<S1>:25:6' */

 ifelse_using_enums_Y.Out1 = 2.0;

 break;

}

Because the MATLAB function light no longer appears inlined, the conversion to
switch-case statements occurs. The switch-case statements provide the following
benefits to enhance readability:

• The code reduces the use of parentheses and braces.
• The LHS expression ifelse_using_enums_light(ifelse_using_enums_U.In1)

appears only once, minimizing repetition in the code.

36-138

 Enhance Readability of Code for Flow Charts

Modify the Flow Chart to Ensure Switch-Case Statements

If you do not want to change the inlining property for the function light, modify your
flow chart:

1 Add chart local data color_out with the enumerated type TrafficLights.
2 Replace each instance of light(intersection) with color_out.
3 Add the action {color_out = light(intersection)} to the default transition of

the flow chart.

The chart should now look something like this:

When you regenerate code for your model, the code for the flow chart uses switch-case
statements.

36-139

36 Code Appearance in Embedded Coder

Generate Inlined Subsystem Code

You can configure a nonvirtual subsystem to inline the subsystem code with the model
code. In the Subsystem Parameters dialog box, the Function packaging parameter
specifies the format of the subsystem’s generated code. This parameter has four settings:
Auto, Inline, Nonreusable function, and Reusable function. The code generator
can generate inlined code for the Auto or Inline settings.

The Inline setting explicitly directs the code generator to inline the subsystem code
unconditionally.

The default Auto setting directs the code generator to generate the most efficient code
for the subsystem based on the type and number of instances of the subsystem that exist
in the model. When there is only one instance of a subsystem, the Auto setting inlines
the subsystem code. When there are multiple instances of a subsystem, that is not too
complex, the Auto setting inlines the code for each subsystem. Otherwise, the Auto
setting generates a single copy of the function (as a reusable function). For a function-
call subsystem with multiple callers, the Auto setting generates subsystem code that is
consistent with the Nonreusable function setting.

Configure Subsystem to Inline Code

To configure your subsystem for inlining:

1 Right-click the Subsystem block. From the context menu, select Block Parameters
(Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select Treat
as atomic unit. This option makes the subsystem nonvirtual. On the Code
Generation tab, the Function packaging option is now available.

3 Click the Code Generation tab and select Auto or Inline from the Function
packaging parameter.

4 Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.

When you generate code from your model, the code generator inlines subsystem code
within model.c or model.cpp (or in its parent system's source file). You can identify
this code by system/block identification tags, such as:

/* Atomic SubSystem Block: <Root>/AtomicSubsys1 */

36-140

 Generate Inlined Subsystem Code

Exceptions to Inlining

There are certain cases in which the code generator does not inline a nonvirtual
subsystem, even though you select the Inline setting.

• If a noninlined S-function calls a function-call subsystem, the code generator ignores
the Inline setting. Because noninlined S-functions use function pointers to make
function calls, the code generator must generate a function with all arguments
present.

• In a feedback loop involving function-call subsystems, the code generator generates
a function instead of inlined code for one of the subsystems. Based on the internal,
sorted order of the subsystems, the code generator selects which subsystem to
generate a function.

• If an S-function, an Async Interrupt, or a Task Sync block with the option
SS_OPTION_FORCE_NONINLINED_FCNCALL set to TRUE calls a subsystem, the
code generator generates a function instead of inlined code for the subsystem. The
VxWorks block library (vxlib1), contains the user-defined Async Interrupt and Task
Sync blocks.7

See Also

• “Code Generation of Subsystems” (Simulink Coder)
• “Generate Subsystem Code as Separate Function and Files” (Simulink Coder)
• “Generate Reusable Function for Identical Subsystems Within a Model” (Simulink

Coder)

7. VxWorks is a registered trademark of Wind River Systems, Inc.

36-141

37

Code Replacement in Simulink Coder

• “What Is Code Replacement?” on page 37-2
• “Choose a Code Replacement Library” on page 37-9
• “Replace Code Generated from Simulink Models” on page 37-11

37 Code Replacement in Simulink Coder

What Is Code Replacement?

Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to,
specific target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement
library (CRL) during code generation. By default, the code generator does not apply a
code replacement library. You can choose from the following libraries that MathWorks
provides:

• GNU C99 extensions—GNU8 gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

• AUTOSAR 4.0—Produces code that more closely aligns with the AUTOSAR standard.
Requires an Embedded Coder license.

• Intel IPP for x86-64 (Windows)—Generates calls to the Intel® Performance Primitives
(IPP) library for the x86-64 Windows platform.

• Intel IPP/SSE for x86-64 (Windows)—Generates calls to the IPP and Streaming SIMD
Extensions (SSE) libraries for the x86-64 Windows platform.

• Intel IPP for x86-64 (Windows using MinGW compiler)—Generates calls to the IPP
library for the x86-64 Windows platform and MinGW compiler.

8. GNU is a registered trademark of the Free Software Foundation.

37-2

 What Is Code Replacement?

• Intel IPP/SSE for x86-64 (Windows using MinGW compiler)—Generates calls to the
IPP and SSE libraries for the x86-64 Windows platform and MinGW compiler.

• Intel IPP for x86/Pentium (Windows)—Generates calls to the IPP library for the x86/
Pentium Windows platform.

• Intel IPP/SSE for x86/Pentium (Windows)—Generates calls to the Intel Performance
IPP and SSE libraries for the x86/Pentium Windows platform.

• Intel IPP for x86-64 (Linux)—Generates calls to the IPP library for the x86-64 Linux
platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)—Generates calls to the
GNU libraries for IPP and SSE, with GNU C99 extensions, for the x86-64 Linux
platform.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
you use one of those libraries with another compiler, generated code might not compile.

Depending on the product licenses that you have, other libraries might be available . If
you have an Embedded Coder license, you can view and choose from other libraries and
you can create custom code replacement libraries.

Code Replacement Libraries

A code replacement library consists of one or more code replacement tables that specify
application-specific implementations of functions and operators. For example, a library
for a specific embedded processor specifies function and operator replacements that
optimize generated code for that processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a
conceptual representation of a function or operator to an implementation representation
and priority.

37-3

37 Code Replacement in Simulink Coder

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code
generator. Consists of:

• Function name or a key. The function name identifies most
functions. For operators and some functions, a series of
characters, called a key identifies a function or operator.
For example, function name 'cos' and operator key
'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming
('y1', 'u1', 'u2', ...), with corresponding I/O types (output or
input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation,
and rounding modes, which identify matching criteria for the
function or operator.

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8'.
• Implementation arguments, with corresponding I/O types

(output or input) and data types.
• Parameters that provide additional implementation details,

such as header and source file names and paths of build
resources.

37-4

 What Is Code Replacement?

Table Entry
Component

Description

Priority Defines the entry priority relative to other entries in the table. The
value can range from 0 to 100, with 0 being the highest priority. If
multiple entries have the same priority, the code generator uses the
first match with that priority.

When the code generator looks for a match in a code replacement library, it creates and
populates a call site object with the function or operator conceptual representation. If
a match exists, the code generator uses the matched code replacement entry populated
with the implementation representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the
order that the tables appear in the library. If the code generator finds multiple matches
within a table, the priority determines the match. The code generator uses a higher-
priority entry over a similar entry with a lower priority.

Code Replacement Terminology

Term Definition

Cache hit A code replacement entry for a function or operator,
defined in the specified code replacement library,
for which the code generator finds a match.

Cache miss A conceptual representation of a function or
operator for which the code generator does not find
a match.

Call site object Conceptual representation of a function or operator
that the code generator uses when it encounters
a call site for a function or operator. The code
generator uses the object to query the code
replacement library for a conceptual representation
match. If a match exists, the code generator returns
a code replacement object, fully populated with
the conceptual representation, implementation
representation, and priority, and uses that object to
generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions

37-5

37 Code Replacement in Simulink Coder

Term Definition

and operators. When configured to use a code
replacement library, the code generator uses
criteria defined in the library to search for matches.
If a match is found, the code generator replaces
code that it generates by default with application-
specific code defined in the library.

Code replacement table One or more code replacement table entries.
Provides a way to group related or shared entries
for use in different libraries.

Code replacement entry Represents a potential replacement for a function
or operator. Maps a conceptual representation
of a function or operator to an implementation
representation and priority.

Conceptual argument Represents an input or output argument for a
function or operator being replaced. Conceptual
arguments observe naming conventions ('y1',
'u1', 'u2', ...) and data types familiar to the code
generator.

Conceptual representation Represents match criteria that the code generator
uses to qualify functions and operators for
replacement. Consists of:

• Function or operator name or key
• Conceptual arguments with type, dimension,

and complexity specification for inputs and
output

•
Attributes, such as an algorithm and fixed-point
saturation and rounding modes

Implementation argument Represents an input or output argument for a C
or C++ replacement function. Implementation
arguments observe C/C++ name and data type
specifications.

37-6

 What Is Code Replacement?

Term Definition

Implementation representation Specifies C or C++ replacement function prototype.
Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type,
type qualifiers, and complexity for the function
inputs and output

• Parameters that provide build information, such
as header and source file names and paths of
build resources and compile and link flags

Key Identifies a function or operator that is being
replaced. A function name or key appears in the
conceptual representation of a code replacement
entry. The key RTW_OP_ADD identifies the addition
operator.

Priority Defines the match priority for a code replacement
entry relative to other entries, which have the
same name and conceptual argument list, within
a code replacement library. The priority can
range from 0 to 100, with 0 being the highest
priority. The default is 100. If a library provides
two implementations for a function or operator, the
implementation with the higher priority shadows
the one with the lower priority.

Code Replacement Limitations

Code replacement verification — It is possible that code replacement behaves differently
than you expect. For example, data types that you observe in code generator input might
not match what the code generator uses as intermediate data types during an operation.
Verify code replacements by examining generated code.

Code replacement for matrices — Code replacement libraries do not support Dynamic
and Symbolic sized matrices.

37-7

37 Code Replacement in Simulink Coder

Related Examples
• “Choose a Code Replacement Library” (Simulink Coder)
• “Replace Code Generated from Simulink Models” (Simulink Coder)

37-8

 Choose a Code Replacement Library

Choose a Code Replacement Library

In this section...

“About Choosing a Code Replacement Library” on page 37-9
“Explore Available Code Replacement Libraries” on page 37-9
“Explore Code Replacement Library Contents” on page 37-9

About Choosing a Code Replacement Library

By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that
MathWorks provides in “What Is Code Replacement?” on page 38-2.

• See “Explore Available Code Replacement Libraries” on page 37-9.
2 Explore the contents of the library. See “Explore Code Replacement Library

Contents” on page 37-9.

If you do not find a suitable library and you have an Embedded Coder license, you can
create a custom code replacement library.

Explore Available Code Replacement Libraries

Select the “Code replacement library” (Simulink Coder) to use for code generation from
the Configuration Parameters > Code Generation > Interface pane (Simulink
Coder). To view a description of a library, select and hover your cursor over the library
name. A tooltip describes the library and lists the tables that it contains. The tooltip lists
the tables in the order that the code generator searches for a function or operator match.

Explore Code Replacement Library Contents

Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.

37-9

37 Code Replacement in Simulink Coder

>> crviewer

The viewer opens. To view the content of a specific library, specify the name of the
library as an argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about
the library in the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a
table from the list. In the middle pane, the viewer displays the function and operator
entries that are in that table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information
from the table entry in the right pane.

If you select an operator entry that specifies net slope fixed-point parameters
(instantiated from entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an
additional tab that shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

Related Examples
• “What Is Code Replacement?” (Simulink Coder)
• “Replace Code Generated from Simulink Models” (Simulink Coder)

37-10

 Replace Code Generated from Simulink Models

Replace Code Generated from Simulink Models

This example shows how to replace generated code, using a code replacement library.
Code replacement is a technique you can use to change the code that the code generator
produces for functions and operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that MATLAB, Simulink, Simulink Coder, and a C compiler are installed
on your system. Some code replacement libraries available in your development
environment can also require Embedded Coder.

To install MathWorks products, see the MATLAB installation documentation. If
you have installed MATLAB and want to see which other MathWorks products are
installed, in the Command Window, enter ver .

2 Identify an existing or create a Simulink model for which you want the code
generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore the available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code
generation for the model. Do one of the following:

• In the Configuration Parameters dialog box, on the Code Generation >
Interface pane, select a library for the “Code replacement library” (Simulink
Coder) parameter.

• Set the CodeReplacementLibrary parameter at the command line or
programmatically.

2 Configure the code generator to produce code only (not build an executable) so you
can verify your code replacements before building an executable. Do one of the
following:

• In the Configuration Parameters dialog box, on the Code Generation pane,
select “Generate code only” (Simulink Coder).

• Set the GenCodeOnly parameter at the command line or programmatically.

37-11

37 Code Replacement in Simulink Coder

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include
a code replacement section in the code generation report. The additional information can
help you verify code replacements.

1 Configure the code generator to generate a report. In the Configuration Parameters
dialog box, on the Code Generation > Report pane, select “Create code generation
report” (Simulink Coder). Consider having the report open automatically. Select
“Open report automatically” (Simulink Coder).

2 Include the code replacement section in the report. On the All Parameters tab,
select “Summarize which blocks triggered code replacements” (Simulink Coder).

Generate Replacement Code

Generate C/C++ code from the model and, if you configured the code generator
accordingly, a code generation report. For example, in the model window, press Ctrl+B.

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. It is possible that code
replacement behaves differently than you expect. For example, data types that you
observe in the code generator input might not match what the code generator uses as
intermediate data types during an operation.

Related Examples
• “What Is Code Replacement?” (Simulink Coder)
• “Choose a Code Replacement Library” (Simulink Coder)
• “Code Generation Configuration” (Simulink Coder)

37-12

38

Code Replacement for Simulink
Models in Embedded Coder

• “What Is Code Replacement?” on page 38-2
• “Choose a Code Replacement Library” on page 38-9
• “Replace Code Generated from Simulink Models” on page 38-11

38 Code Replacement for Simulink Models in Embedded Coder

What Is Code Replacement?

Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to,
specific target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement
library (CRL) during code generation. By default, the code generator does not apply a
code replacement library. You can choose from the following libraries that MathWorks
provides:

• GNU C99 extensions—GNU9 gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

• AUTOSAR 4.0—Produces code that more closely aligns with the AUTOSAR standard.
Requires an Embedded Coder license.

• Intel IPP for x86-64 (Windows)—Generates calls to the Intel Performance Primitives
(IPP) library for the x86-64 Windows platform.

• Intel IPP/SSE for x86-64 (Windows)—Generates calls to the IPP and Streaming SIMD
Extensions (SSE) libraries for the x86-64 Windows platform.

• Intel IPP for x86-64 (Windows using MinGW compiler)—Generates calls to the IPP
library for the x86-64 Windows platform and MinGW compiler.

9. GNU is a registered trademark of the Free Software Foundation.

38-2

 What Is Code Replacement?

• Intel IPP/SSE for x86-64 (Windows using MinGW compiler)—Generates calls to the
IPP and SSE libraries for the x86-64 Windows platform and MinGW compiler.

• Intel IPP for x86/Pentium (Windows)—Generates calls to the IPP library for the x86/
Pentium Windows platform.

• Intel IPP/SSE for x86/Pentium (Windows)—Generates calls to the Intel Performance
IPP and SSE libraries for the x86/Pentium Windows platform.

• Intel IPP for x86-64 (Linux)—Generates calls to the IPP library for the x86-64 Linux
platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)—Generates calls to the
GNU libraries for IPP and SSE, with GNU C99 extensions, for the x86-64 Linux
platform.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
you use one of those libraries with another compiler, generated code might not compile.

Depending on the product licenses that you have, other libraries might be available . If
you have an Embedded Coder license, you can view and choose from other libraries and
you can create custom code replacement libraries.

Code Replacement Libraries

A code replacement library consists of one or more code replacement tables that specify
application-specific implementations of functions and operators. For example, a library
for a specific embedded processor specifies function and operator replacements that
optimize generated code for that processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a
conceptual representation of a function or operator to an implementation representation
and priority.

38-3

38 Code Replacement for Simulink Models in Embedded Coder

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code
generator. Consists of:

• Function name or a key. The function name identifies most
functions. For operators and some functions, a series of
characters, called a key identifies a function or operator.
For example, function name 'cos' and operator key
'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming
('y1', 'u1', 'u2', ...), with corresponding I/O types (output or
input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation,
and rounding modes, which identify matching criteria for the
function or operator.

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8'.
• Implementation arguments, with corresponding I/O types

(output or input) and data types.
• Parameters that provide additional implementation details,

such as header and source file names and paths of build
resources.

38-4

 What Is Code Replacement?

Table Entry
Component

Description

Priority Defines the entry priority relative to other entries in the table. The
value can range from 0 to 100, with 0 being the highest priority. If
multiple entries have the same priority, the code generator uses the
first match with that priority.

When the code generator looks for a match in a code replacement library, it creates and
populates a call site object with the function or operator conceptual representation. If
a match exists, the code generator uses the matched code replacement entry populated
with the implementation representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the
order that the tables appear in the library. If the code generator finds multiple matches
within a table, the priority determines the match. The code generator uses a higher-
priority entry over a similar entry with a lower priority.

Code Replacement Terminology

Term Definition

Cache hit A code replacement entry for a function or operator,
defined in the specified code replacement library,
for which the code generator finds a match.

Cache miss A conceptual representation of a function or
operator for which the code generator does not find
a match.

Call site object Conceptual representation of a function or operator
that the code generator uses when it encounters
a call site for a function or operator. The code
generator uses the object to query the code
replacement library for a conceptual representation
match. If a match exists, the code generator returns
a code replacement object, fully populated with
the conceptual representation, implementation
representation, and priority, and uses that object to
generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions

38-5

38 Code Replacement for Simulink Models in Embedded Coder

Term Definition

and operators. When configured to use a code
replacement library, the code generator uses
criteria defined in the library to search for matches.
If a match is found, the code generator replaces
code that it generates by default with application-
specific code defined in the library.

Code replacement table One or more code replacement table entries.
Provides a way to group related or shared entries
for use in different libraries.

Code replacement entry Represents a potential replacement for a function
or operator. Maps a conceptual representation
of a function or operator to an implementation
representation and priority.

Conceptual argument Represents an input or output argument for a
function or operator being replaced. Conceptual
arguments observe naming conventions ('y1',
'u1', 'u2', ...) and data types familiar to the code
generator.

Conceptual representation Represents match criteria that the code generator
uses to qualify functions and operators for
replacement. Consists of:

• Function or operator name or key
• Conceptual arguments with type, dimension,

and complexity specification for inputs and
output

•
Attributes, such as an algorithm and fixed-point
saturation and rounding modes

Implementation argument Represents an input or output argument for a C
or C++ replacement function. Implementation
arguments observe C/C++ name and data type
specifications.

38-6

 What Is Code Replacement?

Term Definition

Implementation representation Specifies C or C++ replacement function prototype.
Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type,
type qualifiers, and complexity for the function
inputs and output

• Parameters that provide build information, such
as header and source file names and paths of
build resources and compile and link flags

Key Identifies a function or operator that is being
replaced. A function name or key appears in the
conceptual representation of a code replacement
entry. The key RTW_OP_ADD identifies the addition
operator.

Priority Defines the match priority for a code replacement
entry relative to other entries, which have the
same name and conceptual argument list, within
a code replacement library. The priority can
range from 0 to 100, with 0 being the highest
priority. The default is 100. If a library provides
two implementations for a function or operator, the
implementation with the higher priority shadows
the one with the lower priority.

Code Replacement Limitations

Code replacement verification — It is possible that code replacement behaves differently
than you expect. For example, data types that you observe in code generator input might
not match what the code generator uses as intermediate data types during an operation.
Verify code replacements by examining generated code.

Code replacement for matrices — Code replacement libraries do not support Dynamic
and Symbolic sized matrices.

38-7

38 Code Replacement for Simulink Models in Embedded Coder

Related Examples
• “Choose a Code Replacement Library” on page 38-9
• “Replace Code Generated from Simulink Models” on page 38-11

38-8

 Choose a Code Replacement Library

Choose a Code Replacement Library

In this section...

“About Choosing a Code Replacement Library” on page 38-9
“Explore Available Code Replacement Libraries” on page 38-9
“Explore Code Replacement Library Contents” on page 38-9

About Choosing a Code Replacement Library

By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that
MathWorks provides in “What Is Code Replacement?” on page 38-2.

• See “Explore Available Code Replacement Libraries” on page 37-9.
2 Explore the contents of the library. See “Explore Code Replacement Library

Contents” on page 37-9.

If you do not find a suitable library and you have an Embedded Coder license, you can
create a custom code replacement library.

Explore Available Code Replacement Libraries

Select the “Code replacement library” (Simulink Coder) to use for code generation from
the Configuration Parameters > Code Generation > Interface pane (Simulink
Coder). To view a description of a library, select and hover your cursor over the library
name. A tooltip describes the library and lists the tables that it contains. The tooltip lists
the tables in the order that the code generator searches for a function or operator match.

Explore Code Replacement Library Contents

Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.

38-9

38 Code Replacement for Simulink Models in Embedded Coder

>> crviewer

The viewer opens. To view the content of a specific library, specify the name of the
library as an argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about
the library in the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a
table from the list. In the middle pane, the viewer displays the function and operator
entries that are in that table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information
from the table entry in the right pane.

If you select an operator entry that specifies net slope fixed-point parameters
(instantiated from entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an
additional tab that shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

Related Examples
• “What Is Code Replacement?” on page 38-2
• “Replace Code Generated from Simulink Models” on page 38-11

38-10

 Replace Code Generated from Simulink Models

Replace Code Generated from Simulink Models

This example shows how to replace generated code, using a code replacement library.
Code replacement is a technique you can use to change the code that the code generator
produces for functions and operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that MATLAB, Simulink, Simulink Coder, and a C compiler are installed
on your system. Some code replacement libraries available in your development
environment can also require Embedded Coder.

To install MathWorks products, see the MATLAB installation documentation. If
you have installed MATLAB and want to see which other MathWorks products are
installed, in the Command Window, enter ver .

2 Identify an existing or create a Simulink model for which you want the code
generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore the available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code
generation for the model. Do one of the following:

• In the Configuration Parameters dialog box, on the Code Generation >
Interface pane, select a library for the “Code replacement library” (Simulink
Coder) parameter.

• Set the CodeReplacementLibrary parameter at the command line or
programmatically.

2 Configure the code generator to produce code only (not build an executable) so you
can verify your code replacements before building an executable. Do one of the
following:

• In the Configuration Parameters dialog box, on the Code Generation pane,
select “Generate code only” (Simulink Coder).

• Set the GenCodeOnly parameter at the command line or programmatically.

38-11

38 Code Replacement for Simulink Models in Embedded Coder

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include
a code replacement section in the code generation report. The additional information can
help you verify code replacements.

1 Configure the code generator to generate a report. In the Configuration Parameters
dialog box, on the Code Generation > Report pane, select “Create code generation
report” (Simulink Coder). Consider having the report open automatically. Select
“Open report automatically” (Simulink Coder).

2 Include the code replacement section in the report. On the All Parameters tab,
select “Summarize which blocks triggered code replacements” (Simulink Coder).

Generate Replacement Code

Generate C/C++ code from the model and, if you configured the code generator
accordingly, a code generation report. For example, in the model window, press Ctrl+B.

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. It is possible that code
replacement behaves differently than you expect. For example, data types that you
observe in the code generator input might not match what the code generator uses as
intermediate data types during an operation.

Related Examples
• “What Is Code Replacement?” on page 38-2
• “Choose a Code Replacement Library” on page 38-9
• “Code Generation Configuration” (Simulink Coder)

38-12

Deployment

39

External Code Integration in Simulink
Coder

The code generator includes multiple approaches for integrating legacy or custom code
with generated code. Legacy code is existing handwritten code or code for environments
that you integrate with code produced by the code generator. Custom code is legacy code
or other user-specified lines of code that you include in the code generator build process.
Collectively, legacy and custom code are called external code.

You integrate external code by importing existing external code into code produced by
the code generator, exporting generated code into an existing external code base, or you
can do both. For example, you can import code by calling an external function, by using
the Legacy Code Tool, or place external code at specific locations in generated code by
including Custom Code blocks in a model. When you import external code, the resulting
generated code interfaces with generated scheduling code.

You can export generated code as a plug-in function for use in an external development
environment. When you export generated code, you intend to interface that code
manually with a scheduling mechanism in your application run-time environment.

For guidance on choosing an approach based on your application, see “Choose an
External Code Integration Workflow” (Simulink Coder) .

• “What Is External Code Integration?” on page 39-3
• “Choose an External Code Integration Workflow” on page 39-4
• “Call Reusable External Algorithm Code for Simulation and Code Generation” on

page 39-13
• “Place External C/C++ Code in Generated Code” on page 39-27
• “Call External Device Drivers” on page 39-38
• “Apply Function and Operator Code Replacements” on page 39-40
• “Build Integrated Code Within the Simulink Environment” on page 39-41

39 External Code Integration in Simulink Coder

• “Generate Component Source Code for Export to External Code Base” on page
39-51

• “Generate Shared Library for Export to External Code Base” on page 39-71
• “Build Integrated Code Outside the Simulink Environment” on page 39-79
• “Exchange Data Between External C/C++ Code and Simulink Model or Generated

Code” on page 39-86
• “Generate Code That Matches Appearance of External Code” on page 39-95

39-2

 What Is External Code Integration?

What Is External Code Integration?

Software projects typically involve combining code from multiple sources. A typical
system structure for a code generation application consists of a framework that combines
code from multiple sources, including external code and code generated from Simulink
models.

This figure shows an application that requires integration of existing driver code for
hardware devices. The core software algorithms and logic can be a combination of code
modules for external reusable algorithms integrated into the Simulink environment and
code generated as part of an overall model design.

Several workflows and tools are available for you to integrate external and generated
code. Each workflow identifies tooling for generating code that aligns interfaces, code
appearance, and other factors, such as optimization between external and generated
code.

More About
• “Choose an External Code Integration Workflow” on page 39-4

39-3

39 External Code Integration in Simulink Coder

Choose an External Code Integration Workflow

In this section...

“Choose a Software Execution Framework” on page 39-4
“Evaluate Characteristics of External Code” on page 39-7
“Identify Integration Requirements” on page 39-8
“Choose a Workflow” on page 39-10

Completing these tasks helps you choose external code integration workflows and tooling
that align with your project.

Task Action More Information

1 Partition your application, map
algorithms to components, and identify
integration points.

“Design Models for Generated
Embedded Code Deployment” on page
1-2

2 Determine whether you can rely
on scheduling code that the code
generator produces, or whether you
must integrate generated code with
scheduling mechanisms that are
specific to your run-time environment.

“Choose a Software Execution
Framework” on page 39-4

3 Evaluate the characteristics of the
external code that you are importing or
to which you are exporting generated
code.

“Evaluate Characteristics of External
Code” on page 39-7

4 Identify integration requirements,
which assists with choosing optimal
tooling for your integration.

“Identify Integration Requirements” on
page 39-8

5 Based on the results of tasks 1–4,
choose a workflow.

“Choose a Workflow” on page 39-10

Choose a Software Execution Framework

The code generator supports two types of software execution frameworks—single top
model and multiple top-level, as described in “Design Models for Generated Embedded

39-4

 Choose an External Code Integration Workflow

Code Deployment” on page 1-2. The first question to answer concerns which of the two
frameworks applies to your project.

• Single top model

Generate one set of application code files from external code and code that the
Simulink C/C++ code generator produces. The generated code includes a scheduler. In
this case, you import code into the Simulink code generation environment.

• Single top model or multiple top-level models

Integrate C or C++ code that the code generator produces from model components
with external application code and an external scheduler. You export generated code
from the Simulink code generation environment.

39-5

39 External Code Integration in Simulink Coder

Importing calls to external device driver code into a model and generating code for that
model for export involves importing and exporting code.

Based on goals and requirements, external code integration is characterized in several
ways, requiring different workflows and integration tooling:

• Import existing external code into generated code.

• Call reusable external algorithm code for simulation and code generation.
• Place external C/C++ code in generated code.
• Call external device drivers.
• Apply function and operator code replacements.
• Interface with external timer interrupt or scheduler.
• Generate replacement code for specific run-time environment.

39-6

 Choose an External Code Integration Workflow

• Export generated code for inclusion in external code base.

• Generate component source code for export.
• Generate shared library for export.

Next, see “Evaluate Characteristics of External Code” on page 39-7.

Evaluate Characteristics of External Code

Before choosing an external integration workflow, evaluate these characteristics of the
external code. To interface with external code, generated C or C++ code handles one or
more of the external code characteristics. An understanding of these characteristics and
your requirements for modeling, simulation, and code generation helps you choose the
optimal workflow for your integration scenario. (See “Identify Integration Requirements”
on page 39-8.)

Characteristic What to Consider

Hardware
dependency

Is the external code hardware-dependent? Utility functions, lookup
tables, and filters are examples of hardware-independent code.

Device drivers interact directly with hardware. They depend on
characteristics of the hardware. For example, a device driver for
an analog-to-digital converter initializes, reads data from, and
writes data to hardware registers. Hardware differences and
dependencies concern data type size, endianess, shift operations,
compiler directives, and optimized function and operator support.
Other code interfaces with device drivers by using an API and data
mapped to specific memory addresses. Typically, simulation on a
development computer is not possible. Reading from and writing to
a register during simulation on a development computer produces
unexpected and unwanted results.

Reusable Is the external code a reusable software module? Examples include
utility functions, lookup tables, filters, specialized integrators, and
proportional-integral-derivative (PID) control modules.

Dependency on
data persistence
between function
calls

Does the external code require persistent data? For example, a call
to a first order filter function uses the output of the previous call to
the function to calculate a new output value. You have the option
of defining the data as global or using shared memory outside the
context of the function.

39-7

39 External Code Integration in Simulink Coder

Characteristic What to Consider

Data typing and
interface

How complex is the data that the external code uses? What does the
data interface look like? It consists of arguments, a return value,
global variables, and access functions. What data types does the
code use? Are the types limited to basic ANSI C integers, floating-
point types, arrays of integers or floating-point types, and pointers
to these types? Does the interface include structures or pointers to
structures?

Fixed-point code Is the external code designed to run on integer-only processors? If
yes, the code exchanges and uses data represented as integers only.
Data can be associated with fixed-point scaling or offsets.

External resource
dependencies

Does the external code use data, functions, or macros defined
outside the scope of the code? For example, the function can use a
standard ANSI function, a shared library, or predefined constants.
In these cases, you must inform the compiler and linker of the
paths and file names of the external resources.

External solver
required

Are you using the external function for advanced development or
rapid prototyping to describe a system with a continuous transfer
function or a set of differential equations? If yes, the external code
relies on an external solver.

Next, see “Identify Integration Requirements” on page 39-8.

Identify Integration Requirements

Before choosing an external integration workflow, review these integration requirements.
An understanding of these requirements and the characteristics of your external code
helps you choose the optimal workflow for your integration scenario. (See “Evaluate
Characteristics of External Code” on page 39-7.)

Requirement What to Consider

Effort What level of effort is planned for the integration project—low,
medium, or high?

Learning effort What is the programming experience of assigned project resources?
How much experience do assigned resources have with Simulink
and MathWorks C/C++ code generation products?

39-8

 Choose an External Code Integration Workflow

Requirement What to Consider

Simulation and
code generation
behaviors

Do you want to take advantage of Model-Based Design? To take
full advantage of Model-Based Design, convert code to modeling
elements, which you can then use in the Simulink and Stateflow
simulation environment. Then, simulate and generate code for the
integrated component. Use software-in-the-loop (SIL) or processor-
in-the-loop (PIL) testing to verify whether algorithm behavior is the
same in both environments.

Data interface and
typing

• Does your model or generated code need to exchange data
with the external function? If so, map inputs, outputs, and
parameters to the external function interface. Typical function
interfaces involve function arguments and return values, global
variables, and access functions, such as getRPM.

• Do you want to represent arrays, structures, or enumerated
types? In the Simulink environment, you can represent these
types as vectors, buses, and IntEnum, respectively.

• Is fixed-point support required? If you use the Simulink fixed-
point interface, you can scale and specify offsets.

• Does the external code use company-specific data types? If yes
and you have Embedded Coder software, create alias types
to represent those external types. The code generator uses
the alias types in the code that it produces. For example, once
defined, you can specify an alias type in a function prototype, for
a temporary variable, or for block output.

• Does the code exchange data with shared memory? If yes, define
and use memory sections.

Direct function call Do you want to call C external code directly from a model? You
can choose from mechanisms, such as the Legacy Code Tool,
Stateflow external code interface and chart action language, and
the MATLAB Function block.

Insertion of
external code into
generated code

Do you want to control the placement of external code within
generated code? Do you want to insert code into generated entry-
point functions? You can place code within generated code by using
model configuration parameters or custom code blocks.

39-9

39 External Code Integration in Simulink Coder

Requirement What to Consider

Code generation
optimization
support

Do you want to optimize the code that the code generator produces?
If so, you can configure the model for the code generator to optimize
the code it produces based on application objectives, such as
execution, ROM, and RAM efficiency. You also have the option of
using code replacement libraries.

Files required Do you want to minimize the number of files that you maintain?
Some external code integration tools require that you maintain
separate files for defining simulation and code generation.

Next, see “Choose a Workflow” on page 39-10.

Choose a Workflow

To choose a workflow for each integration point, use the following flow diagram . The
gray boxes identify common workflows and provide links to more information. Click the
gray box that best addresses the requirements of an integration point.

39-10

 Choose an External Code Integration Workflow

More About
• “Call Reusable External Algorithm Code for Simulation and Code Generation” on

page 39-13
• “Place External C/C++ Code in Generated Code” on page 39-27

39-11

39 External Code Integration in Simulink Coder

• “Call External Device Drivers” on page 39-38
• “Deploy Generated Standalone Executable Programs To Target Hardware” on page

49-2
• “Deploy Generated Component Software to Application Target Platforms” on page

49-22
• “Code Replacement”
• “Generate Component Source Code for Export to External Code Base” on page

39-51
• “Generate Shared Library for Export to External Code Base” on page 39-71

39-12

 Call Reusable External Algorithm Code for Simulation and Code Generation

Call Reusable External Algorithm Code for Simulation and Code
Generation

Code reuse offers business and technological advantages. From a business perspective,
code reuse saves time and resources. From a technological perspective, code reuse
promotes consistency and reduces memory requirements. Other considerations include:

• Modularizing an application
• Reusing an optimized algorithm
• Interfacing with a predefined dataset
• Developing application variants

Examples of reusable hardware-independent algorithmic code to consider importing into
the Simulink environment for simulation and code generation include:

• Utility functions
• Lookup tables
• Digital filters
• Specialized integrators
• Proportional-integral-derivative (PID) control modules

Workflow

To call reusable external algorithm code for simulation and code generation, iterate
through the tasks listed in this table.

Task Action More Information

1 Review your assessment of external
code characteristics and integration
requirements.

“Choose an External Code Integration
Workflow” on page 39-4

2 Based on the programming
language of the external code,
choose an integration approach to
add the external code to a Simulink
model.

“Choose an Integration Approach” on page
39-14

39-13

39 External Code Integration in Simulink Coder

Task Action More Information

3 Verify algorithm behavior and
performance by simulating the
model.

“Simulation” (Simulink)

4 Define the representation of model
data for code generation.

“Exchange Data Between External C/C+
+ Code and Simulink Model or Generated
Code” on page 39-86

5 Configure the model for code
generation.

“Generate Code That Matches Appearance
of External Code” on page 39-95 and
“Model Configuration”

6 Generate code and a code
generation report.

“Code Generation”

7 Review the generated code interface
and static code metrics.

“Analyze the Generated Code Interface” on
page 35-21 and “Static Code Metrics” on
page 35-34

8 Build an executable program from
the model.

“Build Integrated Code Within the Simulink
Environment” on page 39-41

9 Verify that executable program
behaves as expected.

“Numerical Equivalence Testing”

10 Verify that executable program
performs as expected.

“Code Execution Profiling”

Choose an Integration Approach

Several approaches are available for integrating reusable algorithmic code into the
Simulink environment for code generation. Some approaches integrate external code
directly. Other approaches convert the external code to Simulink or Stateflow modeling
elements for simulation, and later for code generation from the modeled design. The
integration approach that you choose depends on:

• Programming language of the external code — MATLAB, C, C++, or Fortran
• Your programming language experience and preference
• Performance requirements
• Whether the algorithm must model continuous time dynamics or you are integrating

the algorithm into an application that uses discrete and continuous time

39-14

 Call Reusable External Algorithm Code for Simulation and Code Generation

• Whether you want to take advantage of Model-Based Design
• Level of control required over the code that the code generator produces

To choose an approach for a reusable algorithm, see the subsection that matches the
programming language of your external algorithm code.

• “Integration Approaches for External MATLAB Code” on page 39-15
• “Integration Approaches for External C or C++ Code” on page 39-18
• “Integration Approaches for External Fortran Code” on page 39-24

Integration Approaches for External MATLAB Code

Multiple approaches are available for integrating external MATLAB code into the
Simulink environment. The following diagram and table help you choose the best
integration approach for your application based on integration requirements.

39-15

39 External Code Integration in Simulink Coder

 Condition or Requirement Action More Information

1 The algorithm must
model continuous state
dynamics.

Write a MATLAB S-
function and, for generating
code, a corresponding TLC
file for the algorithm. Add
the S-function to your
model.

• “MATLAB S-Functions” (Simulink)
• “Write S-Function and TLC Files By

Hand” on page 11-66
• “Target Language Compiler”

(Simulink Coder)

39-16

 Call Reusable External Algorithm Code for Simulation and Code Generation

 Condition or Requirement Action More Information

2 External code complies
with the MATLAB code
for code generation
subset and you want to
call MATLAB code from
a Simulink model.

Add a MATLAB Function
block to the model. Embed
the MATLAB code in that
block.

• “Integrate C Code Using the
MATLAB Function Block”
(Simulink)

• MATLAB Function

3 External code complies
with the MATLAB code
for code generation
subset, you want to call
MATLAB code from a
Simulink model, and
your algorithm includes
iterative computations
that process large
streams of data.

Add a MATLAB System
block to the model. Embed
the MATLAB code in that
block as a System object™.

• “Integrate C Code Using the
MATLAB Function Block”
(Simulink)

• MATLAB System

4 External code complies
with the MATLAB code
for code generation
subset, you want to call
MATLAB code from a
Simulink model, and
your algorithm includes
design logic that is
based on state machines
and flow charts.

Add a Stateflow chart to
the model. Call the external
code from the chart, using
MATLAB as the action
language.

• “Chart Programming Basics”
(Stateflow)

• “Insert External Code into Stateflow
Charts” on page 39-24

5 You want to use the
parfor function for
parallel computing or
interface data types
that are available to
MATLAB Coder but
are not available to
Simulink Coder or
Embedded Coder.

Use MATLAB Coder
software to generate
C code. Then, call that
generated code as external
C code.

• “C Code Generation Using the
MATLAB Coder App” (MATLAB
Coder)

• “Getting Started with MATLAB
Coder” (MATLAB Coder)

39-17

39 External Code Integration in Simulink Coder

 Condition or Requirement Action More Information

6 You have C or C
++ programming
experience and the
external MATLAB
code is compact and
primarily uses C or C++
constructs.

Manually convert the
MATLAB code to C or C++
code. Choose an integration
approach for C or C++ code.

“Integration Approaches for External C
or C++ Code” on page 39-18

7 Sections of the external
MATLAB code map to
built-in blocks.

Develop the algorithm in
the context of a model,
using the applicable built-
in blocks.

• “Model Editing Fundamentals”
(Simulink) and “Component-Based
Modeling” (Simulink)

• “Supported Products and Block
Usage” (Simulink Coder)

To embed external MATLAB code in a MATLAB Function block or generate C or C++
code from MATLAB code with the MATLAB Coder software, the MATLAB code must use
functions and classes supported for C/C++ code generation.

• “Functions and Objects Supported for C/C++ Code Generation — Alphabetical List”
(MATLAB Coder)

• “Functions and Objects Supported for C/C++ Code Generation — Category List”
(MATLAB Coder)

Integration Approaches for External C or C++ Code

Under most circumstances, you can integrate external code written in C or C++ into the
Simulink environment by generating S-functions and TLC files with the Legacy Code
Tool. This tool uses specifications that you supply as MATLAB code to transform existing
MATLAB functions into C MEX S-functions that you can include in Simulink models
and call from generated code. For details, see “Legacy Code Integration” (Simulink) and
“Import Calls to External Code into Generated Code with Legacy Code Tool” on page
11-7.

In comparison to alternative approaches, Legacy Code Tool is the easiest to use and
generates code optimized enough for embedded systems. Consider alternative approaches
if one or more of the following conditions exist:

• The external code uses global variables to exchange data.
• Programming experience is limited.

39-18

 Call Reusable External Algorithm Code for Simulation and Code Generation

• The algorithm must model discrete and continuous state dynamics.
• You want to include the integrated external code in a Stateflow chart.
• The external code requires a fixed-point interface.
• You want maximum flexibility for controlling what code the code generator produces.
• You quickly want to embed a call to the external code in a call to the coder.ceval

function that is embedded in the MATLAB Function block, and performance is not an
issue.

This diagram and table help you choose the best integration approach based on your
integration requirements.

39-19

39 External Code Integration in Simulink Coder

 Condition or Requirement Action More Information

1 You want to integrate
external C code with
generated C++ code or
conversely

Match the language
choice for the generated
code by modifying the

“Modify Programming Language of
External Code to Match Generated Code”
on page 39-23

39-20

 Call Reusable External Algorithm Code for Simulation and Code Generation

 Condition or Requirement Action More Information

language of the external
code.

2 Your algorithm
includes design logic
that is based on
state machines and
flow charts. Or, a
function that you want
to integrate must
exchange data with a
model by using global
variables. The function
defines the global
variables and uses
them to write output
rather than returning
a value (return) or
writing output to an
argument.

Add a Stateflow chart
to the model. Call the
external code from the
chart, using C as the
action language. In
the chart, write code
that calls the external
function and reads from
and writes to the global
variables. To perform
calculations with output
of the external code, the
model must read from
the global variable during
execution.

“Insert External Code into Stateflow
Charts” on page 39-24

3 You want to include
external C or C++ code
in a Stateflow chart for
simulation and code
generation.

Configure the model that
contains the chart to
apply the external C or C
++ code.

• “Custom Code Algorithm” (Stateflow)
• “Call C Functions in C Charts”

(Stateflow)
• “Insert External Code into Stateflow

Charts” on page 39-24
4 You quickly want to

embed a call to external
C or C++ code in a
model. Performance is
not an issue.

Call the C or C++ code
with the coder.ceval
function from within a
MATLAB Function block.

• coder.ceval function
• “Integrate C Code Using the MATLAB

Function Block” (Simulink)
• MATLAB Function block

39-21

39 External Code Integration in Simulink Coder

 Condition or Requirement Action More Information

5 The application
requires more entry-
point functions than
the code generator
typically produces
—for example, more
than model_step,
model_initialize,
and
model_terminate.
You want maximum
flexibility for
controlling what code
the code generator
produces.

Manually write an S-
function and TLC file.

• “S-Function Basics” (Simulink)
• “S-Functions and Code Generation” on

page 11-2
• “C S-Function Examples” (Simulink)

and “C++ S-Function Examples”
(Simulink)

6 You want to simulate
and generate external
code for a discrete
time application.
Optimizing generated
code is essential. You
want ease of use with
moderate flexibility
for controlling what
code the code generator
produces. You have C
or C++ programming
experience, but you
prefer to generate the
files for adding the code
to a model.

Generate S-function
and TLC files by using
the Legacy Code Tool.
If necessary, refine the
generated code manually
to meet application
requirements. (If you
change the generated
code, you lose the
changes if you regenerate
the S-function and TLC
files.)

• “Integrate C Functions Using Legacy
Code Tool” (Simulink)

• “Import Calls to External Code into
Generated Code with Legacy Code
Tool” (Simulink Coder)

39-22

 Call Reusable External Algorithm Code for Simulation and Code Generation

 Condition or Requirement Action More Information

7 The algorithm must
model discrete
and continuous
state dynamics for
simulation and
rapid prototyping.
The external code
requires a fixed-point
interface. Programming
experience is limited.
You want ease of use
with basic flexibility
for controlling what
code the code generator
produces for rapid
prototyping.

Generate S-function and
TLC files by using the
S-Function Builder. If
necessary, refine the
generated code manually
to meet application
requirements. (If you
change the generated
code, you lose the
changes if you regenerate
the S-function and TLC
files.)

• “Build S-Functions Automatically”
(Simulink)

• “Automate S-Function Generation
with S-Function Builder” on page
11-61

Modify Programming Language of External Code to Match Generated Code

To integrate external C code with generated C++ code or conversely, modify the language
of the external code to match the programming language choice for the generated code.
Options for making the programming language match include:

• Writing or rewriting the external code in the language choice for the generated code.
• If you are generating C++ code and the external code is C code, for each C function,

create a header file that prototypes the function. Use this format:
#ifdef __cplusplus

extern "C" {

#endif

int my_c_function_wrapper();

#ifdef __cplusplus

}

#endif

The prototype serves as a function wrapper. If your compiler supports C++ code, the
value __cplusplus is defined. The linkage specification extern "C" specifies C
linkage without name mangling.

• If you are generating C code and the external code is C++ code, include an extern
"C" linkage specification in each .cpp file. For example, the following example shows
C++ code in the file my_func.cpp:

39-23

39 External Code Integration in Simulink Coder

extern "C" {

int my_cpp_function()

{

 ...

}

}

Integration Approaches for External Fortran Code

To integrate external Fortran code, write an S-function and corresponding TLC file.

See “S-Function Basics” (Simulink), “Fortran S-Functions” (Simulink), “S-Functions and
Code Generation” on page 11-2, and“Fortran S-Function Examples” (Simulink).

Insert External Code into Stateflow Charts

• “Integrate External Code for Library Charts” on page 39-24
• “Integrate External Code for All Charts” on page 39-25

Integrate External Code for Library Charts

To integrate external code that applies only to Stateflow library charts for code
generation, for each library model that contributes a chart to your main model, complete
these steps. Then, generate code.

1 In the Stateflow Editor, select Code > C/C++ Code > Code Generation Options.

39-24

 Call Reusable External Algorithm Code for Simulation and Code Generation

2 In the Model Configuration Parameters dialog box, select Code Generation > Use
local custom code settings (do not inherit from main model).

The library model retains its own custom code settings during code generation.
3 Specify your custom code in the subpanes.

Follow the guidelines in “Specify Relative Paths for Custom Code” (Stateflow).

If you specified custom code settings for simulation, you can apply these settings to
code generation. To avoid entering the same information twice, select Use the same
custom code settings as Simulation Target.

4 Click OK.

After completing these steps for each library model, generate code.

Integrate External Code for All Charts

To integrate external code that applies to all charts for code generation:

1 Specify custom code options for code generation of your main model.

a In the Model Configuration Parameters dialog box, select Code Generation >
Custom Code.

b In the custom code text fields, specify your custom code.

Follow the guidelines in “Specify Relative Paths for Custom Code” (Stateflow).

If you specified custom code settings for simulation, you can apply these settings
to code generation. To avoid entering the same information twice, select Use the
same custom code settings as Simulation Target.

2 Configure code generation for each library model that contributes a chart to your
main model.

a In the Stateflow Editor, select Code > C/C++ Code > Code Generation
Options.

b In the Code Generation pane, clear the Use local custom code settings (do
not inherit from main model) check box.

The library charts inherit the custom code settings of your main model.
c Click OK.

39-25

39 External Code Integration in Simulink Coder

3 Generate code.

More About
• “Integrate C Functions Using Legacy Code Tool” (Simulink)
• “Import Calls to External Code into Generated Code with Legacy Code Tool”

(Simulink Coder)
• “Custom Code Algorithm” (Stateflow)
• “Integrate C Code Using the MATLAB Function Block” (Simulink)
• “S-Function Basics” (Simulink)
• “S-Functions and Code Generation” on page 11-2

39-26

 Place External C/C++ Code in Generated Code

Place External C/C++ Code in Generated Code

In this section...

“Workflow” on page 39-27
“Choose an Integration Approach” on page 39-28
“Integrate External Code by Using Custom Code Blocks” on page 39-29
“Integrate External Code by Using Model Configuration Parameters” on page 39-32
“Integrate External C Code Into Generated Code By Using Custom Code Blocks and
Model Configuration Parameters” on page 39-34

You can customize code that the code generator produces for a model by specifying
external code with custom code blocks or model configuration parameters.

• Place code at the start and end of the generated code for the root model.
• Place declaration, body, and exit code in generated function code for blocks in the root

model or nonvirtual subsystems.

The functions that you can augment with external code depends on the functions that
the code generator produces for blocks that are in the model. For example, if a model
or atomic subsystem includes blocks that have states, you can specify code for a disable
function. Likewise, if you need the code for a block to save data, free memory, or reset
target hardware, specify code for a terminate function. For more information, see “Block
Target File Methods” (Simulink Coder).

Workflow

To place external C or C++ code at specific locations in code that the code generator
produces for root models and subsystems, iterate through the tasks listed in this table.

Task Action More Information

1 If you want to integrate external
C code with generated C++ code or
conversely, modify the language
of the external code to match the
language choice for the generated
code.

“Modify Programming Language of External
Code to Match Generated Code” (Simulink
Coder)

39-27

39 External Code Integration in Simulink Coder

Task Action More Information

2 Review your assessment of external
code characteristics and integration
requirements.

“Choose an External Code Integration
Workflow” on page 39-4

3 If necessary, rewrite code in C or C+
+.

4 Choose an integration approach to
add the external code to a Simulink
model.

“Choose an Integration Approach” on page
39-28

5 Define the representation of model
data for code generation.

“Exchange Data Between External C/C+
+ Code and Simulink Model or Generated
Code” on page 39-86

6 Configure the model for code
generation.

“Generate Code That Matches Appearance
of External Code” on page 39-95 and
“Model Configuration”

7 Generate code and a code
generation report.

“Code Generation”

8 Review the generated code interface
and static code metrics.

“Analyze the Generated Code Interface” on
page 35-21 and “Static Code Metrics” on
page 35-34

9 Build an executable program from
the model.

“Build Integrated Code Within the Simulink
Environment” on page 39-41

10 Verify that executable program
performs as expected.

“Numerical Equivalence Testing” and “Code
Execution Profiling”

Choose an Integration Approach

Within the Simulink modeling environment, two approaches are available for placing
external C or C++ code into sections of code that the code generator produces:

• Add blocks from the Custom Code library to a root model or atomic subsystem.
• Set model configuration parameters on the Code Generation > Custom Code pane.

The following table compares the two approaches. Choose the approach that aligns
best with your integration requirements. For more information about how to apply
each approach, see “Integrate External Code by Using Custom Code Blocks” on page

39-28

 Place External C/C++ Code in Generated Code

39-29 and “Integrate External Code by Using Model Configuration Parameters” on
page 39-32.

Requirement Blocks Model Configuration
Parameters

Include a representation of your external code in
the modeling canvas

✓

Place code in functions generated for root models ✓ ✓
Place code in functions generated for atomic
subsystems

✓

Save code placement in a model configuration
set

 ✓

Place code at the top and bottom of the header
and source files generated for a model

✓ ✓

Place code within declaration, execution,
and exit sections of the SystemInitialize
andSystemTerminate functions that the code
generator creates

✓ ✓

Place code within declaration, execution,
and exit sections of the SystemStart,
SystemEnable, SystemDisable,
SystemOutputs, SystemUpdate,
orSystemDerivatives functions that the code
generator creates

✓

Add preprocessor macro definitions to generated
code

 ✓

Use the custom code settings that are specified
for the simulation target

 ✓

Configure a library model to use custom code
settings of the parent model to which the library
is linked

 ✓

Integrate External Code by Using Custom Code Blocks

• “Custom Code Block Library” on page 39-30
• “Add Custom Code Blocks to the Modeling Canvas” on page 39-31

39-29

39 External Code Integration in Simulink Coder

• “Add External Code to Generated Start Function” on page 39-31

Custom Code Block Library

The Custom Code block library contains blocks that you can use to place external C or C+
+ code into specific locations and functions within code that the code generator produces.
The library consists of 10 blocks that add your code to the model header (model.h) and
source (model.c or model.cpp) files that the code generator produces.

The Model Header and Model Source blocks add external code at the top and bottom of
header and source files that the code generator produces for a root model. Theses blocks
display two text fields into which you can type or paste code. One field specifies code
that you want to place at the top of the generated header or source file. The second field
specifies code that you want to place at the bottom of the file.

The remaining blocks add external code to functions that the code generator produces for
the root model or atomic subystem that contains the block. The blocks display text fields
into which you can type or paste code that customizes functions that the code generator
produces. The text fields correspond to the declaration, execution, and exit sections of
code for a given function.

To Customize Code That Use This Block

Computes continuous states System Derivatives
Disables state System Disable
Enables state System Enable
Resets state System Initialize
Produces output System Outputs
Executes once System Start
Saves data, free memory, reset target
hardware

System Terminate

Requires updates at each major time
step

System Update

The block and its location within a model determines where the code generator places
the external code. For example, if the System Outputs block is at the root model level,
the code generator places the code in the model Outputs function. If the block resides in
a triggered or enabled subsystem, the code generator places the code in the subsystem
Outputs function.

39-30

 Place External C/C++ Code in Generated Code

If the code generator does not need to generate a function that corresponds to a Custom
Code block that you include in a model, the code generator does one of the following:

• Omits the external code that you specify in the Custom Code block.
• Returns an error, indicating that the model does not include a relevant block. In this

case, remove the Custom Code block from the mode.

For more information, see “Block Target File Methods” (Simulink Coder).

Add Custom Code Blocks to the Modeling Canvas

To add the Custom Code library blocks to a model:

1 In the Simulink Library Browser, open the Custom Code block library. You can gain
access to the library by:

• Navigating to Simulink Coder > Custom Code in the browser.
• Entering the MATLAB command custcode.

2 Drag the blocks that you want into your model or subsystem. Drag Model Header
and Model Source blocks into root models only. Drag function-based Custom Code
blocks into root models or atomic subsystems.

You can use models that contain Custom Code blocks as referenced models. The code
generator ignores the blocks when producing code for a simulation target. When
producing code for a code generation target, the code generator includes and compiles the
custom code.

Add External Code to Generated Start Function

This example shows how to use the System Start block to place external C code in the
code that the code generator produces for a model that includes a discrete filter.

1 Create the following model.

39-31

39 External Code Integration in Simulink Coder

2 Configure the model for code generation.
3 Double-click the System Start block.
4 In the block parameters dialog box, in the System Start Function Declaration

Code field, enter this code:

unsigned int *ptr = 0xFFEE;

5 In the System Start Function Execution Code field, enter this code:

/* Initialize hardware */

*ptr = 0;

6 Click OK.
7 Generate code and a code generation report.
8 View the generated model.c file. Search for the string start function. You

should find the following code, which includes the external code that you entered in
steps 4 and 5.
 {

 {

 /* user code (Start function Header) */

 /* System '<Root>' */

 unsigned int *ptr = 0xFFEE;

 /* user code (Start function Body) */

 /* System '<Root>' */

 /* Initialize hardware */

 *ptr = 0;

 }

 }

For another example, see “Integrate External C Code Into Generated Code By Using
Custom Code Blocks and Model Configuration Parameters” on page 39-34.

Integrate External Code by Using Model Configuration Parameters

Model configuration parameters provide a way to place external C or C++ code into
specific locations and functions within code that the code generator produces.

To Select

Insert external code
near the top of the
generated model.c or
model.cpp file

Source file, and enter the external code to insert.

Note: If you generate subsystem code into separate files, that code does
not have access to external code that you specify with the Source file

39-32

 Place External C/C++ Code in Generated Code

To Select

parameter. For example, if you specify an include file as a Source file
setting, the code generator inserts the #include near the top of the
model.c or model.cpp file. The subsystem code that the code generator
places in a separate file does not have access to declarations inside your
included file. In this case, consider specifying your external code with
the Header file parameter.

Insert external code
near the top of the
generated model.h file

Header file, and enter the external code to insert.

Insert external code
inside the model
initialize function in the
model.c or model.cpp
file

Initialize function, and enter the external code to insert.

Insert external code
inside the model
terminate function
in the model.c or
model.cpp file

Terminate function, and enter the external code to insert. Also select
the Terminate function required parameter on the Interface pane.

Add preprocessor macro
definitions

Defines, and enter a space-separated list of preprocessor macro
definitions to add to the generated code. The list can include simple
definitions (for example, -DEF1) and definitions with a value (for
example, -DDEF2=1). Definitions can omit the -D (for example, -DFOO=1
and FOO=1 are equivalent). If a definition includes -D, the toolchain can
override the flag if the toolchain uses a different flag for defines.

Use the same custom
code parameter settings
as the settings specified
for simulation of
MATLAB Function
blocks, Stateflow charts,
and Truth Table blocks

Use the same custom code settings as Simulation Target

This parameter refers to the Simulation Target pane in the
Configuration Parameters dialog box.

39-33

39 External Code Integration in Simulink Coder

To Select

Enable a library model
to use custom code
settings unique from the
parent model to which
the library is linked

Use local custom code settings (do not inherit from main model)

This parameter is available only for library models that contain
MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

To include a header file in an external header file, add #ifndef code. Using this code
avoids multiple inclusions. For example, in rtwtypes.h, the following #include guards
are added:

#ifndef RTW_HEADER_rtwtypes_h_

#define RTW_HEADER_rtwtypes_h_

...

#endif /* RTW_HEADER_rtwtypes_h_ */

For more information on how to add files names and locations of header, source, and
shared library files to the build process, see “Build Integrated Code Within the Simulink
Environment” on page 39-41.

Note The code generator includes external code that you include in a configuration set
when generating code for software-in-the-loop (SIL) and processor-in-the-loop (PIL)
simulations. However, the code generator ignores external code that you include in
a configuration set when producing code with the S-function, rapid simulation, or
simulation system target file.

For more information about Custom Code parameters, see “Model Configuration
Parameters: Code Generation Custom Code” (Simulink Coder). For an example, see
“Integrate External C Code Into Generated Code By Using Custom Code Blocks and
Model Configuration Parameters” on page 39-34.

Integrate External C Code Into Generated Code By Using Custom Code
Blocks and Model Configuration Parameters

This example shows how to place external code in generated code by using custom code
blocks and model configuration parameters.

1. Open the model rtwdemo_slcustcode.

39-34

 Place External C/C++ Code in Generated Code

open_system('rtwdemo_slcustcode')

39-35

39 External Code Integration in Simulink Coder

2. Open the Model Configuration Parameters dialog box and navigate to the Custom
Code pane.

3. Examine the settings for parameters Source file and Initialize function.

• Source file specifies a comment and sets the variable GLOBAL_INT2 to -1.
• Initialize function intializes the variable GLOBAL_INT2 to 1.

4. Close the dialog box.

5. Double-click the Model Source block. The Top of Model Source field specifies that
the code generator declare the variable GLOBAL_INT1 and set it to 0 at the top of the
generated file rtwdemo_slcustcode.c.

6. Open the triggered subsystem Amplifier. The subsystem includes the System
Outputs block. The code generator places code that you specify in that block in the
generated code for the nearest parent atomic subsystem. In this case, the code generator
places the external code in the generated code for the Amplifier subsystem. The
external code:

• Declares the pointer variable *intPtr and intitializes it with the value of variable
GLOBAL_INT1.

• Sets the pointer variable to -1 during execution.
• Resets the pointer variable to 0 before exiting.

7. Generate code and a code generation report.

8. Examine the code in the generated source file rtwdemo_slcustcode.c. At the top
of the file, after the #include statements, you find the following declaration code. The
example specifies the first declaration with the Source file configuration parameter and
the second declaration with the Model Source block.

int_T GLOBAL_INT2 = -1;

int_T GLOBAL_INT1 = 0;

The Output function for the Amplifier subsystem includes the following code, which
shows the external code integrated with generated code that applies the gain. The
example specifies the three lines of code for the pointer variable with the System Output
block in the Amplifier subsystem.

int_T *intPtr = &GLOBAL_INT1;

39-36

 Place External C/C++ Code in Generated Code

*intPtr = -1;

rtwdemo_slcustcode_Y.Output = rtwdemo_slcustcode_U.Input << 1;

*intPtr = 0;

The following assignment appears in the model initialize entry-point function. The
example specifies this assignment with the Initialize function configuration parameter.

GLOBAL_INT2 = 1;

More About
• “Configure a Model for Code Generation” on page 2-2

39-37

39 External Code Integration in Simulink Coder

Call External Device Drivers
Device drivers for protocols and target hardware are essential to many real-time
development projects. For example, you can have a working device driver that you
want to integrate with algorithmic code that has to read data from and write data to
the I/O device that the driver supports. The code generator can produce a single set of
application source files from an algorithm model and integrated driver code written in C
or C++.

To call external device driver code from the Simulink environment, iterate through the
tasks in this table.

Task Action More Information

1 Review your assessment of external
code characteristics and integration
requirements.

“Choose an External Code Integration
Workflow” on page 39-4

2 Define the representation of model
data for code generation.

“Exchange Data Between External C/C+
+ Code and Simulink Model or Generated
Code” on page 39-86

3 Generate S-function and TLC files
by using the Legacy Code Tool. If
necessary, refine the generated
code manually to meet application
requirements.

• “Integrate C Functions Using Legacy
Code Tool” (Simulink)

• “Import Calls to External Code into
Generated Code with Legacy Code Tool”
(Simulink Coder)

4 Verify algorithm behavior and
performance by simulating the
model.

“Simulation” (Simulink)

5 Configure the model for code
generation.

“Generate Code That Matches Appearance
of External Code” on page 39-95 and
“Model Configuration”

6 Generate code and a code
generation report.

“Code Generation”

7 Review the generated code interface
and static code metrics.

“Analyze the Generated Code Interface” on
page 35-21 and “Static Code Metrics” on
page 35-34

8 Build an executable program from
the model.

“Build Integrated Code Within the Simulink
Environment” on page 39-41

39-38

 Call External Device Drivers

Task Action More Information

9 Verify that executable program
behaves and performs as expected.

“Numerical Equivalence Testing”

10 Verify that executable program
performs as expected.

“Code Execution Profiling”

More About
• “Integrate C Functions Using Legacy Code Tool” (Simulink)
• “Import Calls to External Code into Generated Code with Legacy Code Tool”

(Simulink Coder)
• “About Embedded Target Development” (Simulink Coder)

39-39

39 External Code Integration in Simulink Coder

Apply Function and Operator Code Replacements

If your generated code must use functions and operators that are consistent with
external code, configure the code generator to use a code replacement library (CRL).
By default, the code generator does not apply a code replacement library. You can
choose from several libraries that MathWorks provides, including GNU C99 extensions,
AUTOSAR 4.0, and several Intel platform-specific IPP and IPP/SSE libraries. Depending
on the products that you have, other libraries might be available. If you have Embedded
Coder software, you can view and choose from additional libraries and you can create
custom code replacement libraries.

More About
• “What Is Code Replacement?” on page 37-2
• “What Is Code Replacement Customization?” on page 51-3
• Code Replacement Viewer
• Code Replacement Tool

39-40

 Build Integrated Code Within the Simulink Environment

Build Integrated Code Within the Simulink Environment

Workflow

To build executable programs that integrate generated code and external C or C++ code,
iterate through the tasks in this table.

Task Action More Information

1 Choose whether to use the toolchain
approach or template makefile
approach build process.

“Choose and Configure Build Process” on
page 40-14

For an example, see “Build Process
Workflow for a Real-Time STF” on page
40-30.

2 Configuredbuild process support for
your external code.

“Configure Parameters for Integrated Code
Build Process” on page 39-42

3 Configure S-Function build support
for your external code.

“Build Support for S-Functions” on page
39-44

“Use makecfg to Customize Generated
Makefiles for S-Functions” on page
70-24

For examples, see “Call External C Code
from Model and Generated Code” and “Call
Reusable External Algorithm Code for
Simulation and Code Generation” on page
39-13.

4 Configure build process to find the
external code source, library, and
header files.

“Manage Build Process File Dependencies”
on page 33-52

“Control Library Location and Naming
During Build” on page 70-7

5 Set up custom build processing
required for your external code
integration.

For the build process customization
workflow, see “Customize Post-Code-
Generation Build Processing” on page
70-14.

39-41

39 External Code Integration in Simulink Coder

Task Action More Information

To automate applying build customizations
to a toolchain approach build, see
“Customize Build Process with
sl_customization.m” on page 70-38.

To automate applying build customizations
to a template makefile approach build,
see “Customize Build Process with
STF_make_rtw_hook File” on page
70-31.

Configure Parameters for Integrated Code Build Process

The table provides a guide to configuration parameters that support the build process
for external code integration. For information about folders for your external code, see
“Manage Build Process Folders” on page 33-37. If you choose to place your external code
in the “Code generation folder” (Simulink), see “Preserve External Code Files in Build
Folder” on page 39-43.

To Select

Add include folders,
which contain header
files, to the build process

Configuration Parameters > Code Generation >
Custom Code > Additional build information > Include
directories, and enter the absolute or relative paths to the
folders.

If you specify relative paths, the paths must be relative to the
folder containing your model files, not relative to the build
folder. The order in which you specify the folders is the order
in which they are searched for header, source, and library
files.

Add source files to be
compiled and linked

Configuration Parameters > Code Generation >
Custom Code > Additional build information > Source
files, and enter the full paths or just the file names for the
files.

Enter just the file name if the file is in the current MATLAB
folder or in one of the include folders. For each additional

39-42

 Build Integrated Code Within the Simulink Environment

To Select

source that you specify, the build process expands a generic
rule in the template makefile for the folder in which the
source file is located. For example, if a source file is located
in folder inc, the build process adds a rule similar to the
following:

%.obj: buildir\inc\%.c

 $(CC) -c -Fo$(@F) $(CFLAGS) $<

The build process adds the rules in the order that you list the
source files.

Add libraries to be linked Configuration Parameters > Code Generation >
Custom Code > Additional build information >
Libraries, and enter the full paths or just the file names for
the libraries.

Enter just the file name if the library is located in the current
MATLAB folder or in one of the include folders.

Use the same custom
code settings as those
specified for simulation
of MATLAB Function
blocks, Stateflow charts,
and Truth Table blocks

Configuration Parameters > All Parameters > Code
Generation > Custom Code > Use the same custom
code settings as Simulation Target

Note This parameter refers to the Simulation Target pane
in the Configuration Parameters dialog box.

Enable a library model to
use custom code settings
unique from the parent
model to which the
library is linked

Configuration Parameters > All Parameters > Code
Generation > Custom Code > Use local custom code
settings (do not inherit from main model)

Note This parameter is available only for library models that
contain MATLAB Function blocks, Stateflow charts, or Truth
Table blocks.

Preserve External Code Files in Build Folder

By default, the build process deletes foreign source files. You can preserve foreign source
files by following these guidelines.

39-43

39 External Code Integration in Simulink Coder

If you put a .c/.cpp or .h source file in a build folder, and you want to prevent the
code generator from deleting it during the TLC code generation process, insert the text
target specific file in the first line of the .c/.cpp or .h file. For example:
/* COMPANY-NAME target specific file

 *

 * This file is created for use with the

 * COMPANY-NAME target.

 * It is used for ...

 */

...

Make sure that you spell the text “target specific file” as shown in the preceding example,
and that the text is in the first line of the source file. Other text can appear before or
after this text.

Flagging user files in this manner prevents postprocessing these files to indent them
with generated source files. Auto-indenting occurred in previous releases to build folder
files with names having the pattern model_*.c/.cpp (where * was text). The indenting
is harmless, but can cause differences detected by source control software that can
potentially trigger unnecessary updates.

Build Support for S-Functions

User-written S-Function blocks provide a powerful way to incorporate external code into
the Simulink development environment. In most cases, you use S-functions to integrate
existing external code with generated code. Several approaches to writing S-functions are
available:

• “Write Noninlined S-Function and TLC Files” on page 11-66
• “Write Wrapper S-Function and TLC Files” on page 11-68
• “Write Fully Inlined S-Functions” on page 11-77
• “Write Fully Inlined S-Functions with mdlRTW Routine” on page 11-78
• “S-Functions That Support Code Reuse” on page 11-114
• “S-Functions for Multirate Multitasking Environments” on page 11-115

S-functions also provide the most flexible and capable way of including build information
for legacy and custom code files in the build process.

There are different ways of adding S-functions to the build process.

39-44

 Build Integrated Code Within the Simulink Environment

Implicit Build Support

When building models with S-functions, the build process adds rules, include paths,
and source file names to the generated makefile. The source files (.h, .c, and .cpp) for
the S-function must be in the same folder as the S-function MEX-file. Whether using
the toolchain approach or template makefile approach for builds, the build process
propagates this information through the toolchain or template makefile.

• If the file sfcnname.h exists in the same folder as the S-function MEX-file (for
example, sfcnname.mexext), the folder is added to the include path.

• If the file sfcnname.c or sfcnname.cpp exists in the same folder as the S-function
MEX-file, the build process adds a makefile rule for compiling files from that folder.

• When an S-function is not inlined with a TLC file, the build process must compile
the S-function source file. To determine the name of the source file to add to the list
of files to compile, the build process searches for sfcnname.cpp on the MATLAB
path. If the source file is found, the build process adds the source file name to the
makefile. If sfcnname.cpp is not found on the path, the build process adds the file
name sfcnname.c to the makefile, whether or not it is on the MATLAB path.

Note: For the Simulink engine to find the MEX-file for simulation and code
generation, it must exist on the MATLAB path or exist in our current MATLAB
working folder.

Specify Additional Source Files for an S-Function

If your S-function has additional source file dependencies, you must add the names of the
additional modules to the build process. Specify the file names:

• In the S-function modules field in the S-Function block parameter dialog box
• With the SFunctionModules parameter in a call to the set_param function

For example, suppose you build your S-function with multiple modules.
mex sfun_main.c sfun_module1.c sfun_module2.c

You can then add the modules to the build process by doing one of the following:

• In the S-function block dialog box, specify sfun_main, sfun_module1, and
sfun_module2 in the S-function modules field.

• At the MATLAB command prompt, enter:

39-45

39 External Code Integration in Simulink Coder

set_param(sfun_block,'SFunctionModules','sfun_module1 sfun_module2')

Alternatively, you can define a variable to represent the parameter value.
modules = 'sfun_module1 sfun_module2'

 set_param(sfun_block,'SFunctionModules', modules)

The S-function modules field and SFunctionModules parameter do not support
complete source file path specifications. To use the parameter, the code generator must
find the additional source files when executing the makefile. For the code generator to
locate the additional files, place them in the same folder as the S-function MEX-file. You
can then leverage the implicit build support described in “Implicit Build Support” on
page 39-45.

When you are ready to generate code, force the code generator to rebuild the top model,
as described in “Control Regeneration of Top Model Code” (Simulink Coder).

For more complicated S-function file dependencies, such as specifying source files
in other locations or specifying libraries or object files, use the rtwmakecfg.m API,
as described in “Use rtwmakecfg.m API to Customize Generated Makefiles” on page
70-26.

Use TLC Library Functions

If you inline your S-function by writing a TLC file, you can add source file names to the
build process by using the TLC library function LibAddToModelSources. For details,
see “LibAddSourceFileCustomSection(file, builtInSection, newSection)” (Simulink Coder).

Note: This function does not support complete source file path specifications. The
function assumes that the code generator can find the additional source files when
executing the makefile.

Another useful TLC library function is LibAddToCommonIncludes. Use this function
in a #include statement to include S-function header files in the generated model.h
header file. For details, see “LibAddToCommonIncludes(incFileName)” (Simulink Coder).

For more complicated S-function file dependencies, such as specifying source files
in other locations or specifying libraries or object files, use the rtwmakecfg.m API,
as described in “Use rtwmakecfg.m API to Customize Generated Makefiles” on page
70-26.

39-46

 Build Integrated Code Within the Simulink Environment

Precompile S-Function Libraries

You can precompile new or updated S-function libraries (MEX-files) for a model by using
the MATLAB language function rtw_precompile_libs. Using a specified model and a
library build specification, this function builds and places the libraries in a precompiled
library folder.

By precompiling S-function libraries, you can optimize system builds. Once your
precompiled libraries exist, the build process can omit library compilation from
subsequent builds. For models that use numerous libraries, the time savings for build
processing can be significant.

To use rtw_precompile_libs:

1 Set the library file suffix, including the file type extension, based on your system
platform.

Consider determining the type of platform, and then use the TargetLibSuffix
parameter to set the library suffix accordingly. For example, when applying a
suffix for a GRT target, you can set the suffix to _std.a for a UNIX platform and
_vcx64.lib for a Windows platform.
 if isunix

 suffix = '_std.a';

 else

 suffix = '_vcx64.lib';

 end

set_param(my_model,'TargetLibSuffix', suffix);

There are a number of factors that influence the precompiled library suffix and
extension. The following table provides examples for typical selections of system
target file, the compiler toolchain, and other options that affect your choice of
suffix and extension. For more information, examine the template make files in the
matlab/rtw/c/grt folder or matlab/rtw/c/ert folder.

Precompiler Libraries (PRECOMP_LIBRARIES)

TMF File

COMPILER
_TOOL_CHAIN

Value

Library Suffix
S-Function
(EXPAND
_LIBRARY

_NAME Value)

Library Suffix
Integer- Only

Code (EXPAND
_LIBRARY

_NAME Value)

Library Suffix
Optimize for

Speed (EXPAND
_LIBRARY

_NAME Value)

Library
Extension
(EXPAND
_LIBRARY

_NAME Value)

ert_lcc64.tmf lcc _rtwsfcn_lcc _int_ert_lcc _ert_lcc .lib

39-47

39 External Code Integration in Simulink Coder

Precompiler Libraries (PRECOMP_LIBRARIES)

TMF File

COMPILER
_TOOL_CHAIN

Value

Library Suffix
S-Function
(EXPAND
_LIBRARY

_NAME Value)

Library Suffix
Integer- Only

Code (EXPAND
_LIBRARY

_NAME Value)

Library Suffix
Optimize for

Speed (EXPAND
_LIBRARY

_NAME Value)

Library
Extension
(EXPAND
_LIBRARY

_NAME Value)

ert_vcx64.tmf vcx64 _rtwsfcn_vcx64 _int_ert_vcx64 _ert_vcx64 .lib
ert_unix.tmf unix _rtwsfcn _int_ert _ert .a
grt_lcc64.tmf lcc n/a n/a _lcc .lib
grt_vcx64.tmf vcx64 n/a n/a _vcx64 .lib
grt_unix.tmf unix n/a n/a _std .a

2 Set the precompiled library folder.

Use one of the following methods to set the precompiled library folder:

• Set the TargetPreCompLibLocation parameter, as described in “Specify the
Location of Precompiled Libraries” on page 70-9.

• Set the makeInfo.precompile field in an rtwmakecfg.m function file.
(For more information, see “Use rtwmakecfg.m API to Customize Generated
Makefiles” on page 70-26.)

If you set TargetPreCompLibLocation and makeInfo.precompile, the setting
for TargetPreCompLibLocation takes precedence.

The following command sets the precompiled library folder for model my_model to
folder lib under the current working folder.

set_param(my_model,'TargetPreCompLibLocation', fullfile(pwd,'lib'));

Note: If you set both the target folder for the precompiled library files and a target
library file suffix, the build process detects whether any precompiled library files are
missing while processing builds.

3 Define a build specification.

Set up a structure that defines a build specification. The following table describes
fields that you can define in the structure. These fields are optional, except for
rtwmakecfgDirs.

39-48

 Build Integrated Code Within the Simulink Environment

Field Description

rtwmakecfgDirs A cell array of character vectors that name the folders containing
rtwmakecfg files for libraries to be precompiled. The function
uses the Name and Location elements of makeInfo.library, as
returned by rtwmakecfg, to specify the name and location of the
precompiled libraries. If you set the TargetPreCompLibLocation
parameter to specify the library folder, that setting overrides the
makeInfo.library.Location setting.

Note: The specified model must contain blocks that use precompiled
libraries specified by the rtwmakecfg files because the TMF-to-makefile
conversion generates the library rules only if the build process uses the
libraries.

libSuffix A character vector that specifies the suffix, including the file type
extension, to be appended to the name of each library (for example, .a
or _vc.lib). The character vector must include a period (.). You must
set the suffix with either this field or the TargetLibSuffix parameter.
If you specify a suffix with both mechanisms, the TargetLibSuffix
setting overrides the setting of this field.

intOnlyBuild A Boolean flag. When set to true, the flag indicates the libraries are to be
optimized such that they are compiled from integer code only. This field
applies to ERT targets only.

makeOpts A character vector that specifies an option to be included in the rtwMake
command line.

addLibs A cell array of structures that specify libraries to be built that are not
specified by an rtwmakecfg function. Each structure must be defined
with two fields that are character arrays:

• libName — the name of the library without a suffix
• libLoc — the location for the precompiled library

The target makefile (TMF) can specify other libraries and how those
libraries are built. Use this field to precompile those libraries.

The following commands set up build specification build_spec, which indicates
that the files to be compiled are in folder src under the current working folder.

build_spec = [];

39-49

39 External Code Integration in Simulink Coder

build_spec.rtwmakecfgDirs = {fullfile(pwd,'src')};

4 Issue a call to rtw_precompile_libs.

The call must specify the model for which you want to build the precompiled libraries
and the build specification. For example:
rtw_precompile_libs(my_model,build_spec);

More About
• “Call Reusable External Algorithm Code for Simulation and Code Generation” on

page 39-13
• “Place External C/C++ Code in Generated Code” on page 39-27
• “Call External Device Drivers” on page 39-38
• “Deploy Generated Standalone Executable Programs To Target Hardware” on page

49-2
• “Deploy Generated Component Software to Application Target Platforms” on page

49-22

39-50

 Generate Component Source Code for Export to External Code Base

Generate Component Source Code for Export to External Code
Base

In this section...

“Modeling Options” on page 39-51
“Requirements” on page 39-52
“Limitations for Export-Function Subsystems” on page 39-53
“Workflow” on page 39-54
“Choose an Integration Approach” on page 39-55
“Generate C Function Code for Export-Function Model” on page 39-57
“Generate C++ Function and Class Code for Export-Function Model” on page 39-63
“Generate Code for Export-Function Subsystems” on page 39-68

If you have Embedded Coder software, you can generate function source code from
modeling components to use in an external code base. The generated code does not
include supporting scheduling code (for example, a step function). Controlling logic
outside of the Simulink environment invokes the generated function code.

Modeling Options

You can generate function code to export for these modeling components:

• Export-function models (model containing functional blocks that consist exclusively of
function-call subsystems, function-call model blocks, or other export-function models,
as described in “Export-Function Models” (Simulink))

• Export-function subsystems (virtual subsystem that contains function-call
subsystems)

To export code that the code generator produces for these modeling components, the
modeling components must meet specific requirements on page 39-52.

For models designed in earlier releases, the code generator can export functions from
triggered subsystems. The requirements stated for export-function subsystems also apply
to exporting functions from triggered subsystems, with the following exceptions:

• Encapsulate triggered subsystems from which you intend to export functions in a top-
level virtual subsystem.

39-51

39 External Code Integration in Simulink Coder

• Triggered subsystems do not have to meet requirements and limitations identified for
virtual subsystems that contain function-call subsystem.

• “Export Functions That Use Absolute or Elapsed Time” on page 39-53 does not
apply to exporting functions from triggered subsystems.

Requirements

• Model solver must be a fixed-step discrete solver.
• You must configure each root-level Inport block that triggers a function-call

subsystem to output a function-call trigger. These Inport blocks cannot connect to an
Asynchronous Task Specification block.

• Model or subsystem, must contain only the following blocks at the root level:

• Function-call blocks (such as Function-Call Subsystem, Simulink Function, S-
Functions, and Function-Call Model blocks at the root level if the solver parameter
Tasking and sample time options > Periodic sample time constraint is set
to Ensure sample time independent)

• Inport and Outport blocks (ports)
• Constant blocks (including blocks that resolve to constants, such as Add)
• Blocks with a sample time of Inf
• Merge and data store memory blocks
• Virtual connection blocks (such as, Function-Call Split, Mux, Demux, Bus Creator,

Bus Selector, Signal Specification, and virtual subsystems that contain these
blocks)

• Signal-viewer blocks, such as Scope blocks (export-function subsystems only)
• When a constant block appears at the top level of the model or subsystem, you must

set the model configuration parameter Optimization > Signals and Parameters >
Default parameter behavior for the model or containing model to Inlined.

• Blocks inside the model or subsystem must support code generation.
• Blocks that use absolute or elapsed time must be inside a periodic function-call

subsystem with a discrete sample time specified on the corresponding function-call
root-level Inport block. See “Export Functions That Use Absolute or Elapsed Time” on
page 39-53.

• Data signals that cross the boundary of an exported system cannot be a virtual bus
and cannot be implemented as a Goto-From connection. Data signals that cross the
export boundary must be scalar, muxed, or a nonvirtual bus.

39-52

 Generate Component Source Code for Export to External Code Base

In addition, for export-function models, data logging and signal-viewer blocks, such as
the Scope block, are not allowed at the root level or within the function-call blocks.

For export-function subsystems, the following additional requirements apply:

• A trigger signal that crosses the boundary of an export-function subsystem must be
scalar. Input and output data signals that do not act as triggers do not have to be
scalar.

• When a constant signal drives an output port of an export-function subsystem, the
signal must specify a storage class.

Export Functions That Use Absolute or Elapsed Time

If you want to export function code for a modeling component with blocks that use
absolute or elapsed time, those blocks must be inside a function-call subsystem that:

• You configure for periodic execution
• You configure the root-level Inport block with a discrete sample time

To configure a function-call subsystem for periodic execution:

1 In the function-call subsystem, right-click the Trigger block and choose Block
Parameters from the context menu.

2 In the Sample time type field, specify periodic.
3 Set the Sample time to the same granularity specified (directly or by inheritance) in

the function-call initiator.
4 Click OK or Apply.

For more information, see “Absolute and Elapsed Time Computation” (Simulink Coder).

Limitations for Export-Function Subsystems

• Subsystem block parameters do not control the names of the files containing the
generated code. The file names begin with the name of the exported subsystem.

• Subsystem block parameters do not control the names of top-level functions in the
generated code. Each function name reflects the name of the signal that triggers
the function or (for an unnamed signal) reflects the block from which the signal
originates.

• The code generator cannot export reusable code for export-function subsystems. The
Code interface packaging value Reusable function does not apply for export-
function subsystems.

39-53

39 External Code Integration in Simulink Coder

• You can export function-call systems for the C++ class code interface packaging
only when its function specification is set to Default step method. See “Control
Generation of C++ Class Interfaces” on page 26-23. The exported function is
compatible with single-threaded execution. To avoid potential data race conditions for
shared signals, invoke all members for the class from the same execution thread.

• The code generator supports a SIL or PIL block in accelerator mode only if its
function-call initiator is noninlined in accelerator mode. Examples of noninlined
initiators include Stateflow charts.

• A Level-2 S-function initiator block, such as a Stateflow chart or the built-in Function-
Call Generator block, must drive a SIL block.

• You can export an asynchronous (sample-time) function-call system, but the software
does not support the SIL or PIL block for an asynchronous system.

• The software does not support MAT-file logging for export-function subsystems.
Specifications that enable MAT-file logging are ignored.

• The use of the TLC function LibIsFirstInit has been removed for export-function
subsystems.

Workflow

To generate code for an exported function, iterate through the tasks listed in this table.

Task Action More Information

1 Review your assessment of external
code characteristics and integration
requirements.

“Choose an External Code Integration
Workflow” on page 39-4

2 Verify that the model or subsystem
that you are exporting satisfies
function exporting requirements.

“Requirements” on page 39-52

3 Address data interface
requirements by modifying the
model or subsystem.

“Exchange Data Between External C/C+
+ Code and Simulink Model or Generated
Code” on page 39-86

4 If necessary, configure function
prototype.

“Configure Simulink Function Code
Interface” on page 26-67 and, for fixed-step
rate-based models, “Control Generation
of Function Prototypes” on page 26-2
or “Control Generation of C++ Class
Interfaces” on page 26-23

39-54

 Generate Component Source Code for Export to External Code Base

Task Action More Information

5 If necessary , update the model to
place external application-specific
code in generated system functions.

“Place External C/C++ Code in Generated
Code” on page 39-27

6 Verify that the functions behave
and perform as expected during
simulation by creating and using
a test harness model. The test
harness model schedules execution
of the functions during simulation.

“Configure Model, Generate Code, and
Simulate” on page 33-2 and, if you have
Simulink Test software, “Tests in Models”
(Simulink Test)

7 Configure the model or subsystem
for code generation.

“Generate Code Using Embedded Coder®”,
“Generate Code That Matches Appearance
of External Code” on page 39-95,
and“Model Configuration”

8 Generate code and a code
generation report.

“Code Generation”

9 Review the generated code interface
and static code metrics.

“Analyze the Generated Code Interface” on
page 35-21 and “Static Code Metrics” on
page 35-34

10 Build an executable program that
includes the exported function code.

“Build Integrated Code Outside the
Simulink Environment” on page 39-79

11 Verify that executable program
behaves and performs as expected.

Choose an Integration Approach

Multiple approaches are available for generating function code for export to an external
development environment. The following table compares approaches. Choose the
approach that aligns best with your integration requirements. For more information on
how to create export-function models, see “Export-Function Models” (Simulink). For more
information on generating code for function call subsystems, see “Generate Component
Source Code for Export to External Code Base” on page 39-51.

Condition or Requirement Use More Information

• Traceability between
modeling elements and
generated code

Function-call
subsystem

• “Generate C Function Code for Export-
Function Model” on page 39-57

39-55

39 External Code Integration in Simulink Coder

Condition or Requirement Use More Information

• Local inputs (Inport block)
and outputs (Outport block)

• “Generate C++ Function and Class
Code for Export-Function Model” on
page 39-63

• “Function-Call Subsystems” (Simulink)
• Function-Call Subsystem

• Control over generated
function prototype

• Formal input arguments
(Argument Inport blocks) and
output arguments (Argument
Outport blocks)

• Local inputs (Inport block)
and outputs (Outport block)

Simulink Function
block

• “Configure Simulink Function Code
Interface” on page 26-67

• “Modeling Functions and Callers for
Code Generation” on page 4-2

• “Generate Code for Functions and
Callers” on page 4-6

• “Simulink Functions in Simulink
Models” (Simulink)

• Simulink Function
Code responds to an
initialization event

Initialize Function
block

• “Generate C Function Code for Export-
Function Model” on page 39-57

• “Generate C++ Function and Class
Code for Export-Function Model” on
page 39-63

• “Generate Code That Responds to
Initialize, Reset, and Terminate
Events” on page 9-2

• “Create Model to Initialize, Reset, and
Terminate State” (Simulink)

39-56

 Generate Component Source Code for Export to External Code Base

Condition or Requirement Use More Information

Code responds to a reset event Reset Function block • “Generate C Function Code for Export-
Function Model” on page 39-57

• “Generate C++ Function and Class
Code for Export-Function Model” on
page 39-63

• “Generate Code That Responds to
Initialize, Reset, and Terminate
Events” on page 9-2

• “Create Model to Initialize, Reset, and
Terminate State” (Simulink)

Code includes entry-point
functions beyond what the
code generator produces by
default (model_initialize,
model_step, and
model_terminate)

S-function “Write S-Function and TLC Files By
Hand” on page 11-66

Single-model execution
framework to use as test
harness and to export code
generated for portions of a model

Export-function
subsystem

• “Code Generation of Subsystems” on
page 3-2

• “Systems and Subsystems” (Simulink)
• “Function-Call Subsystems” (Simulink)
• Function-Call Subsystem

Generate C Function Code for Export-Function Model

This example shows how to generate function code for individual Simulink function
blocks and function-call subsystems in a model without generating scheduling code.

To generate function code for export:

1 Create a model that contains the functions for export.
2 Create a test harness model that schedules execution of the functions during

simulation.
3 Simulate the model that contains the functions by using the test harness model.
4 Generate code for the model that contains the functions.

39-57

39 External Code Integration in Simulink Coder

Create Model That Contains Functions for Export

The model with functions for export must satisfy architectural constraints at the model
root level. At the root level, valid blocks are:

• Inport
• Outport
• Function-Call Subsystem
• Simulink Function
• Goto
• From
• Merge

The code generator produces function code for Function-Call Subsystem and Simulink
Function blocks and Initialize and Reset Function blocks. For a Function-call Subsystem
block, you connect the block input ports to root Inport blocks that assert function-call
signals. The subsystem is executed based on the function-call signal that it receives.
A Simulink Function block is executed in response to the execution of a corresponding
Function Caller block or Stateflow chart. An Initialize Function block is executed on a
model initialize event and a Reset Function block is executed on a user-defined reset
event.

For exporting functions, model rtwdemo_functions contains two function-call
subsystems (f1_alg and f2_alg) and a Simulink Function block (f3) for exporting
functions. The model also contains an Initialize Function block (Initialize Function)
and a Reset Function block (Reset Function). To calculate initial conditions for
blocks with state in other parts of the model, the State Writer blocks are used inside the
Initialize and Reset Function blocks.

open_system('rtwdemo_functions')

39-58

 Generate Component Source Code for Export to External Code Base

Create Model That Contains Function Caller Block

Use a Function Caller block to invoke a Simulink Function block. The Function Caller
block can be in the same model or in a different model as the Simulink Function block.

Multiple Function Caller blocks can invoke a Simulink Function block. You can place the
Function Caller block inside a function-call subsystem. During code generation, the code
generator exports a function from the function-call subsystem.

The model rtwdemo_caller exports a function-call subsystem that contains a Function
Caller block.

open_system('rtwdemo_caller')

39-59

39 External Code Integration in Simulink Coder

Create Test Harness Model for Simulation

When you export functions, the generated code does not include a scheduler. Create a
test harness model to handle scheduling during simulation. Do not use the test harness
model to generate code that you deploy.

Model rtwdemo_export_functions is a test harness. The model:

• Schedules the Simulink Function block with the Function Caller block in
rtwdemo_caller.

• Provides function-call signals to other models in this example to schedule the model
contents, including the model initialize and reset events.

open_system('rtwdemo_export_functions')

39-60

 Generate Component Source Code for Export to External Code Base

Simulate the Test Harness Model

Verify that the model containing the functions that you want to export is executed
as you expect by simulating the test harness model. For example, simulate
rtwdemo_export_functions.

sim('rtwdemo_export_functions')

Generate Function Code and Report

Generate code and a code generation report for the functions that you want to export. For
example, generate code for rtwdemo_functions.

rtwbuild('rtwdemo_functions')

Starting build procedure for model: rtwdemo_functions

Successful completion of code generation for model: rtwdemo_functions

Review Generated Code

From the code generation report, review the generated code.

39-61

39 External Code Integration in Simulink Coder

• ert_main.c is an example main program (execution framework) for the model. This
code shows how to call the exported functions. The code also shows how to initialize
and execute the generated code.

• rtwdemo_functions.c calls the initialization function, including Initialize
Function, and exported functions for model components f1_alg, f2_alg, and f3.

• rtwdemo_functions.h declares model data structures and a public interface to the
exported entry-point functions and data structures.

• f3.h is a shared file that declares the call interface for the Simulink function f3.
• rtwtypes.h defines data types, structures, and macros that the generated code

requires.

Write Interface Code

Open and review the Code Interface Report. To write the interface code for your
execution framework, use the information in that report.

1 Include the generated header files by adding directives #include
rtwdemo_functions.h, #include f3.h, and #include rtwtypes.h.

2 Write input data to the generated code for model Inport blocks.
3 Call the generated entry-point functions.
4 Read data from the generated code for model Outport blocks.

Input ports:

• rtU.U1 of type real_T with dimension 1
• rtU.U2 of type real_T with dimension 1

Entry-point functions:

• Initialize entry-point function, void rtwdemo_functions_initialize(void). At
startup, call this function once.

• Reset entry-point function, void rtwdemo_functions_reset(void). Call this
function as needed.

• Exported function, void f1(void). Call this function as needed.
• Exported function, void f2(void). Call this function as needed.
• Simulink function, void f3(real_T rtu_u, real_T *rty_y). Call this function

as needed.

39-62

 Generate Component Source Code for Export to External Code Base

Output ports:

• rtY.Accumulator1 of type int8_T with dimension [2]
• rtY.Accumulator2 of type int8_T with dimension [2]
• rtY.TicToc10 of type int8_T with dimension 1

More About

• “Generate Component Source Code for Export to External Code Base”
• “Deploy Generated Standalone Executable Programs To Target Hardware”
• “Customize Code Organization and Format”
• “Control Generation of Function Prototypes”
• “Modeling Functions and Callers for Code Generation” (Simulink Coder)
• “Generate Code for Functions and Callers” (Simulink Coder)

Close Example Models

bdclose('rtwdemo_export_functions')

bdclose('rtwdemo_functions')

bdclose('rtwdemo_caller')

Generate C++ Function and Class Code for Export-Function Model

This example shows how to generate function code for an export-function model that
includes a function-call subsystem. The code generator produces function and class code
that does not include scheduling code.

To generate function code for export:

1 Create a model that contains the functions for export.
2 Create a test harness model that schedules execution of the functions during

simulation.
3 Simulate the model that contains the functions by using the test harness model.
4 Generate code for the model that contains the functions.

Create Model That Contains Functions and C++ Class Interface for Export

The model with functions for export with a C++ model class interface must satisfy
architectural constraints at the model root level. For C++ class generation, blocks that
are valid at the root level are:

39-63

39 External Code Integration in Simulink Coder

• Inport
• Outport
• Function-Call Subsystem
• Goto
• From
• Merge

Note: Export Function-Call Subsystem with C++ class interface does not support
Simulink Function blocks.

The code generator produces function code for the Function-Call Subsystem block. For
a Function-call Subsystem block, you connect the block input ports to root Inport blocks
that assert function-call signals. The subsystem is executed based on the function-call
signal that it receives.

Model rtwdemo_cppclass_functions contains function-call subsystems f1, f2, and
f3 for exporting functions.

open_system('rtwdemo_cppclass_functions')

39-64

 Generate Component Source Code for Export to External Code Base

Create Test Harness Model for Simulation

When you export functions, the generated code does not include a scheduler. Create a
test harness model to handle scheduling during simulation. Do not use the test harness
model to generate code that you deploy.

Model rtwdemo_cppclass_export_functions is a test harness. The model provides
function-call signals to other models in this example to schedule the model contents.

open_system('rtwdemo_cppclass_export_functions')

39-65

39 External Code Integration in Simulink Coder

Simulate the Test Harness Model

Verify that the model containing the functions that you want to export is executed
as you expect by simulating the test harness model. For example, simulate
rtwdemo_cppclass_export_functions.

sim('rtwdemo_cppclass_export_functions')

Generate Function Code and Report

Generate code and a code generation report for the functions that you want to export. For
example, generate code for rtwdemo_cppclass_functions.

rtwbuild('rtwdemo_cppclass_functions')

Starting build procedure for model: rtwdemo_cppclass_functions

Successful completion of build procedure for model: rtwdemo_cppclass_functions

Review Generated Code

From the code generation report, review the generated code.

39-66

 Generate Component Source Code for Export to External Code Base

• ert_main.cpp is an example main program (execution framework) for the model.
This code shows how to call the exported functions. The code also shows how to
initialize and execute the generated code.

• rtwdemo_cppclass_functions.cpp calls the initialization function, including
Initialize Function, and exported functions for model subsystem components f1,
f2, and f3.

• rtwdemo_cppclass_functions.h declares model data structures and a public
interface to the exported entry-point functions and data structures.

• rtwtypes.h defines data types, structures, and macros that the generated code
requires.

Write Interface Code

Open and review the Code Interface Report. To write the interface code for your
execution framework, use the information in that report.

1 Include the generated header files by adding directives #include
rtwdemo_cppclass_functions.h and #include rtwtypes.h.

2 Write input data to the generated code for model Inport blocks.
3 Call the generated entry-point functions.
4 Read data from the generated code for model Outport blocks.

Input ports:

• rtU.U1 of type real_T with dimension 1
• rtU.U2 of type real_T with dimension 1
• rtU.U3 of type real_T with dimension 1

Entry-point functions:

• Initialize entry-point function, void initialize(void). At startup, call this
function once.

• Exported function, void t_1tic_A(void). Call this function as needed.
• Exported function, void t_1tic_B(void). Call this function as needed.
• Exported function, void t_1tic_C(void). Call this function as needed.

Output ports:

• rtY.TicToc1 of type int8_T with dimension [2]

39-67

39 External Code Integration in Simulink Coder

• rtY.TicToc2 of type int8_T with dimension [2]
• rtY.TicToc10 of type int8_T with dimension 1

More About

• “Generate Component Source Code for Export to External Code Base”
• “Deploy Generated Standalone Executable Programs To Target Hardware”
• “Customize Code Organization and Format”
• “Control Generation of C++ Class Interfaces”
• “Modeling Functions and Callers for Code Generation” (Simulink Coder)
• “Generate Code for Functions and Callers” (Simulink Coder)

Close Example Models

bdclose('rtwdemo_cppclass_export_functions')

bdclose('rtwdemo_cppclass_functions')

Generate Code for Export-Function Subsystems

• “Specify a Custom Initialize Function Name” on page 39-69
• “Specify a Custom Description” on page 39-69
• “Optimize Code Generated for Export-Function Subsystems” on page 39-70

To generate code for an export-function subsystem:

1 Verify that the subsystem for which you are generating code satisfies exporting
requirements on page 39-52.

2 In the Configuration Parameters dialog box:

a On the Code Generation pane, specify an ERT-based system target file, such
as ert.tlc.

b If you want a SIL block with the generated code, for verification purposes, from
the Configuration Parameters > All Parameters > Create block drop-down
list, select SIL.

c Click OK or Apply.
3 Right-click the subsystem block and choose C/C++ Code > Export Functions from

the context menu.

39-68

 Generate Component Source Code for Export to External Code Base

The Build code for subsystem: Subsystem dialog box is not specific to export-
function subsystems. Generating code does not require entering information in the
dialog box.

4 Click Build.

The code generator produces code and places it in the working folder.

If you set Create block to SIL in step 2b, Simulink opens a new window that
contains an S-function block that represents the generated code. This block has the
same size, shape, and connectors as the original subsystem.

Code generation and optional block creation are now complete. You can test and use
the code and optional block as you do for generated ERT code and S-function block.
For optional workflow tasks, see “Specify a Custom Initialize Function Name” on page
39-69 and “Specify a Custom Description” on page 39-69.

Specify a Custom Initialize Function Name

You can specify a custom name for the initialize function of your exported function as an
argument to the rtwbuild command. The command takes the following form:
blockHandle = rtwbuild('subsystem', 'Mode', 'ExportFunctionCalls',..

 ’ExportFunctionInitializeFunctionName’, ’fcnname’)

fcnname specifies the function name. For example, if you specify the name
'myinitfcn', the build process emits code similar to:

/* Model initialize function */

void myinitfcn(void){

...

}

Specify a Custom Description

You can enter a custom description for an exported function by using the Block
Properties dialog box of an Inport block.

1 Right-click the Inport block that drives the control port of the subsystem for which
you are exporting code.

2 Select Properties.
3 In the General tab, in the Description field, enter your descriptive text.

39-69

39 External Code Integration in Simulink Coder

During function export, the text you enter is emitted to the generated code in
the header for the Inport block. For example, if you open the example program
rtwdemo_exporting_functions and enter a description in the Block Properties dialog
box for port t_1tic_A, the code generator produces code that is similar to:

/*

 * Output and update for exported function: t_1tic_A

 *

 * My custom description of the exported function

*/

void t_1tic_A(void)

{

...

}

Optimize Code Generated for Export-Function Subsystems

To optimize the code generated for an export-function subsystem, specify a separate
storage class for each input signal and output signal that crosses the boundary of the
subsystem.

For each function-call subsystem that you are exporting:

1 Right-click the subsystem.
2 From the context menu, choose Block Parameters (Subsystem).
3 Select the Code Generation tab.
4 Set Function packaging to Auto.
5 Click OK or Apply.

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2
• “Systems and Subsystems” (Simulink)
• “Triggered Subsystems” (Simulink)
• “Function-Call Subsystems” (Simulink)
• “Export-Function Models” (Simulink)

39-70

 Generate Shared Library for Export to External Code Base

Generate Shared Library for Export to External Code Base

In this section...

“About Generated Shared Libraries” on page 39-71
“Workflow” on page 39-71
“Generate Shared Libraries” on page 39-73
“Create Application Code That Uses Generated Shared Libraries” on page 39-73
“Limitations” on page 39-76
“Interface to a Development Computer Simulator By Using a Shared Library” on page
39-76

About Generated Shared Libraries

If you have Embedded Coder software, you can generate a shared library—Windows
dynamic link library (.dll), UNIX shared object (.so), or Macintosh OS X dynamic
library (.dylib)— from a model component. You or others can integrate the shared
library into an application that runs on a Windows, UNIX, or Macintosh OS X
development computer. Uses of shared libraries include:

• Adding a software component to an application for system simulation
• Reusing software modules among applications on a development computer
• Hiding intellectual property associated with software that you share with vendors

When producing a shared library, the code generator exports:

• Variables and signals of type ExportedGlobal as data
• Real-time model structure (model_M) as data
• Functions essential to executing the model code

Workflow

To generate a shared library from a model component and use the library, complete the
tasks listed in this table.

39-71

39 External Code Integration in Simulink Coder

Task Action More Information

1 Review your assessment of external
code characteristics and integration
requirements.

• “Choose an External Code Integration
Workflow” on page 39-4

• “Shared Library Limitations” on page
47-7

2 Configure the model for code
generation.

“Generate Code That Matches Appearance
of External Code” on page 39-95 and
“Model Configuration”

3 Configure the model for the code
generator to produce a shared
library and initiate code generation.

“Generate Shared Libraries” on page
39-73

4 Verify that the generated shared
library meets requirements. For
example, review the code generation
report and view the list of symbols
in the library.

• On Windows, use the
Dependency Walker
utility, downloadable from
www.dependencywalker.com

• On UNIX, use nm -D model.so
• On Macintosh OS X, use nm -g

model.dylib

5 Use the shared library in
application code.

“Create Application Code That Uses
Generated Shared Libraries” on page
39-73

6 Compile and link application code
that loads and uses the generated
shared library.

“Build Integrated Code Outside the
Simulink Environment” on page 39-79

7 Verify that executable program
behaves and performs as expected.

39-72

http://www.dependencywalker.com

 Generate Shared Library for Export to External Code Base

Generate Shared Libraries

1 When configuring the model for code generation, select the system target file
ert_shrlib.tlc.

2 Build the model. The code generator produces source code for the model and a shared
library version of the code. The code generator places the source code in the code
generation folder and the shared library (.dll, .so, or .dylib file) in your current
working folder. The code generator also produces and retains a .lib file to support
implicit linking.

Create Application Code That Uses Generated Shared Libraries

This example application code is generated for the example “Interface to a Development
Computer Simulator By Using a Shared Library” on page 39-76.

1 Create an application header file that contains type declarations for model external
input and output. For example:

#ifndef _APP_MAIN_HEADER_

#define _APP_MAIN_HEADER_

typedef struct {

 int32_T Input;

} ExternalInputs_rtwdemo_shrlib;

typedef struct {

 int32_T Output;

} ExternalOutputs_rtwdemo_shrlib;

#endif /*_APP_MAIN_HEADER_*/

2 In the application C source code, dynamically load the shared library. Use
preprocessing conditional statements to invoke platform-specific commands. For
example:

#if (defined(_WIN32)||defined(_WIN64)) /* WINDOWS */

#include <windows.h>

#define GETSYMBOLADDR GetProcAddress

#define LOADLIB LoadLibrary

#define CLOSELIB FreeLibrary

#else /* UNIX */

#include <dlfcn.h>

39-73

39 External Code Integration in Simulink Coder

#define GETSYMBOLADDR dlsym

#define LOADLIB dlopen

#define CLOSELIB dlclose

#endif

int main()

{

 void* handleLib;

...

#if defined(_WIN64)

 handleLib = LOADLIB("./rtwdemo_shrlib_win64.dll");

#else #if defined(_WIN32)

 handleLib = LOADLIB("./rtwdemo_shrlib_win32.dll");

#else /* UNIX */

 handleLib = LOADLIB("./rtwdemo_shrlib.so", RTLD_LAZY);

#endif

#endif

...

 return(CLOSELIB(handleLib));

}

3 From the application C source code, access exported data and functions generated
from the model. The code uses hooks to add user-defined initialization, step, and
termination code.

 int32_T i;

 ...

 void (*mdl_initialize)(boolean_T);

 void (*mdl_step)(void);

 void (*mdl_terminate)(void);

 ExternalInputs_rtwdemo_shrlib (*mdl_Uptr);

 ExternalOutputs_rtwdemo_shrlib (*mdl_Yptr);

 uint8_T (*sum_outptr);

...

#if (defined(LCCDLL)||defined(BORLANDCDLL))

 /* Exported symbols contain leading underscores when DLL is linked with

 LCC or BORLANDC */

 mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_initialize");

 mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_step");

 mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

39-74

 Generate Shared Library for Export to External Code Base

 "_rtwdemo_shrlib_terminate");

 mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_U");

 mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_Y");

 sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "_sum_out");

#else

 mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_initialize");

 mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_step");

 mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_terminate");

 mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_U");

 mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_Y");

 sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "sum_out");

#endif

 if ((mdl_initialize && mdl_step && mdl_terminate && mdl_Uptr && mdl_Yptr &&

 sum_outptr)) {

 /* === user application initialization function === */

 mdl_initialize(1);

 /* insert other user defined application initialization code here */

 /* === user application step function === */

 for(i=0;i<=12;i++){

 mdl_Uptr->Input = i;

 mdl_step();

 printf("Counter out(sum_out): %d\tAmplifier in(Input):

 %d\tout(Output): %d\n", *sum_outptr, i, mdl_Yptr->Output);

 /* insert other user defined application step function code here */

 }

 /* === user application terminate function === */

 mdl_terminate();

 /* insert other user defined application termination code here */

 }

 else {

 printf("Cannot locate the specified reference(s) in the shared

 library.\n");

 return(-1);

 }

39-75

39 External Code Integration in Simulink Coder

Limitations

• Code generation for the ert_shrlib.tlc system target file exports the following as
data:

• Variables and signals of type ExportedGlobal
• Real-time model structure (model_M)

• Code generation for the ert_shrlib.tlc system target file supports the C language
only (not C++). When you select ert_shrlib.tlc, language selection is unavailable
on the Code Generation pane in the Configuration Parameters dialog box.

• To reconstruct a model simulation by using a generated shared library, the
application author must maintain the timing between system and shared library
function calls in the original application. The timing must be consistent so that
you can compare the simulation and integration results. Additional simulation
considerations apply if generating a shared library from a model that enables model
configuration parameters Support: continuous time and Single output/update
function. For more information, see Single output/update function (Simulink Coder)
dependencies.

Interface to a Development Computer Simulator By Using a Shared
Library

This example generates a shared library for interfacing to a simulator that runs on
your development computer. Generate the shared library by using the system target file
ert_shrlib.tlc.

To build a shared library from the model and use the library in an appplication:

1. Develop your model. For this example, open the model rtwdemo_shrlib.

open_system('rtwdemo_shrlib');

39-76

../../rtw/ref/single-outputupdate-function.html

 Generate Shared Library for Export to External Code Base

The model is a single-rate, discrete-time model. An 8-bit counter feeds the triggered
subsystem named Amplifier. Parameters INC, LIMIT, and RESET are set to constant

39-77

39 External Code Integration in Simulink Coder

values 1, 4, and 0, respectively. When signal equal_to_count is true, the subsystem
amplifies its input signal by a gain factor K=3 and the output signal is updated.

2. Configure the model for code generation, specifying ert_shrlib.tlc as the system
target file. Click the yellow button on the model to view the configuration settings on the
Code Generation pane in the Configuration Parameters dialog box.

3. Build the shared library file. The file that the code generator produces depends on your
development platform. For example, on a Windows system, the code generator produces
the library file rtwdemo_shrlib_win64.dll.

4. Create application code that uses the shared library. This example uses application
code that is available in the these files:

matlabroot\toolbox\rtw\rtwdemos\shrlib_demo\rtwdemo_shrlib_app.h

matlabroot\toolbox\rtw\rtwdemos\shrlib_demo\rtwdemo_shrlib_app.c

To view the source code in these files, in the model, click the white buttons for the .h and
.c files.

5. Compile and link the file application and shared library files to produce an executable
program. The following script compiles, builds, and runs the program.

matlabroot\toolbox\rtw\rtwdemos\shrlib_demo\rtwdemo_shrlib_app.m

To view the script code, in the model, click the white button for the .m file.

To build the model and run the application that uses the generated shared library, in the
model, double-click the blue button.

For more information about using a shared library, see “Package Generated Code as
Shared Libraries”.

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2
• “Select a System Target File” on page 30-2
• “Manage Build Process Files” on page 33-42
• “Model Protection”

39-78

 Build Integrated Code Outside the Simulink Environment

Build Integrated Code Outside the Simulink Environment

Identify required files and interfaces for calling generated code in an external build
process.

Learn how to:

• Collect files required for building integrated code outside of Simulink®.
• Interface with external variables and functions.

For information about the example model and related examples, see “Generate C Code
from a Control Algorithm for an Embedded System”.

Collect and Build Required Data and Files

The code that Embedded Coder® generates requires support files that MathWorks®
provides. To relocate the generated code to another development environment, such as
a dedicated build system, you must relocate these support files. You can package these
files in a zip file by using the packNGo utility. This utility finds and packages the files
that you need to build an executable image. The utility uses tools for customizing the
build process after code generation, which include a buildinfo_data structure, and
a packNGo function. These files include external files that you identify in the Code
Generation > Custom Code pane in the Model Configuration Parameters dialog box.
The utility saves the buildinfo MAT-file in the model_ert_rtw folder.

Open the example model, rtwdemo_PCG_Eval_P5.

This model is configured to run packNGo after code generation.

Generate code from the entire model.

To generate the zip file manually:

1 Load the file buildInfo.mat (located in the rtwdemo_PCG_Eval_P5_ert_rtw
subfolder).

2 At the command prompt, enter the command packNGo(buildInfo).

The number of files in the zip file depends on the version of Embedded Coder® and on
the configuration of the model that you use. The compiler does not require all of the files
in the zip file. The compiled executable size (RAM/ROM) depends on the linking process.
The linker likely includes only the object files that are necessary.

39-79

39 External Code Integration in Simulink Coder

Integrating the Generated Code into an Existing System

This example shows how to integrate the generated code into an existing code base. The
example uses the Eclipse™ IDE and the Cygwin™/gcc compiler. The required integration
tasks are common to all integration environments.

Overview of Integration Environment

A full embedded controls system consists of multiple hardware and software components.
Control algorithms are just one type of component. Other components can be:

• An operating system (OS)
• A scheduling layer
• Physical hardware I/O
• Low-level hardware device drivers

Typically, you do not use the generated code in these components. Instead, the generated
code includes interfaces that connect with these components. MathWorks® provides
hardware interface block libraries for many common embedded controllers. For
examples, see the Embedded Targets block library.

This example provides files to show how you can build a full system. The main file is
example_main.c, which contains a simple main function that performs only basic
actions to exercise the code.

View example_main.c.

39-80

 Build Integrated Code Outside the Simulink Environment

The file:

• Defines function interfaces (function prototypes).
• Includes files that declare external data.
• Defines extern data.
• Initializes data.
• Calls simulated hardware.
• Calls algorithmic functions.

The order of function execution matches the order of subsystem execution in the test
harness model and in rtwdemo_PCG_Eval_P5.h. If you change the order of execution
in example_main.c, results that the executable image produces differ from simulation
results.

39-81

39 External Code Integration in Simulink Coder

Match System Interfaces

Integration requires matching the Data and Function interfaces of the generated code
and the existing system code. In this example, the example_main.c file imports and
exports the data through #include statements and extern declarations. The file also
calls the functions from the generated code.

Connect Input Data

The system has three input signals: pos_rqst, fbk_1, and fbk_2. The generated code
accesses the two feedback signals through direct reference to imported global variables
(storage class ImportedExtern). The code accesses the position signal through an
imported pointer (storage class ImportedExternPointer).

The handwritten file defineImportedData.c defines the variables and the
pointer. The generated code does not define the variables and the pointer because the
handwritten code defines them. Instead, the generated code declares the imported data
(extern) in the file rtwdemo_PCG_Eval_P5_Private.h. In a real system, the data
typically comes from other software components or from hardware devices.

View defineImportedData.c.

View rtwdemo_PCG_Eval_P5_Private.h.

39-82

 Build Integrated Code Outside the Simulink Environment

Connect Output Data

In this example, you do not access the output data of the system. The example “Test
Generated Code” shows how you can save the output data to a standard log file. You can
access the output data by referring to the file rtwdemo_PCG_Eval_P5.h.

View rtwdemo_PCG_Eval_P5.h.

Access Additional Data

The generated code contains several structures that store commonly used data including:

• Block state values (integrator, transfer functions)
• Local parameters
• Time

The table lists the common data structures. Depending on the configuration of the model,
some or all of these structures appear in the generated code. The data is declared in the
file rtwdemo_PCG_Eval_P5.h, but in this example, you do not access this data.

Data Type Data Name Data Purpose

Constants |model_cP| Constant parameters

Constants |model_cB| Constant block I/O

Output |model_U| Root and atomic subsystem input

Output |model_Y| Root and atomic subsystem output

Internal data |model_B| Value of block output

Internal data |model_D| State information vectors

Internal data |model_M| Time and other system level data

Internal data |model_Zero| Zero-crossings

Parameters |model_P| Parameters

Match Function Call Interfaces

By default, functions that the code generator generates have a void Func(void)
interface. If you configure the model or atomic subsystem to generate reentrant code,

39-83

39 External Code Integration in Simulink Coder

the code generator creates a more complex function prototype. In this example, the
example_main function calls the generated functions with the correct input arguments.

Calls to the function PI_Cntrl_Reusable use a mixture of separate, unstructured
global variables and Simulink® Coder™ data structures. The handwritten code defines
these variables. The structure types are defined in rtwdemo_PCG_Eval_P5.h.

Build Project in Eclipse™ Environment

This example uses the Eclipse™ IDE and the Cygwin™ GCC debugger to build the
embedded system. The example provides installation files for both programs. Software
components and versions numbers are:

• Eclipse™ SDK 3.2
• Eclipse™ CDT 3.3
• Cygwin™/GCC 3.4.4-1
• Cygwin™/GDB 20060706-2

To install and use Eclipse™ and GCC, see “Install and Use Cygwin and Eclipse”.

You can install the files for this example by clicking this hyperlink:

Set up the build folder.

Alternatively, to install the files manually:

1 Create a build folder (Eclipse_Build_P5).
2 Unzip the file rtwdemo_PCG_Eval_P5.zip into the build folder.
3 Delete the files rtwdemo_PCG_Eval_P5.c, ert_main.c and rt_logging.c, which

are replaced by example_main.c.

39-84

 Build Integrated Code Outside the Simulink Environment

You can use the Eclipse™ debugger to step through and evaluate the execution behavior
of the generated C code. See the example “Install and Use Cygwin and Eclipse”.

To exercise the model with input data, see “Test Generated Code”.

Related Topics

• “Generate Component Source Code for Export to External Code Base”
• “Generate Shared Library for Export to External Code Base”

39-85

39 External Code Integration in Simulink Coder

Exchange Data Between External C/C++ Code and Simulink Model
or Generated Code

Whether you import your external code into a Simulink model (for example, by using the
Legacy Code Tool) or export the generated code to an external environment, the model or
the generated code can exchange data (signals, states, and parameters) with your code.

Functions in C or C++ code, including your function, can exchange data with a caller or a
called function through:

• Arguments (formal parameters) of functions. When a function exchanges data
through arguments, a caller can call the function multiple times. Each instance of the
called function can manipulate its own independent set of data so that the instances
do not interfere with each other.

• Direct access to global variables. Global variables can:

• Enable different algorithms (functions) and instances of the same algorithm to
share data such as calibration parameters and error status.

• Enable the different rates (functions) of a multitasking system to exchange data.
• Enable different algorithms to exchange data asynchronously.

In Simulink, you can organize and configure data so that a model uses these exchange
mechanisms to provide, extract, and share data with your code.

Before you attempt to match data interfaces, to choose an integration approach, see
“Choose an External Code Integration Workflow” on page 39-4.

In this section...

“Import External Code into Model” on page 39-86
“Export Generated Code to External Environment” on page 39-88
“Simulink Representations of C Data Types and Constructs” on page 39-89

Import External Code into Model

To exchange data between your model and your external function, choose an exchange
mechanism based on the technique that you chose to integrate the function.

39-86

 Exchange Data Between External C/C++ Code and Simulink Model or Generated Code

• To exchange data through the arguments of your external function, construct and
configure your model to create and package the data according to the data types of the
arguments. Then, you connect and configure the block that calls or represents your
function to accept, produce, or refer to the data from the model.

For example, if you use the Legacy Code Tool to generate an S-Function block
that calls your function, the ports and parameters of the block correspond to the
arguments of the function. You connect the output signals of upstream blocks to the
input ports and set parameter values in the block mask. Then, you can create signal
lines from the output ports of the block and connect those signals to downstream
blocks.

• To exchange data through global variables that your external code already defines,
a best practice is to use a Stateflow chart to call your function and to access the
variables. You write algorithmic C code in the chart so that during simulation or
execution of the generated code the model reads and writes to the variables.

To use such a global variable as an item of parameter data (not signal or state
data) elsewhere in a model, you can create a numeric MATLAB variable or
Simulink.Parameter object that represents the variable. If you change the value of
the C-code variable in between simulation runs, you must manually synchronize the
value of the Simulink variable or object. If your algorithmic code (function) changes
the value of the C-code variable during simulation, the corresponding Simulink
variable or object does not change.

If you choose to create a Simulink representation of the C-code variable, you can
configure the Simulink representation so that the generated code reads and writes to
the variable but does not duplicate the variable definition. Apply a storage class to the
Simulink representation.

Technique for
Integrating External
Function

Mechanism to
Exchange Data with
Model

Examples and More Information

S-Function block Function arguments To call your function through an S-function that you
create by using the Legacy Code Tool, see “Integrate
C Functions into Simulink Models with Legacy Code
Tool” (Simulink).

Stateflow chart Function arguments
and direct access to
global variables

To call your function and access global variables in a
Stateflow chart, see “Integrate Custom C/C++ Code
for Simulation” (Stateflow). For information about

39-87

39 External Code Integration in Simulink Coder

Technique for
Integrating External
Function

Mechanism to
Exchange Data with
Model

Examples and More Information

creating data items in a chart (which you can pass to
your function as arguments), see “Add Stateflow Data”
(Stateflow).

coder.ceval

in MATLAB
Function block

Function arguments To call your function in a MATLAB Function block by
using coder.ceval, see “Integrate C Code Using the
MATLAB Function Block” (Simulink). For information
about creating data items in a MATLAB Function block
(which you can pass to your function as arguments), see
“Ports and Data Manager” (Simulink).

Export Generated Code to External Environment

To export the generated code into your external code so that you can later compile and
deploy the code, you configure the generated code to match the data interface of your
external code. For example, if your external code defines some global variables for storing
input data and expects the generated code to calculate that input data, you can construct
the model and configure Outport blocks so that the generated code interacts with the
variables.

• You can generate reentrant code from a model, which means that the generated
entry-point functions exchange data through arguments. If you have Embedded
Coder, you can control the prototypes of the entry-point functions. For example,
you can make root-level Inport blocks appear in the generated code as arguments
of the entry-point functions, which enables your external code to call the functions
multiple times. For more information about generating reentrant code from a model,
see “Generate Reentrant Code from Top-Level Models” on page 25-4. For more
information about function prototype control, see “Control Generation of Function
Prototypes” on page 26-2.

Similarly, when you generate code from a subsystem, you can generate reentrant code
and configure the function prototypes by using parameters of the Subsystem block.
For more information, see “Generate Reusable Function for Identical Subsystems
Within a Model” on page 3-11 and RTW.configSubsystemBuild.

• You can exchange data between the generated code and your code through global
variables. You can generate variable definitions for your code to use, or you can share
and reuse existing variables that your code already defines.

39-88

 Exchange Data Between External C/C++ Code and Simulink Model or Generated Code

To make the generated code read or write to an item of signal, state, or parameter
data as a global variable, apply a storage class or custom storage class to the data.
The storage class also determines whether the generated code exports the variable
definition (memory allocation) to your external code or imports the definition from
your code. For information about controlling a data interface by applying storage
classes in a model, see “Design Data Interface by Configuring Inport and Outport
Blocks” on page 19-134 and “Configure Data Interface by Applying Custom Storage
Classes”.

Simulink Representations of C Data Types and Constructs

To model and reuse your custom C data types such as structures, enumerations, and
typedef aliases, use the information in these tables.

Modeling Patterns for Matching C-Code Data

C Data Type
or Construct

Example External Code Simulink Equivalent More Information

Primitive
type alias
(typedef)

typedef float mySinglePrec_T Create a
Simulink.AliasType

object. Use the object to:

• Set the data types
of signals and block
parameters in a model.

• Configure data type
replacements for code
generation.

Generating code that
uses an alias requires
Embedded Coder.

For information
about defining
custom data types
for your model, see
Simulink.AliasType

and “What Are User-
Defined Data Types?”
on page 21-2.

For an example that
shows how to export
the generated code
into your external
code, see “Conform
to Coding Standards
by Replacing and
Renaming Data
Types” on page 21-22.

Array int myArray[6]; Specify signal and
parameter dimensions

For information
about how the
generated code

39-89

39 External Code Integration in Simulink Coder

C Data Type
or Construct

Example External Code Simulink Equivalent More Information

as described in “Signal
Dimensions” (Simulink).

stores nonscalar
data (including
limitations), see
“Code Generation of
Matrices and Arrays”
(Simulink Coder).

For an example that
shows how to export
the generated code
into your external
code, see “Reuse
Parameter Data from
Custom Code in the
Generated Code” on
page 23-17.

To model lookup
tables, see
Simulink.LookupTable.

Enumeration typedef enum myColorsType {

 Red = 0,

 Yellow,

 Blue

} myColorsType;

Define a Simulink
enumeration that
corresponds to your
enumeration definition.
Use the Simulink
enumeration to set data
types in a model.

To use enumerated
data in a Simulink
model, see “Use
Enumerated Data
in Simulink Models”
(Simulink).

For an example that
shows how to export
the generated code
into your external
code, see “Exchange
Structured and
Enumerated Data
Between Generated
and External Code”
on page 21-28.

39-90

 Exchange Data Between External C/C++ Code and Simulink Model or Generated Code

C Data Type
or Construct

Example External Code Simulink Equivalent More Information

Structure typedef struct myStructType {

 int count;

 double coeff;

} myStructType;

Create a Simulink.Bus
object that corresponds to
your structure type.

To create structured signal
or state data, package
multiple signal lines in
a model into a single
nonvirtual bus signal.

To create structured
parameter data, create a
parameter object (such as
Simulink.Parameter)
that stores a MATLAB
structure. Use the bus
object as the data type of
the parameter object.

To package lookup table
data into a structure, use
Simulink.LookupTable

and, optionally,
Simulink.Breakpoint

objects.

For information
about bus signals, see
“Getting Started with
Buses” (Simulink).
For information
about structures
of parameters, see
“Organize Related
Block Parameter
Definitions in
Structures”
(Simulink).

For an example
that shows how to
import your external
code into a model
by using the Legacy
Code Tool, see
“Integrate C Function
Whose Arguments
Are Pointers
to Structures”
(Simulink).

For examples that
show how to export
the generated code
into your external
code, see “Exchange
Structured and
Enumerated Data
Between Generated
and External Code”
on page 21-28 and
“Access Structured
Data Through

39-91

39 External Code Integration in Simulink Coder

C Data Type
or Construct

Example External Code Simulink Equivalent More Information

a Pointer That
External Code
Defines” on page
23-27.

To package lookup
table data into
a structure,
Simulink.LookupTable.

Additional Modeling Patterns for Code Generation

C Data Type
or Construct

Example External C Code Simulink Equivalent More Information

Bit field typedef struct myBitField {

 unsigned short int MODE : 1;

 unsigned short int FAIL : 1;

 unsigned short int OK : 1;

} myBitField

Apply the custom
storage class
BitField to
signals, states, and
parameters whose
data type is boolean.

Use a model
configuration
parameter to
aggregate Boolean
data into bit fields.

This technique
requires Embedded
Coder.

“Bitfields” on page
13-95

“Optimize Generated
Code By Packing
Boolean Data Into
Bitfields” on page
57-14

Macro #define myParam 9.8 Apply the custom
storage classes
Define and
ImportedDefine to
parameters.

“Macro Definitions
(#define)” on page
13-77

39-92

 Exchange Data Between External C/C++ Code and Simulink Model or Generated Code

C Data Type
or Construct

Example External C Code Simulink Equivalent More Information

This technique
requires Embedded
Coder.

Storage type
qualifiers
such as
const and
volatile

const volatile int countLimit; Apply the custom
storage classes
Const, Volatile, or
ConstVolatile to
signals (volatile),
states, and
parameters (const,
volatile, or const
volatile).

This technique
requires Embedded
Coder.

“Type Qualifiers” on
page 13-15

Function
call that
reads or
writes to
data

/* Call this function

to acquire the value of

the signal. */

double get_inSig(void)

{

 return myBigStruct.inSig;

}

Apply the custom
storage class GetSet
to signals, states, and
parameters. Each
data item appears
in the generated
code as a call to your
custom functions that
read and write to the
target data.

This technique
requires Embedded
Coder.

“Access Data Through
Functions with
Custom Storage Class
GetSet” on page
23-92

Related Examples
• “Generate Code That Matches Appearance of External Code” on page 39-95
• “Exchange and Reuse Parameter Data Between Generated Code and Existing Code”

on page 23-11

39-93

39 External Code Integration in Simulink Coder

• “Design Data Interface by Configuring Inport and Outport Blocks” on page 19-134
• “Configure Generated Code According to Interface Control Document” on page

23-112
• “Generate Code That Dereferences Data from a Literal Memory Address” on page

23-83

39-94

 Generate Code That Matches Appearance of External Code

Generate Code That Matches Appearance of External Code

A key aspect of code integration, especially for larger projects, is adherence to guidelines
and standards for code appearance. If code appearance requirements apply to your
project, review the requirements in this table. To learn more, see the relevant
information.

Requirement More Information

Thoroughly document code or document
code in a specific way.

• “Configure Code Comments” on page 28-14
• “Specify Comment Style” on page 36-14
• “Add Custom Comments to Generated Code” on

page 36-3
• “Add Custom Comments for Variables in the

Generated Code” on page 36-5
• “Add Global Comments” on page 36-8
• “Annotate Code for Justifying Polyspace Checks”

on page 36-98
Control the length and naming of code
identifiers (symbols), including the use of
reserved names.

• “Identifier Format Control” on page 36-22
• “Specify Identifier Length to Avoid Naming

Collisions” on page 28-17
• “Specify Reserved Names for Generated

Identifiers” on page 28-18
• “Customize Generated Identifier Naming Rules”

on page 36-15
• “Avoid Identifier Name Collisions with Referenced

Models” on page 36-30
• “Control Name Mangling in Generated Identifiers”

on page 36-28
• “Specify Boolean and Data Type Limit Identifiers”

on page 21-43
Control style aspects of code:

• Level of parenthesization
• Order of operations in expressions

“Control Code Style” on page 36-36

39-95

39 External Code Integration in Simulink Coder

Requirement More Information

• Empty primary condition expressions in
if statements

• if-elseif-else or switch-case
statements for decision logic

• Use of extern keyword in function
declarations

• Use of default cases for switch-case
statements

• Use multiplications by powers of two or
signed bitwise shifts

• Cast expressions
• Indent style (Kernighan and Ritchie or

Allman) and size
Placement of data definitions and
declarations, including location of global
identifiers and global data declarations
(extern)

“Manage Placement of Data Definitions and
Declarations” on page 36-100

Appearance of code for flow charts “Enhance Readability of Code for Flow Charts” on
page 36-127

Apply code templates to control
organization of code and use of banners

• “Customize Code Organization and Format” on
page 36-54

• “Template Symbols and Rules” on page 36-90
• “Specify Templates For Code Generation” on page

36-56
• “Generate Custom File and Function Banners” on

page 36-82
• “Change the Organization of a Generated File” on

page 36-65
• “Generate Source and Header Files with a Custom

File Processing (CFP) Template” on page 36-67

More About
• “Code Appearance”

39-96

 Generate Code That Matches Appearance of External Code

• “Choose an External Code Integration Workflow” on page 39-4

39-97

40

Program Building, Interaction, and
Debugging in Simulink Coder

• “Select C or C++ Programming Language” on page 40-2
• “Select and Configure C or C++ Compiler or IDE” on page 40-3
• “Troubleshoot Compiler Issues” on page 40-9
• “Choose and Configure Build Process” on page 40-14
• “Template Makefiles and Make Options” on page 40-24
• “Build Process Workflow for a Real-Time STF” on page 40-30
• “Build and Run a Program” on page 40-43
• “Rebuild a Model” on page 40-46
• “Control Regeneration of Top Model Code” on page 40-48
• “Reduce Build Time for Referenced Models” on page 40-50
• “Relocate Code to Another Development Environment” on page 40-56
• “Executable Program Generation” on page 40-68
• “Profile Code Performance” on page 40-71

40 Program Building, Interaction, and Debugging in Simulink Coder

Select C or C++ Programming Language

After the steps in “Select a Solver That Supports Code Generation” (Simulink Coder) and
“Select a System Target File from STF Browser” (Simulink Coder), an optional step is to
change the programming language selection for code generation. The default selection is
C language for code generation.

To change the programming language setting:

1 From Configuration Parameters > Code Generation > Language, select C or C
++ for the code generation language. Alternatively, set the TargetLang parameter
at the command line.

The code generator produces .c or .cpp files, depending on your selection, and
places the generated files in your build folder.

For more information, see “Language” (Simulink Coder).
2 Check whether you must choose and configure a compiler. If you select C++, you

must choose and configure a compiler. For details, see “Select and Configure C or C+
+ Compiler or IDE” (Simulink Coder).

3 Check whether the standard math library is configured for your compiler. By default,
the code generator uses the ISO/IEC 9899:1999 C (C99 (ISO)) library for the C
language and the ISO/IEC 14882:2003 C++ (C++03 (ISO)) library for the C++
language.

For more information, see “Standard math library” (Simulink Coder).

More About
• “Select and Configure C or C++ Compiler or IDE” (Simulink Coder)
• “Troubleshoot Compiler Issues” (Simulink Coder)

40-2

 Select and Configure C or C++ Compiler or IDE

Select and Configure C or C++ Compiler or IDE

The build process requires a supported compiler. Compiler, in this context, refers to a
development environment (IDE) containing a linker and make utility, and a high-level
language compiler. For details on supported compiler versions, see:

http://www.mathworks.com/support/compilers/current_release

When creating an executable program, the build process must be able to access a
supported compiler. The build process can find a compiler to use based on your default
MEX compiler.

The build process also requires the selection of a toolchain or template makefile. The
toolchain or template makefile determines which compiler runs, during the make phase
of the build. For more information, see “Choose and Configure Build Process” (Simulink
Coder)

To determine which templates makefiles are available for your compiler and system
target file, see “Compare System Target File Support” (Simulink Coder).

For both generated files and user-supplied files, the file extension, .c or .cpp,
determines whether the build process uses a C or a C++ compiler. If the file extension
is .c, the build process uses C compiler to compile the file, and the symbols use the C
linkage convention. If the file extension is .cpp, the build process uses a C++ compiler to
compile the file, and the symbols use the C++ linkage specification.

In this section...

“Language Standards Compliance” on page 40-3
“Programming Language Considerations” on page 40-4
“C++ Language Support Limitations” on page 40-5
“Code Generator Assumes Wrap on Signed Integer Overflows” on page 40-6
“Choose and Configure Compiler” on page 40-6
“Include S-Function Source Code” on page 40-7

Language Standards Compliance

The code generator produces code that is compliant with the following standards:

40-3

http://www.mathworks.com/support/compilers/current_release/

40 Program Building, Interaction, and Debugging in Simulink Coder

Language Supported Standard

C ISO/IEC 9899:1990, also known as C89/C90
C++ ISO/IEC 14882:2003

Code that the code generator produces from these sources is ANSI C/C++ compliant:

• Simulink built-in block algorithmic code
• Generated system-level code (task ID [TID] checks, management, functions, and so

on)
• Code from other blocksets, including the Fixed-Point Designer product and the

Communications System Toolbox product
• Code from other code generators, such as MATLAB functions

Also, the code generator can incorporate code from:

• Embedded system target files (for example, startup code, device driver blocks)
• Custom S-functions or TLC files

Note: Coding standards for these two sources are beyond the control of the code
generator. These standards can be a source for compliance problems, such as code that
uses C99 features not supported in the ANSI C, C89/C90 subset.

Programming Language Considerations

The code generator produces C and C++ code. Consider the following as you choose a
programming language:

• Does your project require you to configure the code generator to use a specific
compiler? C/C++ code generation on Windows requires this selection.

• Does your project require you to change the default language configuration setting for
the model? See “Select C or C++ Programming Language” on page 40-2.

• Does your project require you to integrate legacy or custom code with generated code?
For a summary of integration options, see “What Is External Code Integration?” on
page 39-3.

• Does your project require you to integrate C and C++ code? If so, see “What Is
External Code Integration?” on page 39-3.

40-4

 Select and Configure C or C++ Compiler or IDE

Note: You can mix C and C++ code when integrating generated code with custom
code. However, you must be aware of the differences between C and default C++
linkage conventions, and add the extern "C"' linkage specifier where required. For
the details of the differing linkage conventions and how to apply extern "C", refer to
a C++ programming language reference book.

• Does your project require code generation support from other products? See “C++
Language Support Limitations” on page 40-5.

For C++ code generations examples with Stateflow, see the sfcndemo_cppcount model or
sf_cpp model.

C++ Language Support Limitations

To use C++ language support, you could need to configure the code generator to use a
specific compiler. For example, if a supported compiler is not installed on your Microsoft
Windows computer, the default compiler is the lcc C compiler shipped with the
MATLAB product. This compiler does not support C++. If you do not configure the code
generator to use a C++ compiler before you specify C++ for code generation, the software
produces an error message.

Code generator limitations on C++ support include:

• The code generator does not support C++ code generation for the following:
Simscape Driveline
Simscape Multibody First Generation (Simscape Multibody Second Generation is
supported)
Simscape Power Systems
Simulink Real-Time

• For ERT and ERT-based system target files with Configuration Parameters >
Data Placement > Interface > Code interface packaging set to Nonreusable
function, the following fields currently do not accept the .cpp extension. If you
specify a file name with a .c extension or without an extension and specify C++ for
the code generation language, the code generator produces a .cpp file.

• Configuration Parameters > Code Placement > Data definition filename
field (available when Configuration Parameters > Code Placement > Data
definition is set to Data defined in a single separate source file)

40-5

40 Program Building, Interaction, and Debugging in Simulink Coder

• Definition file field for a data object in Model Explorer. Data objects are objects
of the class Simulink.Signal, Simulink.Parameter, and subclasses.

Code Generator Assumes Wrap on Signed Integer Overflows

The code generator reduces memory usage and enhances generated code execution by
assuming signed integer C operations wrap on overflow. A signed integer overflow occurs
when the result of an arithmetic operation is outside the range of values that the output
data type can represent. The C programming language does not define the results of
such operations. Some C compilers aggressively optimize signed operations for in-range
values at the expense of overflow conditions. Other compilers preserve the full wrap-on-
overflow behavior. For example, the gcc and MinGW compilers provide an option to wrap
on overflow reliably for signed integer overflows. The generated program image for a
model can produce results that differ from model simulation results because the handling
of overflows varies, depending on your compiler.

When you generate code, if you use a supported compiler with the default options
configured by the code generator, the compiler preserves the full wrap-on-overflow
behavior. If you change the compiler options or compile the code in another development
environment, it is possible that the compiler does not preserve the full wrap-on-overflow
behavior. In this case, the executable program can produce unpredictable results.

If this issue is a concern for your application, consider one or more of the following
actions:

• Verify that the compiled code produces expected results.
• If your compiler can force wrapping behavior, turn it on. For example, for the gcc

compiler or a compiler based on gcc, such as MinGW, configure the build process to
use the compiler option -fwrapv.

• Choose a compiler that wraps on integer overflow.
• If you have Embedded Coder installed, develop and apply a custom code replacement

library to replace code generated for signed integers. For more information, see “Code
Replacement Customization”.

Choose and Configure Compiler

The compiler for your model build appears in the build process parameters in
Configuration Parameters > Code Generation. To view the installed compilers and
select the default compiler, in the Command Window type:

40-6

 Select and Configure C or C++ Compiler or IDE

mex -setup

On a Windows computer, you can install supported compilers and select a default
compiler.

On a UNIX platform, the default compiler is GNU gcc/g++ for GNU or Xcode for Mac.

Unless the build approach configuration selects a specific compiler, the code generator
uses the default compiler for the build process.

Primarily, the specified system target file determines the compiler that the code
generator requires:

• If you select a toolchain-based system target file such as grt.tlc (Generic Real-
Time Target), ert.tlc (Embedded Coder), or autosar.tlc (Embedded Coder
for AUTOSAR), the Build process subpane displays toolchain parameters for
configuring the build process. Use the Toolchain parameter to select a compiler and
associated tools for your model build. To validate the selected toolchain, click the
Validate button for the Configuration Parameters > All Parameters > Code
Generation > Toolchain box.

• If you select a template makefile (TMF) based system target file, such as rsim.tlc,
the Build process subpane displays template makefile parameters for configuring
the build process. The Template makefile parameter displays the default TMF file
for the selected system target file. If the system target file supports compiler-specific
template makefiles (for example, Rapid Simulation or S-Function system target files),
you can set Template makefile to a compiler-specific TMF, such as rsim_lcc.tmf
or rsim_unix.tmf. (See “Compare System Target File Support” (Simulink Coder) for
valid TMF names.)

Include S-Function Source Code

When the code generator builds models with S-functions, source code for the S-functions
can be either in the current folder or in the same folder as their MEX-file. The code
generator adds an include path to the generated makefiles whenever it finds a file named
sfncname.h in the same folder as the S-function MEX-file. This folder must be on the
MATLAB path.

Similarly, the code generator adds a rule for the folder when it finds a file sfncname.c
(or .cpp) in the same folder as the S-function MEX-file is in.

40-7

http://www.mathworks.com/support/compilers/

40 Program Building, Interaction, and Debugging in Simulink Coder

More About
• “Run-Time Environment Configuration” (Simulink Coder)
• “Compare System Target File Support” (Simulink Coder)
• “Select C or C++ Programming Language” (Simulink Coder)
• “Troubleshoot Compiler Issues” on page 40-9

External Websites
• http://www.mathworks.com/support/compilers/current_release

40-8

http://www.mathworks.com/support/compilers/current_release/

 Troubleshoot Compiler Issues

Troubleshoot Compiler Issues

In this section...

“Compiler Version Mismatch Errors” on page 40-9
“Results for Model Simulation and Program Execution Differ” on page 40-9
“Generates Expected Code and Produces Unexpected Results” on page 40-10
“Compile-Time Issues” on page 40-11
“LCC Compiler Does Not Support Ampersands in Source Folder Paths” on page
40-12
“LCC Compiler Might Not Support Line Lengths of Rapid Accelerator Code” on page
40-12

Compiler Version Mismatch Errors

Description

The build process produces a compiler version mismatch error.

Action

1 Check the list of supported and compatible compilers available at
www.mathworks.com/support/compilers/current_release/.

2 Upgrade or change your compiler. For more information, see “Choose and Configure
Compiler” on page 40-6.

3 Rebuild the model.

Results for Model Simulation and Program Execution Differ

Description

The program generated for the model produces different results from model simulation
results. The generated source code includes an arithmetic operation that produces a
signed integer overflow. It is possible that your compiler does not implement wrapping
behavior for signed integer overflow conditions. Or, if you are using a compiler that
supports wrapping, it is possible that you did not configure it to use the -fwrapv option.

40-9

http://www.mathworks.com/support/compilers/current_release/

40 Program Building, Interaction, and Debugging in Simulink Coder

For more information, see “Code Generator Relies on Undefined Behavior of C Language
for Integer Overflows.”

Action

• If your compiler can force wrapping behavior, turn it on. For example, for the gcc
compiler or a compiler based on gcc, such as MinGW, specify the compiler option -
fwrapv.

• Choose a compiler that checks for integer overflows.
• If you have Embedded Coder, develop and apply a code replacement library to replace

code generated for signed integers.

Generates Expected Code and Produces Unexpected Results

Description

The build process generates expected source code, but the executable program produces
unexpected results. The generated source code appears as expected. However, the
executable program produces unexpected results.

Action

Do one of the following:

• Lower the compiler optimization level.

1 Select Custom for the Model Configuration parameter Code Generation >
Compiler optimization level.

2 In the Custom compiler optimization flags field, specify a lower optimization
level.

3 Rebuild the model.
• Disable compiler optimizations.

1 Select Optimizations off (faster builds) for the Model Configuration
parameter Code Generation > Compiler optimization level.

2 Rebuild the model.

For more information, see “Control Compiler Optimizations” (Simulink Coder) and your
compiler documentation.

40-10

 Troubleshoot Compiler Issues

Compile-Time Issues

Issue Action

Error is present in the compiler
configuration.

Make sure that MATLAB supports
the compiler and version that you
want to use. For a list of currently
supported and compatible compilers, see
www.mathworks.com/support/compilers/
current_release/. If necessary, upgrade
or change your compiler (see “Choose
and Configure Compiler” on page 40-6 or
“Choose and Configure Compiler” on page
40-6).

Environment variables are incorrectly
set up for your make utility, compiler,
or linker. For example, installation of
Cygwin tools on a Windows platform affects
environment variables used by other
compilers.

Review the environment variable settings
for your system by using the set command
on a Windows platform or setenv on
a UNIX platform. Make sure that the
settings match what is required for the
tools you are using.

Error is present in custom code specified as
an S-function block or in Configuration
Parameters > Code Generation >
Custom Code. For example, the code
refers to a header file that the compiler
cannot find.

To isolate the source of the problem,
remove the custom code from the model,
debug, and rebuild the model.

The model includes a block, such as a
device driver block, which is not intended
for use with the currently selected system
target file.

Remove the system target file-specific block
or configure the model for use with another
system target file.

A linker error about an undefined reference
to the data appears when the model build
generates an executable from the model
reference hierarchy and all these conditions
are true:

• You represent signal, state, or
parameter data by creating a data
object such as Simulink.Signal.

To resolve the issue, choose one of these
methods:

• In the data object, clear the Owner
property. Alternatively, set the owner to
a model that directly accesses the data.

• Use a different toolchain, such as gcc,
instead of lcc.

40-11

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

40 Program Building, Interaction, and Debugging in Simulink Coder

Issue Action

You use the object in a model reference
hierarchy.

• You use a custom storage class with
the data object. Custom storage classes
require Embedded Coder.

• You set the owner of the object to a
model that does not directly access the
data.

• You use the toolchain lcc-win64.

LCC Compiler Does Not Support Ampersands in Source Folder Paths

Description

If you use the LCC compiler and your model folder path contains an ampersand (&), the
build process produces an error.

Action

Remove the ampersand from the model folder path. Then, rebuild the model.

LCC Compiler Might Not Support Line Lengths of Rapid Accelerator Code

Description

If you are compiling Rapid Accelerator code, the LCC compiler might produce an
error related to line limits. Rapid Accelerator code can have longer line lengths due to
obfuscation.

Action

Compile your Rapid Accelerator code using a compiler that supports longer code lines.

More About
• “Choose and Configure Compiler” on page 40-6
• “Select C or C++ Programming Language” (Simulink Coder)

40-12

 Troubleshoot Compiler Issues

• “Troubleshoot Compiler Issues” on page 40-9
• “Choose and Configure Build Process” on page 40-14
• “Build Process Workflow for a Real-Time STF” on page 40-30
• “Rebuild a Model” on page 40-46
• “Reduce Build Time for Referenced Models” on page 40-50
• “Control Regeneration of Top Model Code” on page 40-48
• “Relocate Code to Another Development Environment” on page 40-56
• “Build and Run a Program” on page 40-43
• “Profile Code Performance” on page 40-71
• “Control Compiler Optimizations” (Simulink Coder)
• “Select and Configure C or C++ Compiler or IDE” on page 40-3
• “Executable Program Generation” on page 40-68

External Websites
• www.mathworks.com/support/compilers/current_release/

40-13

http://www.mathworks.com/support/compilers/current_release/

40 Program Building, Interaction, and Debugging in Simulink Coder

Choose and Configure Build Process

The code generator supports two processes for building code generated from Simulink
models:

• Toolchain approach — A newer build process that generates optimized makefiles and
supports custom toolchains. The benefits of this approach include:

• Provide control of your build process with toolchain information objects. You can
define these objects using MATLAB scripts.

• Supports model referencing, PIL, SIL, and Rapid Accelerator builds.
• Supported by MATLAB Coder.
• Provides added flexibility to configure the build process for individual models.

• Template makefile approach — An older build process that uses template makefiles

The “System target file” (Simulink Coder) parameter, located in the Configuration
Parameters > Code Generation pane, determines the build process for a model. When
the System target file is set to:

• ert.tlc, ert_shrlib.tlc, grt.tlc, or any toolchain-compliant system target file,
the build process uses the toolchain approach. For more information, see “Toolchain
Approach” on page 40-14 and see “Support Toolchain Approach with Custom
Target” on page 71-81.

• Any non-toolchain-compliant system target files. The build process uses the template
makefile approach. For more information, see “Template Makefile Approach” on page
40-20.

In this section...

“Toolchain Approach” on page 40-14
“Upgrade Model to Use Toolchain Approach” on page 40-16
“Template Makefile Approach” on page 40-20
“Specify TLC for Code Generation” on page 40-23

Toolchain Approach

The toolchain approach is named for the Toolchain settings that appear under Build
process when you set System target file to:

40-14

 Choose and Configure Build Process

• grt.tlc — Generic Real-Time Target

• ert.tlc — Embedded Coder (requires the Embedded Coder product)
• ert_shrlib.tlc — Embedded Coder (host-based shared library target)

(requires the Embedded Coder product)
• Any toolchain-compliant system target file (If ERT-based, requires the Embedded

Coder product)

For more information about toolchain-compliant system target files, see “Support
Toolchain Approach with Custom Target” (Simulink Coder).

The Toolchain settings include:

40-15

40 Program Building, Interaction, and Debugging in Simulink Coder

• The “Toolchain” (Simulink Coder) parameter specifies the collection of third-party
software tools that builds the generated code. A toolchain can include a compiler,
linker, archiver, and other prebuild or postbuild tools that download and run the
executable on the target hardware.

The default value of Toolchain is Automatically locate an installed
toolchain. The Toolchain parameter displays name of the located toolchain just
below Automatically locate an installed toolchain.

Click the Validate button for the Configuration Parameters > All Parameters >
Code Generation > Toolchain parameter to check that the toolchain is present and
validate that the code generator has the information required to use the toolchain.
The resulting Validation Report gives a pass/fail for the selected toolchain, and
identifies issues to resolve.

• The “Build configuration” (Simulink Coder) parameter lets you choose or customize
the optimization settings. By default, Build Configuration is set to Faster
Builds. You can also select Faster Runs, Debug, and Specify. When you select
Specify and click Apply, you can customize the toolchain options for each toolchain.
These custom toolchain settings only apply to the current model.

Note: The following system target files, which use the template makefile approach, have
the same names but different descriptions from system target files that use the toolchain
approach:

• ert.tlc — Create Visual C/C++ Solution File for Embedded Coder

• grt.tlc — Create Visual C/C++ Solution File for Simulink Coder

To avoid confusion, click Browse to select the system target file and look at the
description of each file.

Upgrade Model to Use Toolchain Approach

When you open a model created before R2013b that uses the following system target
files, the software tries to upgrade the model. The upgrade changes the configuration
from using template makefile settings to using the toolchain settings:

• ert.tlc — Embedded Coder

• ert_shrlib.tlc — Embedded Coder (host-based shared library target)

40-16

 Choose and Configure Build Process

• grt.tlc — Generic Real-Time Target

Note: To upgrade models using a custom system target file to use the toolchain approach,
see “Support Toolchain Approach with Custom Target” on page 71-81.

Some model configuration parameter values prevent the software from upgrading a
model to use toolchain settings. The following instructions show you ways to complete the
upgrade process.

Consider upgrading your models and use the toolchain build approach. Doing so is not
required. You can continue generating code from a model that has not been upgraded.

Note: The software does not upgrade models that use the following system target files:

• ert.tlc — Create Visual C/C++ Solution File for Embedded Coder

• grt.tlc — Create Visual C/C++ Solution File for Simulink Coder

To see if a model was upgraded:

1 Open the model configuration parameters by pressing Ctrl+E.
2 Select Configuration Parameters > Code Generation.
3 If the Build process subpane contains the Toolchain and Build configuration

parameters, the model has already been upgraded.

40-17

40 Program Building, Interaction, and Debugging in Simulink Coder

If the Build process area displays Makefile configuration parameters, such as
Generate makefile, Make command, and Template makefile, the software has
not upgraded the model.

Start by creating a working copy of the model using File > Save As. This action
preserves the original model and configuration parameters for reference.

Try to upgrade the model using Upgrade Advisor:

1 In your model, select Analysis > Model Advisor > Upgrade Advisor.

40-18

 Choose and Configure Build Process

2 In Upgrade Advisor, select Check and update model to use toolchain approach
to build generated code and click Run This Check.

3 Perform the suggested actions and/or click Update Model.

When you cannot upgrade the model using Upgrade Advisor, one or more of the following
parameters is not set to its default value, shown here:

• Compiler optimization level — Optimizations off (faster builds)
• Generate makefile — Enabled
• Template makefile — System target file-specific template makefile
• Make command — make_rtw without arguments

Sometimes, a model cannot be upgraded. Try the following procedure:

• If Generate makefile is disabled, this case cannot be upgradable. However, you can
try enabling it and try upgrading the model using Upgrade Advisor.

• If Compiler optimization level is set to Optimizations on (faster runs):

1 Set Compiler optimization level is to Optimizations off (faster
builds).

2 Upgrade the model using Upgrade Advisor.
3 Set Build configuration to Faster Runs.

• If Compiler optimization level is set to Custom:

1 Copy the Custom compiler optimization flags to a text file.
2 Set Compiler optimization level to Optimizations off (faster builds).
3 Upgrade the model using Upgrade Advisor.
4 Set Build configuration to Specify.
5 To perform the same optimizations, edit the compiler options.

• If Template makefile uses a customized template makefile, this case cannot be
upgradable. However, you can try the following:

1 Update Template makefile to use the default makefile for the system target
file.

Note: To get the default makefile name, change the System target file, click
Apply, change it back, and click Apply again.

40-19

40 Program Building, Interaction, and Debugging in Simulink Coder

2 Upgrade the model using Upgrade Advisor.
3 If the template makefile contains build tool options, such as compiler

optimization flags, set Build configuration to Specify and update the options.
4 If the template makefile uses custom build tools, create and register a custom

toolchain, as described in “Custom Toolchain Registration” (MATLAB Coder) .
Then, set the Toolchain parameter to use the custom toolchain.

Note: After registering the custom toolchain, update Toolchain to use the
custom toolchain.

5 If the template makefile contains custom rules and logic, these customizations
cannot be applied to the upgraded model.

Template Makefile Approach

When the System target file is set to a tlc file that uses the template makefile
approach, the software displays Compiler optimization level, Generate makefile,
Make command, and Template makefile parameters.

40-20

 Choose and Configure Build Process

Specify Whether to Generate a Makefile

The Generate makefile option specifies whether the build process is to generate a
makefile for a model. By default, the build process generates a makefile. Suppress
generation of a makefile, for example in support of custom build processing that is not
based on makefiles, by clearing Generate makefile. When you clear this parameter:

• The Make command and Template makefile options are unavailable.
• Set up post code generation build processing using a user-defined command, as

explained in “Customize Post-Code-Generation Build Processing” (Simulink Coder).

40-21

40 Program Building, Interaction, and Debugging in Simulink Coder

Specify a Make Command

Each template makefile-based system target file has an associated make command. The
code generator uses this internal MATLAB command to control the build process. The
command appears in the Make command field and runs when you start a build.

Most system target files use the default command, make_rtw. Third-party system target
files could supply another make command. See the documentation from the vendor.

In addition to the name of the make command, you can supply makefile options in the
Make command field. These options could include compiler-specific options, include
paths, and other parameters. When the build process invokes the make utility, these
options are passed on the make command line, which adds them to the overall flags
passed to the compiler.

“Template Makefiles and Make Options” on page 40-24 lists the Make command
options you can use with each supported compiler.

Specify the Template Makefile

The Template makefile field has these functions:

• If you selected a system target file with the System Target File Browser, this field
displays the name of a MATLAB language file that selects a template makefile for
your development environment. For example, in “Model Configuration Parameters:
Code Generation” (Simulink Coder), the Template makefile field displays
grt_default_tmf, indicating that the build process invokes grt_default_tmf.m.

“Template Makefiles and Make Options” on page 40-24 gives a detailed
description of the logic by which the build process selects a template makefile.

• Alternatively, you can explicitly enter the name of a specific template makefile
(including the extension) or a MATLAB language file that returns a template
makefile in this field. Use this approach if you are using a system target file that does
not appear in the System Target File Browser. For example, use this approach if you
have written your own template makefile for a custom system target file.

If you specify your own template makefile, be sure to include the file name extension.
If you omit the extension, the build process attempts to find and execute a file with the
extension .m (that is, a MATLAB language file). The template make file (or a MATLAB
language file that returns a template make file) must be on the MATLAB path. To
determine whether the file is on the MATLAB path, enter the following command in the
MATLAB Command Window:

40-22

 Choose and Configure Build Process

which tmf_filename

Specify TLC for Code Generation

You can specify Target Language Compiler (TLC) command-line options and arguments
for code generation using the model parameter TLCOptions in a set_param function
call. For example,
>> set_param(gcs,'TLCOptions','-p0 -aWarnNonSaturatedBlocks=0')

Some common uses of TLC options include the following:

• -aVarName=1 to declare a TLC variable and/or assign a value to it
• -IC:\Work to specify an include path
• -v to obtain verbose output from TLC processing (for example, when debugging)

TLC options that you specify for code generation appear in the summary section of the
generated HTML code generation report.

Specifying TLC command-line options does not add flags to the make command line.

For additional information, see “Target Language Compiler Overview” (Simulink Coder).

More About
• “Support Toolchain Approach with Custom Target” on page 71-81
• “Build and Run a Program” on page 40-43
• “Custom Toolchain Registration” (MATLAB Coder)
• “Template Makefiles and Make Options” on page 40-24
• “Target Language Compiler Overview” (Simulink Coder)
• “Executable Program Generation” on page 40-68

40-23

40 Program Building, Interaction, and Debugging in Simulink Coder

Template Makefiles and Make Options
The code generator includes a set of built-in template makefiles that build programs for
specific system target files.

In this section...

“Types of Template Makefiles” on page 40-24
“Specify Template Makefile Options” on page 40-25
“Template Makefiles for UNIX Platforms” on page 40-25
“Template Makefiles for the Microsoft Visual C++ Compiler” on page 40-26
“Template Makefiles for the LCC Compiler” on page 40-28

Types of Template Makefiles

There are two types of template makefiles:

• Compiler-specific template makefiles are for a particular compiler or development
system.

By convention, compiler-specific template makefiles names correspond to the system
target file and compiler (or development system). For example, grt_vcx64.tmf is
the template makefile for building a generic real-time program under the Visual C+
+ compiler; ert_lcc.tmf is the template makefile for building an Embedded Coder
program under the lcc compiler.

• Default template makefiles make your model designs more portable, by choosing the
compiler-specific makefile and compiler for your installation. “Select and Configure
C or C++ Compiler or IDE” on page 40-3 describes the operation of default template
makefiles in detail.

Default template makefiles have names that follow the pattern
target_default_tmf. They are MATLAB language files that, when run,
select the TMF for the specified system target file configuration. For example,
grt_default_tmf is the default template makefile for building a generic real-
time program; ert_default_tmf is the default template makefile for building an
Embedded Coder program.

For details on the structure of template makefiles, see “Customize Template Makefiles”
on page 71-62. This section describes compiler-specific template makefiles and
common options you can use with each.

40-24

 Template Makefiles and Make Options

Specify Template Makefile Options

You can specify template makefile options by using the Make command box in
Configuration Parameters > Code Generation. Append the options after make_rtw
(or other make command), as in the following example:

make_rtw OPTS="-DMYDEFINE=1"

The syntax for make command options differs slightly for different compilers.

Note: To control compiler optimizations for a makefile build at the Simulink GUI level,
use the Compiler optimization level parameter on the All Parameters tab of the
Configuration Parameters dialog box. The Compiler optimization level parameter
provides

• System target file-independent values Optimizations on (faster runs) and
Optimizations off (faster builds), which easily allow you to toggle compiler
optimizations on and off during code development

• The value Custom for entering custom compiler optimization flags at Simulink GUI
level (rather than at other levels of the build process)

If you specify compiler options for your makefile build using OPT_OPTS, MEX_OPTS
(except MEX_OPTS="-v"), or MEX_OPT_FILE, the value of Compiler optimization
level is ignored and a warning is issued about the ignored parameter.

Template Makefiles for UNIX Platforms

The template makefiles for UNIX platforms are for the Free Software Foundation's
GNU Make. These makefiles conform to the guidelines specified in the IEEE®10 Std
1003.2-1992 (POSIX) standard.

• ert_unix.tmf

• grt_unix.tmf

• rsim_unix.tmf

• rtwsfcn_unix.tmf

10. IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.

40-25

40 Program Building, Interaction, and Debugging in Simulink Coder

You can supply options to makefiles using the Make command box in the
Configuration Parameters > Code Generation pane. Options specified in Make
command are passed to the command-line invocation of the make utility, which adds
them to the overall flags passed to the compiler. The following options can be used to
modify the behavior of the build:

• OPTS — User-specific options, for example,

OPTS="-DMYDEFINE=1"

• OPT_OPTS— Optimization options. Default is -O. To enable debugging, specify the
option as OPT_OPTS=-g. Because of optimization problems in IBM_RS, the default is
no optimization.

• CPP_OPTS — C++ compiler options.
• USER_SRCS — Additional user sources, such as files used by S-functions.
• USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

• DEBUG_BUILD — Add debug information to generated code, for example,

DEBUG_BUILD=1

These options are also documented in the comments at the head of the respective
template makefiles.

Template Makefiles for the Microsoft Visual C++ Compiler

• “Visual C++ Executable Build” on page 40-26
• “Visual C++ Code Generation Only” on page 40-27

Visual C++ Executable Build

To build an executable using the Visual C++ compiler within the build process, use one of
the target_vcx64.tmf template makefiles:

• ert_vcx64.tmf

• grt_vcx64.tmf

• rsim_vcx64.tmf

• rtwsfcn_vcx64.tmf

40-26

 Template Makefiles and Make Options

You can supply options to makefiles using the Make command field in the
Configuration Parameters > Code Generation pane. Options specified in Make
command are passed to the command-line invocation of the make utility, which adds
them to the overall flags passed to the compiler. The following options can be used to
modify the behavior of the build:

• OPT_OPTS — Optimization option. Default is -O2. To enable debugging, specify the
option as OPT_OPTS=-Zi.

• OPTS — User-specific options.
• CPP_OPTS — C++ compiler options.
• USER_SRCS — Additional user sources, such as files used by S-functions.
• USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

• DEBUG_BUILD — Add debug information to generated code, for example,

DEBUG_BUILD=1

These options are also documented in the comments at the head of the respective
template makefiles.

Visual C++ Code Generation Only

To create a Visual C++ project makefile (model.mak) without building an executable, use
one of the target_msvc.tmf template makefiles:

• ert_msvc.tmf

• grt_msvc.tmf

These template makefiles are for nmake, which is bundled with the Visual C++ compiler.

You can supply options to makefiles using the Make command field in the
Configuration Parameters > Code Generation pane. Options specified in Make
command are passed to the command-line invocation of the make utility, which adds
them to the overall flags passed to the compiler. The following options can be used to
modify the behavior of the build:

• OPTS — User-specific options, for example,

OPTS="/D MYDEFINE=1"

40-27

40 Program Building, Interaction, and Debugging in Simulink Coder

• USER_SRCS — Additional user sources, such as files used by S-functions.
• USER_INCLUDES — Additional include paths, for example,

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

• DEBUG_BUILD — Add debug information to generated code, for example,

DEBUG_BUILD=1

These options are also documented in the comments at the head of the respective
template makefiles.

Template Makefiles for the LCC Compiler

The code generator provides template makefiles to create an executable for the Windows
platform using Lcc compiler Version 2.4 and GNU Make (gmake).

• ert_lcc.tmf

• grt_lcc.tmf

• rsim_lcc.tmf

• rtwsfcn_lcc.tmf

You can supply options to makefiles using the Make command field in the
Configuration Parameters > Code Generation pane. Options specified in Make
command are passed to the command-line invocation of the make utility, which adds
them to the overall flags passed to the compiler. The following options can be used to
modify the behavior of the build:

• OPTS — User-specific options, for example,

OPTS="-DMYDEFINE=1"

• OPT_OPTS — Optimization options. Default is no options. To enable debugging,
specify -g4:

OPT_OPTS="-g4"

• CPP_OPTS — C++ compiler options.
• USER_SRCS — Additional user sources, such as files used by S-functions.
• USER_INCLUDES — Additional include paths. For example:

USER_INCLUDES="-Iwhere-ever -Iwhere-ever2"

40-28

 Template Makefiles and Make Options

For lcc, use / as file separator before the file name instead of \, for example, d:
\work\proj1/myfile.c.

• DEBUG_BUILD — Add debug information to generated code, for example,

DEBUG_BUILD=1

These options are also documented in the comments at the head of the respective
template makefiles.

More About
• “Select a System Target File” on page 30-2
• “Customize System Target Files” (Simulink Coder)

40-29

40 Program Building, Interaction, and Debugging in Simulink Coder

Build Process Workflow for a Real-Time STF

Building a program means generating C or C++ code from an example model and
then building an executable program from the generated code. This example can use a
generic real-time (GRT) or an embedded real-time (ERT) system target file (STF) for
code generation. The resulting standalone program runs on your desktop computer,
independent of external timing and events.

In this section...

“Working Folder” on page 40-30
“Build Folder and Code Generation Folders” on page 40-31
“Set Simulation Parameters” on page 40-31
“Configure Build Process” on page 40-33
“Set Code Generation Parameters” on page 40-34
“Build and Run a Program” on page 40-39
“Contents of the Build Folder” on page 40-40
“Customized Makefile Generation” on page 40-41

Working Folder

This example uses a local copy of the slexAircraftExample model, stored in its own
folder, aircraftexample. Set up your working folder as follows:

1 In the MATLAB Current Folder browser, navigate to a folder to which you have
write access.

2 To create the working folder, enter the following MATLAB command:

mkdir aircraftexample

3 Make aircraftexample your working folder:

cd aircraftexample

4 Open the slexAircraftExample model:

slexAircraftExample

The model appears in the Simulink Editor model window.

40-30

 Build Process Workflow for a Real-Time STF

5 In the model window, choose File > Save As. Navigate to your working folder,
aircraftexample. Save a copy of the slexAircraftExample model as
myAircraftExample.

Build Folder and Code Generation Folders

While producing code, the code generator creates a build folder within your working
folder. The build folder name is model_target_rtw, derived from the name of the
source model and the chosen system target file. The build folder stores generated source
code and other files created during the build process. Examine the build folder contents
at the end of this example.

When a model contains Model blocks (references to other models), the model build creates
special subfolders in your “Code generation folder” (Simulink) to organize code for the
referenced models. These code generation folders exist alongside product build folders
and are named slprj. “Generate Code for Referenced Models” on page 5-4 describes
navigating code generation folder structures in Model Explorer.

Under the slprj folder, a subfolder named _sharedutils contains generated code that
can be shared between models.

Set Simulation Parameters

To generate code from your model, you must change some of the simulation parameters.
In particular, the generic real-time (GRT) system target file and most other system
target files require that the model specifies a fixed-step solver.

Note The code generator produces code for models, using variable-step solvers, for rapid
simulation (rsim) and S-function system target files only.

To set simulation parameters using the Configuration Parameters dialog box:

1 Open the myAircraftExample model if it is not already open.
2 From the model window, open the Configuration Parameters dialog box by selecting

Simulation > Model Configuration Parameters.
3 Select Configuration Parameters > Solver. Enter the following parameter values

(some could already be set):

• Start time: 0.0

40-31

40 Program Building, Interaction, and Debugging in Simulink Coder

• Stop time: 60
• Type: Fixed-step
• Solver: ode5 (Dormand-Prince)
• Fixed step size (fundamental sample time): 0.1
• Treat each discrete rate as a separate task: Off

The background color of the controls you just changed is tan. The color also appears
on fields as a reaction to your choices in other fields. Use this visual feedback to
verify that what you set is what you intended. When you apply your changes, the
background color reverts to white.

40-32

 Build Process Workflow for a Real-Time STF

4 To register your changes, click Apply.
5 Save the model. Simulation parameters persist with the model for use in future

sessions.

Configure Build Process

To configure the build process for your model, choose a system target file, a toolchain or
template makefile, and a make command.

In these examples and in most applications, you do not need to specify these parameters
individually. The examples use the ready-to-run generic real-time target (GRT)
configuration. The GRT system target file builds a standalone executable program that
runs on your desktop computer.

To select the GRT system target file using the Configuration Parameters dialog box:

1 With the myAircraftExample model open, select Simulation > Model
Configuration Parameters to open the Configuration Parameters dialog box.

2 Select Configuration Parameters > Code Generation.
3 For System target file, enter grt.tlc, and click Apply.

The Configuration Parameters > Code Generation pane displays selections
for the System target file (grt.tlc), Toolchain (Automatically locate an
installed toolchain), and Build Configuration (Faster Builds).

40-33

40 Program Building, Interaction, and Debugging in Simulink Coder

Note If you click Browse, a System Target File Browser opens and displays the
system target files on the MATLAB path. Some system target files require additional
products. For example, ert.tlc requires Embedded Coder.

4 Save the model.

Set Code Generation Parameters

Before you generate code from your model for the first time, inspect the code generation
parameters for the model. Some of the steps in this topic do not require you to change

40-34

 Build Process Workflow for a Real-Time STF

parameter values. These steps appear to help you familiarize yourself with the user
interface. As you work with the model parameters, you can place the mouse pointer on a
parameter to see a tool tip describing its function.

To set code generation parameters using the Configuration Parameters dialog box:

1 With the myAircraftExample model open, select Simulation > Model
Configuration Parameters to open the Configuration Parameters dialog box.

2 Select Code Generation > Report > Create code generation report. This
action enables the software to create and display a code generation report for the
myAircraftExample model.

40-35

40 Program Building, Interaction, and Debugging in Simulink Coder

3 Select Code Generation > Comments. The options displayed here control the
types of comments included in generated code. Leave the options set to their
defaults.

4 Select Code Generation > Symbols. These options control the look and feel of
generated code.

40-36

 Build Process Workflow for a Real-Time STF

5 Select the All Parameters tab. The following parameters in the Code Generation
category control build verbosity and debugging support. These parameters are
common to all system target file configurations.

• Verbose build (RTWVerbose parameter)
• Retain .rtw file (RetainRTWFile parameter)
• Profile TLC (ProfileTLC parameter)
• Start TLC debugger when generating code (TLCDebug parameter)
• Start TLC coverage when generating code (TLCCoverage parameter)

40-37

40 Program Building, Interaction, and Debugging in Simulink Coder

• Enable TLC assertion (TLCAssert parameter)

Leave the options set to their defaults.
6 Select Configuration Parameters > Code Generation > Interface.

• For the Shared code placement parameter, select Shared location. The
build process places generated code for utilities at a shared location within the
slprj folder in your “Code generation folder” (Simulink).

• If it is not already cleared, switch to the All Parameters tab and clear the Code
Generation > Classic call interface option.

40-38

 Build Process Workflow for a Real-Time STF

7 Click Apply and save the model.

Build and Run a Program

The build process generates C code from the model. It then compiles and links the
generated program to create an executable image. To build and run the program:

1 With the myAircraftExample model open, initiate code generation and the build
process for the model by using any of the following options:

• Click the Build Model button.
• Press Ctrl+B.
• Select Code > C/C++ Code > Build Model.
• Invoke the rtwbuild command from the MATLAB command line.
• Invoke the slbuild command from the MATLAB command line.

Some messages concerning code generation and compilation appear in the Command
Window. The initial message is:
Starting build procedure for model: myAircraftExample

The contents of many of the succeeding messages depends on your compiler and
operating system. The final messages include:
Created executable myAircraftExample.exe

Successful completion of build procedure for model: myAircraftExample

Creating HTML report file myAircraftExample_codegen_rpt.html

The code generation folder now contains an executable, myAircraftExample.exe
(Microsoft Windows platforms) or myAircraftExample (UNIX platforms).
In addition, the build process has created an slprj folder and a
myAircraftExample_grt_rtw folder in your “Code generation folder” (Simulink).

Note: After generating the code for the myAircraftExample model, the build
process displays a code generation report. See “Report Generation” (Simulink Coder)
for more information about how to create and use a code generation report.

2 To see the contents of the working folder after the build, enter the dir or ls
command:
>> dir

40-39

40 Program Building, Interaction, and Debugging in Simulink Coder

. myAircraftExample.slx slprj

.. myAircraftExample.slx.autosave

myAircraftExample.exe myAircraftExample_grt_rtw

3 To run the executable from the Command Window, type !myAircraftExample. The
! character passes the command that follows it to the operating system, which runs
the standalone myAircraftExample program.
>> !myAircraftExample

** starting the model **

** created myAircraftExample.mat **

4 To see the files created in the build folder, use the dir or ls command again. The
exact list of files produced varies among MATLAB platforms and versions. Here is a
sample list from a Windows platform:
>> dir myAircraftExample_grt_rtw

. rt_main.obj myAircraftExample_data.c

.. rtmodel.h myAircraftExample_data.obj

buildInfo.mat rtw_proj.tmw myAircraftExample_private.h

codeInfo.mat myAircraftExample.bat myAircraftExample_ref.rsp

defines.txt myAircraftExample.c myAircraftExample_types.h

html myAircraftExample.h

modelsources.txt myAircraftExample.mk

rt_logging.obj myAircraftExample.obj

Contents of the Build Folder

The build process creates a build folder and names it model_target_rtw, where model
is the name of the source model and target is the system target file selected for the
model. In this example, the build folder is named myAircraftExample_grt_rtw.

The build folder includes the following generated files.

File Description

myAircraftExample.c Standalone C code that implements the model
myAircraftExample.h An include header file containing definitions of

parameters and state variables
myAircraftExample_private.h Header file containing common include

definitions
myAircraftExample_types.h Forward declarations of data types used in the

code

40-40

 Build Process Workflow for a Real-Time STF

File Description

rtmodel.h Master header file for including generated
code in the static main program (its name
does not change, and it simply includes
myAircraftExample.h)

The code generation report that you created for the myAircraftExample model displays
a link for each of these files. You can click the link explore the file contents.

The build folder contains other files used in the build process. They include:

• myAircraftExample.mk — Makefile for building executable using the specified
Toolchain.

• Object (.obj) files
• myAircraftExample.bat — Batch control file
• rtw_proj.tmw — Marker file
• buildInfo.mat — Build information for relocating generated code to another

development environment
• defines.txt — Preprocessor definitions required for compiling the generated code
• myAircraftExample_ref.rsp — Data to include as command-line arguments to

mex (Windows systems only)

The build folder also contains a subfolder, html, which contains the files that make up
the code generation report. For more information, see “Reports for Code Generation”
(Simulink Coder).

Customized Makefile Generation

After producing code, the code generator produces a customized makefile, model.mk.
The generated makefile instructs the make system utility to compile and link source code
generated from the model, any required harness program, libraries, or user-provided
modules. The code generator produces the file model.mk whether you are using the
toolchain approach or template makefile approach for build process control. For more
information about these approaches, see “Choose and Configure Build Process” on page
40-14.

If you are using the toolchain approach, the code generator creates model.mk based on
the model Toolchain settings. You can modify generation of the makefile through the
rtwmakecfg.m API. For more information, see “Toolchain Approach” on page 40-14.

40-41

40 Program Building, Interaction, and Debugging in Simulink Coder

If you are using the template makefile approach, the code generator creates model.mk
from a system template file, system.tmf (where system stands for the selected system
target file name). The system template makefile is designed for your system target file.
You have the option of modifying the template makefile to specify compilers, compiler
options, and additional information used during the creation of the executable. For more
information, see “Template Makefile Approach” on page 40-20.

More About
• “Choose and Configure Build Process” on page 40-14
• “Build and Run a Program” on page 40-43
• “Reports for Code Generation” (Simulink Coder)
• “Select and Configure C or C++ Compiler or IDE” on page 40-3

40-42

 Build and Run a Program

Build and Run a Program

The build process generates C code from a model, then compiles and links the generated
program to create an executable image. To build and run a sample program, use the
example model slexAircraftExample.

1 In the Command Window, enter slexAircraftExample to open the model.
2 Save a copy of the model to your working folder and name it myAircraftExample.
3 Open the Configuration Parameters dialog box by selecting Simulation > Model

Configuration Parameters. Set the following parameters.

• Select Configuration Parameters > Solver. Enter the following parameter
values for the Solver (some could already be set):

• Start time: 0.0
• Stop time: 60
• Type: Fixed-step
• Solver: ode5 (Dormand-Prince)
• Fixed step size (fundamental sample time): 0.1
• Treat each discrete rate as a separate task: Off

• Select Configuration Parameters > Code Generation > Report, and select
the Create code generation report parameter. This option causes the build
process to display a code generation report after generating the code for the
myAircraftExample model.

• Select Configuration Parameters > Code Generation > Interface. For the
Shared code placement parameter, select Shared location. This option
causes generated code for utilities to be placed at a shared location within the
slprj folder in the “Code generation folder” (Simulink).

• Select the All Parameters tab.

• If it is not already cleared, clear the Classic call interface option.
• If it is not already set, set the Single output/update function option.

Click Apply and OK.
4 With the model open, initiate code generation and the build process for the model by

using any of the following options:

40-43

40 Program Building, Interaction, and Debugging in Simulink Coder

• Click the Build Model button.
• Press Ctrl+B.
• Select Code > C/C++ Code > Build Model.
• Invoke the rtwbuild command from the MATLAB command line.
• Invoke the slbuild command from the MATLAB command line.

Some messages concerning code generation and compilation appear in the MATLAB
Command Window. The initial message is:
Starting build procedure for model: myAircraftExample

The contents of many of the succeeding messages depends on your compiler and
operating system. The final messages include:
Created executable slexAircraftExample.exe

Successful completion of build procedure for model: myAircraftExample

Creating HTML report file myAircraftExample_codegen_rpt.html

The code generation folder now contains an executable, myAircraftExample.exe
(Microsoft Windows platforms) or myAircraftExample (UNIX platforms).
In addition, the build process has created an slprj folder and a
myAircraftExample_grt_rtw folder in the “Code generation folder” (Simulink) .

Note: The build process displays a code generation report after generating the code
for the myAircraftExample model. See “Report Generation” (Simulink Coder) for
more information about how to create and use a code generation report.

5 To observe the contents of the working folder after the build, type the dir or ls
command from the Command Window.
>> dir

. myAircraftExample.exe myAircraftExample_grt_rtw

.. myAircraftExample.slx slprj

6 To run the executable from the Command Window, type !slexAircraftExample.
The ! character passes the command that follows it to the operating system, which
runs the standalone slexAircraftExample program.
>> !myAircraftExample

** starting the model **

** created myAircraftExample.mat **

40-44

 Build and Run a Program

7 To see the files created in the build folder, use the dir or ls command again. The
exact list of files produced varies among MATLAB platforms and versions. Here is a
sample list from a Windows platform.
>> dir myAircraftExample_grt_rtw

. rt_main.obj myAircraftExample_data.c

.. rtmodel.h myAircraftExample_data.obj

buildInfo.mat rtw_proj.tmw myAircraftExample_private.h

codeInfo.mat myAircraftExample.bat myAircraftExample_ref.rsp

defines.txt myAircraftExample.c myAircraftExample_types.h

html myAircraftExample.h

modelsources.txt myAircraftExample.mk

rt_logging.obj myAircraftExample.obj

Tip: For UNIX platforms, run the executable in the Command Window with the syntax
!./executable_name. If preferred, run the executable from an OS shell with the
syntax ./executable_name. For more information, see “Run External Commands,
Scripts, and Programs” (MATLAB).

More About
• “Run External Commands, Scripts, and Programs” (MATLAB)
• “Build and Run a Program” on page 40-39
• “Rebuild a Model” on page 40-46
• “Report Generation” (Simulink Coder)

40-45

40 Program Building, Interaction, and Debugging in Simulink Coder

Rebuild a Model

If you update generated source code or makefiles manually to add customizations,
you can rebuild the files with the rtwrebuild command. This command recompiles
the modified files by invoking the generated makefile. Alternatively, you can use this
command from the Model Explorer:

1 Open the top model. To open the Model Explorer window, select View > Model
Explorer.

2 In the Model Hierarchy pane, expand the node for the model.
3 Click the Code for model node.
4 In the Code pane, next to Code Recompile Command, click rebuild generated

code.

40-46

 Rebuild a Model

More About
• rtwrebuild (Simulink Coder)
• “Build and Run a Program” on page 40-43

40-47

40 Program Building, Interaction, and Debugging in Simulink Coder

Control Regeneration of Top Model Code

When you rebuild a model, by default, the build process performs checks to determine
whether changes to the model or relevant settings require regeneration of the top model
code. The model build regenerates top model code if any of the following conditions is
true:

• The structural checksum of the model has changed.
• The top-model-only checksum has changed. The top-model-only checksum provides

information about top model parameters, such as application lifespan, maximum
stack size, make command, verbose and .rtw file debug settings, and TLCOptions.

• Any of the following TLC debugging model options, on the All Parameters tab of the
Configuration Parameters dialog box, is on:

• Start TLC debugger when generating code (TLCDebug)
• Start TLC coverage when generating code (TLCCoverage)
• Enable TLC assertion (TLCAssert)
• Profile TLC (ProfileTLC)

Whether the top model code is regenerated, the build process calls the build process
hooks and reruns the makefile. The hooks include the STF_make_rtw_hook functions
and the post code generation command. This process recompiles and links the external
dependencies.

System target file authors can perform actions related to code regeneration in the
STF_make_rtw_hook functions that the build process calls. These actions include forcing
or reacting to code regeneration. For more information, see “Control Code Regeneration
Using STF_make_rtw_hook.m” on page 70-36.

Regeneration of Top Model Code

If the checks determine that top model code generation is required, the build process
fully regenerates and compiles the model code. An example check is whether previously
generated code is not current due to a model update.

The build process omits regeneration of the top model code when the checks indicate
both:

• The top model generated code is current for the model.

40-48

 Control Regeneration of Top Model Code

• No model settings require full regeneration,

This omission can significantly reduce model build times.

With an Embedded Coder license, if you modify a code generation template (CGT) file
then rebuild your model, the code generation process does not force a top model build. In
this case, see “Force Regeneration of Top Model Code” on page 40-49.

Force Regeneration of Top Model Code

If you want to control or override the default top model build behavior, use one of the
following command-line options:

• To ignore the checksum and force regeneration of the top model code:

• rtwbuild(model,'ForceTopModelBuild',true)

• slbuild(model,'StandaloneRTWTarget','ForceTopModelBuild',true)

• To clean the model build area enough to trigger regeneration of the top model code at
the next build (slbuild only):

slbuild(model,'CleanTopModel')

You can force regeneration of the top model code by deleting the slprj folder or the
generated model code folder from the “Code generation folder” (Simulink) .

More About
• rtwrebuild (Simulink Coder)
• “Control Code Regeneration Using STF_make_rtw_hook.m” on page 70-36
• “Choose and Configure Build Process” on page 40-14
• “Rebuild a Model” on page 40-46
• “Reduce Build Time for Referenced Models” on page 40-50

40-49

40 Program Building, Interaction, and Debugging in Simulink Coder

Reduce Build Time for Referenced Models

In a parallel computing environment, you can increase the speed of code generation and
compilation for models containing large model reference hierarchies. Achieve the speed
by building referenced models in parallel whenever conditions allow. For example, if you
have Parallel Computing Toolbox™ software, code generation and compilation for each
referenced model can be distributed across the cores of a multicore host computer. If you
also have MATLAB Distributed Computing Server™ software, you can distribute code
generation and compilation for each referenced model across remote workers in your
MATLAB Distributed Computing Server configuration.

In this section...

“Parallel Building for Large Model Reference Hierarchies” on page 40-50
“Parallel Building Configuration Requirements” on page 40-51
“Build Models in a Parallel Computing Environment” on page 40-51
“Locate Parallel Build Logs” on page 40-53

Parallel Building for Large Model Reference Hierarchies

The performance gain realized by using parallel builds for referenced models depends
on several factors. These factors include how many models can be built in parallel for
a given model referencing hierarchy, the size of the referenced models, and parallel
computing resources. The resources include the number of local and/or remote workers
available and the hardware attributes of the local and remote machines. Examples of
hardware attributes are the amount of RAM and number of cores.

For configuration requirements that could apply to your parallel computing environment,
see “Parallel Building Configuration Requirements” on page 40-51.

For a description of the general workflow for building referenced models in parallel
whenever conditions allow, see “Build Models in a Parallel Computing Environment” on
page 40-51.

For information on how to configure a custom embedded system target file to support
parallel builds, see “Support Model Referencing” (Simulink Coder).

Note: In a MATLAB Distributed Computing Server parallel computing configuration,
parallel building is designed to work interactively with the software. You can initiate

40-50

 Reduce Build Time for Referenced Models

builds from the Simulink user interface or from the MATLAB Command Window using
commands such as slbuild. You cannot initiate builds using batch or other batch mode
workflows.

Parallel Building Configuration Requirements

The following requirements apply to configuring your parallel computing environment for
building model reference hierarchies in parallel whenever conditions allow:

• For local pools, the host machine must have enough RAM to support the number
of local workers (MATLAB sessions) that you plan to use. For example, using
parpool(4) to create a parallel pool with four workers results in five MATLAB
sessions on your machine. Each pool uses the amount of memory required for
MATLAB and the code generator at startup. For memory requirements, see System
Requirements for MATLAB & Simulink.

• Remote MATLAB Distributed Computing Server workers participating in a parallel
build and the client machine must use a common platform and compiler.

• A consistent MATLAB environment must be set up in each MATLAB worker session
as in the MATLAB client session — for example, shared base workspace variables,
MATLAB path settings, and so forth. One approach is to use the PreLoadFcn
callback of the top model. If you configure your model to load the top model with each
MATLAB worker session, its preload function can be used for any MATLAB worker
session setup.

Build Models in a Parallel Computing Environment

To take advantage of parallel building for a model reference hierarchy:

1 Set up a pool of local and/or remote MATLAB workers in your parallel computing
environment.

a Make sure that Parallel Computing Toolbox software is licensed and installed.
b To use remote workers, make sure that MATLAB Distributed Computing Server

software is licensed and installed.
c Issue MATLAB commands to set up the parallel pool, for example, parpool(4).

2 From the top model of the model reference hierarchy, open the Configuration
Parameters dialog box. Go to the Model Referencing pane and select the Enable

40-51

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

40 Program Building, Interaction, and Debugging in Simulink Coder

parallel model reference builds (Simulink) option. This selection enables the
parameter MATLAB worker initialization for builds (Simulink).

For MATLAB worker initialization for builds, select one of the following values:

• None if it is preferable that the software does not perform special worker
initialization. Specify this value if the child models in the model reference
hierarchy do not rely on anything in the base workspace beyond what they
explicitly set up. An example is a model load function.

40-52

 Reduce Build Time for Referenced Models

• Copy base workspace if it is preferable that the software attempts to copy
the base workspace to each worker. Specify this value if you use a setup script to
prepare the base workspace for multiple models to use.

• Load top model if it is preferable that the software loads the top model on
each worker. Specify this value if the top model in the model reference hierarchy
handles the base workspace setup. An example is a model load function.

Note: Only set Enable parallel model reference builds for the top model of the
model reference hierarchy to which it applies.

3 Optionally, turn on verbose messages for simulation builds, code generation builds,
or both. If you select verbose builds, the build messages report the progress of each
parallel build with the name of the model.

• To turn on verbose messages in model builds for simulation, go to Configuration
Parameters > All Parameters > Optimization and select Verbose
accelerator builds.

• To turn on verbose messages in model builds for code generation, go to
Configuration Parameters > All Parameters > Code Generation and select
Verbose build.

Verbose options control the build messages in the MATLAB Command Window and
in parallel build log files.

4 Optionally, inspect the model reference hierarchy to determine, based on model
dependencies, which models are built in parallel. For example, you can use the Model
Dependency Viewer from the Simulink Analysis > Model Dependencies menu.

5 Build your model. Messages in the MATLAB Command Window record when each
parallel or serial build starts and finishes. The order in which referenced models
build is nondeterministic. They could build in a different order each time the model
is built.

If you need more information about a parallel build, for example, if a build fails, see
“Locate Parallel Build Logs” on page 40-53.

Locate Parallel Build Logs

If verbose builds are turned on when you build a model for which referenced models are
built in parallel, messages in the MATLAB Command Window record when each parallel
or serial build starts and finishes. For example,

40-53

40 Program Building, Interaction, and Debugging in Simulink Coder

Initializing parallel workers for parallel model reference build.

Parallel worker initialization complete.

Starting parallel model reference SIM build for 'bot_model001'

Starting parallel model reference SIM build for 'bot_model002'

Starting parallel model reference SIM build for 'bot_model003'

Starting parallel model reference SIM build for 'bot_model004'

Finished parallel model reference SIM build for 'bot_model001'

Finished parallel model reference SIM build for 'bot_model002'

Finished parallel model reference SIM build for 'bot_model003'

Finished parallel model reference SIM build for 'bot_model004'

Starting parallel model reference RTW build for 'bot_model001'

Starting parallel model reference RTW build for 'bot_model002'

Starting parallel model reference RTW build for 'bot_model003'

Starting parallel model reference RTW build for 'bot_model004'

Finished parallel model reference RTW build for 'bot_model001'

Finished parallel model reference RTW build for 'bot_model002'

Finished parallel model reference RTW build for 'bot_model003'

Finished parallel model reference RTW build for 'bot_model004'

To obtain more detailed information about a parallel build, you can examine the parallel
build log. For each referenced model built in parallel, the build process generates a file
named model_buildlog.txt, where model is the name of the referenced model. This
file contains the full build log for that model.

If a parallel build completes, you can find the build log file in the build subfolder
corresponding to the referenced model. For example, for a build of referenced model
bot_model004, look for the build log file bot_model004_buildlog.txt in a
referenced model subfolder such as build_folder/slprj/grt/bot_model004,
build_folder/slprj/ert/bot_model004, or build_folder/slprj/sim/
bot_model004. The build log (diagnostic viewer) provides a relative path to the location
of each build log file.

If a parallel builds fails, you could see output similar to the following:
Initializing parallel workers for parallel model reference build.

Parallel worker initialization complete.

...

Starting parallel model reference RTW build for 'bot_model002'

Starting parallel model reference RTW build for 'bot_model003'

Finished parallel model reference RTW build for 'bot_model002'

Finished parallel model reference RTW build for 'bot_model003'

Starting parallel model reference RTW build for 'bot_model001'

Starting parallel model reference RTW build for 'bot_model004'

Finished parallel model reference RTW build for 'bot_model004'

The following error occurred during the parallel model reference RTW build for

'bot_model001':

Error(s) encountered while building model "bot_model001"

Cleaning up parallel workers.

40-54

 Reduce Build Time for Referenced Models

If a parallel build fails, you can find the build log file in a referenced model subfolder
under the build subfolder /par_mdl_ref/model. For example, for a failed parallel
build of model bot_model001, look for the build log file bot_model001_buildlog.txt
in a subfolder such as build_folder/par_mdl_ref/bot_model001/slprj/
grt/bot_model001, build_folder/par_mdl_ref/bot_model001/slprj/ert/
bot_model001, or build_folder/par_mdl_ref/bot_model001/slprj/sim/
bot_model001.

More About
• “Control Regeneration of Top Model Code” on page 40-48
• “Reduce Update Time for Referenced Models” (Simulink)
• “Build and Run a Program” on page 40-43
• “Profile Code Performance” on page 40-71
• “Support Model Referencing” on page 71-83

40-55

40 Program Building, Interaction, and Debugging in Simulink Coder

Relocate Code to Another Development Environment

If you require relocating the static and generated code files for a model to another
development environment, use the pack-and-go utility. This condition occurs when your
system or integrated development environment (IDE) does not include MATLAB and
Simulink products.

In this section...

“Code Relocation” on page 40-56
“Package Code Using the User Interface” on page 40-56
“Package Code Using the Command-Line Interface” on page 40-58
“Build Integrated Code Outside the Simulink Environment” on page 40-61
“packNGo Function Limitations” on page 40-67

Code Relocation

The pack-n-go utility uses the tools for customizing the build process after code
generation and a packNGo function to find and package files for building an executable
image. The files are packaged in a compressed file that you can relocate and unpack
using a standard zip utility.

To package model code files, you can do either of the following:

• Use the model option Package code and artifacts (Simulink Coder) in the
Configuration Parameters > Code Generation pane. See “Package Code Using
the User Interface” on page 40-56.

• Use MATLAB commands to configure a PostCodeGenCommand parameter with a call
to the packNGo function. See “Package Code Using the Command-Line Interface” on
page 40-58. The command-line interface provides more control over the details of
code packaging.

Package Code Using the User Interface

To package and relocate code for your model using the user interface:

1 Open Configuration Parameters > Code Generation.

40-56

 Relocate Code to Another Development Environment

2 Select the option Package code and artifacts (Simulink Coder). This option
configures the build process to run the packNGo function after code generation to
package generated code and artifacts for relocation.

3 In the Zip file name (Simulink Coder) field, enter the name of the zip file in which
to package generated code and artifacts for relocation. You can specify the file name
with or without the .zip extension. If you specify no extension or an extension other
than .zip, the zip utility adds the.zip extension. If you do not specify a value, the
build process uses the name model.zip, where model is the name of the top model
for which code is being generated.

40-57

40 Program Building, Interaction, and Debugging in Simulink Coder

4 Apply changes and generate code for your model. To verify that it is ready for
relocation, inspect the resulting zip file. Depending on the zip tool that you use,
you could be able to open and inspect the file without unpacking it.

5 Relocate the zip file to the destination development environment and unpack the
file.

Package Code Using the Command-Line Interface

To package and relocate code for your model using the command-line interface:

1 Select a structure for the zip file.
2 Select a name for the zip file.
3 Package the model code files in the zip file.
4 Inspect the generated zip file.
5 Relocate and unpack the zip file.

Select a Structure for the Zip File

Before you generate and package the files for a model build, decide whether you want
the files to be packaged in a flat or hierarchical folder structure. By default, the packNGo
function packages the files in a single, flat folder structure.

If... Then Use a...

You are relocating files to an IDE that does
not use the generated makefile, or the code
is not dependent on the relative location of
required static files

Single, flat folder structure

The destination development environment
must maintain the folder structure of the
source environment because it uses the
generated makefile, or the code depends on
the relative location of files

Hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels of zip files, a
primary zip file, which in turn contains the following secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree

40-58

 Relocate Code to Another Development Environment

• sDirFiles.zip — files in and under your build folder where you initiated code
generation for the model

• otherFiles.zip — required files not in the matlabroot or start folder trees

Paths for the secondary zip files are relative to the root folder of the primary zip file,
maintaining the source development folder structure.

Select a Name for the Zip File

By default, the packNGo function names the primary zip file model. You have the
option of specifying a different name. If you specify a file name and omit the file type
extension, the function appends . to the name that you specify.

Package Model Code in a Zip File

Package model code files by using the PostCodeGenCommand configuration parameter,
packNGo function, and build information object for the model. You can set up the
packaging operation to use:

• A system generated build information object.

In this case, before generating the model code, use set_param to set the
configuration parameter PostCodeGenCommand to an explicit call to the packNGo
function. For example:
set_param(bdroot, 'PostCodeGenCommand', 'packNGo(buildInfo);');

After generating and writing the model code to disk and before generating a makefile,
this command instructs the build process to evaluate the call to packNGo. This
command uses the system generated build information object for the currently
selected model.

• A build information object that you construct programmatically.

In this case, you could use other build information functions to include paths and files
selectively in the build information object that you then specify with the packNGo
function. For example:
.

.

.

myModelBuildInfo = RTW.BuildInfo;

addSourceFiles(myModelBuildInfo, {'test1.c' 'test2.c' 'driver.c'});

.

40-59

40 Program Building, Interaction, and Debugging in Simulink Coder

.

.

packNGo(myModelBuildInfo);

The following examples show how you can change the default behavior of packNGo.

To... Specify...

Change the structure of the file
packaging to hierarchical

packNGo(buildInfo, {'packType'

'hierarchical'});

Rename the primary zip file packNGo(buildInfo, {'fileName'

'zippedsrcs'});

Change the structure of the file
packaging to hierarchical and rename
the primary zip file

packNGo(buildInfo, {'packType'

'hierarchical'...

'fileName' 'zippedsrcs'});

Include header files found on the
include path in the zip file

packNGo(buildInfo, {'minimalHeaders' false});

Generate warnings for parse errors
and missing files

packNGo(buildInfo, {'ignoreParseError'

true...

'ignoreFileMissing' true});

Note: The packNGo function can potentially modify the build information passed in the
first packNGo argument. As part of packaging model code, packNGo could find additional
files from source and include paths recorded in build information for the model and add
them to the build information.

Inspect a Generated Zip File

To verify that it is ready for relocation, inspect the generated zip file. Depending on the
zip tool that you use, you could be able to open and inspect the file without unpacking it.
If unpacking the file and you packaged the model code files as a hierarchical structure,
unpacking requires you to unpack the primary and secondary zip files. When you
unpack the secondary zip files, relative paths of the files are preserved.

Relocate and Unpack a Zip File

Relocate the generated zip file to the destination development environment and unpack
the file.

40-60

 Relocate Code to Another Development Environment

Code Packaging Example

This example shows how to package code files generated for the example model
rtwdemo_rtwintro using the command-line interface:

1 Set your working folder to a writable folder.
2 Open the model rtwdemo_rtwintro and save a copy to your working folder.
3 Enter the following MATLAB command:

set_param('rtwdemo_rtwintro', 'PostCodeGenCommand',...

'packNGo(buildInfo, {''packType'' ''hierarchical''})');

You must double the single-quotes due to the nesting of character arrays
'packType' and 'hierarchical' within the character array that specifies the call
to packNGo.

4 Generate code for the model.
5 Inspect the generated zip file, rtwdemo_rtwintro.zip. The zip file contains the

two secondary zip files, mlrFiles.zip and sDirFiles.zip.
6 Inspect the zip files mlrFiles.zip and sDirFiles.zip.
7 Relocate the zip file to a destination environment and unpack it.

Build Integrated Code Outside the Simulink Environment

Identify required files and interfaces for calling generated code in an external build
process.

Learn how to:

• Collect files required for building integrated code outside of Simulink®.
• Interface with external variables and functions.

For information about the example model and related examples, see “Generate C Code
from a Control Algorithm for an Embedded System”.

Collect and Build Required Data and Files

The code that Embedded Coder® generates requires support files that MathWorks®
provides. To relocate the generated code to another development environment, such as
a dedicated build system, you must relocate these support files. You can package these
files in a zip file by using the packNGo utility. This utility finds and packages the files

40-61

40 Program Building, Interaction, and Debugging in Simulink Coder

that you need to build an executable image. The utility uses tools for customizing the
build process after code generation, which include a buildinfo_data structure, and
a packNGo function. These files include external files that you identify in the Code
Generation > Custom Code pane in the Model Configuration Parameters dialog box.
The utility saves the buildinfo MAT-file in the model_ert_rtw folder.

Open the example model, rtwdemo_PCG_Eval_P5.

This model is configured to run packNGo after code generation.

Generate code from the entire model.

To generate the zip file manually:

1 Load the file buildInfo.mat (located in the rtwdemo_PCG_Eval_P5_ert_rtw
subfolder).

2 At the command prompt, enter the command packNGo(buildInfo).

The number of files in the zip file depends on the version of Embedded Coder® and on
the configuration of the model that you use. The compiler does not require all of the files
in the zip file. The compiled executable size (RAM/ROM) depends on the linking process.
The linker likely includes only the object files that are necessary.

Integrating the Generated Code into an Existing System

This example shows how to integrate the generated code into an existing code base. The
example uses the Eclipse™ IDE and the Cygwin™/gcc compiler. The required integration
tasks are common to all integration environments.

Overview of Integration Environment

A full embedded controls system consists of multiple hardware and software components.
Control algorithms are just one type of component. Other components can be:

• An operating system (OS)
• A scheduling layer
• Physical hardware I/O
• Low-level hardware device drivers

Typically, you do not use the generated code in these components. Instead, the generated
code includes interfaces that connect with these components. MathWorks® provides

40-62

 Relocate Code to Another Development Environment

hardware interface block libraries for many common embedded controllers. For
examples, see the Embedded Targets block library.

This example provides files to show how you can build a full system. The main file is
example_main.c, which contains a simple main function that performs only basic
actions to exercise the code.

View example_main.c.

The file:

• Defines function interfaces (function prototypes).
• Includes files that declare external data.
• Defines extern data.
• Initializes data.
• Calls simulated hardware.
• Calls algorithmic functions.

40-63

40 Program Building, Interaction, and Debugging in Simulink Coder

The order of function execution matches the order of subsystem execution in the test
harness model and in rtwdemo_PCG_Eval_P5.h. If you change the order of execution
in example_main.c, results that the executable image produces differ from simulation
results.

Match System Interfaces

Integration requires matching the Data and Function interfaces of the generated code
and the existing system code. In this example, the example_main.c file imports and
exports the data through #include statements and extern declarations. The file also
calls the functions from the generated code.

Connect Input Data

The system has three input signals: pos_rqst, fbk_1, and fbk_2. The generated code
accesses the two feedback signals through direct reference to imported global variables
(storage class ImportedExtern). The code accesses the position signal through an
imported pointer (storage class ImportedExternPointer).

The handwritten file defineImportedData.c defines the variables and the
pointer. The generated code does not define the variables and the pointer because the
handwritten code defines them. Instead, the generated code declares the imported data
(extern) in the file rtwdemo_PCG_Eval_P5_Private.h. In a real system, the data
typically comes from other software components or from hardware devices.

View defineImportedData.c.

40-64

 Relocate Code to Another Development Environment

View rtwdemo_PCG_Eval_P5_Private.h.

Connect Output Data

In this example, you do not access the output data of the system. The example “Test
Generated Code” shows how you can save the output data to a standard log file. You can
access the output data by referring to the file rtwdemo_PCG_Eval_P5.h.

View rtwdemo_PCG_Eval_P5.h.

Access Additional Data

The generated code contains several structures that store commonly used data including:

• Block state values (integrator, transfer functions)
• Local parameters
• Time

The table lists the common data structures. Depending on the configuration of the model,
some or all of these structures appear in the generated code. The data is declared in the
file rtwdemo_PCG_Eval_P5.h, but in this example, you do not access this data.

Data Type Data Name Data Purpose

Constants |model_cP| Constant parameters

Constants |model_cB| Constant block I/O

Output |model_U| Root and atomic subsystem input

Output |model_Y| Root and atomic subsystem output

Internal data |model_B| Value of block output

Internal data |model_D| State information vectors

Internal data |model_M| Time and other system level data

Internal data |model_Zero| Zero-crossings

Parameters |model_P| Parameters

40-65

40 Program Building, Interaction, and Debugging in Simulink Coder

Match Function Call Interfaces

By default, functions that the code generator generates have a void Func(void)
interface. If you configure the model or atomic subsystem to generate reentrant code,
the code generator creates a more complex function prototype. In this example, the
example_main function calls the generated functions with the correct input arguments.

Calls to the function PI_Cntrl_Reusable use a mixture of separate, unstructured
global variables and Simulink® Coder™ data structures. The handwritten code defines
these variables. The structure types are defined in rtwdemo_PCG_Eval_P5.h.

Build Project in Eclipse™ Environment

This example uses the Eclipse™ IDE and the Cygwin™ GCC debugger to build the
embedded system. The example provides installation files for both programs. Software
components and versions numbers are:

• Eclipse™ SDK 3.2
• Eclipse™ CDT 3.3
• Cygwin™/GCC 3.4.4-1
• Cygwin™/GDB 20060706-2

To install and use Eclipse™ and GCC, see “Install and Use Cygwin and Eclipse”.

You can install the files for this example by clicking this hyperlink:

Set up the build folder.

Alternatively, to install the files manually:

1 Create a build folder (Eclipse_Build_P5).

40-66

 Relocate Code to Another Development Environment

2 Unzip the file rtwdemo_PCG_Eval_P5.zip into the build folder.
3 Delete the files rtwdemo_PCG_Eval_P5.c, ert_main.c and rt_logging.c, which

are replaced by example_main.c.

You can use the Eclipse™ debugger to step through and evaluate the execution behavior
of the generated C code. See the example “Install and Use Cygwin and Eclipse”.

To exercise the model with input data, see “Test Generated Code”.

Related Topics

• “Generate Component Source Code for Export to External Code Base”
• “Generate Shared Library for Export to External Code Base”

packNGo Function Limitations

The following limitations apply to the packNGo function:

• The function operates on source files, such as *.c, *.cpp, and *.h files, only. The
function does not support compile flags, defines, or makefiles.

• Unnecessary files could be included. The function could find additional files from
source and include paths recorded in build information for the model and include
them, even if they are not used.

More About
• packNGo (Simulink Coder)
• “Choose and Configure Build Process” on page 40-14
• “Build and Run a Program” on page 40-43
• “Executable Program Generation” on page 40-68

40-67

40 Program Building, Interaction, and Debugging in Simulink Coder

Executable Program Generation

The following figure shows how the process for program building.

Click Build
Button

Simulink
Model

Generate
Code

Template
Makefile

Generate
Makefile

model.c
model.h
model_private.h

Custom
Makefile

model.mk

Create
Executable?

No

Yes

Invoke

make

Stop

During the final stage of processing, the build process invokes the generated makefile,
model.mk, which in turn compiles and links the generated code. On PC platforms,
a batch file is created to invoke the generated makefile. The batch file sets up the
environment for invoking the make utility and related compiler tools. To avoid
recompiling C files, the make utility performs date checking on the dependencies between
the object and C files; only out-of-date source files are compiled. Optionally, the makefile
can download the resulting executable image to your target hardware.

40-68

 Executable Program Generation

This stage is optional, as illustrated by the control logic in the preceding figure.
You could choose to omit this stage (for example, if you are targeting an embedded
microcontroller board).

To omit this stage of processing, select the Configuration Parameters > Code
Generation pane and select the Generate code only check box. You can then cross-
compile your code and download it to your target hardware.

If you select the Configuration Parameters > Code Generation > Report pane
and select Create code generation report, the code generator produces a navigable
summary of source files when the model is built. The report files occupy a folder called
html within the build folder. The following display shows an example of an HTML code
generation report for a generic real-time (GRT) system target file.

40-69

40 Program Building, Interaction, and Debugging in Simulink Coder

More About
• “Choose and Configure Build Process” on page 40-14
• “Build and Run a Program” on page 40-43
• “Executable Program Generation” on page 40-68

40-70

 Profile Code Performance

Profile Code Performance
By profiling the performance of generated code, you can help verify that the code meets
performance requirements.

Profiling can be especially important early in the development cycle for identifying
potential architectural issues that can be more expensive to address later in the process.
Profiling can also identify bottlenecks and procedural issues that indicate a need for
optimization, for example, with an inner loop or inline code.

Note: If you have an Embedded Coder license, see “Code Execution Profiling” for an
alternative and simpler approach based on software-in-the-loop (SIL) or processor-in-the-
loop (PIL) simulations.

In this section...

“Use the Profile Hook Function Interface” on page 40-71
“Profile Hook Function Interface Limitation” on page 40-73

Use the Profile Hook Function Interface

You can profile code generated with code generation technology by using a Target
Language Compiler (TLC) hook function interface.

To use the profile hook function interface:

1 For your system target file, create a TLC file that defines the following hook
functions. Write the functions so that they specify profiling code. The code generator
adds the hook function code to code generated for atomic systems in the model.

Function Input Arguments Output Type Description

ProfilerHeaders void Array of header file
names

Return an array of the
header file names to be
included in the generated
code.

ProfilerTypedefs void typedefs Generate code statements
for profiler type
definitions.

40-71

40 Program Building, Interaction, and Debugging in Simulink Coder

Function Input Arguments Output Type Description

ProfilerGlobal-

Data

system Global data for the
specified system

Generate code statements
that declare global data.

ProfilerExtern-

DataDecls

system extern declarations for
the specified system

Generate code statements
that create global extern
declarations.

ProfilerSystem-

Decls

system,
functionType

Declarations for the
specified system for the
specified functionType

Generate code for
required variable
declarations within
the scope of an atomic
subsystem Output,
Update, OutputUpdate,
or Derivatives
function.

ProfilerSystem-

Start

system,
functionType

Profiler start commands
for the specified system
and functionType

Generate code that
starts the profiler within
the scope of an atomic
subsystem Output,
Update, OutputUpdate,
or Derivatives
function.

ProfilerSystem-

Finish

system,
functionType

Profiler end commands
for the specified system
and functionType

Generate code that stops
the profiler within the
scope of the Output,
Update, OutputUpdate,
or Derivatives
functions of an atomic
subsystem.

ProfilerSystem-

Terminate

system Profiler termination
code for the specified
system

Generate code that
terminates profiling (and
possibly reports results)
for an atomic subsystem.

For an example TLC file, see matlabroot/toolbox/rtw/rtwdemos/
rtwdemo_profile_hook.tlc.

2 In your target.tlc file, define the following global variables.

40-72

 Profile Code Performance

Define... To Be...

ProfileGenCode TLC_TRUE or 1 to turn on profiling (TLC_FALSE or
0 to turn off profiling)

ProfilerTLC The name of the TLC file that you created in step 1

A quick way to define global variables is to define the parameters with the -a
option. You can apply this option by using the set_param command to set the model
configuration parameter TLCOptions. For example,
>> set_param(gcs,'TLCOptions','-aProfileGenCode=1 -aProfilerTLC="rtwdemo_profile_hook.tlc"')

3 Consider setting configuration parameters for generating a code generation report.
You can then examine the profiling code in the context of the code generated for the
model.

4 Build the model. The build process embeds the profiling code in the hook function
locations in the generated code for the model.

5 Run the generated executable file. In the MATLAB Command Window, enter
!model-name. You see the profiling report you programmed in the profiling TLC file
that you created. For example, a profile report could list the number of calls made to
each system in a model and the number of CPU cycles spent in each system.

For details on programming a .tlc file and defining TLC configuration variables, see
“Target Language Compiler” (Simulink Coder).

Profile Hook Function Interface Limitation

The TLC hook function interface for profiling code performance does not support the S-
function system target file (rtwsfcn.tlc).

More About
• “Build and Run a Program” on page 40-43
• “Code Execution Profiling”

40-73

41

Host/Target Communication in
Simulink Coder

41 Host/Target Communication in Simulink Coder

Set Up and Use Host/Target Communication Channel
External mode allows two separate systems, a host and a target, to communicate. The
host is the computer where the MATLAB and Simulink environments execute. The target
is the computer where the executable created by the code generation and build process
runs.

The host (the Simulink environment) transmits messages requesting the target to
accept parameter changes or to upload signal data. The target responds by executing the
request. External mode communication is based on a client/server architecture, in which
the Simulink environment is the client and the target is the server.

In this section...

“What You Can Do with a Host/Target Communication Channel” on page 41-2
“Set Up an External Mode Communication Channel” on page 41-3
“Configure and Use External Mode” on page 41-14
“External Mode Compatible Blocks and Subsystems” on page 41-34
“External Mode Communication” on page 41-37
“Choose Communication Protocol for Client and Server” on page 41-40
“Use External Mode Programmatically” on page 41-49
“Animate Stateflow Charts in External Mode” on page 41-53
“External Mode Limitations” on page 41-55

What You Can Do with a Host/Target Communication Channel

You can use a host/target communication channel to:

• Modify, or tune, block parameters in real time. In external mode, whenever you
change parameters in the block diagram, the Simulink engine downloads them
to the executing target program. You can tune your program parameters without
recompiling.

• View and log block outputs in many types of blocks and subsystems. You can monitor
and store signal data from the executing target program, without writing special
interface code. You can define the conditions under which data is uploaded from
target to host. For example, data uploading can be triggered by a selected signal
crossing zero in a positive direction. Alternatively, you can manually trigger data
uploading.

41-2

 Set Up and Use Host/Target Communication Channel

External mode establishes a communication channel between the Simulink engine and
generated code. The channel's low-level transport layer handles the physical transmission
of messages. The Simulink engine and the generated model code are independent of this
layer. The transport layer and the code directly interfacing to it are isolated in separate
modules that format, transmit, and receive messages and data packets.

This design allows for different targets to use different transport layers. For example:

• ERT, GRT, and RSim targets support external mode host/target communication by
using TCP/IP and serial (RS-232) communication.

• The Simulink Real-Time product uses a customized transport layer.
• The Simulink Desktop Real-Time product uses shared memory communication.
• Target hardware platforms supported by Simulink use serial or TCP/IP

communication.

For an example of using external mode, see “Set Up an External Mode Communication
Channel” on page 41-3.

Set Up an External Mode Communication Channel

• “External Mode Communication Channel Setup” on page 41-3
• “Set Up the Model” on page 41-4
• “Build the Target Executable” on page 41-6
• “Run the External Mode Target Program” on page 41-8
• “Tune Parameters” on page 41-12

External Mode Communication Channel Setup

External mode is a very useful environment for rapid prototyping. This example consists
of four parts, each of which depends on completion of the preceding ones, in order. The
four parts correspond to the steps that you follow in simulating, building, running, and
tuning an actual real-time application.

1 Set up the model.
2 Build the target executable.
3 Run the external mode target program.
4 Tune parameters.

41-3

41 Host/Target Communication in Simulink Coder

The example uses the GRT target. It does not require hardware other than the computer
on which you run the Simulink and Simulink Coder software. The generated executable
in this example runs on the host computer in a separate process from MATLAB and
Simulink.

Set Up the Model

In this part of the example, you create a simple model, ex_extModeExample. You
also create a folder called ext_mode_example to store the model and the generated
executable.

To create the folder and the model:

1 From the MATLAB command line, type:

mkdir ext_mode_example

2 Make ext_mode_example your working folder:

cd ext_mode_example

3 Create a model in Simulink with a Sine Wave block for the input signal, two Gain
blocks in parallel, and two Scope blocks. Be sure to label the Gain and Scope blocks
as shown.

4 Define and assign two MATLAB workspace variables, A and B:

A = 2;

B = 3;

5 Open Gain block A and set its Gain parameter to the variable A.

41-4

 Set Up and Use Host/Target Communication Channel

6 Open Gain block B and set its Gain parameter to the variable B.

When the target program is built and connected to Simulink in external mode, you
can download new gain values to the executing target program. To do this, you
can assign new values to workspace variables A and B, or edit the values in the
block parameters dialog box. For more information, see “Tune Parameters” on page
41-12.

7 Verify operation of the model. Open the Scope blocks and run the model. When A =
2 and B = 3, the output appears as shown.

41-5

41 Host/Target Communication in Simulink Coder

8 Save the model as ex_extModeExample.

Build the Target Executable

Set up the model and code generation parameters required for an external mode
compatible target program. Then, generate code and build the target executable.

1 Open the Configuration Parameters dialog box by selecting Simulation > Model
Configuration Parameters.

2 Select the Solver pane.
3 In the Solver options subpane:

a In the Type field, select Fixed-step.
b In the Solver field, select discrete (no continuous states).
c Open Additional options. In the Fixed-step size field, specify 0.1.

(Otherwise, when you generate code, the Simulink Coder build process posts a
warning and supplies a value.)

Leave Start time set to the default value of 0.0.

Click Apply.

41-6

 Set Up and Use Host/Target Communication Channel

4 Select the Data Import/Export pane, and clear the Time and Output check boxes.
In this example, data is not logged to the workspace or to a MAT-file. Click Apply.

5 Select the Optimization > Signals and Parameters pane. Make sure that
Default parameter behavior is set to Tunable. Inlined parameters are not part of
this example. If you have made changes, click Apply.

6 Select the Code Generation pane. By default, the generic real-time (GRT) target is
selected.

7 Select the Code Generation > Interface pane. In the Data exchange interface
section, select External mode. This selection enables generation of external mode
support code and displays additional external mode configuration parameters.

8 In the External mode configuration section, make sure that the default value
tcpip is selected for the Transport layer parameter.

External mode supports communication via TCP/IP, serial, and custom transport
protocols. The MEX-file name field specifies the name of a MEX-file that
implements host and target communication on the host side. The default for TCP/
IP is ext_comm, a MEX-file provided with the Simulink Coder software. You can
override this default by supplying other files. If you need to support other transport
layers, see “Create a Transport Layer for External Communication” (Simulink
Coder).

The MEX-file arguments field lets you specify arguments, such as a TCP/IP server
port number, to be passed to the external interface program. These arguments are
specific to the external interface that you are using. For information on setting these
arguments, see “MEX-File Optional Arguments for TCP/IP Transport” (Simulink
Coder) and “MEX-File Optional Arguments for Serial Transport” (Simulink Coder).

This example uses the default arguments. Leave the MEX-file arguments field
blank.

9 Click Apply to save the external mode settings.

41-7

41 Host/Target Communication in Simulink Coder

10 Save the model.
11 Select the Code Generation pane. Make sure that Generate code only is cleared,

and then, in the model window, press Ctrl+B to generate code and create the target
program. The software creates the ex_extModeExample target executable in your
working folder.

Run the External Mode Target Program

You now run the ex_extModeExample target executable and use Simulink as an
interactive front end to the running target program. The executable file is in your
working folder. Run the target program and establish communication between Simulink
and the target.

Note: An external mode program like ex_extModeExample is a host-based executable.
Its execution is not tied to a real-time operating system (RTOS) or a periodic timer
interrupt, and it does not run in real time. The program just runs as fast as possible, and
the time units it counts off are simulated time units that do not correspond to time in the
world outside the program.

The External Signal & Triggering dialog box (accessed from the External Mode Control
Panel) displays a list of blocks in your model that support external mode signal
monitoring and logging. In the dialog box, you can configure the signals that are viewed,
how they are acquired, and how they are displayed.

In this example, you observe and use the default settings of the External Signal &
Triggering dialog box.

1 From the Code menu of the model diagram, select External Mode Control Panel.
This control panel is where you configure signal monitoring and data archiving. You
can also connect to the target program, and start and stop execution of the model
code.

41-8

 Set Up and Use Host/Target Communication Channel

• After the target program starts, you use the top row of buttons.
• The Signal & Triggering button opens the External Signal & Triggering

dialog box. Use this dialog box to select the signals that are collected from the
target system and viewed in external mode. You can also select a signal that
triggers uploading of data when certain signal conditions are met, and define the
triggering conditions.

• The Data Archiving button opens the Enable Data Archiving dialog box.
Use data archiving to save data sets generated by the target program for
future analysis. This example does not use data archiving. See “Configure Host
Archiving of Target Program Signal Data” on page 41-31 .

2 Click the Signal & Triggering button to open the External Signal & Triggering
dialog box. The default configuration selects all signals for monitoring and sets
signal monitoring to begin once the host and target programs are connected.

41-9

41 Host/Target Communication in Simulink Coder

3 Make sure that the External Signal & Triggering dialog box options are set to these
defaults:

• Select all check box is selected. Signals in the Signal selection list are marked
with an X in the Selected column.

• Under Trigger options:

• Source: manual
• Mode: normal
• Duration: 1000
• Delay: 0
• Arm when connecting to target: selected

41-10

 Set Up and Use Host/Target Communication Channel

To close the External Signal & Triggering dialog box, click OK. Then, close the
External Mode Control Panel.

For descriptions of the External Signal & Triggering dialog box parameters, see
“Configure Host Monitoring of Target Program Signal Data” on page 41-23.

4 To run the target program, open an operating system command window (on UNIX
systems, a terminal emulator window). At the command prompt, use cd to navigate
to the ext_mode_example folder to which you generated the target program
executable.

Enter this command:

ex_extModeExample -tf inf -w

Note Alternatively, you can run the target program from the MATLAB Command
Window, using the following syntax.

!ex_extModeExample -tf inf -w &

The target program begins execution, and enters a wait state.

The -tf switch overrides the stop time set for the model in Simulink. The inf value
directs the model to run indefinitely. The model code runs until the target program
receives a stop message from Simulink.

The -w switch instructs the target program to enter a wait state until it receives a
Start Real-Time Code message from the host. If you want to view data from time
step 0 of the target program execution, or if you want to modify parameters before
the target program begins execution of model code, this switch is required.

5 Open the Scope blocks in the model. Signals are not visible on the scopes. When
you connect Simulink to the target program and begin model execution, the signals
generated by the target program become visible on the scope displays.

6 Before communication between the model and the target program can begin, the
model must be in external mode. To enable external mode, from the Simulation >
Mode menu, select External.

7 Reopen the External Mode Control Panel (found in the Code menu) and click
Connect. This action initiates a handshake between Simulink and the target
program. When Simulink and the target are connected, the Start Real-Time

41-11

41 Host/Target Communication in Simulink Coder

Code button becomes enabled, and the label of the Connect button changes to
Disconnect.

8 Click Start Real-Time Code. The outputs of Gain blocks A and B are displayed on
the two scopes in your model.

You have established communication between Simulink and the running target program.
You can now tune block parameters in Simulink and observe the effects the parameter
changes have on the target program.

Tune Parameters

You can change the gain factor of either Gain block by assigning a new value to the
variable A or B in the MATLAB workspace. When you change block parameter values in
the workspace during a simulation, you must explicitly update the block diagram with
these changes. When you update the block diagram, the new values are downloaded to
the target program.

Under certain conditions, you can also tune the expressions that you use to specify block
parameter values. To change an expression during simulation, open the block dialog box.

1 At the command prompt, assign new values to both variables, for example:

A = 0.5;

B = 3.5;

2 Open the ex_extModeExample model window. From the Simulation menu, select
Update Diagram. As soon as Simulink has updated the block parameters, the
new gain values are downloaded to the target program, and the scopes are changed
because of the gain change.

3 In the Sine Wave block dialog box, set Amplitude to 0.5. Click Apply or OK.

When you click Apply or OK, the simulation downloads the new block parameter
value to the target program. The Scope block displays the change to reflect the new
amplitude value.

4 To simultaneously disconnect host/target communication and end execution of the
target program, from the Simulation menu, select Stop. Alternatively, in the
External Mode Control Panel, click Stop Real-Time Code.

You cannot change the sample time of the Sine Wave block during simulation. Block
sample times are part of the structural definition of the model and are part of the
generated code. Therefore, if you want to change a block sample time, you must stop the
external mode simulation, reset the sample time of the block, and rebuild the executable.

41-12

 Set Up and Use Host/Target Communication Channel

Block parameter tunability during external mode simulation depends on the way that
the generated code represents block parameters.

For example, in the Gain A block dialog box, you cannot change the expression A in the
Gain parameter during simulation. Instead, you must change the value of the variable
A in the base workspace. You cannot change the expression because the generated code
does not allocate storage in memory for the Gain parameter. Instead, the code creates a
field A in a structure:

/* Parameters (auto storage) */

struct P_ex_extModeExample_T_ {

 real_T A; /* Variable: A

 */

 real_T B; /* Variable: B

 */

 real_T SineWave_Amp; /* Expression: 1

 */

 real_T SineWave_Bias; /* Expression: 0

 */

 real_T SineWave_Freq; /* Expression: 1

 */

 real_T SineWave_Phase; /* Expression: 0

 */

};

The generated code algorithm uses that field in the code that represents the block Gain
A. In this case, the global structure variable ex_extModeExample_P uses the type
P_ex_extModeExample_T_:

ex_extModeExample_B.GainA = ex_extModeExample_P.A * rtb_SineWave;

When you change the value of A in the base workspace, the simulation downloads the
new value to the field A in the target program.

You can change the expressions in the Sine Wave block parameters during
simulation because the generated code creates a field in the global structure
ex_extModeExample_P to represent each parameter in the block. When you change an
expression in the block dialog box, the simulation first evaluates the new expression. The
simulation then downloads the resulting numeric value to the corresponding structure
field in the target program.

See “Block Parameter Representation in the Generated Code” (Simulink Coder).

41-13

41 Host/Target Communication in Simulink Coder

Configure and Use External Mode

• “Configure External Mode Options for Code Generation” on page 41-14
• “Target Interfacing” on page 41-16
• “Control Host and Target Execution” on page 41-18
• “Control External Mode Operations” on page 41-19
• “Configure Host Monitoring of Target Program Signal Data” on page 41-23
• “Configure Host Archiving of Target Program Signal Data” on page 41-31

Configure External Mode Options for Code Generation

The list of targets and products that support external mode includes the ERT, GRT, and
RSim targets, the Simulink Desktop Real-Time product, and Simulink target hardware
platforms. Code generation targets that support external mode provide a set of external
mode options in the Configuration Parameters dialog box, on the Code Generation >
Interface pane or their respective target pane.

For targets that support the ability to build target code, connect to the target, and run an
application in external mode. Note the following:

• You select external mode from the model window by clicking Simulation > Mode >
External.

• External mode parameters continue to appear for the target in the Configuration
Parameters dialog box.

• By default, the code generator produces code that is not set up for external mode if
you build the code by using one of following methods:

• Press Ctrl+B
• At the MATLAB command line, enter rtwbuild

The following figure shows external mode parameters from the GRT and ERT target
views of the Code Generation > Interface pane.

41-14

 Set Up and Use Host/Target Communication Channel

Note The Simulink Real-Time product also uses external mode communication. External
mode in the Simulink Real-Time product is always on, and does not have interface
options.

The Data exchange interface section in the Code Generation > Interface pane
includes the following external mode parameters:

• External mode option: Includes the external mode data exchange interface in the
generated C code.

When you select External mode, the following parameters appear:
• Transport layer menu: Identifies the messaging protocol for host/target

communication; typically, the choices are tcpip and serial.

The default is tcpip. When you select a protocol, the MEX-file name that implements
the protocol is shown to the right of the menu.

• MEX-file arguments text field: Optionally enter a list of arguments to be passed
to the transport layer MEX-file for communicating with executing targets. The
arguments vary according to the protocol that you use.

For more information on the transport options, see “Target Interfacing” on page
41-16 and “Choose Communication Protocol for Client and Server” on page
41-40.

• Static memory allocation check box: Controls how memory is allocated for external
mode communication buffers in the target. Selecting this option enables the Static
memory buffer size parameter.

• Static memory buffer size text field: Number of bytes to preallocate for external
mode communication buffers in the target.

41-15

41 Host/Target Communication in Simulink Coder

Note Selecting External mode does not cause the Simulink model to operate in
external mode (see “Control Host and Target Execution” on page 41-18). The
External mode option instruments the code generated for the target to support
external mode.

The Static memory allocation check box (for GRT and ERT targets) directs the
Simulink Coder software to generate code for external mode that uses only static memory
allocation (“malloc-free” code). Selecting Static memory allocation enables the Static
memory buffer size edit field, which you use to specify the size of the static memory
buffer used by external mode. The default value is 1,000,000 bytes. If you enter too small
a value for your application, external mode issues an out-of-memory error when it tries to
allocate more memory than you allowed. In such cases, increase the value in the Static
memory buffer size field and regenerate the code.

To determine how much memory to allocate, enable verbose mode on the target (by
including OPTS="-DVERBOSE" on the make command line). As it executes, external mode
displays the amount of memory it tries to allocate and the amount of memory available to
it each time it attempts an allocation. If an allocation fails, you can use this console log to
adjust the size in the Static memory buffer size field.

Note When you create an ERT target, external mode can generate pure integer code.
Select pure integer code by clearing the Support floating-point numbers option
on the Code Generation > Interface pane of the Configuration Parameters dialog
box. Clearing this option makes the code, including external mode support code, free of
doubles and floats. For more information, see “Model Configuration Parameters: Code
Generation Interface” (Simulink Coder).

Target Interfacing

The Simulink Coder product lets you implement client and server transport for external
mode using either TCP/IP or serial protocols. If your target system supports TCP/IP, you
can use the socket-based external mode implementation provided by the Simulink Coder
product with the generated code. Otherwise, use or customize the serial transport layer
option.

A low-level transport layer handles physical transmission of messages. Both the Simulink
engine and the model code are independent of this layer. Both the transport layer and

41-16

 Set Up and Use Host/Target Communication Channel

code directly interfacing to the transport layer are isolated in separate modules that
format, transmit, and receive messages and data packets.

You specify the transport mechanism using the Transport layer menu in the External
mode configuration section of the Code Generation > Interface pane of the
Configuration Parameters dialog box.

To the right of the Transport layer menu, MEX-file name displays the name of an
external interface MEX-file. This MEX-file implements host/target communication for
the selected external mode transport layer. The default is ext_comm, the TCP/IP-based
external interface file for use with the GRT, ERT, and RSim targets. If you select the
serial transport option, the MEX-file name ext_serial_win32_com is displayed in
this location.

Custom or third-party targets can use a custom transport layer and a different external
interface MEX-file. For more information, see “Create a Transport Layer for External
Communication” (Simulink Coder). For more information on specifying a TCP/IP or serial
transport layer for a custom target, see “Using the TCP/IP Implementation” on page
41-41 or “Using the Serial Implementation” on page 41-44.

In the MEX-file arguments edit field, you can optionally specify arguments
that are passed to the external mode interface MEX-file for communicating with
executing targets. The meaning of the MEX-file arguments depends on the MEX-file
implementation.

For TCP/IP interfaces, ext_comm allows these optional arguments:

• Network name of your target (for example, 'myPuter' or '148.27.151.12')
• Verbosity level (0 for no information or 1 for detailed information)
• TCP/IP server port number (an integer value between 256 and 65535, with a default

of 17725)

For serial transport, ext_serial_win32_comm allows these optional arguments:

41-17

41 Host/Target Communication in Simulink Coder

• Verbosity level (0 for no information or 1 for detailed information)
• Serial port ID (for example, 1 for COM1, and so on)
• Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200, 38400,

57600, and 115200, with a default baud rate of 57600)

For more information on MEX-file transport architecture and arguments, see “Choose
Communication Protocol for Client and Server” on page 41-40.

Control Host and Target Execution

Simulink software provides multiple ways to control external mode host and target
execution. The following table lists common steps in the external mode workflow and the
ways in which they can be initiated.

External Mode Action Toolbar Control Menu Control External Mode Control
Panel Button

Set the simulation
mode of your model to
external mode

From the simulation
mode drop-down list,
select External

Simulation >
Mode > External

Connect (if the model
simulation mode is not
already set, sets the
simulation mode to
external mode)

Connect your model to
a waiting or running
target program

Connect to Target

button

Simulation >
Connect to Target

Connect

Start running real-
time code in the target
environment

Run button Simulation > Run
(keyboard shortcut Ctrl
+T)

Start Real-Time
Code

Disconnect your
model from the target
environment (does not
halt running real-time
code)

Disconnect from

Target button

Simulation >
Disconnect from
Target

Disconnect

Stop target program
execution and
disconnect your
model from the target
environment

Stop button Simulation > Stop
(keyboard shortcut Ctrl
+Shift+T)

Stop Real-Time Code

41-18

 Set Up and Use Host/Target Communication Channel

Setting the simulation mode of your model to external mode affects execution only, and
does not cause the Simulink Coder software to generate code instrumented for external
mode. See “Configure External Mode Options for Code Generation” on page 41-14.

Control External Mode Operations

The External Mode Control Panel provides centralized control of external mode
operations, including:

• “Connect, Start, and Stop” on page 41-20
• “Upload Target Program Signal Data to Host” on page 41-21
• “Download Parameters to Target Program” on page 41-22
• “Configure Host Monitoring of Target Program Signal Data” on page 41-23
• “Configure Host Archiving of Target Program Signal Data” on page 41-31

To open the External Mode Control Panel dialog box, in the model window, select Code >
External Mode Control Panel.

41-19

41 Host/Target Communication in Simulink Coder

Connect, Start, and Stop

The External Mode Control Panel performs the same connect/disconnect and start/stop
functions found in the Simulation menu and the Simulink toolbar (see “Control Host
and Target Execution” on page 41-18).

Clicking the Connect button connects your model to a waiting or running target
program. While you are connected, the button changes to a Disconnect button.
Disconnect disconnects your model from the target environment, but does not halt real-
time code running in the target environment.

Connect sets the model simulation mode to external mode.

Clicking the Start Real-Time Code button commands the target to start running real-
time code. While real-time code is running in the target environment, the button changes

41-20

 Set Up and Use Host/Target Communication Channel

to a Stop Real-Time Code button. Stop Real-Time Code stops target program
execution and disconnects your model from the target environment.

Upload Target Program Signal Data to Host

The External Mode Control Panel allows you to trigger and cancel data uploads to the
host. The destination for the uploaded data can be a scope block, Display block, To
Workspace block, or another block or subsystem listed in “External Mode Compatible
Blocks and Subsystems” on page 41-34.

The Arm Trigger and Cancel Trigger buttons provide manual control of data
uploading to compatible blocks or subsystems, except floating scopes. (For floating
scopes, use the Floating scope section of the External Mode Control Panel.)

• To trigger data uploading to compatible blocks or subsystems, click the Arm Trigger
button. The button changes to Cancel Trigger.

• To cancel data uploading, click the Cancel Trigger button. The button reverts to
Arm Trigger.

You can trigger data uploads manually or automatically. To configure signals and
triggers for data uploads, see “Configure Host Monitoring of Target Program Signal
Data” on page 41-23.

A subset of external mode compatible blocks, including Scope, Time Scope, and To
Workspace, allow you to log uploaded data to disk. To configure data archiving, see
“Configure Host Archiving of Target Program Signal Data” on page 41-31.

The Floating scope section of the External Mode Control Panel controls when and for
how long data is uploaded to Floating Scope blocks. When used in external mode, floating
scopes:

• Do not appear in the External Signal & Triggering dialog box.
• Do not log data to external mode archiving.
• Support manual triggering only.

The Floating scope section contains the following parameters:

• Enable data uploading option, which functions as an Arm Trigger button for
floating scopes. When the target is disconnected, the option controls whether to arm
the trigger when connecting the floating scopes. When the target is connected, the
option acts as a toggle button to arm or cancel the trigger.

41-21

41 Host/Target Communication in Simulink Coder

• To trigger data uploading to floating scopes, select Enable data uploading.
• To cancel data uploading to floating scopes, clear Enable data uploading.

• Duration edit field, which specifies the number of base-rate steps for which external
mode logs floating scopes data after a trigger event. By default, it is set to auto,
which causes the duration value set in the External Signal & Triggering dialog box to
be used. The default duration value is 1000 base rate steps.

Download Parameters to Target Program

The Batch download option on the External Mode Control Panel enables or disables
batch parameter changes.

By default, batch download is disabled. If batch download is disabled, when you click
OK or Apply, changes made directly to block parameters by editing block parameter
dialog boxes are sent to the target. When you perform an Update Diagram, changes to
MATLAB workspace variables are sent.

If you select Batch download, the Download button is enabled. Until you click
Download, changes made to block parameters are stored locally. When you click
Download, the changes are sent in a single transmission.

When parameter changes are awaiting batch download, the External Mode Control Panel
displays the message Parameter changes pending... to the right of the Download
button. This message remains visible until the Simulink engine receives notification that
the new parameters have been installed in the parameter vector of the target system.

The next figure shows the External Mode Control Panel with the Batch download
option activated and parameter changes pending.

41-22

 Set Up and Use Host/Target Communication Channel

Configure Host Monitoring of Target Program Signal Data

• “Role of Trigger in Signal Data Uploading” on page 41-24
• “Configure Signal Data Uploading” on page 41-24
• “Default Trigger Options” on page 41-25
• “Select Signals to Upload” on page 41-26
• “Configure Trigger Options” on page 41-26
• “Select Trigger Signal” on page 41-28
• “Set Trigger Conditions” on page 41-29
• “Modify Signal and Triggering Options While Connected” on page 41-30

41-23

41 Host/Target Communication in Simulink Coder

Role of Trigger in Signal Data Uploading

In external mode, uploading target program signal data to the host depends on a trigger.
The trigger is a set of conditions that must be met for data uploading to begin. The
trigger can be armed or not armed.

• When the trigger is armed, the software checks for the trigger conditions that allow
data uploading to begin.

• If the trigger is not armed, the software does not check for the trigger conditions and
data uploading cannot begin.

• The trigger can be armed automatically, when the host connects to the target, or
manually, by clicking the Arm Trigger button on the External Mode Control Panel.

When the trigger is armed and the trigger conditions are met, the trigger fires and data
uploading begins.

When data has been collected for a defined duration, the trigger event completes and
data uploading stops. The trigger can then rearm, or remain unarmed until you click the
Arm Trigger button.

To select the target program signals to upload and configure how uploads are triggered,
see “Configure Signal Data Uploading” on page 41-24.

Configure Signal Data Uploading

Clicking the Signal & Triggering button of the External Mode Control Panel opens the
External Signal & Triggering dialog box.

41-24

 Set Up and Use Host/Target Communication Channel

The External Signal & Triggering dialog box displays a list of blocks and subsystems
in your model that support external mode signal uploading. For information on which
types of blocks are external mode compatible, see “External Mode Compatible Blocks and
Subsystems” on page 41-34.

In the External Signal & Triggering dialog box, you can select the signals that are
collected from the target system and viewed in external mode. You can also select
a trigger signal, which triggers uploading of data based on meeting certain signal
conditions, and define the triggering conditions.

Default Trigger Options

The preceding figure shows the default settings of the External Signal & Triggering
dialog box. The default operation of the External Signal & Triggering dialog box
simplifies monitoring the target program. If you use the default settings, you do not
need to preconfigure signals and triggers. You start the target program and connect the

41-25

41 Host/Target Communication in Simulink Coder

Simulink engine to it. External mode compatible blocks are selected and the trigger is
armed. Signal uploading begins immediately upon connection to the target program.

The default configuration of trigger options is:

• Select all: on
• Source: manual
• Mode: normal
• Duration: 1000
• Delay: 0
• Arm when connecting to target: on

Select Signals to Upload

External mode compatible blocks in your model appear in the Signal selection list of
the External Signal & Triggering dialog box. You use this list to select signals that you
want to view. In the Selected column, an X appears for each selected block.

The Select all check box selects all signals. By default, Select all is selected.

If Select all is cleared, you can select or clear individual signals using the on and off
options. To select a signal, click its list entry and select the on option. To clear a signal,
click its list entry and select the off option.

The Clear all button clears all signals.

Configure Trigger Options

As described in “Role of Trigger in Signal Data Uploading” on page 41-24, signal
data uploading depends on a trigger. The trigger defines conditions that must be met
for uploading to begin. Also, the trigger must be armed for data uploading to begin.
When the trigger is armed and trigger conditions are met, the trigger fires and uploading
begins. When data has been collected for a defined duration, the trigger event completes
and data uploading stops.

To control when and how signal data is collected (uploaded) from the target system,
configure the following Trigger options in the External Signal & Triggering dialog box.

• Source: manual or signal. Controls whether a button or a signal triggers data
uploading.

41-26

 Set Up and Use Host/Target Communication Channel

Selecting manual directs external mode to use the Arm Trigger button on the
External Mode Control Panel as the trigger to start uploading data. When you click
Arm Trigger, data uploading begins.

Selecting signal directs external mode to use a trigger signal as the trigger to start
uploading data. When the trigger signal satisfies trigger conditions (that is, the signal
crosses the trigger level in the specified direction), a trigger event occurs. (Specify
trigger conditions in the Trigger signal section.) If the trigger is armed, external
mode monitors for the occurrence of a trigger event. When a trigger event occurs, data
uploading begins.

• Mode: normal or one-shot. Controls whether the trigger rearms after a trigger
event completes.

In normal mode, external mode automatically rearms the trigger after each trigger
event. The next data upload begins when the trigger fires.

In one-shot mode, external mode collects only one buffer of data each time you arm
the trigger.

For more information on the Mode setting, see “Configure Host Archiving of Target
Program Signal Data” on page 41-31.

• Duration: Specifies the number of base rate steps for which external mode uploads
data after a trigger event (default is 1000). For example, if Duration is set to 1000,
and the base (fastest) rate of the model is one second:

• For a signal sampled at the base rate, one second (1.0 Hz), external mode collects
1000 contiguous samples during a trigger event.

• For a signal sampled at two seconds (0.5 Hz), external mode collects 500 samples
during a trigger event.

• Delay: Specifies a delay to be applied to data collection. The delay represents the
amount of time that elapses between a trigger event and the start of data collection.
The delay is expressed in base rate steps. It can be positive or negative (default is 0).
A negative delay corresponds to pretriggering. When the delay is negative, data from
the time preceding the trigger event is collected and uploaded.

• Arm when connecting to target: Selected or cleared. Whether a button or a signal
triggers data uploading (as defined by Source), the trigger must be armed to allow
data uploading to begin.

If you select this option, connecting to the target arms the trigger.

41-27

41 Host/Target Communication in Simulink Coder

• If the trigger Source is manual, data uploading begins immediately.
• If the trigger Source is signal, monitoring of the trigger signal begins

immediately. Data uploading begins when the trigger signal satisfies trigger
conditions (as defined in the Trigger signal section).

If you clear Arm when connecting to target, manually arm the trigger by clicking
the Arm Trigger button on the External Mode Control Panel.

When simulating in external mode, each rate in the model creates a buffer on the target.
Each entry in the buffer is big enough to hold all of the data required of every signal in
that rate for one time step (time plus data plus external mode indices identifying the
signal). The number of entries in the circular buffer is determined by the external mode
trigger Duration parameter (ExtModeTrigDuration). The memory allocated on the
target for buffering signals is proportional to the Duration and the number of signals
uploading. The Duration also provides an indication of the number of base rate steps
with log data after a trigger event in external mode.

The Duration value specifies the number of contiguous points of data to be collected
in each buffer of data. You should enter a Duration value equal to the number of
continuous sample points that you need to collect rather than relying on a series of
buffers to be continuous. If you enter a value less than the total number of sample points,
you may lose sample points during the time spent transferring values from the data
buffer to the MATLAB workspace. The Simulink software maintains point continuity
only within one buffer. Between buffers, because of transfer time, some samples may be
omitted.

The Duration value can affect the Limit data points to last value of Scope and To
Workspace blocks. The number of sample points that the blocks save to the MATLAB
workspace is the smaller of the two values. To set the number of sample points that the
blocks save, clear Limit data points to last. Then, use Duration to specify the number
of sample points saved.

Select Trigger Signal

You can designate one signal as a trigger signal. To select a trigger signal, from the
Source menu in the Trigger options section, select signal. This action enables the
parameters in the Trigger signal section. Then, select a signal in the Signal selection
list, and click the Trigger Signal button.

41-28

 Set Up and Use Host/Target Communication Channel

When you select a signal to be a trigger, a T appears in the Trigger column of the Signal
selection list. In the next figure, the Scope A signal is the trigger. Scope B is also
selected for viewing, as indicated by the X in the Selected column.

After selecting the trigger signal, you can use the Trigger signal section to define the
trigger conditions and set the trigger signal Port and Element parameters.

Set Trigger Conditions

Use the Trigger signal section of the External Signal & Triggering dialog box to set
trigger conditions and attributes. Trigger signal parameters are enabled only when the
trigger parameter Source is set to signal in the Trigger options section.

By default, any element of the first input port of a specified trigger block can cause the
trigger to fire (that is, Port 1, any element). You can modify this behavior by adjusting
the Port and Element values in the Trigger signal section. The Port field accepts a
number or the keyword last. The Element field accepts a number or the keywords any
or last.

41-29

41 Host/Target Communication in Simulink Coder

In the Trigger signal section, you also define the conditions under which a trigger event
occurs.

• Direction: rising, falling, or either. The direction in which the signal must be
traveling when it crosses the threshold value. The default is rising.

• Level: A value indicating the threshold the signal must cross in a designated
direction to fire the trigger. By default, the level is 0.

• Hold-off: Applies only to normal mode. Expressed in base rate steps, Hold-off is the
time between the termination of one trigger event and the rearming of the trigger.

Modify Signal and Triggering Options While Connected

After you configure signal data uploading, and connect Simulink to a running target
executable, you can modify signal and triggering options without disconnecting from the
target.

If the trigger is armed (for example, if the trigger option Arm when connecting to the
target is selected, which is the default), the External Signal & Triggering dialog box
cannot be modified. To modify signal and triggering options:

1 Open the External Mode Control Panel.
2 Click Cancel Trigger. Triggering and display of uploaded data stops.
3 Open the External Signal & Triggering dialog box and modify signal and trigger

options as required. For example, in the Signal selection section, you can enable or
disable a scope, and in the Trigger options section, change the trigger Mode, for
example, from normal to one-shot.

4 Click Arm Trigger. Triggering and display of uploaded data resumes, with your
modifications.

41-30

 Set Up and Use Host/Target Communication Channel

Configure Host Archiving of Target Program Signal Data

In external mode, you can use the Simulink Scope and To Workspace blocks to archive
data to disk.

To understand how the archiving features work, consider the handling of data when
archiving is not enabled. There are two cases, one-shot mode and normal mode.

• In one-shot mode, after a trigger event occurs, each selected block writes its data to
the workspace, as it would at the end of a simulation. If another one-shot is triggered,
the existing workspace data is overwritten.

• In normal mode, external mode automatically rearms the trigger after each trigger
event. Consequently, you can think of normal mode as a series of one-shots. Each one-
shot in this series, except for the last, is referred to as an intermediate result. Because

41-31

41 Host/Target Communication in Simulink Coder

the trigger can fire at any time, writing intermediate results to the workspace can
result in unpredictable overwriting of the workspace variables. For this reason, the
default behavior is to write only the results from the final one-shot to the workspace.
The intermediate results are discarded. If you know that enough time exists between
triggers for inspection of the intermediate results, you can override the default
behavior by selecting the Write intermediate results to workspace option. This
option does not protect the workspace data from being overwritten by subsequent
triggers.

If you use a Simulink Scope block to archive data to disk, open the Scope parameters
dialog box and select the option Log data to workspace. The option is required for
these reasons:

• The data is first transferred from the scope data buffer to the MATLAB workspace,
before being written to a MAT-file.

• The Variable name entered in the Scope parameters dialog box is the same as the
one in the MATLAB workspace and the MAT-file. Enabling the data to be saved
enables a variable named with the Variable name parameter to be saved to a MAT-
file.

Note: If you do not select the Scope block option Log data to workspace, the MAT-files
for data logging are created, but they are empty.

The Enable Data Archiving dialog box supports:

• Folder notes
• File notes
• Automated data archiving

On the External Mode Control Panel, click the Data Archiving button to open the
Enable Data Archiving dialog box. If your model is connected to the target environment,
disconnect it while you configure data archiving. To enable the other controls in the
dialog box, select Enable archiving.

41-32

 Set Up and Use Host/Target Communication Channel

These operations are supported by the Enable Data Archiving dialog box.
Folder Notes

To add annotations for a collection of related data files in a folder, in the Enable Data
Archiving dialog box, click Edit Directory Note. The MATLAB editor opens. Place
comments that you want saved to a file in the specified folder in this window. By default,
the comments are saved to the folder last written to by data archiving.
File Notes

To add annotations for an individual data file, in the Enable Data Archiving dialog box,
click Edit File Note. A file finder window opens, which by default is set to the last file to
which you have written. Selecting a MAT-file opens an edit window. In this window, add
or edit comments that you want saved with your individual MAT-file.
Automated Data Archiving

To configure automatic writing of logging results to disk, optionally including
intermediate results, use the Enable archiving option and the controls it enables . The
dialog box provides the following related controls:

41-33

41 Host/Target Communication in Simulink Coder

• Directory: Specifies the folder in which data is saved. If you select Increment
directory when trigger armed, external mode appends a suffix.

• File: Specifies the name of the file in which data is saved. If you select Increment
file after one-shot, external mode appends a suffix.

• Increment directory when trigger armed: Each time that you click the Arm
Trigger button, external mode uses a different folder for writing log files. The folders
are named incrementally, for example, dirname1, dirname2, and so on.

• Increment file after one-shot: New data buffers are saved in incremental files:
filename1, filename2, and so on. File incrementing happens automatically in
normal mode.

• Append file suffix to variable names: Whenever external mode increments file
names, each file contains variables with identical names. Selecting Append file
suffix to variable name results in each file containing unique variable names. For
example, external mode saves a variable named xdata in incremental files (file_1,
file_2, and so on) as xdata_1, xdata_2, and so on. This approach supports loading
the MAT-files into the workspace and comparing variables at the MATLAB command
prompt. Without the unique names, each instance of xdata would overwrite the
previous one in the MATLAB workspace.

• Write intermediate results to workspace: If you want the Simulink Coder
software to write intermediate results to the workspace, select this option.

External Mode Compatible Blocks and Subsystems

• “Compatible Blocks” on page 41-34
• “Signal Viewing Subsystems” on page 41-35
• “Supported Blocks for Data Archiving” on page 41-37

Compatible Blocks

In external mode, you can use the following types of blocks to receive and view signals
uploaded from the target program:

• Floating Scope and Scope blocks
• Spectrum Analyzer, Time Scope, and Vector Scope blocks from the DSP System

Toolbox product
• Display blocks

41-34

 Set Up and Use Host/Target Communication Channel

• To Workspace blocks
• User-written S-Function blocks

An external mode method is built into the S-function API. This method allows user-
written blocks to support external mode. See matlabroot/simulink/include/
simstruc.h.

• XY Graph blocks

You can designate certain subsystems as Signal Viewing Subsystems and use them
to receive and view signals uploaded from the target program. See “Signal Viewing
Subsystems” on page 41-35 for more information.

You select external mode compatible blocks and subsystems, and arm the trigger, by
using the External Signal & Triggering dialog box. By default, such blocks in a model are
selected, and a manual trigger is set to be armed when connected to the target program.

Signal Viewing Subsystems

A Signal Viewing Subsystem is an atomic subsystem that encapsulates processing
and viewing of signals received from the target system. A Signal Viewing Subsystem
runs only on the host, and does not generate code in the target system. Signal Viewing
Subsystems run in normal, accelerator, rapid accelerator, and external simulation modes.

Note: Signal Viewing Subsystems are inactive if placed inside a SIL or PIL component,
such as a top model in SIL or PIL mode, a Model block in SIL or PIL mode, or a SIL
or PIL block. However, a SIL or PIL component can feed a Signal Viewing Subsystem
running in a supported mode.

Signal Viewing Subsystems are useful in situations where you want to process or
condition signals before viewing or logging them, but you do not want to perform these
tasks on the target system. By using a Signal Viewing Subsystem, you can generate
smaller and more efficient code on the target system.

Like other external mode compatible blocks, Signal Viewing Subsystems are displayed in
the External Signal & Triggering dialog box.

To declare a subsystem to be a Signal Viewing Subsystem:

1 In the Block Parameters dialog box, select the Treat as atomic unit option.

41-35

41 Host/Target Communication in Simulink Coder

For more information on atomic subsystems, see “Code Generation of Subsystems”
(Simulink Coder).

2 To turn the SimViewingDevice property on, use the set_param command:

set_param('blockname', 'SimViewingDevice','on')

'blockname' is the name of the subsystem.
3 Make sure the subsystem meets the following requirements:

• It must be a pure Sink block. That is, it must not contain Outport blocks or Data
Store blocks. It can contain Goto blocks only if the corresponding From blocks are
contained within the subsystem boundaries.

• It must not have continuous states.

The following model, sink_examp, contains an atomic subsystem, theSink.

The subsystem theSink applies a gain and an offset to its input signal and displays it on
a Scope block.

If theSink is declared as a Signal Viewing Subsystem, the generated target program
includes only the code for the Sine Wave block. If theSink is selected and armed in
the External Signal & Triggering dialog box, the target program uploads the sine wave

41-36

 Set Up and Use Host/Target Communication Channel

signal to theSink during simulation. You can then modify the parameters of the blocks
within theSink and observe the uploaded signal.

If theSink were not declared as a Signal Viewing Subsystem, its Gain, Constant, and
Sum blocks would run as subsystem code on the target system. The Sine Wave signal
would be uploaded to the Simulink engine after being processed by these blocks, and
viewed on sink_examp/theSink/Scope2. Processing demands on the target system
would be increased by the additional signal processing, and by the downloading of
changes in block parameters from the host.

Supported Blocks for Data Archiving

In external mode, you can use the following types of blocks to archive data to disk:

• Scope blocks
• To Workspace blocks

You configure data archiving by using the Enable Data Archiving dialog box, as described
in “Configure Host Archiving of Target Program Signal Data” on page 41-31.

External Mode Communication

• “About External Mode Communication” on page 41-37
• “Download Mechanism” on page 41-37
• “Inlined and Tunable Parameters” on page 41-39

About External Mode Communication

Depending on the setting of the Default parameter behavior option when the target
program is generated, there are differences in the way parameter updates are handled.
“Download Mechanism” on page 41-37 describes the operation of external mode
communication with Default parameter behavior set to Tunable. “Inlined and
Tunable Parameters” on page 41-39 describes the operation of external mode with
Default parameter behavior set to Inlined.

Download Mechanism

In external mode, the Simulink engine does not simulate the system represented by
the block diagram. By default, when external mode is enabled, the Simulink engine

41-37

41 Host/Target Communication in Simulink Coder

downloads parameters to the target system. After the initial download, the engine
remains in a waiting mode until you change parameters in the block diagram or until the
engine receives data from the target.

When you change a parameter in the block diagram, the Simulink engine calls
the external interface MEX-file, passing new parameter values (along with other
information) as arguments. The external interface MEX-file contains code that
implements one side of the interprocess communication (IPC) channel. This channel
connects the Simulink process (where the MEX-file executes) to the process that is
executing the external program. The MEX-file transfers the new parameter values by
using this channel to the external program.

The other side of the communication channel is implemented within the external
program. This side writes the new parameter values into the target's parameter
structure (model_P).

The Simulink side initiates the parameter download operation by sending a message
containing parameter information to the external program. In the terminology of client/
server computing, the Simulink side is the client and the external program is the server.
The two processes can be remote, or they can be local. Where the client and server are
remote, a protocol such as TCP/IP is used to transfer data. Where the client and server
are local, a serial connection or shared memory can be used to transfer data.

The next figure shows this relationship. The Simulink engine calls the external interface
MEX-file whenever you change parameters in the block diagram. The MEX-file then
downloads the parameters to the external program by using the communication channel.

41-38

 Set Up and Use Host/Target Communication Channel

Simulink Process

mexFunction

Client
IPC Code

External Interface

MEX-file (e.g., ext_comm)

External Program Process

External Program

Server
IPC Code

ext_svr.

Interprocess Communication Channel Transport Layer

External Mode Architecture

Inlined and Tunable Parameters

By default, parameters (except those listed in “External Mode Limitations” on page
41-55) in an external mode program are tunable; that is, you can change them by
using the download mechanism described in this section.

If you set Default parameter behavior to Inlined (on the Optimization > Signals
and Parameters pane of the Configuration Parameters dialog box), the Simulink Coder
code generator embeds the numerical values of model parameters (constants), instead of

41-39

41 Host/Target Communication in Simulink Coder

symbolic parameter names, in the generated code. Inlining parameters generates smaller
and more efficient code. However, inlined parameters, because they effectively become
constants, are not tunable.

The Simulink Coder software lets you improve overall efficiency by inlining most
parameters, while at the same time retaining the flexibility of run-time tuning for
selected parameters that are important to your application. When you inline parameters,
you can use Simulink.Parameter objects to remove individual parameters from
inlining and declare them to be tunable. In addition, you can use these objects to control
how parameters are represented in the generated code.

For more information on tunable parameters, see “Block Parameter Representation in
the Generated Code” (Simulink Coder).

Automatic Parameter Uploading on Host/Target Connection

Each time the Simulink engine connects to a target program that was generated
with Default parameter behavior set to Inlined, the target program uploads the
current value of its tunable parameters to the host. These values are assigned to the
corresponding MATLAB workspace variables. This procedure synchronizes the host and
target with respect to parameter values.

Workspace variables required by the model must be initialized at the time of host/target
connection. Otherwise the uploading cannot proceed and an error results. Once the
connection is made, these variables are updated to reflect the current parameter values
on the target system.

Automatic parameter uploading takes place only if the target program was generated
with Default parameter behavior set to Inlined. “Download Mechanism” on
page 41-37 describes the operation of external mode communication with Default
parameter behavior set to Tunable.

Choose Communication Protocol for Client and Server

• “Introduction” on page 41-41
• “Using the TCP/IP Implementation” on page 41-41
• “Using the Serial Implementation” on page 41-44
• “Run the External Program” on page 41-46
• “Implement an External Mode Protocol Layer” on page 41-48

41-40

 Set Up and Use Host/Target Communication Channel

Introduction

The Simulink Coder product provides code to implement both the client and server side
of external mode communication using either TCP/IP or serial protocols. You can use the
socket-based external mode implementation provided by the Simulink Coder product
with the generated code, provided that your target system supports TCP/IP. If not, use or
customize the serial transport layer option provided.

A low-level transport layer handles physical transmission of messages. Both the Simulink
engine and the model code are independent of this layer. Both the transport layer and
code directly interfacing to the transport layer are isolated in separate modules that
format, transmit, and receive messages and data packets.

For information on selecting a transport layer, see “Target Interfacing” on page
41-16.

Using the TCP/IP Implementation

You can use TCP/IP-based client/server implementation of external mode with real-time
programs on The Open Group UNIX or PC systems. For help in customizing external
mode transport layers, see “Create a Transport Layer for External Communication”
(Simulink Coder).

To use Simulink external mode over TCP/IP:

• Make sure that the external interface MEX-file for your target's TCP/IP transport is
specified.

Targets provided by MathWorks specify the name of the external interface MEX-
file in matlabroot/toolbox/simulink/simulink/extmode_transports.m.
The name of the interface appears as uneditable text in the External mode
configuration section of the Interface pane of the Configuration Parameters dialog
box. The TCP/IP default is ext_comm.

To specify a TCP/IP transport for a custom target, you must add an entry of the
following form to an sl_customization.m file on the MATLAB path:
function sl_customization(cm)

 cm.ExtModeTransports.add('stf.tlc', 'transport', 'mexfile', 'Level1');

%end function

• stf.tlc is the name of the system target file for which you are registering the
transport (for example, 'mytarget.tlc')

41-41

41 Host/Target Communication in Simulink Coder

• transport is the transport name to display in the Transport layer menu on
the Interface pane of the Configuration Parameters dialog box (for example,
'tcpip')

• mexfile is the name of the transport's associated external interface MEX-file (for
example, 'ext_comm')

You can specify multiple targets and/or transports with additional
cm.ExtModeTransports.add lines, for example:

function sl_customization(cm)

 cm.ExtModeTransports.add('mytarget.tlc', 'tcpip', 'ext_comm', 'Level1');

 cm.ExtModeTransports.add('mytarget.tlc', 'serial', ...

 'ext_serial_win32_comm', 'Level1');

%end function

• Be sure that the template makefile is configured to link the source files for the TCP/IP
server code and that it defines the compiler flags when building the generated code.

• Build the external program.
• Run the external program.
• Set the Simulink model to external mode and connect to the target.

The next figure shows the structure of the TCP/IP-based implementation.

41-42

 Set Up and Use Host/Target Communication Channel

Process block
parameter changes

ext_comm

Simulink in External Mode

UNIX or PC Host

Update block parameters

Target Code

Target

ext_svr.c

TCP/IP on Ethernet

External Mode Message Format

header data in target format

TCP/IP-Based Client/Server Implementation for External Mode

MEX-File Optional Arguments for TCP/IP Transport

In the External Target Interface dialog box, you can specify optional arguments that
are passed to the external mode interface MEX-file for communicating with executing
targets.

• Target network name: the network name of the computer running the external
program. By default, this is the computer on which the Simulink product is
running, for example, 'myComputer'. You can also use the IP address, for example,
'148.27.151.12'.

41-43

41 Host/Target Communication in Simulink Coder

• Verbosity level: controls the level of detail of the information displayed during the
data transfer. The value is either 0 or 1 and has the following meaning:

0 — No information
1 — Detailed information

• TCP/IP server port number: The default value is 17725. You can change the port
number to a value between 256 and 65535 to avoid a port conflict.

The arguments are positional and must be specified in the following order:

<TargetNetworkName> <VerbosityLevel> <ServerPortNumber>

For example, if you want to specify the verbosity level (the second argument), then
you must also specify the target network name (the first argument). Arguments can be
delimited by white space or commas. For example:

'148.27.151.12' 1 30000

You can specify command-line options to the external program when you launch it. See
“Run the External Program” on page 41-46.

Using the Serial Implementation

Controlling host/target communication on a serial channel is similar to controlling host/
target communication on a TCP/IP channel.

To use Simulink external mode over a serial channel, you must:

• Make sure that the external interface MEX-file for your target's serial transport is
specified.

Targets provided by MathWorks specify the name of the external interface MEX-
file in matlabroot/toolbox/simulink/simulink/extmode_transports.m.
The name of the interface appears as uneditable text in the External mode
configuration section of the Interface pane of the Configuration Parameters dialog
box. The serial default is serial.

To specify a serial transport for a custom target, you must add an entry of the
following form to an sl_customization.m file on the MATLAB path:
function sl_customization(cm)

 cm.ExtModeTransports.add('stf.tlc', 'transport', 'mexfile', 'Level1');

%end function

41-44

 Set Up and Use Host/Target Communication Channel

• stf.tlc is the name of the system target file for which you are registering the
transport (for example, 'mytarget.tlc')

• transport is the transport name to display in the Transport layer menu on
the Interface pane of the Configuration Parameters dialog box (for example,
'serial')

• mexfile is the name of the transport's associated external interface MEX-file (for
example, 'ext_serial_win32_comm')

You can specify multiple targets and/or transports with additional
cm.ExtModeTransports.add lines, for example:

function sl_customization(cm)

 cm.ExtModeTransports.add('mytarget.tlc', 'tcpip', 'ext_comm', 'Level1');

 cm.ExtModeTransports.add('mytarget.tlc', 'serial', ...

 'ext_serial_win32_comm', 'Level1');

%end function

• Be sure that the template makefile is configured to link the source files for the serial
server code and that it defines the compiler flags when building the generated code.

• Build the external program.
• Run the external program.
• Set the Simulink model to external mode and connect to the target.

MEX-File Optional Arguments for Serial Transport

In the MEX-file arguments field of the Interface pane of the Configuration
Parameters dialog box, you can specify arguments that are passed to the external mode
interface MEX-file for communicating with the executing targets. For serial transport,
the optional arguments to ext_serial_win32_comm are as follows:

• Verbosity level: This argument controls the level of detail of the information displayed
during data transfer. The value of this argument is:

• 0 (no information), or
• 1 (detailed information)

• Serial port ID: The port ID of the host, specified as an integer or character
vector. For example, specify the port ID of a USB to serial converter as'/dev/
ttyusb0'.Simulink Coder prefixes integer port IDs with \\.\COM on Windows and
by /dev/ttyS on Unix.

41-45

41 Host/Target Communication in Simulink Coder

When you start the target program using a serial connection, you must specify the
port ID to use to connect it to the host. Do this by including the -port command-line
option. For example:

mytarget.exe -port 2 -w

• Baud rate: Specify an integer value. The default value is 57600.

The MEX-file options arguments are positional and must be specified in the following
order:

<VerbosityLevel> <SerialPortID> <BaudRate>

For example, if you want to specify the serial port ID (the second argument), then you
must also specify the verbosity level (the first argument). Arguments can be delimited by
white space or commas. For example:

1 '/dev/ttyusb0' 57600

When you launch the external program, you can specify command-line options.

Run the External Program

Before you can use the Simulink product in external mode, the external program must be
running.

If the target program is executing on the same machine as the host and communication is
through a loopback serial cable, the target's port ID must differ from that of the host (as
specified in the MEX-file arguments edit field).

To run the external program, you type a command of the form:

model -opt1 ... -optN

model is the name of the external program and -opt1 ... -optN are options. (See
“Command-Line Options for the External Program” on page 41-47.) In the examples
in this section, the name of the external program is ext_example.
Running the External Program in the Windows Environment

In the Windows environment, you can run the external programs in either of the
following ways:

• Open a Command Prompt window. At the command prompt, type the name of the
target executable, followed by possible options, such as:

41-46

 Set Up and Use Host/Target Communication Channel

ext_example -tf inf -w

• Alternatively, you can launch the target executable from the MATLAB Command
Window. The command must be preceded by an exclamation point (!) and followed by
an ampersand (&), as in the following example:

!ext_example -tf inf -w &

The ampersand (&) causes the operating system to spawn another process to run the
target executable. If you do not include the ampersand, the program still runs, but
you cannot enter commands at the MATLAB command prompt or manually terminate
the executable.

Running the External Program in the UNIX Environment

In the UNIX environment, you can run the external programs in either of the following
ways:

• Open an Xterm window. At the command prompt, type the name of the target
executable, followed by possible options, such as:

./ext_example -tf inf -w

• Alternatively, you can launch the target executable from the MATLAB Command
Window. You must run it in the background so that you can still access the Simulink
environment. The command must be preceded by an exclamation point (!), dot slash
(./ indicating the current directory), and followed by an ampersand (&), as in the
following example:

!./ext_example -tf inf -w &

The ampersand (&) causes the operating system to spawn another process to run the
target executable.

Command-Line Options for the External Program

External mode target executables generated by the Simulink Coder code generator
support the following command-line options:

• -tf n

The -tf option overrides the stop time set in the Simulink model. The argument n
specifies the number of seconds the program will run. The value inf directs the model

41-47

41 Host/Target Communication in Simulink Coder

to run indefinitely. In this case, the model code runs until the target program receives
a stop message from the Simulink engine.

The following example sets the stop time to 10 seconds.

ext_example -tf 10

When integer-only ERT targets are built and executed in external mode, the stop time
parameter (-tf) is interpreted by the target as the number of base rate ticks rather than
the number of seconds to execute.

• -w

Instructs the target program to enter a wait state until it receives a message from the
host. At this point, the target is running, but not executing the model code. The start
message is sent when you select Start Real-Time Code from the Simulation menu
or click the Start Real-Time Code button in the External Mode Control Panel.

Use the -w option if you want to view data from time step 0 of the target program
execution, or if you want to modify parameters before the target program begins
execution of model code.

• -port n

Specifies the TCP/IP port number or the serial port ID, n, for the target program. The
port number of the target program must match that of the host for TCP/IP transport.
The port number depends on the type of transport.

• For TCP/IP transport: Port number is an integer between 256 and 65535, with the
default value being 17725.

• For serial transport: Port ID is an integer or a character vector. For example,
specify the port ID of a USB to serial converter as '/dev/ttyusb0'

• -baud r

Specified as an integer, this option is only available for serial transport.

Implement an External Mode Protocol Layer

If you want to implement your own transport layer for external mode communication,
you must modify certain code modules provided by the Simulink Coder product and
create a new external interface MEX-file. See “Create a Transport Layer for External
Communication” (Simulink Coder).

41-48

 Set Up and Use Host/Target Communication Channel

Use External Mode Programmatically

You can run external-mode applications from the MATLAB command line or
programmatically in scripts. Use the get_param and set_param commands to
retrieve and set the values of model simulation command-line parameters, such as
SimulationMode and SimulationCommand, and external mode command-line
parameters, such as ExtModeCommand and ExtModeTrigType.

The following model simulation commands assume that a Simulink model is open and
that you have loaded a target program to which the model will connect using external
mode.

1 Change the Simulink model to external mode:

set_param(gcs,'SimulationMode','external')

2 Connect the open model to the loaded target program:

set_param(gcs,'SimulationCommand','connect')

3 Start running the target program:

set_param(gcs,'SimulationCommand','start')

4 Stop running the target program:

set_param(gcs,'SimulationCommand','stop')

5 Disconnect the target program from the model:

set_param(gcs,'SimulationCommand','disconnect')

To tune a workspace parameter, change its value at the command prompt. If the
workspace parameter is a Simulink.Parameter object, assign the new value to the
Value property.

myVariable = 5.23;

myParamObj.Value = 5.23;

To download the workspace parameter in external mode, you update the model diagram.
The following model simulation command initiates a model update:

set_param(gcs,'SimulationCommand','update')

To trigger or cancel data uploading to scopes, use the ExtModeCommand values
armFloating and cancelFloating, or armWired and cancelWired. For example, to
trigger and then cancel data uploading to wired (nonfloating) scopes:

41-49

41 Host/Target Communication in Simulink Coder

set_param(gcs,'ExtModeCommand','armWired')

set_param(gcs,'ExtModeCommand','cancelWired')

The next table lists external mode command-line parameters that you can use
in get_param and set_param commands. The table provides brief descriptions,
valid values (bold type highlights defaults), and a mapping to External Mode dialog
box equivalents. For external mode parameters that are equivalent to Interface
pane options in the Configuration Parameters dialog box, see “Model Configuration
Parameters: Code Generation Interface” (Simulink Coder).

External Mode Command-Line Parameters

Parameter and Values Dialog Box Equivalent Description

ExtModeAddSuffixToVar

off, on
Enable Data Archiving:
Append file suffix to
variable names check box

Increment variable names
for each incremented
filename.

ExtModeArchiveDirName

character vector

Enable Data Archiving:
Directory text field

Save data in specified folder.

ExtModeArchiveFileName

character vector

Enable Data Archiving: File
text field

Save data in specified file.

ExtModeArchiveMode

character vector - off, on
Enable Data Archiving:
Enable archiving check box

Activate automated data
archiving features.

ExtModeArmWhenConnect

off, on
External Signal & Triggering:
Arm when connecting to
target check box

Arm the trigger as soon as
the Simulink Coder software
connects to the target.

ExtModeAutoIncOneShot

off, on
Enable Data Archiving:
Increment file after one-
shot check box

Save new data buffers in
incremental files.

ExtModeAutoUpdateStatusClock

(Microsoft Windows platforms only)
off, on

Not available Continuously upload and
display target time on the
model window status bar.

ExtModeBatchMode

off, on
External Mode Control Panel:
Batch download check box

Enable or disable
downloading of parameters
in batch mode.

ExtModeChangesPending

off, on
Not available When ExtModeBatchMode

is enabled, indicates
whether parameters remain
in the queue of parameters

41-50

 Set Up and Use Host/Target Communication Channel

Parameter and Values Dialog Box Equivalent Description

to be downloaded to the
target.

ExtModeCommand

character vector - armFloating,
armWired, cancelFloating,
cancelWired

• armFloating and
cancelFloating are
equivalent to selecting
and clearing External
Mode Control Panel check
box Floating scope >
Enable data uploading

• armWired and
cancelWired are
equivalent to External
Mode Control Panel
buttons Arm Trigger and
Cancel Trigger

Issue an external mode
command to the target
program.

ExtModeConnected

off, on
External Mode Control Panel:
Connect/Disconnect button

Indicate the state of the
connection with the target
program.

ExtModeEnableFloating

off, on
External Mode Control Panel:
Enable data uploading
check box

Enable or disable the
arming and canceling of
triggers when a connection
is established with floating
scopes.

ExtModeIncDirWhenArm

off, on
Enable Data Archiving:
Increment directory when
trigger armed check box

Write log files to
incremental folders each
time the trigger is armed.

ExtModeLogAll

off, on
External Signal & Triggering:
Select all check box

Upload available signals
from the target to the host.

ExtModeParamChangesPending

off, on
Not available When the Simulink

Coder software is
connected to the target and
ExtModeBatchMode is
enabled, indicates whether
parameters remain in
the queue of parameters
to be downloaded to the

41-51

41 Host/Target Communication in Simulink Coder

Parameter and Values Dialog Box Equivalent Description

target. More efficient than
ExtModeChangesPending,
because it checks for a
connection to the target.

ExtModeSkipDownloadWhenConnect

off, on
Not available Connect to the target

program without
downloading parameters.

ExtModeTrigDelay

integer (0)
External Signal & Triggering:
Delay text field

Specify the amount of time
(expressed in base rate
steps) that elapses between
a trigger occurrence and the
start of data collection.

ExtModeTrigDirection

character vector - rising,
falling, either

External Signal & Triggering:
Direction menu

Specify the direction in
which the signal must be
traveling when it crosses the
threshold value.

ExtModeTrigDuration

integer (1000)
External Signal & Triggering:
Duration text field

Specify the number of base
rate steps for which external
mode is to log data after a
trigger event.

ExtModeTrigDurationFloating

character vector - integer
(auto)

External Mode Control Panel:
Duration text field

Specify the duration for
floating scopes. If auto
is specified, the value of
ExtModeTrigDuration is
used.

ExtModeTrigElement

character vector - integer, any,
last

External Signal & Triggering:
Element text field

Specify the elements of the
input port of the specified
trigger block that can cause
the trigger to fire.

ExtModeTrigHoldOff

integer (0)
External Signal & Triggering:
Hold-off text field

Specify the base rate steps
between when a trigger
event terminates and the
trigger is rearmed.

41-52

 Set Up and Use Host/Target Communication Channel

Parameter and Values Dialog Box Equivalent Description

ExtModeTrigLevel

integer (0)
External Signal & Triggering:
Level text field

Specify the threshold value
the trigger signal must cross
to fire the trigger.

ExtModeTrigMode

character vector - normal,
oneshot

External Signal & Triggering:
Mode menu

Specify whether the trigger
is to rearm automatically
after each trigger event or
whether only one buffer of
data is to be collected each
time the trigger is armed.

ExtModeTrigPort

character vector - integer (1),
last

External Signal & Triggering:
Port text field

Specify the input port of the
specified trigger block for
which elements can cause
the trigger to fire.

ExtModeTrigType

character vector - manual,
signal

External Signal & Triggering:
Source menu

Specify whether to start
logging data when the
trigger is armed or when
a specified trigger signal
satisfies trigger conditions.

ExtModeUploadStatus

character vector - inactive,
armed, uploading

Not available Return the status of the
external mode upload
mechanism — inactive,
armed, or uploading.

ExtModeWriteAllDataToWs

off, on
Enable Data Archiving:
Write intermediate results
to workspace check box

Write intermediate results
to the workspace.

Animate Stateflow Charts in External Mode

If you have Stateflow, you can animate a chart in external mode. In external mode, you
can animate states in a chart, and view test point signals in a floating scope or signal
viewer.

• “Animate States During Simulation in External Mode” on page 41-54
• “View Test Point Data in Floating Scopes and Signal Viewers” on page 41-54

41-53

41 Host/Target Communication in Simulink Coder

Animate States During Simulation in External Mode

To animate states in a chart in external mode:

1 Load the chart you want to animate to the target machine.
2 Open the Model Configuration Parameters dialog box.
3 In the left Select pane, select Code Generation > Interface.
4 In the Data exchange interface section, select External mode and click OK.
5 In the Simulink Editor, select Code > External Mode Control Panel.
6 In the External Mode Control Panel dialog box, click Signal & Triggering.
7 In the External Signal & Triggering dialog box, set these parameters.

In: Select:

Signal selection
pane

Chart you want to animate

Trigger pane Arm when connecting to target check box
Trigger pane normal from drop-down menu in Mode field

8 Build the model to generate an executable file.
9 Start the target in the background. At the MATLAB prompt, type:

!model_name.exe -w &

For example, if the name of your model is my_control_sys, enter this command:

!my_control_sys.exe -w &

-w allows the target code to wait for the Simulink model connection.
10 In the Model Editor, select Simulation > Mode > External, and then select

Simulation > Connect to Target.
11 Start simulation. The chart highlights states as they execute.

View Test Point Data in Floating Scopes and Signal Viewers

When you simulate a chart in external mode, you can designate chart data of local scope
to be test points and view the test point data in floating scopes and signal viewers.

To view test point data during simulation in external mode:

1 Open the Model Explorer and for each data you want to view, follow these steps:

41-54

 Set Up and Use Host/Target Communication Channel

a In the middle Contents pane, select the state or local data of interest.
b In the right Dialog pane, select the Logging tab and select Test point check

box.
2 From a floating scope or signal viewer, click the signal selection button:

The Signal Selector dialog box opens.
3 In the Signal Selector Model hierarchy pane, select the chart.
4 In the Signal Selector List contents menu, select Testpointed/Logged signals

only and then select the signals you want to view.
5 Simulate the model in external mode as described in “Animate States During

Simulation in External Mode” on page 41-54.

The scope or viewer displays the values of the test point signals as the simulation
runs.

For more information, see “Behavior of Scopes and Viewers with Rapid Accelerator
Mode” (Simulink).

External Mode Limitations

• “Changing Parameters” on page 41-56
• “Mixing 32-Bit and 64-Bit Architectures” on page 41-56
• “Uploading Data” on page 41-57
• “Uploading Variable-Size Signals” on page 41-57
• “Signal Value Display in Simulation” on page 41-57
• “Tunable Structure Parameters” on page 41-57
• “Archiving Data” on page 41-57
• “Scopes in Referenced Models” on page 41-57
• “Simulation Start Time” on page 41-58
• “File-Scoped Data” on page 41-58
• “Use of printf Statements” on page 41-58
• “Command-Line Arguments” on page 41-58

41-55

41 Host/Target Communication in Simulink Coder

Changing Parameters

In general, you cannot change a parameter if doing so results in a change in the structure
of the model. For example, you cannot change

• The number of states, inputs, or outputs of a block
• The sample time or the number of sample times
• The integration algorithm for continuous systems
• The name of the model or of a block
• The parameters to the Fcn block

If you make these changes to the block diagram, then you must rebuild the program with
newly generated code.

You can change parameters in transfer function and state space representation blocks in
specific ways:

• The parameters (numerator and denominator polynomials) for the Transfer Fcn
(continuous and discrete) and Discrete Filter blocks can be changed (as long as the
number of states does not change).

• Zero entries in the State-Space and Zero Pole (both continuous and discrete) blocks
in the user-specified or computed parameters (that is, the A, B, C, and D matrices
obtained by a zero-pole to state-space transformation) cannot be changed once
external simulation is started.

• In the State-Space block, if you specify the matrices in the controllable canonical
realization, then all changes to the A, B, C, D matrices that preserve this realization
and the dimensions of the matrices are allowed.

If the Simulink block diagram does not match the external program, the Simulink engine
displays an error informing you that the checksums do not match (that is, the model has
changed since you generated code). This means that you must rebuild the program from
the new block diagram (or reload another one) to use external mode.

If the external program is not running, the Simulink engine displays an error informing
you that it cannot connect to the external program.

Mixing 32-Bit and 64-Bit Architectures

When you use external mode, the machine running the Simulink product and the
machine running the target executable must have matching bit architectures, either 32-

41-56

 Set Up and Use Host/Target Communication Channel

bit or 64-bit. The Simulink Coder software varies a model's checksum based on whether
it is configured for a 32-bit or 64-bit platform.

If you attempt to connect from a 32-bit machine to a 64-bit machine or vice versa, the
external mode connection fails.

Uploading Data

External mode does not support uploading data values for fixed-point or enumerated
types into workspace parameters.

Uploading Variable-Size Signals

External mode does not support uploading variable-size signals for the following targets:

• Simulink Real-Time
• Texas Instruments™ C2000™

Signal Value Display in Simulation

External mode does not support graphical display of signal values in models (described
in “Displaying Signal Values in Model Diagrams” (Simulink)). For example, you cannot
use the Data Display in Simulation menu selections Show Value Labels When
Hovering, Toggle Value Labels When Clicked, and Show Value Label of Selected
Port.

Tunable Structure Parameters

External mode does not support uploading or downloading tunable structure parameters.

Archiving Data

External mode supports the Scope and To Workspace blocks for archiving data to disk.
However, external mode does not support scopes other than the Scope block for archiving
data. For example, you cannot use Floating Scope blocks or Signal and Scope Manager
viewer objects to archive data in external mode.

Scopes in Referenced Models

In a model hierarchy, if the top model simulates in external mode and a referenced
model simulates in normal or accelerator mode, scopes in the referenced model are not
displayed.

41-57

41 Host/Target Communication in Simulink Coder

However, if the top model is changed to simulate in normal mode, the behavior of scopes
in the referenced models differs between normal and accelerator mode. Scopes in a
referenced model simulating in normal mode are displayed, while scopes in a referenced
model simulating in accelerator mode are not displayed.

Simulation Start Time

External mode does not support nonzero simulation start times. In the Configuration
Parameters dialog box, Solver pane, leave Start time set to the default value of 0.0.

File-Scoped Data

External mode does not support file-scoped data, for example, data items to which you
apply the built-in custom storage class FileScope. File-scoped data are not externally
accessible.

Use of printf Statements

External mode simulations support the use of printf calls to display error and
information messages from the target program. For some target hardware, the use of
printf statements can increase the external mode binary file size. To disable printf
calls, specify the preprocessor macro definition EXTMODE_DISABLEPRINTF for your
target program compiler.

Command-Line Arguments

External mode simulations support the use of command-line arguments for running
target programs. These limitations apply:

• Parsing of the command-line arguments requires the sscanf function, which
increases the program size for some target hardware.

• Some target programs do not accept command-line arguments.

To disable the processing of command-line arguments, specify the preprocessor macro
definition EXTMODE_DISABLE_ARGS_PROCESSING=1 for your target program compiler.

Related Examples
• “Use External Mode with the ERT Target” on page 54-5

41-58

42

Logging in Simulink Coder

42 Logging in Simulink Coder

Log Program Execution Results

Multiple techniques are available by which a program generated by the Simulink Coder
software can save data to a MAT-file for analysis. A generated executable can save
system states, outputs, and simulation time at each model execution time step. The data
is written to a MAT-file, named (by default) model.mat, where model is the name of
your model. See “Log Data for Analysis” on page 42-2 for a data logging tutorial.

Note: Data logging is available only for system target files that have access to a file
system. In addition, only the RSim target executables are capable of accessing MATLAB
workspace data.

For MAT-file logging limitations, see the configuration parameter “MAT-file logging”
(Simulink Coder).

In this section...

“Log Data for Analysis” on page 42-2
“Configure State, Time, and Output Logging” on page 42-9
“Log Data with Scope and To Workspace Blocks” on page 42-11
“Log Data with To File Blocks” on page 42-11
“Data Logging Differences Between Single- and Multitasking” on page 42-12

Log Data for Analysis

• “Set Up and Configure Model” on page 42-2
• “Data Logging During Simulation” on page 42-4
• “Data Logging from Generated Code” on page 42-7

Set Up and Configure Model

This example shows how data generated by a copy of the model slexAircraftExample
is logged to the file myAircraftExample.mat. Refer to “Build Process Workflow
for a Real-Time STF” on page 40-30 for instructions on setting up a copy of
slexAircraftExample asmyAircraftExample in a working folder if you have not
done so already.

42-2

 Log Program Execution Results

Note: When you configure the code generator to produce code that includes support for
data logging during execution, the code generator can include text for block names in the
block paths included in the log file. If the text includes characters that are unrepresented
in the character set encoding for the model, the code generator replaces the characters
with XML escape sequences. For example, the code generator replaces the Japanese full-
width Katakana letter ア with the escape sequence ア. For more information, see
“Internationalization and Code Generation” (Simulink Coder).

To configure data logging, open the Configuration Parameters dialog box and select the
Data Import/Export pane. The process is the same as configuring a Simulink model
to save output to the MATLAB workspace. For each workspace return variable you
define and enable, the Simulink Coder software defines a parallel MAT-file variable. For
example, if you save simulation time to the variable tout, your generated program logs
the same data to a variable named rt_tout. You can change the prefix rt_ to a suffix
(_rt), or eliminate it entirely. You do this by setting Configuration Parameters > All
Parameters > MAT-file variable name modifier.

Simulink lets you log signal data from anywhere in a model. In the Simulink Editor,
select the signals that you want to log and then in the Simulation Data Inspector
button drop-down, select Log Selected Signals. However, the Simulink Coder software
does not use this method of signal logging in generated code. To log signals in generated
code, you must either use the Data Import/Export options described below or include
To File or To Workspace blocks in your model.

Note: If you enable MAT-file and signal logging (through the Data Import/Export
pane) and select signals for logging (through the Simulink Editor), you see the following
warning when you build the model:
Warning: MAT-file logging does not support signal logging.

When your model code executes, the signal logging variable 'rt_logsout' will

not be saved to the MAT-file.

To avoid this warning, clear the Data Import/Export > Signal logging check box.

In this example, you modify the myAircraftExample model so that the
generated program saves the simulation time and system outputs to the file
myAircraftExample.mat. Then you load the data into the base workspace and plot
simulation time against one of the outputs. The myAircraftExample model should be
configured as described in “Build Process Workflow for a Real-Time STF” on page 40-30.

42-3

42 Logging in Simulink Coder

Data Logging During Simulation

To use the data logging feature:

1 Open the myAircraftExample model if it is not already open.
2 Open the Configuration Parameters dialog box by selecting Simulation > Model

Configuration Parameters from the model window.
3 Select the Data Import/Export pane. The Data Import/Export pane lets you

specify which outport data is to be saved to the workspace and what variable names
to use for it.

4 Set Format to Structure with time. When you select this format, Simulink
saves the model states and outputs in structures that have their names specified in
the Save to workspace or file area. By default, the structures are xout for states
and yout for output. The structure used to save output has two top-level fields: time
and signals. The time field contains a vector of simulation times and signals
contains an array of substructures, each of which corresponds to a model output port.

5 Select the Output option. This tells Simulink to save output signal data during
simulation as a variable named yout. Selecting Output enables the code generator
to create code that logs the root Output block (alpha, rad) to a MAT-file.

6 Set Decimation to 1.
7 If other options are enabled, clear them. The figure below shows how the dialog box

should appear.

42-4

 Log Program Execution Results

8 Click Apply and OK to register your changes and close the dialog box.
9 Save the model.
10 In the model window, double-click the scope symbol next to the Aircraft Dynamics

Model block, then run the model by choosing Simulation > Run in the model
window. The resulting scope display is shown below.

42-5

42 Logging in Simulink Coder

11 Verify that the simulation time and outputs have been saved to the base workspace
in MAT-files. At the MATLAB prompt, type:

whos yout

Simulink displays:
 Name Size Bytes Class Attributes

 yout 1x1 10756 struct

12 Verify that alpha, rad was logged by plotting simulation time versus that variable.
In the Command Window, type:

plot(yout.time,yout.signals.values)

The resulting plot is shown below.

42-6

 Log Program Execution Results

Data Logging from Generated Code

In the second part of this example, you build and run a Simulink Coder executable of
the myAircraftExample model that outputs a MAT-file containing the simulation time
and output you previously examined. Even though you have already generated code for
the myAircraftExample model, you must now regenerate that code because you have
changed the model by enabling data logging. The steps below explain this procedure.

To avoid overwriting workspace data with data from simulation runs, the code generator
modifies identifiers for variables logged by Simulink. You can control these modifications.

1 Set Configuration Parameters > All Parameters > MAT-file variable name
modifier to _rt. This adds the suffix _rt to each variable that you selected to be
logged in the first part of this example.

2 Click Apply and OK to register your changes and close the dialog box.
3 Save the model.
4 Build an executable.
5 When the build concludes, run the executable with the command:

!myAircraftExample

6 The program now produces two message lines, indicating that the MAT-file has been
written.

42-7

42 Logging in Simulink Coder

** starting the model **

** created myAircraftExample.mat **

7 Load the MAT-file data created by the executable and look at the workspace
variables from simulation and the generated program by typing:

load myAircraftExample.mat

whos yout*

Simulink displays:

 Name Size Bytes Class Attributes

 yout 1x1 10756 struct

 yout_rt 1x1 10756 struct

Note the size and bytes of the structures resulting from the simulation run and
generated code are the same.

8 Plot the generated code output by entering the following command in the Command
Window:

plot(yout_rt.time,yout_rt.signals.values)

42-8

 Log Program Execution Results

The plot should be identical to the plot that you produced in the previous part of this
example.

Tip: For UNIX platforms, run the executable in the Command Window with the syntax
!./executable_name. If preferred, run the executable from an OS shell with the
syntax ./executable_name. For more information, see “Run External Commands,
Scripts, and Programs” (MATLAB).

Configure State, Time, and Output Logging

The Data Import/Export pane enables a generated program to save system states,
outputs, and simulation time at each model execution time step. The data is written to a
MAT-file, named (by default) model.mat.

Before using this data logging feature, you should learn how to configure a Simulink
model to return output to the MATLAB workspace. This is discussed in “Export
Simulation Data” (Simulink).

For each workspace return variable that you define and enable, the code generator
defines a MAT-file variable. For example, if your model saves simulation time to the
workspace variable tout, your generated program logs the same data to a variable
named (by default) rt_tout.

The code generated by the code generator logs the following data:

• Root Outport blocks

The default MAT-file variable name for system outputs is rt_yout.

The sort order of the rt_yout array is based on the port number of the Outport block,
starting with 1.

• Continuous and discrete states in the model

The default MAT-file variable name for system states is rt_xout.
• Simulation time

The default MAT-file variable name for simulation time is rt_tout.

• “Override Default MAT-File Variable Names” on page 42-10

42-9

42 Logging in Simulink Coder

• “Override Default MAT-File Name or Buffer Size” on page 42-10

Override Default MAT-File Variable Names

By default, the code generation software prefixes the text rt_ to the variable names for
system outputs, states, and simulation time to form MAT-file variable names. To change
this prefix for a model, select a prefix (rt_), a suffix (_rt), or no modifier (none) for
Configuration Parameters > All Parameters > MAT-file variable name modifier.
Other system target files might not support this parameter.

Override Default MAT-File Name or Buffer Size

You can specify compiler options to override the following MAT-file attributes in
generated code:

MAT-File Attribute Default Compiler Option

Name model.mat -DSAVEFILE=filename

Size of data logging buffer 1024 bytes -DDEFAULT_BUFFER_SIZE=n

Note: Valid option syntax can vary among compilers. For example, Microsoft Visual C++
compilers typically accept /DSAVEFILE=filename as well as -DSAVEFILE=filename.

For a template makefile (TMF) based target, append the compiler option to the Make
command field on the Code Generation pane of the Configuration Parameters dialog
box. For example:

For a toolchain-based target such as GRT or ERT, add the compiler option to the Build
configuration settings on the Code Generation pane of the Configuration Parameters
dialog box. Set Build configuration to Specify, and add the compiler option to the C
Compiler row of the Tool/Options table. For example:

To add the compiler option to a custom toolchain, you can modify and reregister
the custom toolchain using the procedures shown in the example “Adding a Custom

42-10

 Log Program Execution Results

Toolchain” (MATLAB Coder). For example, to add the compiler option to the MATLAB
source file for the custom toolchain, you could define myCompilerOpts as follows:
optimsOffOpts = {'/c /Od'};

optimsOnOpts = {'/c /O2'};

cCompilerOpts = '$(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL)';

cppCompilerOpts = '$(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL)';

myCompilerOpts = {' -DSAVEFILE=myCodeLog.mat '};

...

Then you can add myCompilerOpts to the flags for each configuration and compiler to
which it applies, for example:
cfg = tc.getBuildConfiguration('Faster Builds');

cfg.setOption('C Compiler', horzcat(cCompilerOpts, myCompilerOpts, optimsOffOpts));

As shown in “Adding a Custom Toolchain” (MATLAB Coder), after modifying the custom
toolchain, you save the configuration to a MAT-file and refresh the target registry.

Log Data with Scope and To Workspace Blocks

The code generated by the code generator also logs data from these sources:

• Scope blocks that have the Log data to workspace parameter enabled

You must specify the variable name and data format in each Scope block's dialog box.
• To Workspace blocks in the model

You must specify the variable name and data format in each To Workspace block's
dialog box.

The variables are written to model.mat, along with variables logged from the
Workspace I/O pane.

Log Data with To File Blocks

You can also log data to a To File block. The generated program creates a separate MAT-
file (distinct from model.mat) for each To File block in the model. The file contains
the block time and input variable(s). You must specify the filename, variable names,
decimation, and sample time in the To File block dialog box.

Note: Models referenced by Model blocks do not perform data logging in that context
except for states, which you can include in the state logged for top models. Code

42-11

42 Logging in Simulink Coder

generated by the Simulink Coder software for referenced models does not perform data
logging to MAT-files.

Data Logging Differences Between Single- and Multitasking

When logging data in single-tasking and multitasking systems, you will notice
differences in the logging of

• Noncontinuous root Outport blocks
• Discrete states

In multitasking mode, the logging of states and outputs is done after the first task
execution (and not at the end of the first time step). In single-tasking mode, the code
generated by the build procedure logs states and outputs after the first time step.

See Data Logging in Single-Tasking and Multitasking Model Execution (Simulink Coder)
for more details on the differences between single-tasking and multitasking data logging.

Note: The rapid simulation target (RSim) provides enhanced logging options. See
“Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim
System Target File” (Simulink Coder) for more information.

42-12

43

Data Interchange Using the C API in
Simulink Coder

• “Exchange Data Between Generated and External Code Using C API” on page
43-2

• “Use C API to Access Model Signals and States” on page 43-24
• “Use C API to Access Model Parameters” on page 43-30

43 Data Interchange Using the C API in Simulink Coder

Exchange Data Between Generated and External Code Using C
API

Some Simulink Coder applications must interact with signals, states, root-level inputs/
outputs, or parameters in the generated code for a model. For example, calibration
applications monitor and modify parameters. Signal monitoring or data logging
applications interface with signal, state, and root-level input/output data. Using the
Simulink Coder C API, you can build target applications that log signals, states, and
root-level inputs/outputs, monitor signals, states, and root-level inputs/outputs, and tune
parameters, while the generated code executes.

The C API minimizes its memory footprint by sharing information common to signals,
states, root-level inputs/outputs, and parameters in smaller structures. Signal, state,
root-level input/output, and parameter structures include an index into the structure
map, allowing multiple signals, states, root-level inputs/outputs, or parameters to share
data.

To get started with an example, see “Use C API to Access Model Signals and States” on
page 43-24 or “Use C API to Access Model Parameters” on page 43-30.

In this section...

“Generated C API Files” on page 43-2
“Generate C API Files” on page 43-3
“Description of C API Files” on page 43-5
“Generate C API Data Definition File for Exchanging Data with a Target System” on
page 43-20
“C API Limitations” on page 43-22

Generated C API Files

When you configure a model to use the C API, the Simulink Coder code generator
generates two additional files, model_capi.c (or .cpp) and model_capi.h, where
model is the name of the model. The code generator places the two C API files in the
build folder, based on settings in the Configuration Parameters dialog box. The C API
source code file contains information about global block output signals, states, root-level
inputs/outputs, and global parameters defined in the generated code model source code.
The C API header file is an interface header file between the model source code and

43-2

 Exchange Data Between Generated and External Code Using C API

the generated C API. You can use the information in these C API files to create your
application. Among the files generated are those shown in the next figure.

model.mdl

Generate code

model.c model.h

model_capi.c model_capi.h

Generated Files with C API Selected

Note: When you configure the code generator to produce code that includes support for
the C API interface and data logging, the code generator can include text for block names
in the block paths logged to C API files model_capi.c (or .cpp) and model_capi.h.
If the text includes characters that are unrepresented in the character set encoding for
the model, the code generator replaces the characters with XML escape sequences. For
example, the code generator replaces the Japanese full-width Katakana letter ア with the
escape sequence ア. For more information, see “Internationalization and Code
Generation” (Simulink Coder).

Generate C API Files

To generate C API files for your model:

1 Select the C API interface for your model. There are two ways to select the C API
interface for your model, as described in the following sections.

• “Select C API with Configuration Parameters Dialog” on page 43-4
• “Select C API from the Command Line” on page 43-4

2 Generate code for your model.

After generating code, you can examine the files model_capi.c (or .cpp) and
model_capi.h in the model build folder.

43-3

43 Data Interchange Using the C API in Simulink Coder

Select C API with Configuration Parameters Dialog

1 Open your model, and open the Configuration Parameters dialog box.
2 Go to the Code Generation > Interface pane and, in the Data exchange

interface subgroup, select one or more C API options. Based on the options you
select, support for accessing signals, parameters, states, and root-level I/O will
appear in the C API generated code.

• If you want to generate C API code for global block output signals, select
Generate C API for: signals.

• If you want to generate C API code for global block parameters, select Generate
C API for: parameters.

• If you want to generate C API code for discrete and continuous states, select
Generate C API for: states.

• If you want to generate C API code for root-level inputs and outputs, select
Generate C API for: root-level I/O.

Select C API from the Command Line

From the MATLAB command line, you can use the set_param function to select or clear
the C API check boxes on the Interface pane of the Configuration Parameters dialog
box. At the MATLAB command line, enter one or more of the following commands, where
modelname is the name of your model.

To select Generate C API for: signals, enter:

set_param('modelname','RTWCAPISignals','on')

To clear Generate C API for: signals, enter:

set_param('modelname','RTWCAPISignals','off')

To select Generate C API for: parameters, enter:

set_param('modelname','RTWCAPIParams','on')

To clear Generate C API for: parameters, enter:

set_param('modelname','RTWCAPIParams','off')

To select Generate C API for: states, enter:

43-4

 Exchange Data Between Generated and External Code Using C API

set_param('modelname','RTWCAPIStates','on')

To clear Generate C API for: states, enter:

set_param('modelname','RTWCAPIStates','off')

To select Generate C API for: root-level I/O, enter:

set_param('modelname','RTWCAPIRootIO','on')

To clear Generate C API for: root-level I/O, enter:

set_param('modelname','RTWCAPIRootIO','off')

Description of C API Files

• “About C API Files” on page 43-5
• “Structure Arrays Generated in C API Files” on page 43-8
• “Generate Example C API Files” on page 43-9
• “C API Signals” on page 43-11
• “C API States” on page 43-14
• “C API Root-Level Inputs and Outputs” on page 43-15
• “C API Parameters” on page 43-16
• “Map C API Data Structures to rtModel” on page 43-18

About C API Files

The model_capi.c (or .cpp) file provides external applications with a consistent
interface to model data. Depending on your configuration settings, the data could be a
signal, state, root-level input or output, or parameter. In this document, the term data
item refers to either a signal, a state, a root-level input or output, or a parameter. The C
API uses structures that provide an interface to the data item properties. The interface
packages the properties of each data item in a data structure. If the model contains
multiple data items, the interface generates an array of data structures. The members of
a data structure map to data properties.

To interface with data items, an application requires the following properties for each
data item:

• Name

43-5

43 Data Interchange Using the C API in Simulink Coder

• Block path
• Port number (for signals and root-level inputs/outputs only)
• Address
• Data type information: native data type, data size, complexity, and other attributes
• Dimensions information: number of rows, number of columns, and data orientation

(scalar, vector, matrix, or n-dimensional)
• Fixed-point information: slope, bias, scale type, word length, exponent, and other

attributes
• Sample-time information (for signals, states, and root-level inputs/outputs only):

sample time, task identifier, frames

As illustrated in the next figure, the properties of data item A, for example, are located in
data structure DS_A. The properties of data item B are located in data structure DS_B.

DS_A

Property 1

Property 2

 Pointer

Property 3

...

Unique value located here

Shared value located in DS_C

Pointer value located here

Unique value located here

DS_B

Property 1

Property 2

 Pointer

Property 3

...

Unique value located here

Shared value located in DS_C

Pointer value located here

Unique value located here

DS_C

Shared value of Property 2

Shared values of other properties ...

Some property values can be unique to each data item, and there are some property
values that several data items can share in common. Name, for example, has a unique
value for each data item. The interface places the unique property values directly in the
structure for the data item. The name value of data item A is in DS_A, and the name
value of data item B is in DS_B.

But data type could be a property whose value several data items have in common. The
ability of some data items to share a property allows the C API to have a reuse feature.
In this case, the interface places only an index value in DS_A and an index value in

43-6

 Exchange Data Between Generated and External Code Using C API

DS_B. These indices point to a different data structure, DS_C, that contains the actual
data type value. The next figure shows this scheme with more detail.

rtwCapi_Signals rtBlockSignals[]

Array of Signal Structures

These indices of
0 point to the first
element in the
rtDataTypeMap
array.

{

{

...

blockPath sys/blk1

signalName signal1

portNumber 0

dataTypeIndex 0

...

},

{

...

blockPath sys/blk2

signalName signal2

portNumber 1

dataTypeIndex 0

...

},

{

...

blockPath sys/blk3

signalName signal3

portNumber 0

dataTypeIndex 1

...

}

};

The index of 1 points
to the second element
in the rtDataTypeMap
array.

rtwCAPI_DataTypeMap rtDataTypeMap[]

Array of Data Type Structures

{

{

cName "double"

mwName "real_T"

numElements 0

elemMapIndex 0

dataSize sizeof(real_T)

slDataId SS_DOUBLE

isComplex 0

isPointer 0

};

{

cName "int"

mwName "int32_T"

numElements 0

elemMapIndex 0

dataSize sizeof(int32_T)

slDataId SS_INT32

...

}

};

The figure shows three signals. signal1 and signal2 share the same data type,
double. Instead of specifying this data type value in each signal data structure, the

43-7

43 Data Interchange Using the C API in Simulink Coder

interface provides only an index value, 0, in the structure. "double" is described by
entry 0 in the rtDataTypeMap array, which is referenced by both signals. Additionally,
property values can be shared between signals, states, root-level inputs/outputs, and
parameters, so states, root-level inputs/outputs, and parameters also might reference
the double entry in the rtDataTypeMap array. This reuse of information reduces the
memory size of the generated interface.

Structure Arrays Generated in C API Files

As with data type, the interface maps other common properties (such as address,
dimension, fixed-point scaling, and sample time) into separate structures and provides
an index in the structure for the data item. For a complete list of structure definitions,
refer to the file matlabroot/rtw/c/src/rtw_capi.h. This file also describes each
member in a structure. The structure arrays generated in the model_capi.c (or .cpp)
file are of structure types defined in the rtw_capi.h file. Here is a brief description of
the structure arrays generated in model_capi.c (or .cpp):

• rtBlockSignals is an array of structures that contains information about global
block output signals in the model. Each element in the array is of type struct
rtwCAPI_Signals. The members of this structure provide the signal name, block
path, block port number, address, and indices to the data type, dimension, fixed-point,
and sample-time structure arrays.

• rtBlockParameters is an array of structures that contains information about the
tunable block parameters in the model by block name and parameter name. Each
element in the array is of type struct rtwCAPI_BlockParameters. The members
of this structure provide the parameter name, block path, address, and indices to data
type, dimension, and fixed-point structure arrays.

• rtBlockStates is an array of structures that contains information about discrete
and continuous states in the model. Each element in the array is of type struct
rtwCAPI_States. The members of this structure provide the state name, block path,
type (continuous or discrete), and indices to the address, data type, dimension, fixed-
point, and sample-time structure arrays.

• rtRootInputs is an array of structures that contains information about root-level
inputs in the model. Each element in the array is of type struct rtwCAPI_Signals.
The members of this structure provide the root-level input name, block path, block
port number, address, and indices to the data type, dimension, fixed-point, and
sample-time structure arrays.

• rtRootOutputs is an array of structures that contains information about
root-level outputs in the model. Each element in the array is of type struct

43-8

 Exchange Data Between Generated and External Code Using C API

rtwCAPI_Signals. The members of this structure provide the root-level output
name, block path, block port number, address, and indices to the data type,
dimension, fixed-point, and sample-time structure arrays.

• rtModelParameters is an array of structures that contains information
about workplace variables that one or more blocks or Stateflow charts in the
model reference as block parameters. Each element in the array is of data type
rtwCAPI_ModelParameters. The members of this structure provide the variable
name, address, and indices to data type, dimension, and fixed-point structure arrays.

• rtDataAddrMap is an array of base addresses of signals, states, root-level inputs/
outputs, and parameters that appear in the rtBlockSignals, rtBlockParameters,
rtBlockStates, and rtModelParameters arrays. Each element of the
rtDataAddrMap array is a pointer to void (void*).

• rtDataTypeMap is an array of structures that contains information about the
various data types in the model. Each element of this array is of type struct
rtwCAPI_DataTypeMap. The members of this structure provide the data type name,
size of the data type, and information on whether or not the data is complex.

• rtDimensionMap is an array of structures that contains information about the
various data dimensions in the model. Each element of this array is of type struct
rtwCAPI_DimensionMap. The members of this structure provide information on the
number of dimensions in the data, the orientation of the data (whether it is scalar,
vector, or a matrix), and the actual dimensions of the data.

• rtFixPtMap is an array of structures that contains fixed-point information about
the signals, states, root-level inputs/outputs, and parameters. Each element of this
array is of type struct rtwCAPI_FixPtMap. The members of this structure provide
information about the data scaling, bias, exponent, and whether or not the fixed-point
data is signed. If the model does not have fixed-point data (signal, state, root-level
input/output, or parameter), the Simulink Coder software assigns NULL or zero values
to the elements of the rtFixPtMap array.

• rtSampleTimeMap is an array of structures that contains sampling information
about the global signals, states, and root-level inputs/outputs in the model. (This
array does not contain information about parameters.) Each element of this array is
of type struct rtwCAPI_SampleTimeMap. The members of this structure provide
information about the sample period, offset, and whether or not the data is frame-
based or sample-based.

Generate Example C API Files

Subtopics “C API Signals” on page 43-11, “C API States” on page 43-14, “C API
Root-Level Inputs and Outputs” on page 43-15, and “C API Parameters” on page

43-9

43 Data Interchange Using the C API in Simulink Coder

43-16 discuss generated C API structures using the example model rtwdemo_capi.
To generate code from the example model, do the following:

1 Open the model by clicking the rtwdemo_capi link above or by typing
rtwdemo_capi on the MATLAB command line.

2 If you want to generate C API structures for root-level inputs/outputs in
rtwdemo_capi, open the Configuration Parameters dialog box, go to the Code
Generation > Interface pane, and select Generate C API for: root-level I/O.

Note: The setting of Generate C API for: root-level I/O must match between the
top model and the referenced model. If you modify the option, save the top model and
the referenced model to the same writable work folder.

3 Generate code for the model by double-clicking Generate Code Using Simulink
Coder.

Note: The C API code examples in the next subtopics are generated with C as the target
language.

This model has three global block output signals that will appear in C API generated
code:

• top_sig1, which is a test point at the output of the Gain1 block in the top model
• sig2_eg, which appears in the top model and is defined in the base workspace as a

Simulink.Signal object having storage class ExportedGlobal
• bot_sig1, which appears in the referenced model rtwdemo_capi_bot and is defined

as a Simulink.Signal object having storage class SimulinkGlobal

The model also has two discrete states that will appear in the C API generated code:

• top_state, which is defined for the Delay1 block in the top model
• bot_state, which is defined for the Discrete Filter block in the referenced model

The model has root-level inputs/outputs that will appear in the C API generated code if
you select the option Generate C API for: root-level I/O:

• Four root-level inputs, In1 through In4
• Six root-level outputs, Out1 through Out6

43-10

 Exchange Data Between Generated and External Code Using C API

Additionally, the model has five global block parameters that will appear in C API
generated code:

• Kp (top model Gain1 block and referenced model Gain2 block share)
• Ki (referenced model Gain3 block)
• p1 (lookup table lu1d)
• p2 (lookup table lu2d)
• p3 (lookup table lu3d)

C API Signals

The rtwCAPI_Signals structure captures signal information including the signal name,
address, block path, output port number, data type information, dimensions information,
fixed-point information, and sample-time information.

Here is the section of code in rtwdemo_capi_capi.c that provides information on C
API signals for the top model in rtwdemo_capi:
/* Block output signal information */

static const rtwCAPI_Signals rtBlockSignals[] = {

 /* addrMapIndex, sysNum, blockPath,

 * signalName, portNumber, dataTypeIndex, dimIndex, fxpIndex, sTimeIndex

 */

 { 0, 0, "rtwdemo_capi/Gain1",

 "top_sig1", 0, 0, 0, 0, 0 },

 { 1, 0, "rtwdemo_capi/lu2d",

 "sig2_eg", 0, 0, 1, 0, 0 },

 {

 0, 0, (NULL), (NULL), 0, 0, 0, 0, 0

 }

};

Note To better understand the code, read the comments in the file. For example, notice
the comment that begins on the third line in the preceding code. This comment lists the
members of the rtwCAPI_Signals structure, in order. This tells you the order in which
the assigned values for each member appear for a signal. In this example, the comment
tells you that signalName is the fourth member of the structure. The following lines
describe the first signal:

 { 0, 0, "rtwdemo_capi/Gain1",

 "top_sig1", 0, 0, 0, 0, 0 },

From these lines you infer that the name of the first signal is top_sig1.

43-11

43 Data Interchange Using the C API in Simulink Coder

Each array element, except the last, describes one output port for a block signal. The
final array element is a sentinel, with all elements set to null values. For example,
examine the second signal, described by the following code:

 { 1, 0, "rtwdemo_capi/lu2d",

 "sig2_eg", 0, 0, 1, 0, 0 },

This signal, named sig2_eg, is the output signal of the first port of the block
rtwdemo_capi/lu2d. (This port is the first port because the zero-based index for
portNumber displayed on the second line is assigned the value 0.)

The address of this signal is given by addrMapIndex, which, in this example, is
displayed on the first line as 1. This provides an index into the rtDataAddrMap array,
found later in rtwdemo_capi_capi.c:
/* Declare Data Addresses statically */

static void* rtDataAddrMap[] = {

 &rtwdemo_capi_B.top_sig1, /* 0: Signal */

 &sig2_eg[0], /* 1: Signal */

 &rtwdemo_capi_DWork.top_state, /* 2: Discrete State */

 &rtP_Ki, /* 3: Model Parameter */

 &rtP_Kp, /* 4: Model Parameter */

 &rtP_p1[0], /* 5: Model Parameter */

 &rtP_p2[0], /* 6: Model Parameter */

 &rtP_p3[0], /* 7: Model Parameter */

};

The index of 1 points to the second element in the rtDataAddrMap array. From the
rtDataAddrMap array, you can infer that the address of this signal is &sig2_eg[0].

This level of indirection supports multiple code instances of the same model. For multiple
instances, the signal information remains constant, except for the address. In this case,
the model is a single instance. Therefore, the rtDataAddrMap is declared statically. If
you choose to generate reusable code, an initialize function is generated that initializes
the addresses dynamically per instance. For details on generating reusable code, see
“Entry-Point Functions and Scheduling” (Simulink Coder) and see “Configure Code
Reuse Support” on page 30-15.

The dataTypeIndex provides an index into the rtDataTypeMap array, found later in
rtwdemo_capi_capi.c, indicating the data type of the signal:
/* Data Type Map - use dataTypeMapIndex to access this structure */

static const rtwCAPI_DataTypeMap rtDataTypeMap[] = {

 /* cName, mwName, numElements, elemMapIndex, dataSize, slDataId, *

 * isComplex, isPointer */

 { "double", "real_T", 0, 0, sizeof(real_T), SS_DOUBLE, 0, 0 }

};

43-12

 Exchange Data Between Generated and External Code Using C API

Because the index is 0 for sig2_eg, the index points to the first structure element
in the array. You can infer that the data type of the signal is double. The value of
isComplex is 0, indicating that the signal is not complex. Rather than providing the
data type information directly in the rtwCAPI_Signals structure, a level of indirection
is introduced. The indirection allows multiple signals that share the same data type to
point to one map structure, saving memory for each signal.

The dimIndex (dimensions index) provides an index into the rtDimensionMap
array, found later in rtwdemo_capi_capi.c, indicating the dimensions of the signal.
Because this index is 1 for sig2_eg, the index points to the second element in the
rtDimensionMap array:
/* Dimension Map - use dimensionMapIndex to access elements of ths structure*/

static const rtwCAPI_DimensionMap rtDimensionMap[] = {

 /* dataOrientation, dimArrayIndex, numDims, vardimsIndex */

 { rtwCAPI_SCALAR, 0, 2, 0 },

 { rtwCAPI_VECTOR, 2, 2, 0 },

...

};

From this structure, you can infer that this is a nonscalar signal having a dimension of 2.
The dimArrayIndex value, 2, provides an index into rtDimensionArray, found later in
rtwdemo_capi_capi.c:
/* Dimension Array- use dimArrayIndex to access elements of this array */

static const uint_T rtDimensionArray[] = {

 1, /* 0 */

 1, /* 1 */

 2, /* 2 */

...

};

The fxpIndex (fixed-point index) provides an index into the rtFixPtMap array, found
later in rtwdemo_capi_capi.c, indicating fixed-point information about the signal.
Your code can use the scaling information to compute the real-world value of the signal,
using the equation V=SQ+B, where V is “real-world” (that is, base-10) value, S is user-
specified slope, Q is “quantized fixed-point value” or “stored integer,” and B is user-
specified bias. For details, see “Scaling” (Fixed-Point Designer).

Because this index is 0 for sig2_eg, the signal does not have fixed-point information.
A fixed-point map index of zero means that the signal does not have fixed-point
information.

The sTimeIndex (sample-time index) provides the index to the rtSampleTimeMap
array, found later in rtwdemo_capi_capi.c, indicating task information about the

43-13

43 Data Interchange Using the C API in Simulink Coder

signal. If you log multirate signals or conditionally executed signals, the sampling
information can be useful.

Note: model_capi.c (or .cpp) includes rtw_capi.h. A source file that references the
rtBlockSignals array also must include rtw_capi.h.

C API States

The rtwCAPI_States structure captures state information including the state name,
address, block path, type (continuous or discrete), data type information, dimensions
information, fixed-point information, and sample-time information.

Here is the section of code in rtwdemo_capi_capi.c that provides information on C
API states for the top model in rtwdemo_capi:

/* Block states information */

static const rtwCAPI_States rtBlockStates[] = {

 /* addrMapIndex, contStateStartIndex, blockPath,

 * stateName, pathAlias, dWorkIndex, dataTypeIndex, dimIndex,

 * fixPtIdx, sTimeIndex, isContinuous

 */

 { 2, -1, "rtwdemo_capi/Delay1",

 "top_state", "", 0, 0, 0, 0, 0, 0 },

 {

 0, -1, (NULL), (NULL), (NULL), 0, 0, 0, 0, 0, 0

 }

};

Each array element, except the last, describes a state in the model. The final array
element is a sentinel, with all elements set to null values. In this example, the C API
code for the top model displays one state:

 { 2, -1, "rtwdemo_capi/Delay1",

 "top_state", "", 0, 0, 0, 0, 0, 0 },

This state, named top_state, is defined for the block rtwdemo_capi/Delay1.
The value of isContinuous is zero, indicating that the state is discrete rather than
continuous. The other fields correspond to the like-named signal equivalents described in
“C API Signals” on page 43-11, as follows:

• The address of the signal is given by addrMapIndex, which, in this example,
is 2. This is an index into the rtDataAddrMap array, found later in

43-14

 Exchange Data Between Generated and External Code Using C API

rtwdemo_capi_capi.c. Because the index is zero based, 2 corresponds to the third
element in rtDataAddrMap, which is &rtwdemo_capi_DWork.top_state.

• The dataTypeIndex provides an index into the rtDataTypeMap array, found later
in rtwdemo_capi_capi.c, indicating the data type of the parameter. The value 0
corresponds to a double, noncomplex parameter.

• The dimIndex (dimensions index) provides an index into the rtDimensionMap
array, found later in rtwdemo_capi_capi.c. The value 0 corresponds to the first
entry, which is { rtwCAPI_SCALAR, 0, 2, 0 }.

• The fixPtIndex (fixed-point index) provides an index into the rtFixPtMap array,
found later in rtwdemo_capi_capi.c, indicating fixed-point information about the
parameter. As with the corresponding signal attribute, a fixed-point map index of zero
means that the parameter does not have fixed-point information.

C API Root-Level Inputs and Outputs

The rtwCAPI_Signals structure captures root-level input/output information including
the input/output name, address, block path, port number, data type information,
dimensions information, fixed-point information, and sample-time information. (This
structure also is used for block output signals, as previously described in “C API Signals”
on page 43-11.)

Here is the section of code in rtwdemo_capi_capi.c that provides information on C
API root-level inputs/outputs for the top model in rtwdemo_capi:
/* Root Inputs information */

static const rtwCAPI_Signals rtRootInputs[] = {

 /* addrMapIndex, sysNum, blockPath,

 * signalName, portNumber, dataTypeIndex, dimIndex, fxpIndex, sTimeIndex

 */

 { 3, 0, "rtwdemo_capi/In1",

 "", 1, 0, 0, 0, 0 },

 { 4, 0, "rtwdemo_capi/In2",

 "", 2, 0, 0, 0, 0 },

 { 5, 0, "rtwdemo_capi/In3",

 "", 3, 0, 0, 0, 0 },

 { 6, 0, "rtwdemo_capi/In4",

 "", 4, 0, 0, 0, 0 },

 {

 0, 0, (NULL), (NULL), 0, 0, 0, 0, 0

 }

};

43-15

43 Data Interchange Using the C API in Simulink Coder

/* Root Outputs information */

static const rtwCAPI_Signals rtRootOutputs[] = {

 /* addrMapIndex, sysNum, blockPath,

 * signalName, portNumber, dataTypeIndex, dimIndex, fxpIndex, sTimeIndex

 */

 { 7, 0, "rtwdemo_capi/Out1",

 "", 1, 0, 0, 0, 0 },

 { 8, 0, "rtwdemo_capi/Out2",

 "", 2, 0, 0, 0, 0 },

 { 9, 0, "rtwdemo_capi/Out3",

 "", 3, 0, 0, 0, 0 },

 { 10, 0, "rtwdemo_capi/Out4",

 "", 4, 0, 0, 0, 0 },

 { 11, 0, "rtwdemo_capi/Out5",

 "sig2_eg", 5, 0, 1, 0, 0 },

 { 12, 0, "rtwdemo_capi/Out6",

 "", 6, 0, 1, 0, 0 },

 {

 0, 0, (NULL), (NULL), 0, 0, 0, 0, 0

 }

};

For information about interpreting the values in the rtwCAPI_Signals structure, see
the previous section “C API Signals” on page 43-11.

C API Parameters

The rtwCAPI_BlockParameters and rtwCAPI_ModelParameters structures capture
parameter information including the parameter name, block path (for block parameters),
address, data type information, dimensions information, and fixed-point information.

The rtModelParameters array contains entries for workspace variables that are
referenced as tunable Simulink block parameters or Stateflow data of machine scope. For
example, tunable parameters include Simulink.Parameter objects that use a storage
class other than Auto. The Simulink Coder software assigns its elements only NULL or
zero values in the absence of such data.

The setting that you choose for Configuration Parameters > Optimization > Signals
and Parameters > Default parameter behavior determines how information is
generated into the rtBlockParameters array in model_capi.c (or .cpp).

• If you set Default parameter behavior to Tunable, the rtBlockParameters
array contains an entry for every modifiable parameter of every block in the model.

43-16

 Exchange Data Between Generated and External Code Using C API

However, if you use a MATLAB variable or a tunable parameter to specify a block
parameter, the block parameter does not appear in rtBlockParameters. Instead,
the variable or tunable parameter appears in rtModelParameters.

• If you set Default parameter behavior to Inlined, the rtBlockParameters
array is empty. The Simulink Coder software assigns its elements only NULL or zero
values.

The last member of each array is a sentinel, with all elements set to null values.

Here is the rtBlockParameters array that is generated by default in
rtwdemo_capi_capi.c:
/* Individual block tuning is not valid when inline parameters is *

 * selected. An empty map is produced to provide a consistent *

 * interface independent of inlining parameters. *

 */

static const rtwCAPI_BlockParameters rtBlockParameters[] = {

 /* addrMapIndex, blockPath,

 * paramName, dataTypeIndex, dimIndex, fixPtIdx

 */

 {

 0, (NULL), (NULL), 0, 0, 0

 }

};

In this example, only the final, sentinel array element is generated, with all members of
the structure rtwCAPI_BlockParameters set to NULL and zero values. This is because
Default parameter behavior is set to Inlined by default for the rtwdemo_capi
example model. If you set Default parameter behavior to Tunable, the block
parameters are generated in the rtwCAPI_BlockParameters structure. However,
MATLAB variables and tunable parameters appear in the rtwCAPI_ModelParameters
structure.

Here is the rtModelParameters array that is generated by default in
rtwdemo_capi_capi.c:
/* Tunable variable parameters */

static const rtwCAPI_ModelParameters rtModelParameters[] = {

 /* addrMapIndex, varName, dataTypeIndex, dimIndex, fixPtIndex */

 { 2, TARGET_STRING("Ki"), 0, 0, 0 },

 { 3, TARGET_STRING("Kp"), 0, 0, 0 },

 { 4, TARGET_STRING("p1"), 0, 2, 0 },

 { 5, TARGET_STRING("p2"), 0, 3, 0 },

43-17

43 Data Interchange Using the C API in Simulink Coder

 { 6, TARGET_STRING("p3"), 0, 4, 0 },

 { 0, (NULL), 0, 0, 0 }

};

In this example, the rtModelParameters array contains entries for each variable that
is referenced as a tunable Simulink block parameter.

For example, the varName (variable name) of the fourth parameter is p2. The other fields
correspond to the like-named signal equivalents described in “C API Signals” on page
43-11, as follows:

• The address of the fourth parameter is given by addrMapIndex, which, in this
example, is 5. This is an index into the rtDataAddrMap array, found later in
rtwdemo_capi_capi.c. Because the index is zero based, 5 corresponds to the sixth
element in rtDataAddrMap, which is rtP_p2.

• The dataTypeIndex provides an index into the rtDataTypeMap array, found later
in rtwdemo_capi_capi.c, indicating the data type of the parameter. The value 0
corresponds to a double, noncomplex parameter.

• The dimIndex (dimensions index) provides an index into the rtDimensionMap
array, found later in rtwdemo_capi_capi.c. The value 3 corresponds to the fourth
entry, which is { rtwCAPI_MATRIX_COL_MAJOR, 6, 2, 0 }.

• The fixPtIndex (fixed-point index) provides an index into the rtFixPtMap array,
found later in rtwdemo_capi_capi.c, indicating fixed-point information about the
parameter. As with the corresponding signal attribute, a fixed-point map index of zero
means that the parameter does not have fixed-point information.

For more information about tunable parameter storage in the generated code, see “Block
Parameter Representation in the Generated Code” (Simulink Coder).

Map C API Data Structures to rtModel

The real-time model data structure encapsulates model data and associated information
that describes the model fully. When you select the C API feature and generate code,
the Simulink Coder code generator adds another member to the real-time model data
structure generated in model.h:

/*

 * DataMapInfo:

 * The following substructure contains information regarding

 * structures generated in the model's C API.

43-18

 Exchange Data Between Generated and External Code Using C API

 */

struct {

 rtwCAPI_ModelMappingInfo mmi;

} DataMapInfo;

This member defines mmi (for model mapping information) of type struct
rtwCAPI_ModelMappingInfo. The structure is located in matlabroot/rtw/c/src/
rtw_modelmap.h. The mmi substructure defines the interface between the model
and the C API files. More specifically, members of mmi map the real-time model data
structure to the structures in model_capi.c (or .cpp).

Initializing values of mmi members to the arrays accomplishes the mapping, as shown
in Map Model to C API Arrays of Structures. Each member points to one of the arrays of
structures in the generated C API file. For example, the address of the rtBlockSignals
array of structures is allocated to the first member of the mmi substructure in model.c
(or .cpp), using the following code in the rtw_modelmap.h file:

/* signals */

struct {

 rtwCAPI_Signals const *signals; /* Signals Array */

 uint_T numSignals; /* Num Signals */

 rtwCAPI_Signals const *rootInputs; /* Root Inputs array */

 uint_T numRootInputs; /* Num Root Inputs */

 rtwCAPI_Signals const *rootOutputs; /* Root Outputs array */

 uint_T numRootOutputs;/* Num Root Outputs */

} Signals;

The model initialize function in model.c (or .cpp) performs the initializing by calling
the C API initialize function. For example, the following code is generated in the model
initialize function for example model rtwdemo_capi:

/* Initialize DataMapInfo substructure containing ModelMap for C API */

rtwdemo_capi_InitializeDataMapInfo(rtwdemo_capi_M);

43-19

43 Data Interchange Using the C API in Simulink Coder

rtwCAPI_Signals const *signals;
rtwCAPI_Signals const *rootInputs;
rtwCAPI_Signals const *rootOutputs;
.

rtwCAPI_BlockParameters const *blockParameters;

.

rtwCAPI_ModelParameters const *modelParameters;

.

rtwCAPI_States const *states;

.

rtwCAPI_DataTypeMap const *dataTypeMap;

.

rtwCAPI_DimensionMap const *dimensionMap;

.

rtwCAPI_FixPtMap const *fixPtMap;

.

rtwCAPI_SampleTimeMap const *sampleTimeMap;

.

void** dataAddrMap;

.

matlabroot/rtw/c/src/rtw_modelmap.h

model.h

model_capi.c

struct rtModel_model {

.

.

.

 struct {

 rtwCAPI_ModelMappingInfo mmi;

 } DataMapInfo:

.

.

.

}

rtBlockSignals
rtRootInputs
rtRootOutputs
.

rtBlockParameters

.

rtModelParameters

.

rtBlockStates

.

rtDataTypeMap

.

rtDimensionMap

.

rtFixPtMap

.

rtSampleTimeMap

.

rtDataAddrMap

.

Map Model to C API Arrays of Structures

Note: This figure lists the arrays in the order that their structures appear in
rtw_modelmap.h, which differs slightly from their generated order in model_capi.c.

Generate C API Data Definition File for Exchanging Data with a Target
System

This model illustrates the target-based C API for interfacing signals, parameters, and
states in the generated code.

43-20

 Exchange Data Between Generated and External Code Using C API

Open Example Model

Open the example model rtwdemo_capi.

open_system('rtwdemo_capi');

The C API is useful for real-time interaction with application data, without having to
stop execution or recompile the generated code. Typically, a client/server protocol is set
up from a host to a target using serial, TCP/IP, or dual-port memory connection. The

43-21

43 Data Interchange Using the C API in Simulink Coder

purpose of this example is not the client/server protocol. Rather, this model shows the
necessary data interface required by the C client/server programs.

You enable the C API by selecting one or more C API options on the Code Generation
> Interface pane of the Configuration Parameters dialog box. Any signal or parameter
or state with an addressable storage class is placed in the C API data structure in
model_capi.c. Note that signals, states, and parameters in the referenced model can be
accessed using C API. So make sure that C API is enabled for the referenced model.

C API Limitations

The C API feature has the following limitations.

• The C API does not support the following values for the CodeFormat TLC variable:

• S-Function

• Accelerator_S-Function (for accelerated simulation)
• For ERT-based targets, the C API requires that support for floating-point code be

enabled.
• Local block output signals are not supported.
• Local Stateflow parameters are not supported.
• The following custom storage class objects are not supported:

• Objects without the package csc_registration file
• Grouped custom storage classes
• Objects defined by using macros
• BitField objects
• FileScope objects

• Customized data placement is disabled when you are using the C API. The interface
looks for global data declaration in model.h and model_private.h. Declarations
placed in any other file by customized data placement result in code that does not
compile.

Note Custom Storage Class objects work in code generation, only if you use the ERT
target and clear the Ignore custom storage classes check box in the Configuration
Parameters dialog box.

43-22

 Exchange Data Between Generated and External Code Using C API

Related Examples
• “Access Signal, State, and Parameter Data During Execution” (Simulink Coder)

43-23

43 Data Interchange Using the C API in Simulink Coder

Use C API to Access Model Signals and States

This example helps you get started writing application code to interact with model
signals and states. To get started writing application code to interact with model
parameters, see “Use C API to Access Model Parameters” on page 43-30.

The C API provides you with the flexibility of writing your own application code to
interact with model signals, states, root-level inputs/outputs, and parameters. Your
target-based application code is compiled with the Simulink Coder generated code into
an executable. The target-based application code accesses the C API structure arrays
in model_capi.c (or .cpp). You might have host-based code that interacts with your
target-based application code. Or, you might have other target-based code that interacts
with your target-based application code. The files rtw_modelmap.h and rtw_capi.h,
located in matlabroot/rtw/c/src (open), provide macros for accessing the structures
in these arrays and their members.

Here is an example application that logs global signals and states in a model to a text
file. This code is intended as a starting point for accessing signal and state addresses.
You can extend the code to perform signal logging and monitoring, state logging and
monitoring, or both.

This example uses the following macro and function interfaces:

• rtmGetDataMapInfo macro

Accesses the model mapping information (MMI) substructure of the real-time model
structure. In the following macro call, rtM is the pointer to the real-time model
structure in model.c (or .cpp):
rtwCAPI_ModelMappingInfo* mmi = &(rtmGetDataMapInfo(rtM).mmi);

• rtmGetTPtr macro

Accesses the absolute time information for the base rate from the timing substructure
of the real-time model structure. In the following macro call, rtM is the pointer to the
real-time model structure in model.c (or .cpp):
rtmGetTPtr(rtM)

• Custom functions capi_StartLogging, capi_UpdateLogging, and
capi_TerminateLogging, provided via the files rtwdemo_capi_datalog.h and
rtwdemo_capi_datalog.c. These files are located in matlabroot/toolbox/rtw/
rtwdemos (open).

43-24

 Use C API to Access Model Signals and States

• capi_StartLogging initializes signal and state logging.
• capi_UpdateLogging logs a signal and state value at each time step.
• capi_TerminateLogging terminates signal and state logging and writes the

logged values to a text file.

You can integrate these custom functions into generated model code using one or
more of the following methods:

• Code Generation > Custom Code pane of the Configuration Parameters dialog
box

• Custom Code library blocks
• TLC custom code functions

This tutorial uses the Code Generation > Custom Code pane and the System
Outputs block from the Custom Code library to insert calls to the custom functions
into model.c (or .cpp), as follows:

• capi_StartLogging is called in the model_initialize function.
• capi_UpdateLogging is called in the model_step function.
• capi_TerminateLogging is called in the model_terminate function.

The following excerpts of generated code from model.c (rearranged to reflect their order
of execution) show how the function interfaces are used.
void rtwdemo_capi_initialize(void)

{

...

 /* user code (Initialize function Body) */

 /* C API Custom Logging Function: Start Signal and State logging via C API.

 * capi_StartLogging: Function prototype in rtwdemo_capi_datalog.h

 */

 {

 rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_capi_M).mmi);

 printf("** Started state/signal logging via C API **\n");

 capi_StartLogging(MMI, MAX_DATA_POINTS);

 }

...

}

...

/* Model step function */

void rtwdemo_capi_step(void)

{

...

 /* user code (Output function Trailer) */

 /* System '<Root>' */

43-25

43 Data Interchange Using the C API in Simulink Coder

 /* C API Custom Logging Function: Update Signal and State logging buffers.

 * capi_UpdateLogging: Function prototype in rtwdemo_capi_datalog.h

 */

 {

 rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_capi_M).mmi);

 capi_UpdateLogging(MMI, rtmGetTPtr(rtwdemo_capi_M));

 }

...

}

...

/* Model terminate function */

void rtwdemo_capi_terminate(void)

{

 /* user code (Terminate function Body) */

 /* C API Custom Logging Function: Dump Signal and State buffers into a text file.

 * capi_TerminateLogging: Function prototype in rtwdemo_capi_datalog.h

 */

 {

 capi_TerminateLogging("rtwdemo_capi_ModelLog.txt");

 printf("** Finished state/signal logging. Created rtwdemo_capi_ModelLog.txt **\n");

 }

}

The following procedure illustrates how you can use the C API macro and function
interfaces to log global signals and states in a model to a text file.

1 At the MATLAB command line, enter rtwdemo_capi to open the example model.
2 Save the top model rtwdemo_capi and the referenced model rtwdemo_capi_bot to

the same writable work folder.
3 Open the Configuration Parameters dialog box.
4 If you are licensed for Embedded Coder software and you want to use the ert.tlc

target instead of the default grt.tlc, go to the Code Generation pane and use the
System target file field to select an ert.tlc target. Make sure that you also select
ert.tlc for the referenced model rtwdemo_capi_bot.

5 In the top model, go to the Code Generation > Interface pane.

a In the Data exchange interface subgroup, verify that the model options
Generate C API for: signals and Generate C API for: states are selected.
This example also leaves Generate C API for: parameters selected.

b If you are using the ert.tlc system target file, verify that the option Support:
complex numbers is selected.

c Click the All Parameters tab, and select the MAT-file logging option.
d Click Apply.
e Update configuration parameter settings in the referenced model,

rtwdemo_capi_bot, to match changes you made in the top model.

43-26

 Use C API to Access Model Signals and States

6 Use the Custom Code pane to embed your custom application code in the generated
code. Select the Custom Code pane, and then click Include directories. The
Include directories input field is displayed.

7 In the Include directories field, type matlabroot/toolbox/rtw/rtwdemos,
where matlabroot represents the root of your MATLAB installation folder. (If you
are specifying a Windows path that contains a space, place the text inside double
quotes.)

8 In the Additional Build Information subpane, click Source files, and type
rtwdemo_capi_datalog.c.

9 In the Include custom C code in generated subpane, click Source file, and type
or copy and paste the following include statement:
#include "rtwdemo_capi_datalog.h"

10 In the Initialize function field, type or copy and paste the following application
code:
 /* C API Custom Logging Function: Start Signal and State logging via C API.

 * capi_StartLogging: Function prototype in rtwdemo_capi_datalog.h

 */

 {

 rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_capi_M).mmi);

 printf("** Started state/signal logging via C API **\n");

 capi_StartLogging(MMI, MAX_DATA_POINTS);

 }

Note: If you renamed the top model rtwdemo_capi, update the name
rtwdemo_capi_M in the application code to reflect the new model name.

11 In the Terminate function field, type or copy and paste the following application
code:
 /* C API Custom Logging Function: Dump Signal and State buffers into a text file.

 * capi_TerminateLogging: Function prototype in rtwdemo_capi_datalog.h

 */

43-27

43 Data Interchange Using the C API in Simulink Coder

 {

capi_TerminateLogging("rtwdemo_capi_ModelLog.txt");

printf("** Finished state/signal logging. Created rtwdemo_capi_ModelLog.txt **\n");

 }

Click Apply.
12 In the MATLAB Command Window, enter custcode to open the Simulink Coder

Custom Code library. At the top level of the rtwdemo_capi model, add a System
Outputs block.

13 Double-click the System Outputs block to open the System Outputs Function Custom
Code dialog box. In the System Outputs Function Exit Code field, type or copy
and paste the following application code:

 /* C API Custom Logging Function: Update Signal and State logging buffers.

 * capi_UpdateLogging: Function prototype in rtwdemo_capi_datalog.h

 */

 {

 rtwCAPI_ModelMappingInfo *MMI = &(rtmGetDataMapInfo(rtwdemo_capi_M).mmi);

 capi_UpdateLogging(MMI, rtmGetTPtr(rtwdemo_capi_M));

 }

Note: If you renamed the top model rtwdemo_capi, update two instances of the
name rtwdemo_capi_M in the application code to reflect the new model name.

Click OK.
14 On the Code Generation pane, verify that the Generate code only check box is

cleared.

Press Ctrl+B to build the model and generate an executable file. For example, on a
Windows system, the build generates the executable file rtwdemo_capi.exe in your
current working folder.

15 In the MATLAB Command Window, enter the command !rtwdemo_capi to run the
executable file. During execution, signals and states are logged using the C API and
then written to the text file rtwdemo_capi_ModelLog.txt in your current working
folder.
>> !rtwdemo_capi

** starting the model **

** Started state/signal logging via C API **

** Logging 2 signal(s) and 1 state(s). In this demo, only scalar named

 signals/states are logged **

** Finished state/signal logging. Created rtwdemo_capi_ModelLog.txt **

43-28

 Use C API to Access Model Signals and States

16 Examine the text file in the MATLAB editor or other text editor. Here is an excerpt
of the signal and state logging output.
******** Signal Log File ********

Number of Signals Logged: 2

Number of points (time steps) logged: 51

Time bot_sig1 (Referenced Model) top_sig1

0 70 4

0.2 70 4

0.4 70 4

0.6 70 4

0.8 70 4

1 70 4

1.2 70 4

1.4 70 4

1.6 70 4

1.8 70 4

2 70 4

...

******** State Log File ********

Number of States Logged: 1

Number of points (time steps) logged: 51

Time bot_state (Referenced Model)

0 0

0.2 70

0.4 35

0.6 52.5

0.8 43.75

1 48.13

1.2 45.94

1.4 47.03

1.6 46.48

1.8 46.76

2 46.62

...

43-29

43 Data Interchange Using the C API in Simulink Coder

Use C API to Access Model Parameters
This example helps you get started writing application code to interact with model
parameters. To get started writing application code to interact with model signals and
states, see “Use C API to Access Model Signals and States” on page 43-24.

The C API provides you with the flexibility of writing your own application code to
interact with model signals, states, root-level inputs/outputs, and parameters. Your
target-based application code is compiled with the Simulink Coder generated code into
an executable. The target-based application code accesses the C API structure arrays
in model_capi.c (or .cpp). You might have host-based code that interacts with your
target-based application code. Or, you might have other target-based code that interacts
with your target-based application code. The files rtw_modelmap.h and rtw_capi.h,
located in matlabroot/rtw/c/src (open), provide macros for accessing the structures
in these arrays and their members.

Here is an example application that prints the parameter values of tunable parameters
in a model to the standard output. This code is intended as a starting point for accessing
parameter addresses. You can extend the code to perform parameter tuning. The
application:

• Uses the rtmGetDataMapInfo macro to access the mapping information in the mmi
substructure of the real-time model structure

rtwCAPI_ModelMappingInfo* mmi = &(rtmGetDataMapInfo(rtM).mmi);

where rtM is the pointer to the real-time model structure in model.c (or .cpp).
• Uses rtwCAPI_GetNumModelParameters to get the number of model parameters in

mapped C API:

uint_T nModelParams = rtwCAPI_GetNumModelParameters(mmi);

• Uses rtwCAPI_GetModelParameters to access the array of model parameter
structures mapped in C API:

rtwCAPI_ModelParameters* capiModelParams = \

 rtwCAPI_GetModelParameters(mmi);

• Loops over the capiModelParams array to access individual parameter structures.
A call to the function capi_PrintModelParameter displays the value of the
parameter.

The example application code is provided below:

43-30

 Use C API to Access Model Parameters

{

/* Get CAPI Mapping structure from Real-Time Model structure */

rtwCAPI_ModelMappingInfo* capiMap = \

&(rtmGetDataMapInfo(rtwdemo_capi_M).mmi);

/* Get number of Model Parameters from capiMap */

uint_T nModelParams = rtwCAPI_GetNumModelParameters(capiMap);

printf("Number of Model Parameters: %d\n", nModelParams);

/* If the model has Model Parameters, print them using the

application capi_PrintModelParameter */

if (nModelParams == 0) {

 printf("No Tunable Model Parameters in the model \n");

}

else {

 unsigned int idx;

 for (idx=0; idx < nModelParams; idx++) {

 /* call print utility function */

 capi_PrintModelParameter(capiMap, idx);

 }

}

}

The print utility function is located in matlabroot/rtw/c/src/
rtw_capi_examples.c. This file contains utility functions for accessing the C API
structures.

To become familiar with the example code, try building a model that displays the tunable
block parameters and MATLAB variables. You can use rtwdemo_capi, the C API
example model. The following steps apply to both grt.tlc and ert.tlc targets, unless
otherwise indicated.

1 At the MATLAB command line, enter rtwdemo_capi to open the example model.
2 Save the top model rtwdemo_capi and the referenced model rtwdemo_capi_bot to

the same writable work folder.
3 If you are licensed for Embedded Coder software and you want to use the ert.tlc

target instead of the default grt.tlc, go to the Code Generation pane of the
Configuration Parameters dialog box and use the System target file field to select
an ert.tlc target. Make sure that you also select ert.tlc for the referenced model
rtwdemo_capi_bot.

4 Go to the Code Generation > Interface pane.

43-31

43 Data Interchange Using the C API in Simulink Coder

a In the Data exchange interface subgroup, verify that the model option
Generate C API for: parameters is selected.

b If you are using the ert.tlc system target file, verify that the option Support:
complex numbers is selected.

c Click the All Parameters tab, and select the MAT-file logging option.
d Click Apply.
e Update configuration parameter settings in the referenced model,

rtwdemo_capi_bot, to match changes you made in the top model.
5 Use the Custom Code pane to embed your custom application code in the generated

code. Select the Custom Code pane, and then click Initialize function. The
Initialize function input field is displayed.

6 In the Initialize function input field, type or copy and paste the example
application code shown above step 1. This embeds the application code in the
model_initialize function.

Note: If you renamed the top model rtwdemo_capi, update the name
rtwdemo_capi_M in the application code to reflect the new model name.

7 Click Include directories, and type matlabroot/rtw/c/src, where matlabroot
represents the root of your MATLAB installation folder. (If you are specifying a
Windows path that contains a space, place the text inside double quotes.)

8 In the Additional Build Information subpane, click Source files, and type
rtw_capi_examples.c.

43-32

 Use C API to Access Model Parameters

Click Apply.
9 On the Code Generation pane, verify that the Generate code only check box is

cleared.

Press Ctrl+B to build the model and generate an executable file. For example, on a
Windows system, the build generates the executable file rtwdemo_capi.exe in your
current working folder.

10 In the MATLAB Command Window, enter !rtwdemo_capi to run the executable
file. Running the program displays parameter information in the Command Window.

>> !rtwdemo_capi

** starting the model **

Number of Model Parameters: 5

Ki =

 7

Kp =

 4

p1 =

 0.15

 0.36

 0.81

43-33

43 Data Interchange Using the C API in Simulink Coder

p2 =

 0.09 0.75 0.57

 0.13 0.96 0.059

p3 =

ans(:,:,1) =

 0.23 0.82 0.04 0.64

 0.35 0.01 0.16 0.73

ans(:,:,2) =

 0.64 0.54 0.74 0.68

 0.45 0.29 0.18 0.18

43-34

44

ASAP2 Data Measurement and
Calibration in Simulink Coder

44 ASAP2 Data Measurement and Calibration in Simulink Coder

Export ASAP2 File for Data Measurement and Calibration
The ASAM MCD-2 MC standard, also known as ASAP2, is a data definition standard
proposed by the Association for Standardization of Automation and Measuring Systems
(ASAM). ASAP2 is a non-object-oriented description of the data used for measurement,
calibration, and diagnostic systems. For more information on ASAM and the ASAM
MCD-2 MC (ASAP2) standard, see the ASAM Web site at http://www.asam.net.

The Simulink Coder product lets you export an ASAP2 file containing information about
your model during the code generation process.

You can run an interactive example of ASAP2 file generation. To open the example at the
MATLAB command prompt, enter the following command:

rtwdemo_asap2

Note: Simulink Coder support for ASAP2 file generation is version-neutral. By default,
the software generates ASAP2 version 1.31 format, but the generated model information
is generally compatible with all ASAP2 versions. ASAP2 file generation also is neutral
with respect to the specific needs of ASAP2 measurement and calibration tools. The
software provides customization APIs that you can use to customize ASAP2 file
generation to generate any ASAP2 version and to meet the specific needs of your ASAP2
tools.

In this section...

“What You Should Know” on page 44-2
“Targets Supporting ASAP2” on page 44-3
“Define ASAP2 Information” on page 44-3
“Generate an ASAP2 File” on page 44-9
“Structure of the ASAP2 File” on page 44-12
“Create a Host-Based ASAM-ASAP2 Data Definition File for Data Measurement and
Calibration” on page 44-13

What You Should Know

To make use of ASAP2 file generation, you should become familiar with the following
topics:

44-2

http://www.asam.net

 Export ASAP2 File for Data Measurement and Calibration

• ASAM and the ASAP2 standard and terminology. See the ASAM Web site at http://
www.asam.net.

• Simulink data objects. Data objects are used to supply information not contained in
the model. For an overview, see “Data Objects” (Simulink).

• Storage and representation of signals and parameters in generated code. See “Data
Representation” (Simulink Coder).

• If you are licensed for Embedded Coder, see also the Embedded Coder topic “Data
Representation”.

Targets Supporting ASAP2

ASAP2 file generation is available to all Simulink Coder target configurations. You can
select these target configurations from the System Target File Browser. For example,

• The Generic Real-Time Target (grt.tlc) lets you generate an ASAP2 file as
part of the code generation and build process.

• The Embedded Coder (ert.tlc) target selections also lets you generate an ASAP2
file as part of the code generation and build process.

• The ASAM-ASAP2 Data Definition Target (asap2.tlc) lets you generate only
an ASAP2 file, without building an executable.

Procedures for generating ASAP2 files by using these target configurations are given in
“Generate an ASAP2 File” on page 44-9.

Define ASAP2 Information

• “Define ASAP2 Information for Parameters and Signals” on page 44-3
• “Memory Address Attribute” on page 44-4
• “Automatic ECU Address Replacement for ASAP2 Files (Embedded Coder)” on page

44-6
• “Define ASAP2 Information for Lookup Tables” on page 44-7

Define ASAP2 Information for Parameters and Signals

The ASAP2 file generation process requires information about parameters and signals in
your model. Some of this information is contained in the model itself. You must supply
the rest by using Simulink data objects and corresponding properties.

44-3

http://www.asam.net
http://www.asam.net

44 ASAP2 Data Measurement and Calibration in Simulink Coder

You can use built-in Simulink data objects to provide the information. For example,
you can use Simulink.Signal objects to provide MEASUREMENT information and
Simulink.Parameter objects to provide CHARACTERISTIC information. Also, you
can use data objects from data classes that are derived from Simulink.Signal and
Simulink.Parameter to provide the information. For details, see “Data Objects”
(Simulink).

The following table contains the minimum set of data attributes required for ASAP2
file generation. Some data attributes are defined in the model; others are supplied
in the properties of objects. For attributes that are defined in Simulink.Signal or
Simulink.Parameter objects, the table gives the associated property name.

Data Attribute Defined In Property Name

Name (symbol) Data object Inherited from the handle
of the data object to which
parameter or signal name
resolves

Description Data object Description

Data type Model Not applicable
Scaling
(if fixed-point data type)

Model Data type (for signals)

Inherited from value (for
parameters)

Minimum allowable value Data object Min

Maximum allowable value Data object Max

Unit Data object Unit

Memory address (optional) Data object MemoryAddress_ASAP2

(optional; see “Memory
Address Attribute” on page
44-4.)

Memory Address Attribute

If the memory address attribute is unknown before code generation, the code generator
inserts ECU Address placeholder text in the generated ASAP2 file. You can substitute
an actual address for the placeholder by postprocessing the generated file. See the file
matlabroot/toolbox/rtw/targets/asap2/asap2/asap2post.m for an example.

44-4

 Export ASAP2 File for Data Measurement and Calibration

asap2post.m parses through the linker map file that you provide and replaces the
ECU Address placeholders in the ASAP2 file with the actual memory addresses. Since
linker map files vary from compiler to compiler, you might need to modify the regular
expression code in asap2post.m to match the format of the linker map you use.

Note: If Embedded Coder is licensed and installed on your system, and if you are
generating ELF (Executable and Linkable Format) files for your embedded target, you
can use the rtw.asap2SetAddress function to automate ECU address replacement.
For more information, see “Automatic ECU Address Replacement for ASAP2 Files
(Embedded Coder)” on page 44-6.

If the memory address attribute is known before code generation, it can be defined in
the data object. By default, the MemoryAddress_ASAP2 property does not exist in the
Simulink.Signal or Simulink.Parameter data object classes. If you want to add
the attribute, add a property called MemoryAddress_ASAP2 to a custom class that is a
subclass of the Simulink or ASAP2 class. For information on subclassing Simulink data
classes, see “Define Data Classes” (Simulink).

Note In previous releases, for ASAP2 file generation, you had to define objects explicitly
as ASAP2.Signal and ASAP2.Parameter. This is no longer a limitation. As explained
above, you can use built-in Simulink objects for generating an ASAP2 file. If you have
been using an earlier release, you can continue to use the ASAP2 objects. If one of these
ASAP2 objects was created in the previous release, and you use it in this release, the
MATLAB Command Window displays a warning the first time the objects are loaded.

The following table indicates the Simulink object properties that have replaced the
ASAP2 object properties of the previous release:

Differences Between ASAP2 and Simulink Parameter and Signal Object Properties

ASAP2 Object Properties (Previous) Simulink Object Properties (Current)
LONGIG_ASAP2 Description
PhysicalMin_ASAP2 Min
PhysicalMax_ASAP2 Max
Units_ASAP2 Unit

44-5

44 ASAP2 Data Measurement and Calibration in Simulink Coder

Automatic ECU Address Replacement for ASAP2 Files (Embedded Coder)

If Embedded Coder is licensed and installed on your system, and if you are generating
ELF (Executable and Linkable Format) files for your embedded target, you can use
the rtw.asap2SetAddress function to automate the replacement of ECU Address
placeholder memory address values with actual addresses in the generated ASAP2 file.

If the memory address attribute is unknown before code generation, the code generator
inserts ECU Address placeholder text in the generated ASAP2 file, as shown in the
example below.

/begin CHARACTERISTIC

 /* Name */ Ki

 /* Long Identifier */ ""

 /* Type */ VALUE

 /* ECU Address */ 0x0

 /*ECU_Address@Ki@ */

To substitute actual addresses for the ECU Address placeholders, process the generated
ASAP2 file using the rtw.asap2SetAddress function. The general syntax is as follows:

rtw.asap2SetAddress(ASAP2File, InfoFile)

where the arguments are character vectors specifying the name of the generated ASAP2
file and the name of the generated executable ELF file or DWARF debug information file
for the model. When called, rtw.asap2SetAddress extracts the actual ECU address
from the specified ELF or DWARF file and replaces the placeholder in the ASAP2 file
with the actual address, for example:

/begin CHARACTERISTIC

 /* Name */ Ki

 /* Long Identifier */ ""

 /* Type */ VALUE

 /* ECU Address */ 0x40009E60

44-6

 Export ASAP2 File for Data Measurement and Calibration

Define ASAP2 Information for Lookup Tables

Simulink Coder software generates ASAP2 descriptions for lookup table data and its
breakpoints. The software represents 1-D table data as CURVE information, 2-D table
data as MAP information, and breakpoints as AXIS_DESCR and AXIS_PTS information.
You can model lookup tables using one of the following Simulink Lookup Table blocks:

• Direct Lookup Table (n-D) — 1 and 2 dimensions
• Interpolation Using Prelookup — 1 and 2 dimensions
• 1–D Lookup Table
• 2–D Lookup Table
• n-D Lookup Table — 1 and 2 dimensions

The software supports the following types of lookup table breakpoints (axis points):

Breakpoint Type Generates

Tunable and shared
among multiple table axes
(common axis)

COM_AXIS

Fixed and nontunable (fixed
axis)

One of these variants of FIX_AXIS:

• FIX_AXIS_PAR if breakpoints are integers with
equidistant spacing and the equidistant spacing is a
power of two

• FIX_AXIS_PAR_DIST if breakpoints are integers with
equidistant spacing

• FIX_AXIS_PAR_LIST if breakpoints are integers with
non-equidistant spacing

Tunable but not shared
among multiple tables
(standard axis)

STD_AXIS

44-7

44 ASAP2 Data Measurement and Calibration in Simulink Coder

When you configure the blocks for ASAP2 code generation:

• For table data, use a Simulink.Parameter data object with a non-Auto storage
class.

• For tunable breakpoint data that is shared among multiple table axes (COM_AXIS),
use a Simulink.Parameter data object with a non-Auto storage class.

• For fixed, nontunable breakpoint data (FIX_AXIS), use workspace variables or arrays
specified in the block parameters dialog box. The breakpoints should be stored as
integers in the code, so the data type should be a built-in integer type (int8, int16,
int32, uint8, uint16, or uint32), a fixed-point data type, or an equivalent alias
type.

• For tunable breakpoint data that is not shared among multiple tables (STD_AXIS):

1 Create a Simulink.Bus object to define the struct packaging (names and order
of the fields). The fields of the parameter structure must correspond to the lookup
table data and each axis of the lookup table block. For example, in an n-D Lookup
Table block with 2 dimensions, the structure must contain only three fields. This
bus object describes the record layout for the lookup characteristic.

2 Create a Simulink.Parameter object to represent a tunable parameter.
3 Create table and axis values.
4 Optionally, specify the Units, Minimum, and Maximum properties for the

parameter object. The properties will be applied to table data only.

Here is an example of an n-D Lookup Table record generated into an ASAP2 file in
Standard Axis format:

/begin CHARACTERISTIC

 /* Name */ STDAxisParam

 ...

 /* Record Layout */ Lookup1D_X_WORD_Y_FLOAT32_IEEE

 ...

 begin AXIS_DESCR

 /* Description of X-Axis Points */

 /* Axis Type */ STD_AXIS

 ...

 /end AXIS_DESCR

/end CHARACTERISTIC

/begin RECORD_LAYOUT Lookup1D_X_WORD_Y_FLOAT32_IEEE

 AXIS_PTS_X 1 WORD INDEX_INCR DIRECT

44-8

 Export ASAP2 File for Data Measurement and Calibration

 FNC_VALUES 2 FLOAT32_IEEE COLUMN_DIR DIRECT

/end RECORD_LAYOUT

Note: The example model rtwdemo_asap2 illustrates ASAP2 file generation for Lookup
Table blocks, including both tunable (COM_AXIS) and fixed (FIX_AXIS) lookup table
breakpoints.

Generate an ASAP2 File

• “About Generating ASAP2 Files” on page 44-9
• “Use GRT or ERT Target” on page 44-9
• “Use the ASAM-ASAP2 Data Definition Target” on page 44-10
• “Generate ASAP2 Files for Referenced Models” on page 44-11
• “Merge ASAP2 Files for Top and Referenced Models” on page 44-12

About Generating ASAP2 Files

You can generate an ASAP2 file from your model in one of the following ways:

• Use the Generic Real-Time Target or a Embedded Coder target to generate an ASAP2
file as part of the code generation and build process.

• Use the ASAM-ASAP2 Data Definition Target to generate only an ASAP2 file,
without building an executable.

This section discusses how to generate an ASAP2 file by using the targets that
have built-in ASAP2 support. For an example, see the ASAP2 example model
rtwdemo_asap2.

Use GRT or ERT Target

The procedure for generating the ASAP2 data definition for a model using the Generic
Real-Time Target or an Embedded Coder target is as follows:

1 Create the desired model. Use parameter names and signal labels to refer to
corresponding CHARACTERISTIC records and MEASUREMENT records,
respectively.

2 Create Simulink.Parameter and Simulink.Signal objects in the MATLAB
workspace and reference them from parameters and signals in the model. A
convenient way of creating multiple signal and parameter data objects is to use the

44-9

44 ASAP2 Data Measurement and Calibration in Simulink Coder

Data Object Wizard. Alternatively, you can create data objects one at a time from
the MATLAB command line. For details on how to use the Data Object Wizard, see
“Create Data Objects for a Model Using Data Object Wizard” (Simulink).

3 For each data object, configure the Storage class property to a setting other
than Auto, FileScope, or SimulinkGlobal. This setting declares the data
object as global in the generated code. For example, a storage class setting of
ExportedGlobal configures the data object as unstructured global in the generated
code.

Note: The data object is not represented in the ASAP2 file if any of the following
conditions exist:

• You set the storage class to Auto, FileScope, or SimulinkGlobal.
• You set the storage class to Custom and custom storage class settings cause the

code generator to generate a macro or non-addressable variable.

4 Configure the remaining properties as desired for each data object.
5 On the Code Generation pane, click Browse to open the System Target File

Browser. In the browser, select grt.tlc or an ERT based target file and click OK.
6 On the Code Generation > Interface pane, in the Data exchange interface

subgroup, select ASAP2 interface.
7 Select the Generate code only check box on the Code Generation pane.
8 Click Apply.
9 Press Ctrl+B to build the model.

The Simulink Coder code generator writes the ASAP2 file to the build folder. By
default, the file is named model.a2l, where model is the name of the model.
The ASAP2 setup file controls the ASAP2 file name. For details, see “Customize
Generated ASAP2 File” on page 69-2.

Use the ASAM-ASAP2 Data Definition Target

The procedure for generating the ASAP2 data definition for a model using the ASAM-
ASAP2 Data Definition Target is as follows:

1 Create the desired model. Use parameter names and signal labels to refer to
corresponding CHARACTERISTIC records and MEASUREMENT records,
respectively.

44-10

 Export ASAP2 File for Data Measurement and Calibration

2 Create Simulink.Parameter and Simulink.Signal objects in the MATLAB
workspace and reference them from parameters and signals in the model. A
convenient way of creating multiple signal and parameter data objects is to use the
Data Object Wizard. Alternatively, you can create data objects one at a time from
the MATLAB command line. For details on how to use the Data Object Wizard, see
“Create Data Objects for a Model Using Data Object Wizard” (Simulink).

3 For each data object, configure the Storage class property to a setting other
than Auto, FileScope, or SimulinkGlobal. This setting declares the data
object as global in the generated code. For example, a storage class setting of
ExportedGlobal configures the data object as unstructured global in the generated
code.

Note: The data object is not represented in the ASAP2 file if any of the following
conditions exist:

• You set the storage class to Auto, FileScope, or SimulinkGlobal.
• You set the storage class to Custom and custom storage class settings cause the

code generator to generate a macro or non-addressable variable.

4 Configure the remaining properties as desired for each data object.
5 On the Code Generation pane, click Browse to open the System Target File

Browser. In the browser, select asap2.tlc and click OK.
6 Select the Generate code only check box on the Code Generation pane.
7 Click Apply.
8 Press Ctrl+B.

The Simulink Coder code generator writes the ASAP2 file to the build folder. By
default, the file is named model.a2l, where model is the name of the model.
The ASAP2 setup file controls the ASAP2 file name. For details, see “Customize
Generated ASAP2 File” on page 69-2.

Generate ASAP2 Files for Referenced Models

The build process can generate an ASAP2 file for each referenced model in a model
reference hierarchy. In the generated ASAP2 file, MEASUREMENT records represent
signals and states inside the referenced model.

To generate ASAP2 files for referenced models, select ASAP2 file generation for the top
model and for each referenced model in the reference hierarchy. For example, if you are

44-11

44 ASAP2 Data Measurement and Calibration in Simulink Coder

using the Generic Real-Time Target or an Embedded Coder target, follow the procedure
described in “Use GRT or ERT Target” on page 44-9 for the top model and each
referenced model.

Merge ASAP2 Files for Top and Referenced Models

Use function rtw.asap2MergeMdlRefs to merge the ASAP2 files generated for top and
referenced models. The function has the following syntax:

[status,info]=rtw.asap2MergeMdlRefs(topModelName,asap2FileName)

• topModelName is the name of the model containing one or more referenced models.
• asap2FileName is the name you specify for the merged ASAP2 file.
• Optional:: status returns false (logical 0) if the merge completes and true (logical 1)

otherwise.
• Optional:: info returns additional information about merge failure if status is true.

Otherwise, it returns an empty character vector.

Consider the following example.

[status,info]=rtw.asap2MergeMdlRefs('myTopMdl','merged.a2l')

This command merges the ASAP2 files generated for the top model myTopMdl and its
referenced models in the file merged.a2l.

The example model rtwdemo_asap2 includes an example of merging ASAP2 files.

Structure of the ASAP2 File

The following table outlines the basic structure of the ASAP2 file and describes the
Target Language Compiler (TLC) functions and files used to create each part of the file:

• Static parts of the ASAP2 file are shown in bold.
• Function calls are indicated by %<FunctionName()>.

File Section Contents of asap2main.tlc TLC File Containing
Function Definition

File header %<ASAP2UserFcnWriteFileHead()> asap2userlib.tlc

/begin PROJECT

""

/begin PROJECT "%<ASAP2ProjectName>" asap2setup.tlc

44-12

 Export ASAP2 File for Data Measurement and Calibration

File Section Contents of asap2main.tlc TLC File Containing
Function Definition

/begin HEADER ""

HEADER contents
/begin HEADER"%<ASAP2HeaderName>"

%<ASAP2UserFcnWriteHeader()>

asap2setup.tlc

asap2userlib.tlc

/end HEADER /end HEADER

/begin MODULE ""

MODULE contents:
/begin MODULE "%<ASAP2ModuleName>"} asap2setup.tlc

asap2userlib.tlc

- A2ML

- MOD_PAR

- MOD_COMMON

...

%<ASAP2UserFcnWriteHardwareInterface()>

Model-dependent
MODULE contents:

%<SLibASAP2WriteDynamicContents()>

Calls user-defined functions:
asap2lib.tlc

- RECORD_LAYOUT

- CHARACTERISTIC

-

ParameterGroups

-

ModelParameters

...WriteRecordLayout_TemplateName()

 ...WriteCharacteristic_TemplateName()

 ...WriteCharacteristic_Scalar()

user/templates/...

- MEASUREMENT

- ExternalInputs

- BlockOutputs

...WriteMeasurement() asap2userlib.tlc

- COMPU_METHOD ...WriteCompuMethod() asap2userlib.tlc

/end MODULE /end MODULE

File footer/tail %<ASAP2UserFcnWriteFileTail()> asap2userlib.tlc

Create a Host-Based ASAM-ASAP2 Data Definition File for Data
Measurement and Calibration

This model shows ASAP2 data export. ASAP2 is a data definition standard proposed by
the Association for Standardization of Automation and Measuring Systems (ASAM).

Open Example Model

Open the example model rtwdemo_asap2.

44-13

44 ASAP2 Data Measurement and Calibration in Simulink Coder

open_system('rtwdemo_asap2');

ASAP2 is a non-object-oriented description of the data used for measurement,
calibration, and diagnostics systems. For more information on ASAM and the ASAP2
standard, see the ASAM Web site: http://www.asam.de.

ASAP2 data definition is achieved with Simulink® data objects and test point signals.
Using the Target Language Compiler (TLC), you can create highly customized solutions

44-14

http://www.asam.de

 Export ASAP2 File for Data Measurement and Calibration

for your application. See the Simulink Coder® documentation for details on ASAP2 file
generation.

You can configure ASAP2 file generation by selecting ASAP2 interface on the Code
Generation > Interface pane of the Configuration Parameters dialog box.

Related Examples
• “Create Tunable Calibration Parameter in the Generated Code” on page 19-60

44-15

45

Direct Memory Access to Generated
Code for Simulink Coder

45 Direct Memory Access to Generated Code for Simulink Coder

Access Memory in Generated Code Using Global Data Map

Simulink Coder provides a Target Language Compiler (TLC) function library that lets
you create a global data map record. The global data map record, when generated, is
added to the CompiledModel structure in the model.rtw file. The global data map
record is a database containing information required for accessing memory in the
generated code, including

• Signals (Block I/O)
• Parameters
• Data type work vectors (DWork)
• External inputs
• External outputs

Use of the global data map requires knowledge of the Target Language Compiler and
of the structure of the model.rtw file. See “Target Language Compiler Overview”
(Simulink Coder) for information on these topics.

The TLC functions that are required to generate and access the global data map record
are contained in matlabroot/rtw/c/tlc/mw/globalmaplib.tlc. The comments in
the source code fully document the global data map structures and the library functions.

The global data map structures and functions might be modified or enhanced in future
releases.

45-2

46

Desktops in Simulink Coder

• “Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using
RSim System Target File” on page 46-2

• “Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-
Function Target” on page 46-34

46 Desktops in Simulink Coder

Accelerate, Refine, and Test Hybrid Dynamic System on Host
Computer by Using RSim System Target File

After you create a model, you can use the rapid simulation (RSim) system target file to
characterize model behavior. The executable program that results from the build process
is for non-real-time execution on your development computer. The executable program is
highly optimized for simulating models of hybrid dynamic systems, including models that
use variable-step solvers and zero-crossing detection. The speed of the generated code
makes the RSim system target file ideal for building programs for batch or Monte Carlo
simulations.

About Rapid Simulation

Use the RSim target to generate an executable that runs fast, standalone simulations.
You can repeat simulations with varying data sets, interactively or programmatically
with scripts, without rebuilding the model. This can accelerate the characterization and
tuning of model behavior and code generation testing.

Using command-line options:

• Define parameter values and input signals in one or more MAT-files that you can load
and reload at the start of simulations without rebuilding your model.

• Redirect logging data to one or more MAT-files that you can then analyze and
compare.

• Control simulation time.
• Specify external mode options.

Note: To run an RSim executable, configure your computer to run MATLAB and have
the MATLAB and Simulink installation folders accessible. To deploy a standalone host
executable (i.e., without MATLAB and Simulink installed), consider using the Host-
Based Shared Library target (ert_shrlib)."

Rapid Simulation Advantage

The advantage that you gain from rapid simulation varies. Larger simulations achieve
speed improvements of up to 10 times faster than standard Simulink simulations. Some

46-2

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

models might not show noticeable improvement in simulation speed. To determine the
speed difference for your model, time your standard Simulink simulation and compare
the results with a rapid simulation. In addition, test the model simulation in Rapid
Accelerator simulation mode.

General Rapid Simulation Workflow

Like other stages of Model-Based Design, characterization and tuning of model behavior
is an iterative process, as shown in the general workflow diagram in the figure. Tasks in
the workflow are:

1 Identify your rapid simulation requirements.
2 Configure Inport blocks that provide input source data for rapid simulations.
3 Configure the model for rapid simulation.
4 Set up simulation input data.
5 Run the rapid simulations.

46-3

46 Desktops in Simulink Coder

Configure
Inport blocks

Program script

Yes

No

Configure and
build model

Set up input data

Run simulation

Model includes
Inport blocks?

Identify rapid simulation
requirements

Yes

No

Analyze simulation
results

Change input
data?

Yes
Done

Batch
or Monte Carlo
simulations?

Identify Rapid Simulation Requirements

The first step to setting up a rapid simulation is to identify your simulation
requirements.

Question... For More Information, See...

How long do you want simulations to
run?

“Configure and Build Model for Rapid Simulation” on
page 46-6

Are there solver requirements? Do you
expect to use the same solver for which
the model is configured for your rapid
simulations?

“Configure and Build Model for Rapid Simulation” on
page 46-6

46-4

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

Question... For More Information, See...

Do your rapid simulations need to
accommodate flexible custom code
interfacing? Or, do your simulations need
to retain storage class settings?

“Configure and Build Model for Rapid Simulation” on
page 46-6

Will you be running simulations with
multiple data sets?

“Set Up Rapid Simulation Input Data” on page
46-8

Will the input data consist of global
parameters, signals, or both?

“Set Up Rapid Simulation Input Data” on page
46-8

What type of source blocks provide input
data to the model — From File, Inport,
From Workspace?

“Set Up Rapid Simulation Input Data” on page
46-8

Will the model's parameter vector
(model_P) be used as input data?

“Create a MAT-File That Includes a Model Parameter
Structure” on page 46-9

What is the data type of the input
parameters and signals?

“Set Up Rapid Simulation Input Data” on page
46-8

Will the source data consist of one
variable or multiple variables?

“Set Up Rapid Simulation Input Data” on page
46-8

Does the input data include tunable
parameters?

“Create a MAT-File That Includes a Model Parameter
Structure” on page 46-9

Do you need to gain access to tunable
parameter information — model
checksum and parameter data types,
identifiers, and complexity?

“Create a MAT-File That Includes a Model Parameter
Structure” on page 46-9

Will you have a need to vary the
simulation stop time for simulation runs?

“Configure and Build Model for Rapid Simulation” on
page 46-6 and“Override a Model Simulation Stop
Time” on page 46-21

Do you want to set a time limit for the
simulation? Consider setting a time limit
if your model experiences frequent zero
crossings and has a small minor step size.

“Set a Clock Time Limit for a Rapid Simulation” on
page 46-21

Do you need to preserve the output of
each simulation run?

“Specify a New Output File Name for a Simulation” on
page 46-30 and “Specify New Output File Names for
To File Blocks” on page 46-30

46-5

46 Desktops in Simulink Coder

Question... For More Information, See...

Do you expect to run the simulations
interactively or in batch mode?

“Scripts for Batch and Monte Carlo Simulations” on
page 46-18

Configure Inports to Provide Simulation Source Data

You can use Inport blocks as a source of input data for rapid simulations. To do so,
configure the blocks so that they can import data from external MAT-files. By default,
the Inport block inherits parameter settings from downstream blocks. In most cases, to
import data from an external MAT-file, you must explicitly set the following parameters
to match the source data in the MAT-file.

• Main > Interpolate data
• Signal Attributes > Port dimensions
• Signal Attributes > Data type
• Signal Attributes > Signal type

If you do not have control over the model content, you might need to modify the data in
the MAT-file to conform to what the model expects for input. Input data characteristics
and specifications of the Inport block that receives the data must match.

For details on adjusting these parameters and on creating a MAT-file for use with
an Inport block, see “Create a MAT-File for an Inport Block” on page 46-14. For
descriptions of the preceding block parameters, see the block description of Inport.

Configure and Build Model for Rapid Simulation

After you identify your rapid simulation requirements, configure the model for rapid
simulation.

1 Open the Configuration Parameters dialog box.
2 Go to the Code Generation pane.
3 On the Code Generation pane, click Browse. The System Target File Browser

opens.
4 Select rsim.tlc (Rapid Simulation Target) and click OK.

On the Code Generation pane, the code generator populates the Make command
and “Template makefile” (Simulink Coder) fields with default settings and adds the
RSim Target pane under Code Generation.

46-6

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

5 Click RSim Target to view the RSim Target pane.

6 Set the RSim target configuration parameters to your rapid simulation
requirements.

If You Want to... Then...

Generate code that allows the RSim
executable to load parameters from a MAT-
file

Select Enable RSim executable to load
parameters from a MAT-file (default).

Let the target choose a solver based on the
solver already configured for the model

Set Solver selection to auto (default). The code
generator uses a built-in solver if a fixed-step
solver is specified on the Solver pane or calls the
Simulink solver module (a shared library) if a
variable-step solver is specified.

Explicitly instruct the target to use a fixed-
step solver

Set Solver selection to Use fixed-step
solvers. In the Configuration Parameters dialog
box, on the Solver pane, specify a fixed-step solver.

Explicitly instruct the target to use a
variable-step solver

Set Solver selection to Use Simulink solver
module. In the Configuration Parameters dialog
box, on the Solver pane, specify a variable-step
solver.

Force storage classes to Auto for flexible
custom code interfacing

Select Force storage classes to AUTO (default).

Retain storage class settings, such as
ExportedGlobal or ImportedExtern, due
to application requirements

Clear Force storage classes to AUTO.

46-7

46 Desktops in Simulink Coder

7 Set up data import and export options. On the Data Import/Export pane, in the
Save to Workspace section, select the Time, States, Outputs, and Final States
options, as they apply. By default, the code generator saves simulation logging
results to a file named model.mat. For more information, see “Export Simulation
Data” (Simulink).

8 If you are using external mode communication, set up the interface, using the
Code Generation > Interface pane. See “What You Can Do with a Host/Target
Communication Channel” on page 41-2 for details.

9 Press Ctrl+B. The code generator builds a highly optimized executable program that
you can run on your development computer with varying data, without rebuilding.

For more information on compilers that are compatible with the Simulink Coder
product, see “Select and Configure C or C++ Compiler or IDE” on page 40-3 and
“Template Makefiles and Make Options” on page 40-24 .

Set Up Rapid Simulation Input Data

• “About Rapid Simulation Data Setup” on page 46-8
• “Create a MAT-File That Includes a Model Parameter Structure” on page 46-9
• “Create a MAT-File for a From File Block” on page 46-13
• “Create a MAT-File for an Inport Block” on page 46-14

About Rapid Simulation Data Setup

The format and setup of input data for a rapid simulation depends on your requirements.

If the Input Data Source Is... Then...

The model's global parameter vector
(model_P)

Use the rsimgetrtp function to get the vector
content and then save it to a MAT-file.

The model's global parameter vector
and you want a mapping between the
vector and tunable parameters

Call the rsimgetrtp function to get the global
parameter structure and then save it to a MAT-
file.

Provided by a From File block Create a MAT-file that a From File block can
read.

Provided by an Inport block Create a MAT-file that adheres to one of the
three data file formats that the Inport block can
read.

46-8

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

If the Input Data Source Is... Then...

Provided by a From Workspace block Create structure variables in the MATLAB
workspace.

The RSim target requires that MAT-files used as input for From File and Inport blocks
contain data. The grt target inserts MAT-file data directly into the generated code,
which is then compiled and linked as an executable. In contrast, RSim allows you to
replace data sets for each successive simulation. A MAT-file containing From File or
Inport block data must be present if a From File block or Inport block exists in your
model.

Create a MAT-File That Includes a Model Parameter Structure

To create a MAT-file that includes a model global parameter structure (model_P),

1 Get the structure by calling the function rsimgetrtp.
2 Save the parameter structure to a MAT-file.

If you want to run simulations over varying data sets, consider converting the parameter
structure to a cell array and saving the parameter variations to a single MAT-file.

Get the Parameter Structure for a Model

Get the global parameter structure (model_P) for a model by calling the function
rsimgetrtp.

param_struct = rsimgetrtp('model')

Argument Description

model The model for which you are running the rapid simulations.

The rsimgetrtp function forces an update diagram action for the specified model and
returns a structure that contains the following fields.

Field Description

modelChecksum A four-element vector that encodes the structure of the model.
The code generator uses the checksum to check whether the
structure of the model has changed since the RSim executable
was generated. If you delete or add a block, and then generate
a new model_P vector, the new checksum does not match the

46-9

46 Desktops in Simulink Coder

Field Description

original checksum anymore. The RSim executable detects this
incompatibility in parameter vectors and exits to avoid returning
incorrect simulation results. If the model structure changes, you
must regenerate the code for the model.

parameters A structure that contains the model's global parameters.

The parameter structure contains the following information.

Field Description

dataTypeName The name of the parameter data type, for example, double
dataTypeID Internal data type identifier used by the code generator
complex The value 0 if real; 1 if complex
dtTransIdx Internal data index used by the code generator
values A vector of the parameter values associated with this structure
map This field contains the mapping information that correlates the

'values' to the tunable parameters of the model. This mapping
information, in conjunction with rsimsetrtpparam, is useful for
creating subsequent rtP structures without compiling the block
diagram.

The code generator reports a tunable fixed-point parameter according to its stored value.
For example, an sfix(16) parameter value of 1.4 with a scaling of 2^-8 has a value of
358 as an int16.

In the following example, rsimgetrtp returns the parameter structure for the example
model rtwdemo_rsimtf to param_struct.
param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct =

 modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009 2.3064e+009]

 parameters: [1x1 struct]

Save the Parameter Structure to a MAT-File

After you issue a call to rsimgetrtp, save the return value of the function call to a
MAT-file. Using a command-line option, you can then specify that MAT-file as input for
rapid simulations.

46-10

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

The following example saves the parameter structure returned for rtwdemo_rsimtf to
the MAT-file myrsimdemo.mat.

save myrsimdemo.mat param_struct;

For information on using command-line options to specify required files, see “Run Rapid
Simulations” on page 46-18.

Convert the Parameter Structure for Running Simulations on Varying Data Sets

To use rapid simulations to test changes to specific parameters, you can convert the
model parameter structure to a cell array. You can then access a specific parameter set
by using the @ operator to specify the index for a specific parameter set in the file.

To convert the structure to a cell array:

1 Use the function rsimgetrtp to get a structure containing parameter information
for the example model rtwdemo_rsimtf. Store the structure in a variable
param_struct.

param_struct = rsimgetrtp('rtwdemo_rsimtf');

The parameters field of the structure is a substructure that contains parameter
information. The values field of the parameters substructure contains the numeric
values of the parameters that you can tune during execution of the simulation code.

2 Use the function rsimsetrtpparam to expand the structure so that it contains more
parameter sets. In this case, create two more parameter sets (for a total of three
sets).

param_struct = rsimsetrtpparam(param_struct,3);

The function converts the parameters field to a cell array with three elements.
Each element contains information for a single parameter set. By default, the
function creates the second and third elements of the cell array by copying the first
element. Therefore, all of the parameter sets use the same parameter values.

3 Specify new values for the parameters in the second and third parameter sets.

param_struct.parameters{2}.values = [-150 -5000 0 4950];

param_struct.parameters{3}.values = [-170 -5500 0 5100];

4 Save the structure containing the parameter set information to a MAT-file.

save rtwdemo_rsimtf.mat param_struct;

46-11

46 Desktops in Simulink Coder

Alternatively, you can modify the block parameters in the model, and use rsimgetrtp to
create multiple parameter sets:

1 Use the function rsimgetrtp to get a structure containing parameter information
for the example model rtwdemo_rsimtf. Store the structure in a variable
param_struct.

param_struct = rsimgetrtp('rtwdemo_rsimtf');

2 Use the function rsimsetrtpparam to expand the structure so that it contains more
parameter sets. In this case, create two more parameter sets (for a total of three
sets).

param_struct = rsimsetrtpparam(param_struct,3);

The function converts the parameters field to a cell array with three elements.
Each element contains information for a single parameter set. By default, the
function creates the second and third elements of the cell array by copying the first
element. Therefore, all of the parameter sets use the same parameter values.

3 Change the values of block parameters or workspace variables. For example, change
the value of the variable w from 70 to 72.

w = 72;

4 Use rimsgetrtp to get another structure containing parameter information. Store
the structure in a temporary variable rtp_temp.

rtp_temp = rsimgetrtp('rtwdemo_rsimtf');

5 Assign the value of the parameters field of rtp_temp to the structure
param_struct as a second parameter set.

param_struct.parameters{2} = rtp_temp.parameters;

6 Change the value of the variable w from 72 to 75.

w = 75;

7 Use rimsgetrtp to get another structure containing parameter information. Then,
assign the value of the parameters field to param_struct as a third parameter
set.

rtp_temp = rsimgetrtp('rtwdemo_rsimtf');

param_struct.parameters{3} = rtp_temp.parameters;

8 Save the structure containing the parameter set information to a MAT-file.

46-12

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

save rtwdemo_rsimtf.mat param_struct;

For more information on how to specify each parameter set when you run the
simulations, see “Change Block Parameters for an RSim Simulation” on page 46-28.

Create a MAT-File for a From File Block

You can use a MAT-file as the input data source for a From File block. The format of the
data in the MAT-file must match the data format expected by that block. For example,
if you are using a matrix as an input for the MAT file, this cannot be different from the
matrix size for the executable.

To create a MAT-file for a From File block:

1 For array format data, in the workspace create a matrix that consists of two or more
rows. The first row must contain monotonically increasing time points. Other rows
contain data points that correspond to the time point in that column. The time and
data points must be data of type double.

For example:

t=[0:0.1:2*pi]';

Ina1=[2*sin(t) 2*cos(t)];

Ina2=sin(2*t);

Ina3=[0.5*sin(3*t) 0.5*cos(3*t)];

var_matrix=[t Ina1 Ina2 Ina3]';

For other supported data types, such as int16 or fixed-point, the time data points
must be of type double, just as for array format data. However, the sample data can
be of any dimension.

For more information on setting up the input data, see the block description of From
File.

2 Save the matrix to a MAT-file.

The following example saves the matrix var_matrix to the MAT-file
myrsimdemo.mat in Version 7.3 format.

save '-v7.3' myrsimdemo.mat var_matrix;

Using a command-line option, you can then specify that MAT-file as input for rapid
simulations.

46-13

46 Desktops in Simulink Coder

Create a MAT-File for an Inport Block

You can use a MAT-file as the input data source for an Inport block.

The format of the data in the MAT-file must adhere to one of the three column-based
formats listed in the following table. The table lists the formats in order from least
flexible to most flexible.

Format Description

Single time/data
matrix

• Least flexible.
• One variable.
• Two or more columns. Number of columns must equal the sum of the

dimensions of all root Inport blocks plus 1. First column must contain
monotonically increasing time points. Other columns contain data points
that correspond to the time point in a given row.

• Data of type double.

For an example, see Single time/data matrix in the following procedure,
step 4. For more information, see “Create Data Arrays for Root-Level
Inports” (Simulink).

Signal-and-time
structure

• More flexible than the single time/data matrix format.
• One variable.
• Must contain two top-level fields: time and signals. The time field

contains a column vector of the simulation times. The signals field
contains an array of substructures, each of which corresponds to an
Inport block. The substructure index corresponds to the Inport block
number. Each signals substructure must contain a field named
values. The values field must contain an array of inputs for the
corresponding Inport block, where each input corresponds to a time
point specified by the time field.

• If the time field is set to an empty value, clear the check box for the
Inport block Interpolate data parameter.

• Data type must match Inport block settings.

For an example, see Signal-and-time structure in the following procedure,
step 4. For more information on this format, see “Create Data Structures
for Root Inports” (Simulink).

46-14

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

Format Description

Per-port structure • Most flexible
• Multiple variables. Number of variables must equal the number of

Inport blocks.
• Consists of a separate structure-with-time or structure-without-time

for each Inport block. Each Inport block data structure has only one
signals field. To use this format, in the Input text field, enter the
names of the structures as a comma-separated list, in1, in2,..., inN,
where in1 is the data for your model's first port, in2 for the second
port, and so on.

• Each variable can have a different time vector.
• If the time field is set to an empty value, clear the check box for the

Inport block Interpolate data parameter.
• Data type must match Inport block settings.
• To save multiple variables to the same data file, you must save them in

the order expected by the model, using the -append option.

For an example, see Per-port structure in the following procedure, step
4. For more information, see “Create Data Structures for Root Inports”
(Simulink).

The supported formats and the following procedure are illustrated in rtwdemo_rsim_i.

To create a MAT-file for an Inport block:

1 Choose one of the preceding data file formats.
2 Update Inport block parameter settings and specifications to match specifications of

the data to be supplied by the MAT-file.

By default, the Inport block inherits parameter settings from downstream blocks.
To import data from an external MAT-file, explicitly set the following parameters to
match the source data in the MAT-file.

• Main > Interpolate data
• Signal Attributes > Port dimensions
• Signal Attributes > Data type
• Signal Attributes > Signal type

46-15

46 Desktops in Simulink Coder

If you choose to use a structure format for workspace variables and the time field
is empty, you must clear Interpolate data or modify the field so that it is set to a
nonempty value. Interpolation requires time data.

For descriptions of the preceding block parameters, see the block description of
Inport.

3 Build an RSim executable program for the model. The build process creates and
calculates a structural checksum for the model and embeds it in the generated
executable. The RSim target uses the checksum to verify that data being passed into
the model is consistent with what the model executable expects.

4 Create the MAT-file that provides the source data for the rapid simulations. You
can create the MAT-file from a workspace variable. Using the specifications in
the preceding format comparison table, create the workspace variables for your
simulations.

An example of each format follows:

Single time/data matrix

t=[0:0.1:2*pi]';

Ina1=[2*sin(t) 2*cos(t)];

Ina2=sin(2*t);

Ina3=[0.5*sin(3*t) 0.5*cos(3*t)];

var_matrix=[t Ina1 Ina2 Ina3];

Signal-and-time structure

t=[0:0.1:2*pi]';

var_single_struct.time=t;

var_single_struct.signals(1).values(:,1)=2*sin(t);

var_single_struct.signals(1).values(:,2)=2*cos(t);

var_single_struct.signals(2).values=sin(2*t);

var_single_struct.signals(3).values(:,1)=0.5*sin(3*t);

var_single_struct.signals(3).values(:,2)=0.5*cos(3*t);

v=[var_single_struct.signals(1).values...

var_single_struct.signals(2).values...

var_single_struct.signals(3).values];

Per-port structure

t=[0:0.1:2*pi]';

Inb1.time=t;

46-16

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

Inb1.signals.values(:,1)=2*sin(t);

Inb1.signals.values(:,2)=2*cos(t);

t=[0:0.2:2*pi]';

Inb2.time=t;

Inb2.signals.values(:,1)=sin(2*t);

t=[0:0.1:2*pi]';

Inb3.time=t;

Inb3.signals.values(:,1)=0.5*sin(3*t);

Inb3.signals.values(:,2)=0.5*cos(3*t);

5 Save the workspace variables to a MAT-file.

Single time/data matrix

The following example saves the workspace variable var_matrix to the MAT-file
rsim_i_matrix.mat.

save rsim_i_matrix.mat var_matrix;

Signal-and-time structure

The following example saves the workspace structure variable var_single_struct
to the MAT-file rsim_i_single_struct.mat.

save rsim_i_single_struct.mat var_single_struct;

Per-port structure

To order data when saving per-port structure variables to a single MAT-file, use the
save command's -append option. Be sure to append the data in the order that the
model expects it.

The following example saves the workspace variables Inb1, Inb2, and Inb3 to MAT-
file rsim_i_multi_struct.mat.

save rsim_i_multi_struct.mat Inb1;

save rsim_i_multi_struct.mat Inb2 -append;

save rsim_i_multi_struct.mat Inb3 -append;

The save command does not preserve the order in which you specify your workspace
variables in the command line when saving data to a MAT-file. For example, if you
specify the variables v1, v2, and v3, in that order, the order of the variables in the
MAT-file could be v2 v1 v3.

46-17

46 Desktops in Simulink Coder

Using a command-line option, you can then specify the MAT-files as input for rapid
simulations.

Scripts for Batch and Monte Carlo Simulations

The RSim target is for batch simulations in which parameters and input signals vary for
multiple simulations. New output file names allow you to run new simulations without
overwriting prior simulation results. You can set up a series of simulations to run by
creating a .bat file for use on a Microsoft Windows platform.

Create a file for the Windows platform with a text editor and execute it by typing the file
name, for example, mybatch, where the name of the text file is mybatch.bat.
rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run1.mat -o results1.mat -tf 10.0

rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run2.mat -o results2.mat -tf 10.0

rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run3.mat -o results3.mat -tf 10.0

rtwdemo_rsimtf -f rtwdemo_rsimtf.mat=run4.mat -o results4.mat -tf 10.0

In this case, batch simulations run using four sets of input data in files run1.mat,
run2.mat, and so on. The RSim executable saves the data to the files specified with the
-o option.

The variable names containing simulation results in each of the files are identical.
Therefore, loading consecutive sets of data without renaming the data once it is in the
MATLAB workspace results in overwriting the prior workspace variable with new data.
To avoid overwriting, you can copy the result to a new MATLAB variable before loading
the next set of data.

You can also write MATLAB scripts to create new signals and new parameter structures,
as well as to save data and perform batch runs using the bang command (!).

For details on running simulations and available command-line options, see “Run Rapid
Simulations” on page 46-18. For an example of a rapid simulation batch script, see
the example “Run Batch Simulations Without Recompiling Generated Code” (Simulink
Coder).

Run Rapid Simulations

• “Rapid Simulations” on page 46-19
• “Requirements for Running Rapid Simulations” on page 46-20

46-18

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

• “Set a Clock Time Limit for a Rapid Simulation” on page 46-21
• “Override a Model Simulation Stop Time” on page 46-21
• “Read the Parameter Vector into a Rapid Simulation” on page 46-22
• “Specify New Signal Data File for a From File Block” on page 46-22
• “Specify Signal Data File for an Inport Block” on page 46-25
• “Change Block Parameters for an RSim Simulation” on page 46-28
• “Specify a New Output File Name for a Simulation” on page 46-30
• “Specify New Output File Names for To File Blocks” on page 46-30

Rapid Simulations

Using the RSim target, you can build a model once and run multiple simulations to study
effects of varying parameter settings and input signals. You can run a simulation directly
from your operating system command line, redirect the command from the MATLAB
command line by using the bang (!) character, or execute commands from a script.

From the operating system command line, use

rtwdemo_rsimtf

From the MATLAB command line, use

!rtwdemo_rsimtf

The following table lists ways you can use RSim target command-line options to control a
simulation.

To... Use...

Read input data for a From File block from a
MAT-file other than the MAT-file used for the
previous simulation

model -f
oldfilename.mat=newfilename.mat

Print a summary of the options for RSim
executable targets

executable filename -h

Read input data for an Inport block from a MAT-
file

model -i filename.mat

Time out after n clock time seconds, where n is a
positive integer value

model -L n

46-19

46 Desktops in Simulink Coder

To... Use...

Write MAT-file logging data to file
filename.mat

model -o filename.mat

Read a parameter vector from file
filename.mat

model -p filename.mat

Override the default TCP port (17725) for
external mode

model -port TCPport

Write MAT-file logging data to a MAT-file
other than the MAT-file used for the previous
simulation

model -t

oldfilename.mat=newfilename.mat

Run the simulation until the time value
stoptime is reached

model -tf stoptime

Run in verbose mode model -v

Wait for the Simulink engine to start the model
in external mode

model -w

The following sections use the rtwdemo_rsimtf example model in examples to illustrate
some of these command-line options. In each case, the example assumes you have
already done the following:

• Created or changed to a working folder.
• Opened the example model.
• Copied the data file matlabroot/toolbox/rtw/rtwdemos/rsimdemos/

rsim_tfdata.mat to your working folder. You can perform this operation using the
command:

copyfile(fullfile(matlabroot,'toolbox','rtw','rtwdemos',...

'rsimdemos','rsim_tfdata.mat'),pwd);

Requirements for Running Rapid Simulations

The following requirements apply to both fixed and variable step executables.

• You must run the RSim executable on a computer configured to run MATLAB. Also,
the RSim.exe file must be able to access the MATLAB and Simulink installation
folders on this machine. To obtain that access, your PATH environment variable must
include /bin and /bin/($ARCH), where ($ARCH) represents your operating system

46-20

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

architecture. For example, for a personal computer running on a Windows platform,
($ARCH) is “win64”, whereas for a Linux machine, ($ARCH) is “glnxa64”.

• On GNU Linux platforms, to run an RSim executable, define the
LD_LIBRARY_PATH environment variable to provide the path to the MATLAB
installation folder, as follows:
% setenv LD_LIBRARY_PATH /matlab/sys/os/glnx64:$LD_LIBRARY_PATH

• On the Apple Macintosh OS X platform, to run RSim target executables, you must
define the environment variable DYLD_LIBRARY_PATH to include the folders bin/
mac and sys/os/mac under the MATLAB installation folder. For example, if your
MATLAB installation is under /MATLAB, add /MATLAB/bin/mac and /MATLAB/sys/
os/mac to the definition for DYLD_LIBRARY_PATH.

Set a Clock Time Limit for a Rapid Simulation

If a model experiences frequent zero crossings and the model's minor step size is small,
consider setting a time limit for a rapid simulation. To set a time limit, specify the -L
option with a positive integer value. The simulation aborts after running for the specified
amount of clock time (not simulation time). For example,

 !rtwdemo_rsimtf -L 20

Based on your clock, after the executable runs for 20 seconds, the program terminates.
You see a message similar to one of the following:

• On a Microsoft Windows platform,

Exiting program, time limit exceeded

Logging available data ...

• On The Open Group UNIX platform,

** Received SIGALRM (Alarm) signal @ Fri Jul 25 15:43:23 2003

** Exiting model 'vdp' @ Fri Jul 25 15:43:23 2003

You do not need to do anything to your model or to its configuration to use this option.

Override a Model Simulation Stop Time

By default, a rapid simulation runs until the simulation time reaches the time specified
the Configuration Parameters dialog box, on the Solver pane. You can override
the model simulation stop time by using the -tf option. For example, the following
simulation runs until the time reaches 6.0 seconds.

46-21

46 Desktops in Simulink Coder

!rtwdemo_rsimtf -tf 6.0

The RSim target stops and logs output data using MAT-file data logging rules.

If the model includes a From File block, the end of the simulation is regulated by the stop
time setting specified in the Configuration Parameters dialog box, on the Solver pane,
or with the RSim target option -tf. The values in the block's time vector are ignored.
However, if the simulation time exceeds the endpoints of the time and signal matrix (if
the final time is greater than the final time value of the data matrix), the signal data is
extrapolated to the final time value.

Read the Parameter Vector into a Rapid Simulation

To read the model parameter vector into a rapid simulation, you must first create a
MAT-file that includes the parameter structure as described in “Create a MAT-File That
Includes a Model Parameter Structure” on page 46-9. You can then specify the MAT-
file in the command line with the -p option.

For example:

1 Build an RSim executable for the example model rtwdemo_rsimtf.
2 Modify parameters in your model and save the parameter structure.

param_struct = rsimgetrtp('rtwdemo_rsimtf');

save myrsimdata.mat param_struct

3 Run the executable with the new parameter set.

!rtwdemo_rsimtf -p myrsimdata.mat

** Starting model 'rtwdemo_rsimtf' @ Tue Dec 27 12:30:16 2005

** created rtwdemo_rsimtf.mat **

4 Load workspace variables and plot the simulation results by entering the following
commands:

load myrsimdata.mat

plot(rt_yout)

Specify New Signal Data File for a From File Block

If your model's input data source is a From File block, you can feed the block with input
data during simulation from a single MAT-file or you can change the MAT-file from one

46-22

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

simulation to the next. Each MAT-file must adhere to the format described in “Create a
MAT-File for a From File Block” on page 46-13.

To change the MAT-file after an initial simulation, you specify the executable with the
-f option and an oldfile.mat=newfile.mat parameter, as shown in the following
example.

1 Set some parameters in the MATLAB workspace. For example:

w = 100;

theta = 0.5;

2 Build an RSim executable for the example model rtwdemo_rsimtf.
3 Run the executable.

!rtwdemo_rsimtf

The RSim executable runs a set of simulations and creates output MAT-files
containing the specific simulation result.

4 Load the workspace variables and plot the simulation results by entering the
following commands:

load rtwdemo_rsimtf.mat

plot(rt_yout)

The resulting plot shows simulation results based on default input data.

46-23

46 Desktops in Simulink Coder

5 Create a new data file, newfrom.mat, that includes the following data:

t=[0:.001:1];

u=sin(100*t.*t);

tu=[t;u];

save newfrom.mat tu;

6 Run a rapid simulation with the new data by using the -f option to replace the
original file, rsim_tfdata.mat, with newfrom.mat.

!rtwdemo_rsimtf -f rsim_tfdata.mat=newfrom.mat

7 Load the data and plot the new results by entering the following commands:

load rtwdemo_rsimtf.mat

plot(rt_yout)

The next figure shows the resulting plot.

46-24

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

From File blocks require input data of type double. If you need to import signal data
of a data type other than double, use an Inport block (see “Create a MAT-File for an
Inport Block” on page 46-14) or a From Workspace block with the data specified as a
structure.

Workspace data must be in the format:

variable.time

variable.signals.values

If you have more than one signal, use the following format:

variable.time

variable.signals(1).values

variable.signals(2).values

Specify Signal Data File for an Inport Block

If your model's input data source is an Inport block, you can feed the block with input
data during simulation from a single MAT-file or you can change the MAT-file from one

46-25

46 Desktops in Simulink Coder

simulation to the next. Each MAT-file must adhere to one of the three formats described
in “Create a MAT-File for an Inport Block” on page 46-14.

To specify the MAT-file after a simulation, you specify the executable with the -i option
and the name of the MAT-file that contains the input data. For example:

1 Open the model rtwdemo_rsim_i.
2 Check the Inport block parameter settings. The following Inport block data

parameter settings and specifications that you specify for the workspace variables
must match settings in the MAT-file, as indicated in “Configure Inports to Provide
Simulation Source Data” on page 46-6:

• Main > Interpolate data
• Signal Attributes > Port dimensions
• Signal Attributes > Data type
• Signal Attributes > Signal type

3 Build the model.
4 Set up the input signals. For example:

t=[0:0.01:2*pi]';

s1=[2*sin(t) 2*cos(t)];

s2=sin(2*t);

s3=[0.5*sin(3*t) 0.5*cos(3*t)];

plot(t, [s1 s2 s3])

46-26

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

5 Prepare the MAT-file by using one of the three available file formats described
in “Create a MAT-File for an Inport Block” on page 46-14. The following
example defines a signal-and-time structure in the workspace and names it
var_single_struct.

t=[0:0.1:2*pi]';

var_single_struct.time=t;

var_single_struct.signals(1).values(:,1)=2*sin(t);

var_single_struct.signals(1).values(:,2)=2*cos(t);

var_single_struct.signals(2).values=sin(2*t);

var_single_struct.signals(3).values(:,1)=0.5*sin(3*t);

var_single_struct.signals(3).values(:,2)=0.5*cos(3*t);

v=[var_single_struct.signals(1).values...

var_single_struct.signals(2).values...

var_single_struct.signals(3).values];

6 Save the workspace variable var_single_struct to MAT-file
rsim_i_single_struct.

save rsim_i_single_struct.mat var_single_struct;

46-27

46 Desktops in Simulink Coder

7 Run a rapid simulation with the input data by using the -i option. Load and plot the
results.

!rtwdemo_rsim_i -i rsim_i_single_struct.mat

** Starting model 'rtwdemo_rsim_i' @ Tue Aug 19 10:26:53 2014

 *** rsim_i_single_struct.mat is successfully loaded! ***

** created rtwdemo_rsim_i.mat **

** Execution time = 0.02024185130718954s

8 Load and plot the results.

load rtwdemo_rsim_i.mat

plot(rt_tout, rt_yout);

Change Block Parameters for an RSim Simulation

As described in “Create a MAT-File That Includes a Model Parameter Structure” on
page 46-9, after you alter one or more parameters in a Simulink block diagram, you
can extract the parameter vector, model_P, for the entire model. You can then save the
parameter vector, along with a model checksum, to a MAT-file. This MAT-file can be read
directly by the standalone RSim executable, allowing you to replace the entire parameter

46-28

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

vector or individual parameter values, for running studies of variations of parameter
values representing coefficients, new data for input signals, and so on.

RSim can read the MAT-file and replace the entire model_P structure whenever you
change one or more parameters, without recompiling the entire model.

For example, assume that you changed one or more parameters in your model, generated
the new model_P vector, and saved model_P to a new MAT-file called mymatfile.mat.
To run the same rtwdemo_rsimtf model and use these new parameter values, use the -
p option, as shown in the following example:

!rtwdemo_rsimtf -p mymatfile.mat

load rtwdemo_rsimtf

plot(rt_yout)

If you have converted the parameter structure to a cell array for running simulations
on varying data sets, as described in “Convert the Parameter Structure for Running
Simulations on Varying Data Sets” on page 46-11, you must add an @n suffix to the
MAT-file specification. n is the element of the cell array that contains the specific input
that you want to use for the simulation.

The following example converts param_struct to a cell array, changes parameter
values, saves the changes to MAT-file mymatfile.mat, and then runs the executable
using the parameter values in the second element of the cell array as input.

param_struct = rsimgetrtp('rtwdemo_rsimtf');

param_struct = rsimsetrtpparam(param_struct,2);

param_struct.parameters{1}

ans =

 dataTypeName: 'double'

 dataTypeId: 0

 complex: 0

 dtTransIdx: 0

 values: [-140 -4900 0 4900]

 map: []

 structParamInfo: []

param_struct.parameters{2}.values=[-150 -5000 0 4950];

save mymatfile.mat param_struct;

!rtwdemo_rsimtf -p mymatfile.mat@2 -o rsim2.mat

46-29

46 Desktops in Simulink Coder

Specify a New Output File Name for a Simulation

If you have specified one or more of the Save to Workspace options — Time, States,
Outputs, or Final States — in the Configuration Parameters dialog box, on the
Data Import/Export pane, the default is to save simulation logging results to the file
model.mat. For example, the example model rtwdemo_rsimtf normally saves data to
rtwdemo_rsimtf.mat, as follows:

!rtwdemo_rsimtf

created rtwdemo_rsimtf.mat

You can specify a new output file name for data logging by using the -o option when you
run an executable.

!rtwdemo_rsimtf -o rsim1.mat

In this case, the set of parameters provided at the time of code generation, including
From File block data parameters, is run.

Specify New Output File Names for To File Blocks

In much the same way as you can specify a new system output file name, you can also
provide new output file names for data saved from one or more To File blocks. To do this,
specify the original file name at the time of code generation with a new name, as shown
in the following example:

!rtwdemo_rsimtf -t rtwdemo_rsimtf_data.mat=mynewrsimdata.mat

In this case, assume that the original model wrote data to the output file
rtwdemo_rsimtf_data.mat. Specifying a new file name forces RSim to write to the
file mynewrsimdata.mat. With this technique, you can avoid overwriting an existing
simulation run.

Tune Parameters Interactively During Rapid Simulation

The RSim target was designed to let you run batch simulations at the fastest possible
speed. Using variable-step or fixed-step solvers with RSim combined with the use of a
tunable parameter data structure, whether you set Default parameter behavior to
Tunable or to Inlined, you can create multiple parameter sets to run with the RSim
target's standalone executable file (.exe on Windows) generated using Simulink Coder.
Each invocation of the executable allows specification of the file name to use for results.

46-30

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

For this example, Default parameter behavior is set to Inlined. The model declares
workspace variables as tunable parameters. To use RSim with Default parameter
behavior set to Tunable, and without explicitly declaring tunable parameters, see “Run
Batch Simulations Without Recompiling Generated Code” (Simulink Coder).

Open Example Model

Open the example model rtwdemo_rsim_param_tuning.

open_system('rtwdemo_rsim_param_tuning');

46-31

46 Desktops in Simulink Coder

46-32

 Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System Target File

This model uses the RSim target and the rsimgetrtp function to allow a non real time
executable to be passed new data without the need to recompile the Simulink model.
This feature allows you to get a map of the tunable parameters declared in a model and
save it in a MAT-file. You can then create your own MATLAB GUI or a standalone GUI
(independent of MATLAB) to read and write the MAT-file and rerun the executable to
produce new output files.

Double-click the buttons at the upper right sequentially to run the example.

To review the code used to create both the MATLAB GUI and standalone GUI, double-
click the View MATLAB programs button.

For more information, you can also refer to the "Rapid Simulation Target" section in the
Simulink Coder documentation.

Rapid Simulation Target Limitations

The RSim target has the following limitations:

• Does not support algebraic loops.
• Does not support Interpreted MATLAB Function blocks.
• Does not support noninlined MATLAB language or Fortran S-functions.
• If an RSim build includes referenced models (by using Model blocks), set up these

models to use fixed-step solvers to generate code for them. The top model, however,
can use a variable-step solver as long as the blocks in the referenced models are
discrete.

• In certain cases, changing block parameters can result in structural changes to your
model that change the model checksum. An example of such a change is changing the
number of delays in a DSP simulation. In such cases, you must regenerate the code
for the model.

More About
• “Acceleration” (Simulink)
• “Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-

Function Target” (Simulink Coder)

46-33

46 Desktops in Simulink Coder

Accelerate Simulation, Reuse Code, or Protect Intellectual Property
by Using S-Function Target

S-functions are an important class of system target file for which the code generator can
produce code. The ability to encapsulate a subsystem into an S-function allows you to
increase its execution efficiency and facilitate code reuse.

The following sections describe the properties of S-function targets and illustrate how to
generate them. For more details on the structure of S-functions, see “Host-Specific Code”
(Simulink).

In this section...

“About the S-Function Target” on page 46-34
“Create S-Function Blocks from a Subsystem” on page 46-37
“Tunable Parameters in Generated S-Functions” on page 46-41
“System Target File” on page 46-43
“Checksums and the S-Function Target” on page 46-43
“Generated S-Function Compatibility” on page 46-44
“S-Function Target Limitations” on page 46-44

About the S-Function Target

Using the S-function target, you can build an S-function component and use it as
an S-Function block in another model. The following sections describe deployment
considerations for the S-function target.

• “Required Files for S-Function Deployment” on page 46-35
• “Sample Time Propagation in Generated S-Functions” on page 46-36
• “Choose a Solver Type” on page 46-36
• “Solver Type Overrides” on page 46-37

The ‘S-Function’ value for CodeFormat TLC variable used by the S-function
target generates code that conforms to the Simulink C MEX S-function application
programming interface (API). Applications of this format include

46-34

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

• Conversion of a model to a component. You can generate an S-Function block for a
model, m1. Then, you can place the generated S-Function block in another model, m2.
Regenerating code for m2 does not require regenerating code for m1.

• Conversion of a subsystem to a component. By extracting a subsystem to a separate
model and generating an S-Function block from that model, you can create a reusable
component from the subsystem. See “Create S-Function Blocks from a Subsystem” on
page 46-37 for an example of this procedure.

• Speeding up simulation. Often, an S-function generated from a model performs more
efficiently than the original model.

• Code reuse. You can incorporate multiple instances of one model inside another
without replicating the code for each instance. Each instance continues to maintain
its own unique data.

You can place a generated S-function block into another model from which you can
generate another S-function. This approach allows any level of nested S-functions.
For limitations related to nesting, see “Limitations on Nesting S-Functions” on page
46-49.

Note: While the S-function target provides a means to deploy an application component
for reuse while shielding its internal logic from inspection and modification, the preferred
solutions for protecting intellectual property in distributed components are:

• The protected model, a referenced model that hides all block and line information. For
more information, see “Protected Model” (Simulink).

• The shared library system target file, used to generate a shared library for a model or
subsystem for use in a system simulation external to Simulink. For more information,
see “Package Generated Code as Shared Libraries” on page 47-2.

Required Files for S-Function Deployment

There are different files required to deploy a generated S-Function block for simulation
versus code generation.

To deploy your generated S-Function block for inclusion in other models for simulation,
you need only provide the binary MEX-file object that was generated in the current
working folder when the S-Function block was created. The required file is:

• subsys_sf.mexext

46-35

46 Desktops in Simulink Coder

where subsys is the subsystem name and mexext is a platform-dependent MEX-file
extension (see mexext (MATLAB)). For example, SourceSubsys_sf.mexw64.

To deploy your generated S-Function block for inclusion in other models for code
generation, you must provide all of the files that were generated in the current working
folder when the S-Function block was created. The required files are:

• subsys_sf.c or .cpp, where subsys is the subsystem name (for example,
SourceSubsys_sf.c)

• subsys_sf.h

• subsys_sf.mexext, where mexext is a platform-dependent MEX-file extension (see
mexext (MATLAB))

• Subfolder subsys_sfcn_rtw and its contents

Note: The generated S-function code uses Configuration Parameters > Hardware
Implementation parameter values that match the host system on which the function
was built. When you use the S-function in a model for code generation, make sure that
these parameter values for the model match the parameter values of the S-function.

Sample Time Propagation in Generated S-Functions

A generated S-Function block can inherit its sample time from the model in which it is
placed if certain criteria are met. Conditions that govern sample time propagation for
both Model blocks and generated S-Function blocks are described in “Sample Times for
Model Referencing” (Simulink) and “Inherited Sample Time for Referenced Models” on
page 5-23.

To generate an S-Function block that meets the criteria for inheriting sample time, you
must constrain the solver for the model from which the S-Function block is generated.
On the Solver configuration parameters dialog box pane, set Type to Fixed-step and
Periodic sample time constraint to Ensure sample time independent. If the
model is unable to inherit sample times, this setting causes the Simulink software to
display an error message when building the model. For more information about this
option, see “Periodic sample time constraint” (Simulink).

Choose a Solver Type

The table shows the possible combinations of top-level model solver types as these types
relate to subsystem build types and solver types for generated S-functions.

46-36

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

Top-level Model Solver Options and Subsystem Build Types

 Model Configuration Parameters: top-level model configuration

Subsystem Build Type Solver options, Type: Variable-
step

Solver options, Type: Fixed-step

Build This Subsystem Generated S-function
does NOT require

variable-step solver

Generated S-function
does NOT require

variable-step solver
Generate S-Function Generated S-function

requires variable-step solver
Generated S-function

does NOT require
variable-step solver

Note: S-functions generated from a subsystem have parameters that are hard coded
into the block. Simulink calculates parameters such as sample time when it generates
the block, not during simulation run time. Hence, it is important to verify whether the
generated S-Function block works as expected in the destination model.

Solver Type Overrides

There are instances when the subsystem build type selection produces an override of the
subsystem solver type. The table summarizes the relationships between subsystem build
types and the applied subsystem solver types.

Top-level Model Solver Type Overrides of Subsystem Solver Types by Build Type

 Model Configuration Parameters: top-level model configuration

Subsystem Build Type Solver options, Type: Variable-
step

Solver options, Type: Fixed-step

Build This Subsystem Subsystem uses
fixed-step solver type

Subsystem uses
fixed-step solver type

Generate S-Function Subsystem uses
variable-step solver type

Subsystem uses
fixed-step solver type

Create S-Function Blocks from a Subsystem

This section illustrates how to extract a subsystem from a model and generate a reusable
S-function component from it.

46-37

46 Desktops in Simulink Coder

The next figure shows SourceModel, a simple model that inputs signals to a subsystem.
The subsequent figure shows the subsystem, SourceSubsys. The signals, which have
different widths and sample times, are:

• A Step block with sample time 1
• A Sine Wave block with sample time 0.5
• A Constant block whose value is the vector [-2 3]

SourceModel

SourceSubsys

46-38

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

The objective is to extract SourceSubsys from the model and build an S-Function block
from it, using the S-function target. The S-Function block must perform identically to the
subsystem from which it was generated.

In this model, SourceSubsys inherits sample times and signal widths from its input
signals. However, S-Function blocks created from a model using the S-function target
has all signal attributes (such as signal widths or sample times) hard-wired. (The sole
exception to this rule concerns sample times, as described in “Sample Time Propagation
in Generated S-Functions” on page 46-36.)

In this example, you want the S-Function block to retain the properties of
SourceSubsys as it exists in SourceModel. Therefore, before you build the subsystem
as a separate S-function component, you must set the inport sample times and widths
explicitly. In addition, the solver parameters of the S-function component must be the
same as those parameters of the original model. The generated S-function component
operates identically to the original subsystem (see “Choose a Solver Type” on page
46-36 for more information).

To build SourceSubsys as an S-function component,

1 Create a new model and copy/paste the SourceSubsys block into the empty window.
2 Set the signal widths and sample times of inports inside SourceSubsys such that

they match those of the signals in the original model. Inport 1, Filter, has a width
of 1 and a sample time of 1. Inport 2, Xferfcn, has a width of 1 and a sample time of
0.5. Inport 3, offsets, has a width of 2 and a sample time of 0.5.

3 The generated S-Function block should have three inports and one outport. Connect
inports and an outport to SourceSubsys, as shown in the next figure.

46-39

46 Desktops in Simulink Coder

The signal widths and sample times are propagated to these ports.
4 Set the solver type, mode, and other solver parameters such that they are identical

to those of the source model. This is easiest to do if you use Model Explorer.
5 In the Configuration Parameters dialog box, go to the Code Generation pane.
6 Click Browse to open the System Target File Browser.
7 In the System Target File Browser, select the S-function target, rtwsfcn.tlc, and

click OK.
8 Select the S-Function Target pane. Make sure that Create new model is

selected, as shown in the next figure:

When this option is selected, the build process creates a new model after it builds the
S-function component. The new model contains an S-Function block, linked to the S-
function component.

Click Apply.
9 Save the new model containing your subsystem, for example as SourceSubsys.
10 Build the model.
11 The build process produces the S-function component in the working folder. After the

build, a new model window is displayed.

Optionally you can save the generated model, for example as
SourceSubsys_Sfunction.

12 You can now copy the S-Function block generated from the new model and use it in
other models or in a library.

46-40

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

Note: For a list of files required to deploy your S-Function block for simulation or
code generation, see “Required Files for S-Function Deployment” on page 46-35.

The next figure shows the S-Function block plugged into the original model. Given
identical input signals, the S-Function block performs identically to the original
subsystem.

Generated S-Function Configured Like SourceModel

The speed at which the S-Function block executes is typically faster than the original
model. This difference in speed is more pronounced for larger and more complicated
models. By using generated S-functions, you can increase the efficiency of your modeling
process.

Tunable Parameters in Generated S-Functions

You can use tunable parameters in generated S-functions in two ways:

• Use the Generate S-function feature (see “Automate S-Function Generation with S-
Function Builder” on page 11-61).

or
• Use the Model Parameter Configuration dialog box (see “Block Parameter

Representation in the Generated Code” on page 19-47) to declare desired block
parameters tunable.

46-41

46 Desktops in Simulink Coder

Block parameters that are declared tunable with the auto storage class in the source
model become tunable parameters of the generated S-function. These parameters do not
become part of a generated model_P (formerly rtP) parameter data structure, as they
would in code generated from other targets. Instead, the generated code accesses these
parameters by using MEX API calls such as mxGetPr or mxGetData. Your code should
access these parameters in the same way.

For more information on MEX API calls, see “About C S-Functions” (Simulink) and
“MATLAB API for Other Languages” (MATLAB).

S-Function blocks created by using the S-function target are automatically masked. The
mask displays each tunable parameter in an edit field. By default, the edit field displays
the parameter by variable name, as in the following example.

You can choose to display the value of the parameter rather than its variable name by
selecting Use value for tunable parameters on the Code Generation > S-Function
Target pane of the Configuration Parameters dialog box.

When this option is chosen, the value of the variable (at code generation time) is
displayed in the edit field, as in the following example.

46-42

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

System Target File

The rtwsfcn.tlc system target file is provided for use with the S-function target.

Checksums and the S-Function Target

The code generator creates a checksum for a model and uses the checksum during the
build process for code reuse, model reference, and external mode features.

The code generator calculates a model checksum by

1 Calculating a checksum for each subsystem in the model. A subsystem's checksum is
the combination of properties (data type, complexity, sample time, port dimensions,
and so forth) of the subsystem's blocks.

2 Combining the subsystem checksums and other model-level information.

An S-function can add additional information, not captured during the block property
analysis, to a checksum by calling the function ssSetChecksumVal. For the S-Function
target, the value that gets added to the checksum is the checksum of the model or
subsystem from which the S-function is generated.

The code generator applies the subsystem and model checksums as follows:

46-43

46 Desktops in Simulink Coder

• Code reuse — If two subsystems in a model have the same checksum, the code
generator produces code for one function only.

• Model reference — If the current model checksum matches the checksum when the
model was built, the build process does not rebuild referenced models.

• External mode — If the current model checksum does not match the checksum of the
code that is running on the target hardware, the build process generates an error.

Generated S-Function Compatibility

When you build a MEX S-function from your model, the code generator builds a level 2
noninlined S-function. Cross-release usage limitations on the generated code and binary
MEX file (for example, *.mexw64) include:

• S-function target generated code from previous MATLAB release software is not
compatible with newer releases. Do not recompile the generated code from a previous
release with newer MATLAB release software. Use the same MATLAB release
software to generate code for the S-function target and compile the code into a MEX
file.

• You can use binary S-function MEX files generated from previous MATLAB release
software with the same or newer releases with the same compatibility considerations
as handwritten S-functions. For more information, see “S-Function Compatibility”
(Simulink).

• The code generator can generate code and build an executable from a model that
contains generated S-functions. This support requires that the S-functions are built
with the same MATLAB release software that builds the model. It is not possible to
incorporate a generated S-function MEX file from previous MATLAB release software
into a model and build the model with newer releases.

S-Function Target Limitations

• “Limitations on Using Tunable Variables in Expressions” on page 46-45
• “Parameter Tuning” on page 46-45
• “Run-Time Parameters and S-Function Compatibility Diagnostics” on page 46-45
• “Limitations on Using Goto and From Block” on page 46-46
• “Limitations on Building and Updating S-Functions” on page 46-47
• “Unsupported Blocks” on page 46-48
• “SimState Not Supported for Code Generation” on page 46-48

46-44

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

• “Profiling Code Performance with TLC Hook Function Not Supported” on page
46-48

• “Limitations on Nesting S-Functions” on page 46-49
• “Limitations on User-Defined Data Types” on page 46-49
• “Limitation on Right-Click Generation of an S-Function Target” on page 46-49
• “Limitation on S-Functions with Bus I/O Signals” on page 46-49
• “Limitation on Subsystems with Function-Call I/O Signals” on page 46-50
• “Data Store Access” on page 46-50
• “Cannot Specify Outport Dimensions Through Subsystem Mask” on page 46-50

Limitations on Using Tunable Variables in Expressions

Certain limitations apply to the use of tunable variables in expressions. When the
code generator encounters an unsupported expression while producing code, a warning
appears and the equivalent numeric value is generated in the code. For a list of the
limitations, see “Tunable Expression Limitations” on page 19-53.

Parameter Tuning

The S-Function block does not support tuning of tunable parameters with:

• Complex values.
• Values or data types that are transformed to a constant (by setting the model

configuration parameter Optimization > Signals and Parameters > Default
parameter behavior to Inlined).

• Data types that are not built-in.

If you select these tunable parameters (through the Generate S-Function for Subsystem
dialog box):

• The software produces warnings during the build process.
• The generated S-Function block mask does not display these parameters.

Run-Time Parameters and S-Function Compatibility Diagnostics

If you set the S-function upgrades needed option on the Diagnostics >
Compatibility pane of the Configuration Parameters dialog box to warning or error,
the code generator instructs you to upgrade S-functions that you create with the
Generate S-function feature. This is because the S-function system target file does

46-45

46 Desktops in Simulink Coder

not register run-time parameters. Run-time parameters are only supported for inlined
S-Functions and the generated S-Function supports features that prevent it from being
inlined (for example, it can call or contain other noninlined S-functions).

You can work around this limitation by setting the S-function upgrades needed option
to none.

Limitations on Using Goto and From Block

When using the S-function system target file, the code generator restricts I/O to
correspond to the root model Inport and Outport blocks (or the Inport and Outport blocks
of the Subsystem block from which the S-function target was generated). No code is
generated for Goto or From blocks.

To work around this restriction, create your model and subsystem with the required
Inport and Outport blocks, instead of using Goto and From blocks to pass data between
the root model and subsystem. In the model that incorporates the generated S-function,
you would then add Goto and From blocks.

Example Before Work Around

• Root model with a From block and subsystem, Subsystem1

• Subsystem1 with a Goto block, which has global visibility and passes its input to the
From block in the root model

• Subsystem1 replaced with an S-function generated with the S-Function target — a
warning results when you run the model because the generated S-function does not
implement the Goto block

46-46

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

Example After Work Around

An Outport block replaces the GoTo block in Subsystem1. When you plug the generated
S-function into the root model, its output connects directly to the To Workspace block.

Limitations on Building and Updating S-Functions

The following limitations apply to building and updating S-functions using the S-function
system target file:

• You cannot build models that contain Model blocks using the S-function system target
file. This also means that you cannot build a subsystem module by right-clicking
(or by using Code > C/C++ Code > Build Selected Subsystem) if the subsystem
contains Model blocks. This restriction applies only to S-functions generated using the
S-function target, not to ERT S-functions.

• If you modify the model that generated an S-Function block, the build process
does not automatically rebuild models containing the generated S-Function block.
This is in contrast to the practice of automatically rebuilding models referenced by
Model blocks when they are modified (depending on the Model Reference Rebuild
configuration setting).

46-47

46 Desktops in Simulink Coder

• Handwritten S-functions without corresponding TLC files must contain exception-
free code. For more information on exception-free code, see “Exception Free Code”
(Simulink).

Unsupported Blocks

The S-function format does not support the following built-in blocks:

• Interpreted MATLAB Function block
• S-Function blocks containing any of the following:

• MATLAB language S-functions (unless you supply a TLC file for C code
generation)

• Fortran S-functions (unless you supply a TLC file for C code generation)
• C/C++ MEX S-functions that call into the MATLAB environment

• Scope block
• To Workspace block

The S-function format does not support blocks from the embeddedtargetslib block
library.

SimState Not Supported for Code Generation

You can use SimState within C-MEX and Level-2 MATLAB language S-functions to
save and restore the simulation state. See “S-Function Compliance with the SimState”
(Simulink). However, SimState is not supported for code generation, including with the
S-function system target file.

Profiling Code Performance with TLC Hook Function Not Supported

Profiling the performance of generated code using the Target Language Compiler (TLC)
hook function interface described in “Profile Code Performance” (Simulink Coder) is not
supported for the S-function target.

Note: If you have an Embedded Coder license, see “Code Execution Profiling” for an
alternative and simpler approach based on software-in-the-loop (SIL) or processor-in-the-
loop (PIL) simulations.

46-48

 Accelerate Simulation, Reuse Code, or Protect Intellectual Property by Using S-Function Target

Limitations on Nesting S-Functions

The following limitations apply to nesting a generated S-Function block in a model or
subsystem from which you generate another S-function:

• The software does not support nonvirtual bus input and output signals for a nested S-
function.

• You should avoid nesting an S-function in a model or subsystem having the same
name as the S-function (possibly several levels apart). In such situations, the S-
function can be called recursively. The software currently does not detect such loops
in S-function dependency, which can result in aborting or hanging your MATLAB
session. To prevent this from happening, be sure to name the subsystem or model
to be generated as an S-function target uniquely, to avoid duplicating existing MEX
filenames on the MATLAB path.

Limitations on User-Defined Data Types

The S-function system target file does not support the HeaderFile property that can be
specified on user-defined data types, including those based on Simulink.AliasType,
Simulink.Bus, and Simulink.NumericType objects. If a user-defined data type in
your model uses the HeaderFile property to specify an associated header file, code
generation with the S-function system target file disregards the value and does not
generate a corresponding include statement.

Limitation on Right-Click Generation of an S-Function Target

If you generate an S-function target by right-clicking a Function-Call Subsystem
block, the original subsystem and the generated S-function might not be consistent.
An inconsistency occurs when the States when enabling parameter of the Trigger
Port block inside the Function-Call Subsystem block is set to inherit. You must set the
States when enabling parameter to reset or held, otherwise Simulink reports an
error.

Limitation on S-Functions with Bus I/O Signals

If an S-function generated using the S-function target has bus input or output signals,
the generated bus data structures might include padding to align fields of the bus
elements with the Simulink representation used during simulation. However, if
you insert the S-function in a model and generate code using a model target such
as grt.tlc, the bus structure alignment generated for the model build might be
incompatible with the padding generated for the S-function and might affect the

46-49

46 Desktops in Simulink Coder

numerical results of code execution. To make the structure alignment consistent between
model simulation and execution of the model code, for each Simulink.Bus object, you
can modify the HeaderFile property to remove the unpadded bus structure header file.
This will cause the bus typedefs generated for the S-function to be reused in the model
code.

Limitation on Subsystems with Function-Call I/O Signals

The S-function target does not support creating an S-Function block from a subsystem
that has a function-call trigger input or a function-call output.

Data Store Access

When an S-Function in your model accesses a data store during simulation, Simulink
disables data store diagnostics.

• If you created the S-Function from a model, the diagnostic is disabled for global data
stores as well.

• If you created the S-Function from a subsystem, the diagnostic is disabled for the
following data stores:

• Global data stores
• Data stores placed outside the subsystem, but accessed by Data Store Read or

Data Store Write blocks.

Cannot Specify Outport Dimensions Through Subsystem Mask

You cannot specify Port dimensions for an Outport block through a subsystem mask if
you want to generate an S-Function block from the subsystem. The software produces an
error when you try to run a simulation that uses the S-Function block, for example:

Invalid setting in 'testSystem/Subsystem/__OutputSSForSFun__/Out2'

for parameter 'PortDimensions'

...

More About
• “Acceleration” (Simulink)
• “Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using

RSim System Target File” (Simulink Coder)

46-50

47

Desktops in Embedded Coder

47 Desktops in Embedded Coder

Package Generated Code as Shared Libraries

If you have an Embedded Coder license, you can package generated source code from a
model component for easy distribution and shared use by building the code as a shared
library—Windows dynamic link library (.dll), UNIX shared object (.so), or Macintosh
OS X dynamic library (.dylib). You or others can integrate the shared library into an
application that runs on a Windows, UNIX, or Macintosh OS X development computer.
The generated .dll, .so, or .dylib file is shareable among different applications and
upgradeable without having to recompile the applications that use it.

About Generated Shared Libraries

You build a shared library by configuring the code generator to use the system target file
ert_shrlib.tlc. Code generation for that system target file exports:

• Variables and signals of type ExportedGlobal as data
• Real-time model structure (model_M) as data
• Functions essential to executing your model code

To view a list of symbols contained in a generated shared library:

• On Windows, use the Dependency Walker utility, downloadable from http://
www.dependencywalker.com

• On UNIX, use nm -D model.so
• On Macintosh OS X , use nm -g model.dylib

To generate and use a shared library:

1 Generate a shared library version of your model code
2 Create application code to load and use your shared library file

Generate Shared Library Version of Model Code

To generate a shared library version of your model code:

1 Open your model and configure it to use the ert_shrlib.tlc system target file.

47-2

http://www.dependencywalker.com
http://www.dependencywalker.com

 Package Generated Code as Shared Libraries

Selecting the ert_shrlib.tlc system target file causes the build process to
generate a shared library version of your model code into your current working
folder. The selection does not change the code that the code generator produces for
your model.

2 Build the model.
3 After the build completes, examine the generated code in the model subfolder and

examine the .dll, .so, or .dylib file in your current folder.

Create Application Code to Use Shared Library

To illustrate how application code can load a shared library file and access its functions
and data, MathWorks provides the model rtwdemo_shrlib.

Note: Change directory to a writable working folder before running the
rtwdemo_shrlib script.

In the model, click the blue button to run a script. The script:

1 Builds a shared library file from the model (for example,
rtwdemo_shrlib_win64.dll on 64-bit Windows).

2 Compiles and links an example application, rtwdemo_shrlib_app, that loads and
uses the shared library file.

3 Executes the example application.

47-3

47 Desktops in Embedded Coder

Tip: Explicit linking is preferred for portability. But, on Windows systems, the
ert_shrlib system target file generates and retains the .lib file to support implicit
linking.

To use implicit linking, the generated model.h file needs a small modification for you to
use it with t with the generated ert_main.c. For example, if you are using Visual C+
+, declare __declspec(dllimport) in front of data to be imported implicitly from the
shared library file.

The model uses the following example application files, which are located in the folder
matlabroot/toolbox/rtw/rtwdemos/shrlib_demo (open).

File Description

rtwdemo_shrlib_app.h Example application header file
rtwdemo_shrlib_app.c Example application that loads and uses the

shared library file generated for the model
run_rtwdemo_shrlib_app.m Script to compile, link, and execute the example

application

You can view each of these files by clicking white buttons in the model window.
Additionally, running the script places the relevant source and generated code files in
your current folder. The files can be used as templates for writing application code for
your own ERT shared library files.

The following sections present key excerpts of the example application files.

Example Application Header File

The example application header file rtwdemo_shrlib_app.h contains type declarations
for the model's external input and output.
#ifndef _APP_MAIN_HEADER_

#define _APP_MAIN_HEADER_

typedef struct {

 int32_T Input;

} ExternalInputs_rtwdemo_shrlib;

typedef struct {

 int32_T Output;

} ExternalOutputs_rtwdemo_shrlib;

#endif /*_APP_MAIN_HEADER_*/

47-4

 Package Generated Code as Shared Libraries

Example Application C Code

The example application rtwdemo_shrlib_app.c includes the following code for
dynamically loading the shared library file. Notice that, depending on platform, the code
invokes Windows or UNIX library commands.
#if (defined(_WIN32)||defined(_WIN64)) /* WINDOWS */

#include <windows.h>

#define GETSYMBOLADDR GetProcAddress

#define LOADLIB LoadLibrary

#define CLOSELIB FreeLibrary

#else /* UNIX */

#include <dlfcn.h>

#define GETSYMBOLADDR dlsym

#define LOADLIB dlopen

#define CLOSELIB dlclose

#endif

int main()

{

 void* handleLib;

...

#if defined(_WIN64)

 handleLib = LOADLIB("./rtwdemo_shrlib_win64.dll");

#else

#if defined(_WIN32)

 handleLib = LOADLIB("./rtwdemo_shrlib_win32.dll");

#else /* UNIX */

 handleLib = LOADLIB("./rtwdemo_shrlib.so", RTLD_LAZY);

#endif

#endif

...

 return(CLOSELIB(handleLib));

}

The following code excerpt shows how the C application accesses the model's exported
data and functions. Notice the hooks for adding user-defined initialization, step, and
termination code.
 int32_T i;

 ...

 void (*mdl_initialize)(boolean_T);

 void (*mdl_step)(void);

 void (*mdl_terminate)(void);

 ExternalInputs_rtwdemo_shrlib (*mdl_Uptr);

 ExternalOutputs_rtwdemo_shrlib (*mdl_Yptr);

 uint8_T (*sum_outptr);

...

#if (defined(LCCDLL)||defined(BORLANDCDLL))

47-5

47 Desktops in Embedded Coder

 /* Exported symbols contain leading underscores when DLL is linked with

 LCC or BORLANDC */

 mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_initialize");

 mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_step");

 mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_terminate");

 mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_U");

 mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "_rtwdemo_shrlib_Y");

 sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "_sum_out");

#else

 mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_initialize");

 mdl_step =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_step");

 mdl_terminate =(void(*)(void))GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_terminate");

 mdl_Uptr =(ExternalInputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_U");

 mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR(handleLib ,

 "rtwdemo_shrlib_Y");

 sum_outptr =(uint8_T*)GETSYMBOLADDR(handleLib , "sum_out");

#endif

 if ((mdl_initialize && mdl_step && mdl_terminate && mdl_Uptr && mdl_Yptr &&

 sum_outptr)) {

 /* === user application initialization function === */

 mdl_initialize(1);

 /* insert other user defined application initialization code here */

 /* === user application step function === */

 for(i=0;i<=12;i++){

 mdl_Uptr->Input = i;

 mdl_step();

 printf("Counter out(sum_out): %d\tAmplifier in(Input): %d\tout(Output): %d\n",

 *sum_outptr, i, mdl_Yptr->Output);

 /* insert other user defined application step function code here */

 }

 /* === user application terminate function === */

 mdl_terminate();

 /* insert other user defined application termination code here */

 }

 else {

 printf("Cannot locate the specified reference(s) in the shared library.\n");

 return(-1);

 }

47-6

 Package Generated Code as Shared Libraries

Example Application Script

The application script run_rtwdemo_shrlib_app loads and rebuilds the model, and
then compiles, links, and executes the model's shared library target file. You can view
the script source file by opening rtwdemo_shrlib and clicking a white button to view
source code. The script constructs platform-dependent command character vectors for
compilation, linking, and execution that may apply to your development environment. To
run the script, click the blue button.

Note: To run the run_rtwdemo_shrlib_app script without first opening the
rtwdemo_shrlib model, change directory to a writable working folder and issue the
following MATLAB command:

addpath(fullfile(matlabroot,'toolbox','rtw','rtwdemos','shrlib_demo'))

Shared Library Limitations

The following limitations apply to building shared libraries:

• Code generation for the ert_shrlib.tlc system target file exports the following as
data:

• Variables and signals of type ExportedGlobal
• Real-time model structure (model_M)

• Code generation for the ert_shrlib.tlc system target file supports the C language
only (not C++). When you select ert_shrlib.tlc, language selection is greyed out
on the Code Generation pane of the Configuration Parameters dialog box.

• To reconstruct a model simulation using a generated shared library, the application
author must maintain the timing between system and shared library function calls
in the original application. The timing needs to be consistent so that you can compare
the simulation and integration results. Additional simulation considerations apply
if generating a shared library from a model that enables parameters Support:
continuous time and Single output/update function. For more information, see
“Single output/update function” (Simulink Coder) dependencies.

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2

47-7

47 Desktops in Embedded Coder

• “Select a System Target File” on page 30-2
• “Model Protection”

47-8

48

Real-Time Systems in Simulink Coder

• “Deploy Algorithm Model for Real-Time Rapid Prototyping” on page 48-2
• “Deploy Environment Model for Real-Time Hardware-In-the-Loop (HIL) Simulation”

on page 48-5

48 Real-Time Systems in Simulink Coder

Deploy Algorithm Model for Real-Time Rapid Prototyping
Use the code generator to deploy algorithm models for real-time rapid prototyping.

In this section...

“About Real-Time Rapid Prototyping” on page 48-2
“Goals of Real-Time Rapid Prototyping” on page 48-2
“Refine Code With Real-Time Rapid Prototyping” on page 48-3

About Real-Time Rapid Prototyping

Real-time rapid prototyping requires the use of a real-time simulator, potentially
connected to system hardware (for example, physical plant or vehicle) being controlled.
You generate, deploy, and tune code as it runs on the real-time simulator or embedded
microprocessor. This design step is crucial for verifying whether a component can
adequately control the system, and allows you to assess, interact with, and optimize code.

The following figure shows a typical approach for real-time rapid prototyping.

Actual environment (plants)

Algorithm model

Tuning and

logging

System model

Environment model

C
o

d
e

g
e

n
e

ra
ti

o
nHost

HarnessReal-time

simulator

Goals of Real-Time Rapid Prototyping

Assuming that you have documented functional requirements, refined concept models,
system hardware for the physical plant or vehicle being controlled, and access to target

48-2

 Deploy Algorithm Model for Real-Time Rapid Prototyping

products you intend to use (for example, for example, the Simulink Real-Time or
Simulink Desktop Real-Time product), you can use real-time prototyping to:

• Refine component and environment model designs by rapidly iterating between
algorithm design and prototyping

• Validate whether a component can adequately control the physical system in real
time

• Evaluate system performance before laying out hardware, coding production software,
or committing to a fixed design

• Test hardware

Refine Code With Real-Time Rapid Prototyping

To perform real-time rapid prototyping:

1 Create or acquire a real-time system that runs in real time on rapid prototyping
hardware. The Simulink Real-Time product facilitates real-time rapid prototyping.
This product provides a real-time operating system that makes PCs run in real time.
It also provides device driver blocks for numerous hardware I/O cards. You can then
create a rapid prototyping system using inexpensive commercial-off-the-shelf (COTS)
hardware. In addition, third-party vendors offer products based on the Simulink
Real-Time product or other code generation technology that you can integrate into a
development environment.

2 Use provided system target files to generate code that you can deploy onto a real-
time simulator. See the following information.

Engineering Tasks Related Product Information Examples

Generate code for real-time
rapid prototyping

“Compare System Target File
Support” (Simulink Coder)

“Event-Based Scheduling”
(Simulink Coder)

Embedded Coder

“Support for Standards and
Guidelines” on page 12-2

rtwdemo_counter

rtwdemo_counter_msvc

48-3

http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/rtwt/
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/embedded-coder/

48 Real-Time Systems in Simulink Coder

Engineering Tasks Related Product Information Examples

Generate code for rapid
prototyping in hard real time,
using PCs

Simulink Real-Time

“Simulink Real-Time Options
Pane” (Simulink Real-Time)

help xpcdemos

Generate code for rapid
prototyping in soft real time,
using PCs

Simulink Desktop Real-Time

“Simulink Desktop Real-Time
Pane” (Simulink Desktop Real-
Time)

sldrtex_vdp (and others)

3 Monitor signals, tune parameters, and log data.

More About
• “Access Signal, State, and Parameter Data During Execution” on page 19-3
• “Rapid Control Prototyping Process” (Simulink Real-Time)

48-4

http://www.mathworks.com/products/xpctarget/
http://www.mathworks.com/products/rtwt/

 Deploy Environment Model for Real-Time Hardware-In-the-Loop (HIL) Simulation

Deploy Environment Model for Real-Time Hardware-In-the-Loop
(HIL) Simulation

In this section...

“About Hardware-In-the-Loop Simulation” on page 48-5
“Set Up and Run HIL Simulations” on page 48-6

About Hardware-In-the-Loop Simulation

Hardware-in-the-loop (HIL) simulation tests and verifies an embedded system or control
unit in the context of a software test platform. Examples of test platforms include real-
time target systems and instruction set simulators (IISs). You use Simulink software
to develop and verify a model that represents the test environment. Using the code
generator, you produce, build, and download an executable program for the model to the
HIL simulation platform. After you set up the environment, you can run the executable
to validate the embedded system or control unit in real time.

During HIL simulation, you gradually replace parts of a system environment with
hardware components as you refine and fabricate the components. HIL simulation offers
an efficient design process that eliminates costly iterations of part fabrication.

The code that you build for the system simulator provides real-time system capabilities.
For example, the code can include VxWorks from Wind River or another real-time
operating system (RTOS).

The following figure shows a typical HIL setup.

Embedded

system

Algorithm model

Simulink

Environment model

C
o

d
e

g
e

n
e

ra
ti

o
n

C
o

d
e

g
e

n
e

ra
ti

o
n

Harness
Real-time

simulator

48-5

48 Real-Time Systems in Simulink Coder

The HIL platform available from MathWorks is the Simulink Real-Time product. Several
third-party products are also available for use as HIL platforms. The Simulink Real-Time
product offers hard real-time performance for PCs with Intel or AMD® 32-bit processors
functioning as your real-time target. The Simulink Real-Time product enables you to add
I/O interface blocks to your models and automatically generate code with code generation
technology. The Simulink Real-Time product can download the code to a second PC
running the Simulink Real-Time real-time kernel. System integrator solutions that are
based on Simulink Real-Time are also available.

Set Up and Run HIL Simulations

To set up and run HIL simulations iterate through the following steps:

1 Develop a model that represents the environment or system under development.

For more information, see “Compare System Target File Support” (Simulink Coder).
2 Generate an executable for the environment model.
3 Download the executable for the environment model to the HIL simulation platform.
4 Replace software representing a system component with corresponding hardware.
5 Test the hardware in the context of the HIL system.
6 Repeat steps 4 and 5 until you can simulate the system after including components

that require testing.

More About
• “Access Signal, State, and Parameter Data During Execution” on page 19-3
• “Hardware-In-The-Loop Simulation Process” (Simulink Real-Time)

48-6

http://www.mathworks.com/products/xpctarget/

49

Real-Time and Embedded Systems in
Embedded Coder

• “Deploy Generated Standalone Executable Programs To Target Hardware” on page
49-2

• “Deploy Generated Component Software to Application Target Platforms” on page
49-22

49 Real-Time and Embedded Systems in Embedded Coder

Deploy Generated Standalone Executable Programs To Target
Hardware

By default, the Embedded Coder software generates standalone executable programs
that do not require an external real-time executive or operating system. A standalone
program requires minimal modification to be adapted to the target hardware. The
standalone program architecture supports execution of models with either single or
multiple sample rates.

In this section...

“Generate a Standalone Program” on page 49-2
“Standalone Program Components” on page 49-3
“Main Program” on page 49-3
“rt_OneStep and Scheduling Considerations” on page 49-4
“Static Main Program Module” on page 49-10
“Rate Grouping Compliance and Compatibility Issues” on page 49-17

Generate a Standalone Program

To generate a standalone program:

1 In the Custom templates section of the Code Generation > Templates pane
of the Configuration Parameters dialog box, select the Generate an example
main program option (which is on by default). This enables the Target operating
system menu.

2 From the Target operating system menu, select BareBoardExample (the default
selection).

3 Generate the code.

Different code is generated for multirate models depending on the following factors:

• Whether the model executes in single-tasking or multitasking mode.
• Whether or not reusable code is being generated.

These factors affect the scheduling algorithms used in generated code, and in some cases
affect the API for the model entry point functions. The following sections discuss these
variants.

49-2

 Deploy Generated Standalone Executable Programs To Target Hardware

Standalone Program Components

The core of a standalone program is the main loop. On each iteration, the main loop
executes a background or null task and checks for a termination condition.

The main loop is periodically interrupted by a timer. The function rt_OneStep is either
installed as a timer interrupt service routine (ISR), or called from a timer ISR at each
clock step.

The execution driver, rt_OneStep, sequences calls to the model_step functions. The
operation of rt_OneStep differs depending on whether the generating model is single-
rate or multirate. In a single-rate model, rt_OneStep simply calls the model_step
function. In a multirate model, rt_OneStep prioritizes and schedules execution of blocks
according to the rates at which they run.

Main Program

• “Overview of Operation” on page 49-3
• “Guidelines for Modifying the Main Program” on page 49-4

Overview of Operation

The following pseudocode shows the execution of a main program.

main()

{

 Initialization (including installation of rt_OneStep as an

 interrupt service routine for a real-time clock)

 Initialize and start timer hardware

 Enable interupts

 While(not Error) and (time < final time)

 Background task

 EndWhile

 Disable interrupts (Disable rt_OneStep from executing)

 Complete any background tasks

 Shutdown

}

The pseudocode is a design for a harness program to drive your model. The main
program only partially implements this design. You must modify it according to your
specifications.

49-3

49 Real-Time and Embedded Systems in Embedded Coder

Guidelines for Modifying the Main Program

This section describes the minimal modifications you should make in your production
version of the main program module to implement your harness program.

1 Call model_initialize.
2 Initialize target-specific data structures and hardware, such as ADCs or DACs.
3 Install rt_OneStep as a timer ISR.
4 Initialize timer hardware.
5 Enable timer interrupts and start the timer.

Note rtModel is not in a valid state until model_initialize has been called.
Servicing of timer interrupts should not begin until model_initialize has been
called.

6 Optionally, insert background task calls in the main loop.
7 On termination of the main loop (if applicable):

• Disable timer interrupts.
• Perform target-specific cleanup such as zeroing DACs.
• Detect and handle errors. Note that even if your program is designed to run

indefinitely, you may need to handle severe error conditions, such as timer
interrupt overruns.

You can use the macros rtmGetErrorStatus and rtmSetErrorStatus to
detect and signal errors.

rt_OneStep and Scheduling Considerations

• “Overview of Operation” on page 49-4
• “Single-Rate Single-Tasking Operation” on page 49-5
• “Multirate Multitasking Operation” on page 49-6
• “Multirate Single-Tasking Operation” on page 49-8
• “Guidelines for Modifying rt_OneStep” on page 49-9

Overview of Operation

The operation of rt_OneStep depends upon

49-4

 Deploy Generated Standalone Executable Programs To Target Hardware

• Whether your model is single-rate or multirate. In a single-rate model, the sample
times of all blocks in the model, and the model's fixed step size, are the same. A
model in which the sample times and step size do not meet these conditions is termed
multirate.

• Your model's solver mode (SingleTasking versus MultiTasking)

Permitted Solver Modes for Embedded Real-Time System Target Files summarizes the
permitted solver modes for single-rate and multirate models. Note that for a single-rate
model, only SingleTasking solver mode is allowed.

Permitted Solver Modes for Embedded Real-Time System Target Files

Mode Single-Rate Multirate

SingleTasking Allowed Allowed
MultiTasking Disallowed Allowed
Auto Allowed

(defaults to
SingleTasking)

Allowed

(defaults to MultiTasking)

The generated code for rt_OneStep (and associated timing data structures and support
functions) is tailored to the number of rates in the model and to the solver mode. The
following sections discuss each possible case.

Single-Rate Single-Tasking Operation

The only valid solver mode for a single-rate model is SingleTasking. Such models run
in “single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate program.

rt_OneStep()

{

 Check for interrupt overflow or other error

 Enable "rt_OneStep" (timer) interrupt

 Model_Step() -- Time step combines output,logging,update

}

For the single-rate case, the generated model_step function is

void model_step(void)

49-5

49 Real-Time and Embedded Systems in Embedded Coder

Single-rate rt_OneStep is designed to execute model_step within a single clock period.
To enforce this timing constraint, rt_OneStep maintains and checks a timer overrun
flag. On entry, timer interrupts are disabled until the overrun flag and other error
conditions have been checked. If the overrun flag is clear, rt_OneStep sets the flag, and
proceeds with timer interrupts enabled.

The overrun flag is cleared only upon successful return from model_step. Therefore,
if rt_OneStep is reinterrupted before completing model_step, the reinterruption is
detected through the overrun flag.

Reinterruption of rt_OneStep by the timer is an error condition. If this condition is
detected rt_OneStep signals an error and returns immediately. (Note that you can
change this behavior if you want to handle the condition differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled before
rt_OneStep is called. rt_OneStep should be noninterruptible until the interrupt
overflow flag has been checked.

Multirate Multitasking Operation

In a multirate multitasking system, code generation uses a prioritized, preemptive
multitasking scheme to execute the different sample rates in your model.

The following pseudocode shows the design of rt_OneStep in a multirate multitasking
program.

rt_OneStep()

{

 Check for base-rate interrupt overrun

 Enable "rt_OneStep" interrupt

 Determine which rates need to run this time step

 Model_Step0() -- run base-rate time step code

 For N=1:NumTasks-1 -- iterate over sub-rate tasks

 If (sub-rate task N is scheduled)

 Check for sub-rate interrupt overrun

 Model_StepN() -- run sub-rate time step code

 EndIf

 EndFor

}

49-6

 Deploy Generated Standalone Executable Programs To Target Hardware

Task Identifiers

The execution of blocks having different sample rates is broken into tasks. Each block
that executes at a given sample rate is assigned a task identifier (tid), which associates
it with a task that executes at that rate. Where there are NumTasks tasks in the system,
the range of task identifiers is 0..NumTasks-1.
Prioritization of Base-Rate and Subrate Tasks

Tasks are prioritized, in descending order, by rate. The base-rate task is the task that
runs at the fastest rate in the system (the hardware clock rate). The base-rate task has
highest priority (tid 0). The next fastest task (tid 1) has the next highest priority, and
so on down to the slowest, lowest priority task (tid NumTasks-1).

The slower tasks, running at multiples of the base rate, are called subrate tasks.
Rate Grouping and Rate-Specific model_step Functions

In a single-rate model, the block output computations are performed within a single
function, model_step. For multirate, multitasking models, the code generator tries to
use a different strategy. This strategy is called rate grouping. Rate grouping generates
separate model_step functions for the base rate task and each subrate task in the
model. The function naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that has three
rates, the following functions are generated:

void my_model_step0 (void);

void my_model_step1 (void);

void my_model_step2 (void);

Each model_stepN function executes the blocks sharing tid N; in other words, the
block code that executes within task N is grouped into the associated model_stepN
function.
Scheduling model_stepN Execution

On each clock tick, rt_OneStep maintains scheduling counters and event flags for each
subrate task. The counters are implemented as taskCounter arrays indexed on tid.
The event flags are implemented as arrays indexed on tid.

The scheduling counters and task flags for sub-rates are maintained by rt_OneStep.
The scheduling counters are basically clock rate dividers that count up the sample period

49-7

49 Real-Time and Embedded Systems in Embedded Coder

associated with each sub-rate task. A pair of tasks that exchanges data maintains an
interaction flag at the faster rate. Task interaction flags indicate that both fast and slow
tasks are scheduled to run.

The event flags indicate whether or not a given task is scheduled for execution.
rt_OneStep maintains the event flags based on a task counter that is maintained by
code in the main program module for the model. When a counter indicates that a task's
sample period has elapsed, the main code sets the event flag for that task.

On each invocation, rt_OneStep updates its scheduling data structures and steps
the base-rate task (rt_OneStep calls model_step0 because the base-rate task must
execute on every clock step). Then, rt_OneStep iterates over the scheduling flags in tid
order, unconditionally calling model_stepN for any task whose flag is set. The tasks are
executed in order of priority.

Preemption

Note that the design of rt_OneStep assumes that interrupts are disabled before
rt_OneStep is called. rt_OneStep should be noninterruptible until the base-rate
interrupt overflow flag has been checked (see pseudocode above).

The event flag array and loop variables used by rt_OneStep are stored as local (stack)
variables. Therefore, rt_OneStep is reentrant. If rt_OneStep is reinterrupted, higher
priority tasks preempt lower priority tasks. Upon return from interrupt, lower priority
tasks resume in the previously scheduled order.

Overrun Detection

Multirate rt_OneStep also maintains an array of timer overrun flags. rt_OneStep
detects timer overrun, per task, by the same logic as single-rate rt_OneStep.

Note If you have developed multirate S-functions, or if you use a customized static main
program module, see “Rate Grouping Compliance and Compatibility Issues” on page
49-17 for information about how to adapt your code for rate grouping compatibility.
This adaptation lets your multirate, multitasking models generate more efficient code.

Multirate Single-Tasking Operation

In a multirate single-tasking program, by definition, sample times in the model must be
an integer multiple of the model's fixed-step size.

49-8

 Deploy Generated Standalone Executable Programs To Target Hardware

In a multirate single-tasking program, blocks execute at different rates, but under the
same task identifier. The operation of rt_OneStep, in this case, is a simplified version
of multirate multitasking operation. Rate grouping is not used. The only task is the base-
rate task. Therefore, only one model_step function is generated:

void model_step(void)

On each clock tick, rt_OneStep checks the overrun flag and calls model_step. The
scheduling function for a multirate single-tasking program is rate_scheduler (rather
than rate_monotonic_scheduler). The scheduler maintains scheduling counters on
each clock tick. There is one counter for each sample rate in the model. The counters are
implemented in an array (indexed on tid) within the Timing structure within rtModel.

The counters are clock rate dividers that count up the sample period associated with each
subrate task. When a counter indicates that a sample period for a given rate has elapsed,
rate_scheduler clears the counter. This condition indicates that blocks running at that
rate should execute on the next call to model_step, which is responsible for checking the
counters.

Guidelines for Modifying rt_OneStep

rt_OneStep does not require extensive modification. The only required modification is
to reenable interrupts after the overrun flags and error conditions have been checked. If
applicable, you should also

• Save and restore your FPU context on entry and exit to rt_OneStep.
• Set model inputs associated with the base rate before calling model_step0.
• Get model outputs associated with the base rate after calling model_step0.

Note: If you modify rt_OneStep to read a value from a continuous output port after
each base-rate model step, see the relevant cautionary guideline below.

• In a multirate, multitasking model, set model inputs associated with subrates before
calling model_stepN in the subrate loop.

• In a multirate, multitasking model, get model outputs associated with subrates after
calling model_stepN in the subrate loop.

Comments in rt_OneStep indicate the place to add your code.

In multirate rt_OneStep, you can improve performance by unrolling for and while
loops.

49-9

49 Real-Time and Embedded Systems in Embedded Coder

In addition, you may choose to modify the overrun behavior to continue execution after
error recovery is complete.

Also observe the following cautionary guidelines:

• You should not modify the way in which the counters, event flags, or other timing
data structures are set in rt_OneStep, or in functions called from rt_OneStep. The
rt_OneStep timing data structures (including rtModel) and logic are critical to the
operation of the generated program.

• If you have customized the main program module to read model outputs after each
base-rate model step, be aware that selecting model options Support: continuous
time and Single output/update function together may cause output values read
from main for a continuous output port to differ slightly from the corresponding
output values in the model's logged data. This is because, while logged data is a
snapshot of output at major time steps, output read from main after the base-
rate model step potentially reflects intervening minor time steps. To eliminate the
discrepancy, either separate the generated output and update functions (clear the
Single output/update function option) or place a Zero-Order Hold block before the
continuous output port.

• It is possible to observe a mismatch between results from simulation and logged MAT
file results from generated code if you do not set model inputs before each time you
call the model step function. In the generated example main program, the following
comments show the locations for setting the inputs and stepping the model with your
code:

/* Set model inputs here */

/* Step the model */

If your model applies signal reuse and you are using MatFileLogging for comparing
results from simulation against generated code, modify rt_OneStep to write model
inputs in every time step as directed by these comments. Alternatively, you could
“Choose a SIL or PIL Approach” on page 64-11 for verification.

Static Main Program Module

• “Overview” on page 49-11
• “Rate Grouping and the Static Main Program” on page 49-12
• “Modify the Static Main Program” on page 49-13
• “Modify Static Main to Allocate and Access Model Instance Data” on page 49-14

49-10

 Deploy Generated Standalone Executable Programs To Target Hardware

Overview

In most cases, the easiest strategy for deploying generated code is to use the Generate
an example main program option to generate the ert_main.c or .cpp module (see
“Generate a Standalone Program” on page 49-2).

However, if you turn the Generate an example main program option off, you can
use a static main module as an example or template for developing your embedded
applications. Static main modules provided by MathWorks include:

• matlabroot/rtw/c/src/common/rt_main.c — Supports Nonreusable
function code interface packaging.

• matlabroot/rtw/c/src/common/rt_malloc_main.c — Supports Reusable
function code interface packaging. The model option Use dynamic memory
allocation for model initialization must be on and model parameter Pass root-
level I/O as must be set to Part of model data structure.

• matlabroot/rtw/c/src/common/rt_cppclass_main.cpp — Supports C++
class code interface packaging.

The static main module is not part of the generated code; it is provided as a basis for
your custom modifications, and for use in simulation. If your existing applications
depend upon a static ert_main.c (developed in releases before R2012b), rt_main.c,
rt_malloc_main.c, or rt_cppclass_main.cpp, you may need to continue using a
static main program module.

When developing applications using a static main module, you should copy the module to
your working folder and rename it before making modifications. For example, you could
rename rt_main.c to model_rt_main.c. Also, you must modify the template makefile
or toolchain settings such that the build process creates a corresponding object file, such
as model_rt_main.obj (on UNIX, model_rt_main.o), in the build folder.

The static main module contains

• rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls model_step
to execute processing for one clock period of the model.

• A skeletal main function. As provided, main is useful in simulation only. You must
modify main for real-time interrupt-driven execution.

For single-rate models, the operation of rt_OneStep and the main function are
essentially the same in the static main module as they are in the automatically
generated version described in “Deploy Generated Standalone Executable Programs To

49-11

49 Real-Time and Embedded Systems in Embedded Coder

Target Hardware” on page 49-2. For multirate, multitasking models, however, the
static and generated code are slightly different. The next section describes this case.

Rate Grouping and the Static Main Program

Targets based on the ERT target sometimes use a static main module and disallow use of
the Generate an example main program option. This is done because target-specific
modifications have been added to the static main module, and these modifications would
not be preserved if the main program were regenerated.

Your static main module may or may not use rate grouping compatible model_stepN
functions. If your main module is based on the static rt_main.c, rt_malloc_main.c,
or rt_cppclass_main.cpp module, it does not use rate-specific model_stepN function
calls. It uses the old-style model_step function, passing in a task identifier:

void model_step(int_T tid);

By default, when the Generate an example main program option is off, the ERT
target generates a model_step “wrapper” for multirate, multitasking models. The
purpose of the wrapper is to interface the rate-specific model_stepN functions to the
old-style call. The wrapper code dispatches to the model_stepN call with a switch
statement, as in the following example:

void mymodel_step(int_T tid) /* Sample time: */

{

 switch(tid) {

 case 0 :

 mymodel_step0();

 break;

 case 1 :

 mymodel_step1();

 break;

 case 2 :

 mymodel_step2();

 break;

 default :

 break;

 }

}

The following pseudocode shows how rt_OneStep calls model_step from the static
main program in a multirate, multitasking model.

49-12

 Deploy Generated Standalone Executable Programs To Target Hardware

rt_OneStep()

{

 Check for base-rate interrupt overflow

 Enable "rt_OneStep" interrupt

 Determine which rates need to run this time step

 ModelStep(tid=0) --base-rate time step

 For N=1:NumTasks-1 -- iterate over sub-rate tasks

 Check for sub-rate interrupt overflow

 If (sub-rate task N is scheduled)

 ModelStep(tid=N) --sub-rate time step

 EndIf

 EndFor

}

You can use the TLC variable RateBasedStepFcn to specify that only the rate-based
step functions are generated, without the wrapper function. If your target calls the rate
grouping compatible model_stepN function directly, set RateBasedStepFcn to 1. In
this case, the wrapper function is not generated.

You should set RateBasedStepFcn prior to the %include "codegenentry.tlc"
statement in your system target file. Alternatively, you can set RateBasedStepFcn in
your target_settings.tlc file.

Modify the Static Main Program

As with the generated ert_main.c or .cpp, you should make a few modifications to the
main loop and rt_OneStep. See “Guidelines for Modifying the Main Program” on page
49-4 and “Guidelines for Modifying rt_OneStep” on page 49-9.

Also, you should replace the rt_OneStep call in the main loop with a background task
call or null statement.

Other modifications you may need to make are

• If applicable, follow comments in the code regarding where to add code for reading/
writing model I/O and saving/restoring FPU context.

Note: If you modify rt_main.c, rt_malloc_main.c, or rt_cppclass_main.cpp
to read a value from a continuous output port after each base-rate model step, see
the relevant cautionary guideline in “Guidelines for Modifying rt_OneStep” on page
49-9.

49-13

49 Real-Time and Embedded Systems in Embedded Coder

• When the Generate an example main program option is off, rtmodel.h is
generated to provide an interface between the main module and generated model
code. If you create your own static main program module, you would normally include
rtmodel.h.

Alternatively, you can suppress generation of rtmodel.h, and include model.h
directly in your main module. To suppress generation of rtmodel.h, use the following
statement in your system target file:

%assign AutoBuildProcedure = 0

• If you have cleared the Terminate function required option, remove or comment
out the following in your production version of rt_main.c, rt_malloc_main.c, or
rt_cppclass_main.cpp:

• The #if TERMFCN... compile-time error check
• The call to MODEL_TERMINATE

• For rt_main.c (not applicable to rt_cppclass_main.cpp): If you do not want to
combine output and update functions, clear the Single output/update function
option and make the following changes in your production version of rt_main.c:

• Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and MODEL_UPDATE.
• Remove the #if ONESTEPFCN... error check.

• The static rt_main.c module does not support Reusable function code interface
packaging. The following error check raises a compile-time error if Reusable
function code interface packaging is used illegally.

#if MULTI_INSTANCE_CODE==1

Modify Static Main to Allocate and Access Model Instance Data

If you are using a static main program module, and your model is configured for
Reusable function code interface packaging, but the model option Use dynamic
memory allocation for model initialization is not selected, model instance data must
be allocated either statically or dynamically by the calling main code. Pointers to the
individual model data structures (such as Block IO, DWork, and Parameters) must be set
up in the top-level real-time model data structure.

To support main modifications, the build process generates a subset of the following real-
time model (RTM) macros, based on the data requirements of your model, into model.h.

49-14

 Deploy Generated Standalone Executable Programs To Target Hardware

RTM Macro Syntax Description

rtmGetBlockIO(rtm) Get the block I/O data structure
rtmSetBlockIO(rtm,val) Set the block I/O data structure
rtmGetContStates(rtm) Get the continuous states data structure
rtmSetContStates(rtm,val) Set the continuous states data structure
rtmGetDefaultParam(rtm) Get the default parameters data structure
rtmSetDefaultParam(rtm,val) Set the default parameters data structure
rtmGetPrevZCSigState(rtm) Get the previous zero-crossing signal state data

structure
rtmSetPrevZCSigState(rtm,val) Set the previous zero-crossing signal state data

structure
rtmGetRootDWork(rtm) Get the DWork data structure
rtmSetRootDWork(rtm,val) Set the DWork data structure
rtmGetU(rtm) Get the root inputs data structure (when root inputs

are passed as part of the model data structure)
rtmSetU(rtm,val) Set the root inputs data structure (when root inputs

are passed as part of the model data structure)
rtmGetY(rtm) Get the root outputs data structure (when root

outputs are passed as part of the model data
structure)

rtmSetY(rtm,val) Set the root outputs data structure (when root
outputs are passed as part of the model data
structure)

Use these macros in your static main program to access individual model data structures
within the RTM data structure. For example, suppose that the example model
rtwdemo_reusable is configured with Reusable function code interface packaging,
Use dynamic memory allocation for model initialization cleared, Pass root-level
I/O as set to Individual arguments, and Optimization pane option Remove root
level I/O zero initialization cleared. Building the model generates the following model
data structures and model entry-points into rtwdemo_reusable.h:
/* Block states (auto storage) for system '<Root>' */

typedef struct {

 real_T Delay_DSTATE; /* '<Root>/Delay' */

} D_Work;

49-15

49 Real-Time and Embedded Systems in Embedded Coder

/* Parameters (auto storage) */

struct Parameters_ {

 real_T k1; /* Variable: k1

 * Referenced by: '<Root>/Gain'

 */

};

/* Model entry point functions */

extern void rtwdemo_reusable_initialize(RT_MODEL *const rtM, real_T *rtU_In1,

 real_T *rtU_In2, real_T *rtY_Out1);

extern void rtwdemo_reusable_step(RT_MODEL *const rtM, real_T rtU_In1, real_T

 rtU_In2, real_T *rtY_Out1);

Additionally, if Generate an example main program is not selected for the model,
rtwdemo_reusable.h contains definitions for the RTM macros rtmGetDefaultParam,
rtmsetDefaultParam, rtmGetRootDWork, and rtmSetRootDWork.

Also, for reference, the generated rtmodel.h file contains an example parameter
definition with initial values (non-executing code):
#if 0

/* Example parameter data definition with initial values */

static Parameters rtP = {

 2.0 /* Variable: k1

 * Referenced by: '<Root>/Gain'

 */

}; /* Modifiable parameters */

#endif

In the definitions section of your static main file, you could use the following code
to statically allocate the real-time model data structures and arguments for the
rtwdemo_reusable model:
static RT_MODEL rtM_;

static RT_MODEL *const rtM = &rtM_; /* Real-time model */

static Parameters rtP = {

 2.0 /* Variable: k1

 * Referenced by: '<Root>/Gain'

 */

}; /* Modifiable parameters */

static D_Work rtDWork; /* Observable states */

/* '<Root>/In1' */

static real_T rtU_In1;

/* '<Root>/In2' */

static real_T rtU_In2;

/* '<Root>/Out1' */

49-16

 Deploy Generated Standalone Executable Programs To Target Hardware

static real_T rtY_Out1;

In the body of your main function, you could use the following RTM macro calls to set up
the model parameters and DWork data in the real-time model data structure:
int_T main(int_T argc, const char *argv[])

{

...

/* Pack model data into RTM */

rtmSetDefaultParam(rtM, &rtP);

rtmSetRootDWork(rtM, &rtDWork);

/* Initialize model */

rtwdemo_reusable_initialize(rtM, &rtU_In1, &rtU_In2, &rtY_Out1);

...

}

Follow a similar approach to set up multiple instances of model data, where the real-time
model data structure for each instance has its own data. In particular, the parameter
structure (rtP) should be initialized, for each instance, to the desired values, either
statically as part of the rtP data definition or at run time.

Rate Grouping Compliance and Compatibility Issues

• “Main Program Compatibility” on page 49-17
• “Make Your S-Functions Rate Grouping Compliant” on page 49-17

Main Program Compatibility

When the Generate an example main program option is off, code generation produces
slightly different rate grouping code, for compatibility with the older static ert_main.c
module. See “Rate Grouping and the Static Main Program” on page 49-12 for details.

Make Your S-Functions Rate Grouping Compliant

Built-in Simulink blocks, as well as DSP System Toolbox blocks, are compliant with
the requirements for generating rate grouping code. However, user-written multirate
inlined S-functions may not be rate grouping compliant. Noncompliant blocks generate
less efficient code, but are otherwise compatible with rate grouping. To take full
advantage of the efficiency of rate grouping, your multirate inlined S-functions must be
upgraded to be fully rate grouping compliant. You should upgrade your TLC S-function
implementations, as described in this section.

Use of noncompliant multirate blocks to generate rate-grouping code generates dead
code. This can cause two problems:

49-17

49 Real-Time and Embedded Systems in Embedded Coder

• Reduced code efficiency.
• Warning messages issued at compile time. Such warnings are caused when dead code

references temporary variables before initialization. Since the dead code does not run,
this problem does not affect the run-time behavior of the generated code.

To make your S-functions rate grouping compliant, you can use the following TLC
functions to generate ModelOutputs and ModelUpdate code, respectively:

OutputsForTID(block, system, tid)

UpdateForTID(block, system, tid)

The code listings below illustrate generation of output computations without rate
grouping (Listing 1) and with rate grouping (Listing 2). Note the following:

• The tid argument is a task identifier (0..NumTasks-1).
• Only code guarded by the tid passed in to OutputsForTID is generated. The if

(%<LibIsSFcnSampleHit(portName)>) test is not used in OutputsForTID.
• When generating rate grouping code, OutputsForTID and/or UpdateForTID is

called during code generation. When generating non-rate-grouping code, Outputs
and/or Update is called.

• In rate grouping compliant code, the top-level Outputs and/or Update functions call
OutputsForTID and/or UpdateForTID functions for each rate (tid) involved in the
block. The code returned by OutputsForTID and/or UpdateForTID must be guarded
by the corresponding tid guard:

if (%<LibIsSFcnSampleHit(portName)>)

as in Listing 2.

Listing 1: Outputs Code Generation Without Rate Grouping

%% multirate_blk.tlc

%implements "multirate_blk" "C"

%% Function: mdlOutputs ===

%% Abstract:

%%

%% Compute the two outputs (input signal decimated by the

%% specified parameter). The decimation is handled by sample times.

%% The decimation is only performed if the block is enabled.

%% Each ports has a different rate.

%%

%% Note, the usage of the enable should really be protected such that

%% Neach task has its own enable state. In this example, the enable

49-18

 Deploy Generated Standalone Executable Programs To Target Hardware

%% occurs immediately which may or may not be the expected behavior.

%%

 %function Outputs(block, system) Output

 /* %<Type> Block: %<Name> */

 %assign enable = LibBlockInputSignal(0, "", "", 0)

 {

 int_T *enabled = &%<LibBlockIWork(0, "", "", 0)>;

 %if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

 %% Only check the enable signal on a major time step.

 if (%<LibIsMajorTimeStep()> && ...

 %<LibIsSFcnSampleHit("InputPortIdx0")>) {

 *enabled = (%<enable> > 0.0);

 }

 %else

 if (%<LibIsSFcnSampleHit("InputPortIdx0")>) {

 *enabled = (%<enable> > 0.0);

 }

 %endif

 if (*enabled) {

 %assign signal = LibBlockInputSignal(1, "", "", 0)

 if (%<LibIsSFcnSampleHit("OutputPortIdx0")>) {

 %assign y = LibBlockOutputSignal(0, "", "", 0)

 %<y> = %<signal>;

 }

 if (%<LibIsSFcnSampleHit("OutputPortIdx1")>) {

 %assign y = LibBlockOutputSignal(1, "", "", 0)

 %<y> = %<signal>;

 }

 }

 }

 %endfunction

%% [EOF] sfun_multirate.tlc

Listing 2: Outputs Code Generation With Rate Grouping

%% example_multirateblk.tlc

%implements "example_multirateblk" "C"

 %% Function: mdlOutputs ===

 %% Abstract:

 %%

 %% Compute the two outputs (the input signal decimated by the

 %% specified parameter). The decimation is handled by sample times.

 %% The decimation is only performed if the block is enabled.

 %% All ports have different sample rate.

 %%

 %% Note: the usage of the enable should really be protected such that

 %% each task has its own enable state. In this example, the enable

 %% occurs immediately which may or may not be the expected behavior.

 %%

 %function Outputs(block, system) Output

49-19

49 Real-Time and Embedded Systems in Embedded Coder

 %assign portIdxName = ["InputPortIdx0","OutputPortIdx0","OutputPortIdx1"]

 %assign portTID = [%<LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")>, ...

 %<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")>, ...

 %<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")>]

 %foreach i = 3

 %assign portName = portIdxName[i]

 %assign tid = portTID[i]

 if (%<LibIsSFcnSampleHit(portName)>) {

 %<OutputsForTID(block,system,tid)>

 }

 %endforeach

 %endfunction

 %function OutputsForTID(block, system, tid) Output

 /* %<Type> Block: %<Name> */

 %assign enable = LibBlockInputSignal(0, "", "", 0)

 %assign enabled = LibBlockIWork(0, "", "", 0)

 %assign signal = LibBlockInputSignal(1, "", "", 0)

 %switch(tid)

 %case LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")

 %if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

 %% Only check the enable signal on a major time step.

 if (%<LibIsMajorTimeStep()>) {

 %<enabled> = (%<enable> > 0.0);

 }

 %else

 %<enabled> = (%<enable> > 0.0);

 %endif

 %break

 %case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")

 if (%<enabled>) {

 %assign y = LibBlockOutputSignal(0, "", "", 0)

 %<y> = %<signal>;

 }

 %break

 %case LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")

 if (%<enabled>) {

 %assign y = LibBlockOutputSignal(1, "", "", 0)

 %<y> = %<signal>;

 }

 %break

 %default

 %% error it out

 %endswitch

 %endfunction

%% [EOF] sfun_multirate.tlc

49-20

 Deploy Generated Standalone Executable Programs To Target Hardware

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2

49-21

49 Real-Time and Embedded Systems in Embedded Coder

Deploy Generated Component Software to Application Target
Platforms

The code generator supports integration of generated code with operating systems and
processors. For details, see “Embedded Coder Supported Hardware” on page 68-2.

Interface to an Example Real-Time Operating System (VxWorks®)

This example shows how to simulate and generate code for asynchronous events on an
example RTOS (VxWorks).

The operating system integration techniques that are demonstrated in this example use
one or more blocks the blocks in the vxlib1 library. These blocks provide starting point
examples to help you develop custom blocks for your target environment.

Example Model

Open the rtwdemo_vxworks model.

model = 'rtwdemo_vxworks';

open_system(model);

%

49-22

 Deploy Generated Component Software to Application Target Platforms

Model Description

The example model contains two asynchronously executed subsystems, Count and
Algorithm. Count executes at interrupt level. Algorithm executes in an asynchronous
task. The generated code for these blocks is tailored for the VxWorks® operating system.
However, you can modify the Async Interrupt and Task Sync blocks to generate code
for your run-time environment whether you are using an operating system or not.

49-23

49 Real-Time and Embedded Systems in Embedded Coder

Related Information

• Async Interrupt (Simulink Coder)
• Task Sync (Simulink Coder)
• “Generate Interrupt Service Routines” (Simulink Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Create a Customized Asynchronous Library” (Simulink Coder)
• “Import Asynchronous Event Data for Simulation” (Simulink Coder)
• “Load Data to Root-Level Input Ports” (Simulink)
• “Asynchronous Events” (Simulink Coder)
• “Rate Transitions and Asynchronous Blocks” (Simulink Coder)
• “Asynchronous Support Limitations” (Simulink Coder)

Multirate Modeling in Multitasking Mode (VxWorks® OS)

This example generates code for a multirate discrete-time model configured for a
multitasking operating system target (VxWorks®). The model contains two sample
times. Inport block 1 and Inport block 2 specify 1-second and 2-second sample times,
respectively, which are enforced by the Periodic sample time constraint solver
configuration parameter setting. The solver is set for multitasking operation, which
means a Rate Transition block is required to ensure that data integrity is enforced
when the 1-second task preempts the 2-second task. Simulink® and the code generator
enforce proper rate transitions. This model specifies an explicit Rate Transition block.
Alternatively, you can instruct Simulink® to insert this block for you by setting the
Automatically handle data transfers between tasks solver configuration parameter.

The model is configured to display sample-time colors upon diagram update. Red
represents the fastest discrete sample time in the model, green represents the second
fastest, and yellow represents mixed sample times. Click the Display Sample Time
Colors button to update the diagram and show sample-time colors.

Example Model

model = 'rtwdemo_mrmtos';

open_system(model);

49-24

 Deploy Generated Component Software to Application Target Platforms

More About• “Design Models for Generated Embedded Code Deployment” on page 1-2

49-25

50

Export Code Generated from Model
to External Application in Embedded
Coder

• “Control Generation of Function Prototypes” on page 50-2
• “Control Generation of C++ Class Interfaces” on page 50-4

50 Export Code Generated from Model to External Application in Embedded Coder

Control Generation of Function Prototypes

The Embedded Coder software provides a Configure Model Functions button, located
on the Code Generation > Interface pane of the Configuration Parameters dialog box,
that allows you to control the model function prototypes that are generated for ERT-
based models.

By default, the function prototype of an ERT-based model's generated model_step
function resembles the following:
void model_step(void);

The function prototype of an ERT-based model's generated model_initialize function
resembles the following:
void model_initialize(void);

(For more detailed information about the default calling interface for the model_step
function, see the model_step reference page.)

The Configure Model Functions button on the Interface pane provides you flexible
control over the model function prototypes that are generated for your model. Clicking
Configure Model Functions launches a Model Interface dialog box. Based on the
Function specification value you specify for your model function (supported values
include Default model initialize and step functions and Model specific
C prototypes), you can preview and modify the function prototypes. Once you validate
and apply your changes, you can generate code based on your function prototype
modifications.

For more information about using the Configure Model Functions button and the
Model Interface dialog box, see “Sample Procedure for Configuring Function Prototypes”
on page 26-11 and the example model rtwdemo_fcnprotoctrl, which is preconfigured
to demonstrate function prototype control.

Alternatively, you can use function prototype control functions to programmatically
control model function prototypes. For more information, see “Configure Function
Prototypes Programmatically” on page 26-16“Configure Function Prototypes
Programmatically” on page 26-16.

You can also control model function prototypes for nonvirtual subsystems, if you generate
subsystem code using right-click build. To launch the Model Interface for subsystem
dialog box, use the RTW.configSubsystemBuild function.

50-2

 Control Generation of Function Prototypes

Right-click building the subsystem generates the step and initialization functions
according to the customizations you make. For more information, see “Configure
Function Prototypes for Nonvirtual Subsystems” on page 26-9.

For limitations that apply, see “Function Prototype Control Limitations” on page 26-21.

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2
• “Entry-Point Functions and Scheduling” on page 25-2
• “Generate Component Source Code for Export to External Code Base” on page 39-51
• “Export-Function Models” (Simulink)

50-3

50 Export Code Generated from Model to External Application in Embedded Coder

Control Generation of C++ Class Interfaces

Using the Code interface packaging (Simulink Coder) option C++ class, on the
Code Generation > Interface pane of the Configuration Parameters dialog box, you
can generate a C++ class interface to model code. The generated interface encapsulates
required model data into C++ class attributes and model entry point functions into C++
class methods. The benefits of C++ class encapsulation include:

• Greater control over access to model data
• Ability to multiply instantiate model classes
• Easier integration of model code into C++ programming environments

C++ class encapsulation also works for right-click builds of nonvirtual subsystems.
(For information on requirements that apply, see “Configure C++ Class Interfaces for
Nonvirtual Subsystems” on page 26-44.)

The general procedure for generating C++ class interfaces to model code is as follows:

1 Configure your model to use an ert.tlc system target file provided by MathWorks.
2 Select the C++ language for your model.
3 Select C++ class code interface packaging for your model.
4 Optionally, configure related C++ class interface settings for your model code, using

either a graphical user interface (GUI) or application programming interface (API).
5 Generate model code and examine the results.

To get started with an example, see “Simple Use of C++ Class Control” on page 26-24.
For more details about configuring C++ class interfaces for your model code, see
“Customize C++ Class Interfaces Using Graphical Interfaces” on page 26-31 and
“Customize C++ Class Interfaces Programmatically” on page 26-45. For limitations that
apply, see “C++ Class Interface Control Limitations” on page 26-50.

Note: For an example of C++ class code generation, see the example model
rtwdemo_cppclass.

More About
• “Design Models for Generated Embedded Code Deployment” on page 1-2

50-4

 Control Generation of C++ Class Interfaces

• “Entry-Point Functions and Scheduling” on page 25-2
• “Generate Component Source Code for Export to External Code Base” on page 39-51
• “Export-Function Models” (Simulink)

50-5

51

Code Replacement Customization for
Simulink Models in Embedded Coder

• “What Is Code Replacement Customization?” on page 51-3
• “Code You Can Replace From Simulink Models” on page 51-7
• “Develop a Code Replacement Library” on page 51-27
• “Quick Start Library Development” on page 51-28
• “Identify Code Replacement Requirements” on page 51-38
• “Prepare for Code Replacement Library Development” on page 51-41
• “Define Code Replacement Mappings” on page 51-42
• “Specify Build Information for Replacement Code” on page 51-59
• “Register Code Replacement Mappings” on page 51-68
• “Troubleshoot Code Replacement Library Registration” on page 51-75
• “Verify Code Replacements” on page 51-76
• “Troubleshoot Code Replacement Misses” on page 51-86
• “Deploy Code Replacement Library” on page 51-93
• “Math Function Code Replacement” on page 51-94
• “Memory Function Code Replacement” on page 51-96
• “Nonfinite Function Code Replacement” on page 51-99
• “Semaphore and Mutex Function Replacement” on page 51-102
• “Algorithm-Based Code Replacement” on page 51-109
• “Lookup Table Function Code Replacement” on page 51-112
• “Data Alignment for Code Replacement” on page 51-133
• “Replace MATLAB Functions with Custom Code Using coder.replace” on page

51-142
• “Replace coder.ceval Calls to External Functions” on page 51-143

51 Code Replacement Customization for Simulink Models in Embedded Coder

• “Replace MATLAB Functions Specified in MATLAB Function Blocks” on page
51-148

• “Reserved Identifiers and Code Replacement” on page 51-152
• “Customize Match and Replacement Process” on page 51-153
• “Scalar Operator Code Replacement” on page 51-168
• “Addition and Subtraction Operator Code Replacement” on page 51-170
• “Small Matrix Operation to Processor Code Replacement” on page 51-174
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

51-178
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

51-186
• “Remap Operator Output to Function Input” on page 51-192
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Binary-Point-Only Scaling Code Replacement” on page 51-203
• “Slope Bias Scaling Code Replacement” on page 51-207
• “Net Slope Scaling Code Replacement” on page 51-211
• “Equal Slope and Zero Net Bias Code Replacement” on page 51-218
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Shift Left Operations and Code Replacement” on page 51-226

51-2

 What Is Code Replacement Customization?

What Is Code Replacement Customization?

Customize how and when the code generator replaces C/C++ code that it generates by
default for functions and operators by developing a custom code replacement library. You
can develop libraries interactively with the Code Replacement Tool or programmatically.

• Develop libraries tailored to specific application requirements
• Add identifiers to the list of reserved keywords the code generator considers during

code replacement
• Customize the code generator’s match and replacement process for functions

To get started, “Quick Start Library Development” on page 51-28.

Code Replacement Match and Replacement Process

When the code generator encounters a call site for a function or operator, it:

1 Creates and partially populates a code replacement entry object with the function or
operator name or key and conceptual arguments.

2 Uses the entry object to query the configured code replacement library for a
conceptual representation match. The code generator searches the tables in a code
replacement library for a match in the order that the tables appear in the library.
When searching for a match, the code generator takes into account:

• Conceptual name or key
• Arguments, including quantity, type, type qualifiers, and complexity
• Algorithm (computation method)
• Fixed-point saturation and rounding modes
• Priority

3 When a match exists, the code generator returns a code replacement object, fully
populated with the conceptual representation, implementation representation,
and priority. If the code generator finds multiple matches within a table, the entry
priority determines the match. The priority can range from 0 to 100. The highest
priority is 0. The code generator uses a higher-priority entry over a similar entry
with a lower priority.

4 Uses the C or C++ replacement function prototype in the code replacement object to
generate code.

51-3

51 Code Replacement Customization for Simulink Models in Embedded Coder

Code Replacement Customization Limitations

• Code replacement verification — It is possible that code replacement behaves
differently than you expect. For example, data types that you observe in code
generator input might not match what the code generator uses as intermediate data
types during an operation. Verify code replacements by examining generated code.
See “Verify Code Replacements” on page 51-76.

• Tokens in file paths—You can include tokens in file paths when specifying build
information for a code replacement entry by using the programming interface only.
The ability to include tokens is not available from the Code Replacement Tool. See
“Specify Build Information for Replacement Code” on page 51-59.

• Addition and subtraction operation replacements—See“Addition and Subtraction
Operator Code Replacement” on page 51-170 for relevant limitations.

• Data alignment—

• Not supported for

• Arguments associated with a built-in custom storage class with DataScope set
to Exported or the imported built-in custom storage class GetSet

• Software-in-the-loop (SIL)
• Processor-in-the-loop (PIL)
• Model reference parameters
• Exported functions in Stateflow charts
• Replaced functions that are generated with C function prototype control or C++

class I/O arguments step method and that use root-level I/O variables
• Replaced functions that are generated with the AUTOSAR system target file

and that use root-level I/O or AUTOSAR inter-runnable access functions
• If the following conditions exist, the code generator includes data alignment

directives for root-level I/O variables in the ert_main.c or ert_main.cpp file it
produces:

• Compiler supports global variable alignment
• Generate an example main program (select Configuration Parameters > All

Parameters > Generate an example main program)
• Generate a reusable function interface for the model (set Configuration

Parameters > Code Generation > Interface > Code interface packaging
to Reusable function)

51-4

 What Is Code Replacement Customization?

• Function uses root-level I/O variables that are passed in as individual
arguments (set Configuration Parameters > Code Generation > Interface
> Pass root-level I/O asto Individual arguments)

• Replaced function uses a root-level I/O variable
• Replaced function imposes alignment requirements

If you discard the generated example main program, align used root-level I/O
variables correctly.

If you choose not to generate an example main program in this case, the code
generator does not replace the function.

• If a replacement imposes alignment requirements on the shared utility interface
arguments, the code generator does not honor data alignment. Under these
conditions, replacement does not occur. Replacement is allowed if the registered
data alignment type specification supports alignment of local variables, and the
replacement involves only local variables.

• For Simulink.Bus:

• If user registered alignment specifications do not support structure field
alignment, aligning Simulink.Bus objects is not supported unless the
Simulink.Bus is imported.

• When aligning a Simulink.Bus data object, the elements in the bus object are
aligned on the same boundary. The boundary is the lowest common multiple of
the alignment requirements for each individual bus element.

• When you specify alignment for functions that occur in a model reference
hierarchy, and multiple models in the hierarchy operate on the same function
data, the bottommost model dictates alignment for the rest of the hierarchy.
If the alignment requirement for a function in a model higher in the hierarchy
cannot be honored due to the alignment set by a model lower in the hierarchy, the
replacement in the higher model does not occur. In some cases, an error message
is generated. To work around this issue, if the shared data is represented by a bus
or signal object, manually set the alignment property on the shared data by setting
the alignment property of the Simulink.Bus or Simulink.Signal object.

• It is your responsibility to honor the Alignment property setting for custom
storage classes that you create.

See “Data Alignment for Code Replacement” on page 51-133.
• coder.replace function — See coder.replace for relevant limitations.

51-5

51 Code Replacement Customization for Simulink Models in Embedded Coder

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Develop a Code Replacement Library” on page 51-27
• “Quick Start Library Development” on page 51-28
• “What Is Code Replacement?” on page 37-2

51-6

 Code You Can Replace From Simulink Models

Code You Can Replace From Simulink Models

Code that the code generator replaces depends on the code replacement library (CRL)
that you use. By default, the code generator does not apply a code replacement library.
Your choice of libraries is dependent on product licensing and whether you have access to
custom libraries.

For information on how to explore functions and operators that a code replacement
library supports, see “Choose a Code Replacement Library” on page 38-9 license
and want to develop a custom code replacement library, see Code Replacement
Customization.

In this section...

“Math Functions – Simulink Support” on page 51-7
“Math Functions – Stateflow Support” on page 51-13
“Memory Functions” on page 51-18
“Nonfinite Functions” on page 51-19
“Mutex and Semaphore Functions” on page 51-20
“Operators” on page 51-21

Math Functions – Simulink Support

When generating C/C++ code from a Simulink model, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

acos Floating point Scalar Real
Complex input/complex output
Real input/complex output

acosd2 Floating point Scalar
Vector

Real
Complex

51-7

51 Code Replacement Customization for Simulink Models in Embedded Coder

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Matrix
acosh Floating point Scalar

Vector
Matrix

Real
Complex input/complex output
Real input/complex output

acot2 Floating point Scalar
Vector
Matrix

Real
Complex

acotd2 Floating point Scalar
Vector
Matrix

Real
Complex

acoth2 Floating point Scalar
Vector
Matrix

Real
Complex

acsc2 Floating point Scalar
Vector
Matrix

Real
Complex

acscd2 Floating point Scalar
Vector
Matrix

Real
Complex

acsch2 Floating point Scalar
Vector
Matrix

Real
Complex

asec2 Floating point Scalar
Vector
Matrix

Real
Complex

asecd2 Floating point Scalar
Vector
Matrix

Real
Complex

asech2 Floating point Scalar
Vector
Matrix

Real
Complex

51-8

 Code You Can Replace From Simulink Models

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

asin Floating point Scalar Real
Complex input/complex output
Real input/complex output

asind2 Floating point Scalar
Vector
Matrix

Real
Complex

asinh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

atan Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

atan2 Floating point Scalar
Vector
Matrix

Real

atan2d2 Floating point Scalar
Vector
Matrix

Real

atand2 Floating point Scalar
Vector
Matrix

Real
Complex

atanh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cos3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

cosd2 Floating point Scalar
Vector
Matrix

Real
Complex

51-9

51 Code Replacement Customization for Simulink Models in Embedded Coder

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

cosh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

cot2 Floating point Scalar
Vector
Matrix

Real
Complex

cotd2 Floating point Scalar
Vector
Matrix

Real
Complex

coth2 Floating point Scalar
Vector
Matrix

Real
Complex

csc2 Floating point Scalar
Vector
Matrix

Real
Complex

cscd2 Floating point Scalar
Vector
Matrix

Real
Complex

csch2 Floating point Scalar
Vector
Matrix

Real
Complex

exactrSqrt Integer
Floating point

Scalar Real

exp Floating point Scalar
Vector
Matrix

Real

fix Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

fmod4 Floating point Scalar Real

frexp Floating point Scalar Real

51-10

 Code You Can Replace From Simulink Models

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

hypot Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real
ln Floating point Scalar Real
log Floating point Scalar

Vector
Matrix

Real

log10 Floating point Scalar
Vector
Matrix

Real

log22 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point
Fixed point

Scalar Real

min Integer
Floating point
Fixed point

Scalar Real

mod Integer
Floating point

Scalar
Vector
Matrix

Real

pow Floating point Scalar
Vector
Matrix

Real

rem Floating point Scalar
Vector
Matrix

Real

round Floating point Scalar Real

51-11

51 Code Replacement Customization for Simulink Models in Embedded Coder

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

rSqrt Integer
Floating point

Scalar
Vector
Matrix

Real

saturate Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

sec2 Floating point Scalar
Vector
Matrix

Real
Complex

secd2 Floating point Scalar
Vector
Matrix

Real
Complex

sech2 Floating point Scalar
Vector
Matrix

Real
Complex

sign Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

signPow Floating point Scalar
Vector
Matrix

Real

sin3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

sincos3 Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

sind2 Floating point Scalar
Vector
Matrix

Real
Complex

sinh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

51-12

 Code You Can Replace From Simulink Models

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

sqrt Integer
Floating point
Fixed point

Scalar
Vector
Matrix

Real

tan Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

tand2 Floating point Scalar
Vector
Matrix

Real
Complex

tanh Floating point Scalar
Vector
Matrix

Real
Complex input/complex output
Real input/complex output

1 Wrap on integer overflow only. Clear block parameter Saturate on integer overflow.

2 Only when used with the MATLAB Function block.

3 Supports the CORDIC approximation method.

4 Stateflow support only.

Math Functions – Stateflow Support

When generating C/C++ code from Stateflow charts, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Integer
Floating point

Scalar Real

acos2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output

51-13

51 Code Replacement Customization for Simulink Models in Embedded Coder

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Real input/complex output

acosd3 Floating point Scalar
Vector
Matrix

Real
Complex

acot3 Floating point Scalar
Vector
Matrix

Real
Complex

acotd3 Floating point Scalar
Vector
Matrix

Real
Complex

acoth3,5 Floating point Scalar
Vector
Matrix

Real
Complex

acsc3 Floating point Scalar
Vector
Matrix

Real
Complex

acscd3 Floating point Scalar
Vector
Matrix

Real
Complex

acsch3 Floating point Scalar
Vector
Matrix

Real
Complex

asec3 Floating point Scalar
Vector
Matrix

Real
Complex

asecd3 Floating point Scalar
Vector
Matrix

Real
Complex

asech3 Floating point Scalar
Vector
Matrix

Real
Complex

51-14

 Code You Can Replace From Simulink Models

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

asin2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

asind3 Floating point Scalar
Vector
Matrix

Real
Complex

atan2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

atan22 Floating point Scalar
Vector
Matrix

Real

atan2d3 Floating point Scalar
Vector
Matrix

Real

atand3 Floating point Scalar
Vector
Matrix

Real
Complex

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cos3 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

cosd3 Floating point Scalar
Vector
Matrix

Real
Complex

51-15

51 Code Replacement Customization for Simulink Models in Embedded Coder

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

cosh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

cot3 Floating point Scalar
Vector
Matrix

Real
Complex

cotd3 Floating point Scalar
Vector
Matrix

Real
Complex

coth3 Floating point Scalar
Vector
Matrix

Real
Complex

csc3 Floating point Scalar
Vector
Matrix

Real
Complex

cscd3 Floating point Scalar
Vector
Matrix

Real
Complex

csch3 Floating point Scalar
Vector
Matrix

Real
Complex

exp Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

fmod Floating point Scalar Real

hypot3 Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real

51-16

 Code You Can Replace From Simulink Models

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

log2 Floating point Scalar
Vector
Matrix

Real
Complex

log102 Floating point Scalar
Vector
Matrix

Real
Complex

log23 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point

Scalar Real

min Integer
Floating point

Scalar Real

pow Floating point Scalar Real

sec3 Floating point Scalar
Vector
Matrix

Real
Complex

secd3 Floating point Scalar
Vector
Matrix

Real
Complex

sech3 Floating point Scalar
Vector
Matrix

Real
Complex

sin2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

sind3 Floating point Scalar
Vector
Matrix

Real
Complex

51-17

51 Code Replacement Customization for Simulink Models in Embedded Coder

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

sinh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

sqrt Floating point Scalar Real

tan2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

tand3 Floating point Scalar
Vector
Matrix

Real
Complex

tanh2 Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex
output
Real input/complex output

1 Wrap on integer overflow only.

2 For models involving vectors or matrices, the code generator replaces only functions coded in the
MATLAB action language.

3 The code generator replaces only functions coded in the MATLAB action language.

Memory Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following memory
functions with application-specific implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

memcmp Void pointer (void*) Scalar Real

51-18

 Code You Can Replace From Simulink Models

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Vector
Matrix

Complex

memcpy Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset2zero Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

Some target processors provide optimized functions to set memory to zero. Use the code
replacement library programming interface to replace the memset2zero function with
more efficient target-specific functions.

Nonfinite Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following nonfinite
functions with application-specific implementations.

Function Data Type Support Scalar, Vector,
Matrix Support

Real, Complex Support

getInf Floating point Scalar Real
getMinusInf Floating point Scalar Real
getNaN Floating point Scalar Real
rtIsInf Floating point Scalar Real

Complex
rtIsNaN Floating point Scalar Real

Complex

51-19

51 Code Replacement Customization for Simulink Models in Embedded Coder

Mutex and Semaphore Functions

Mutex and semaphore functions control access to resources shared by multiple processes
in multicore target environments. MathWorks provides code replacement libraries that
support mutex and semaphore replacement for Rate Transition and Task Transition
blocks on Windows, Linux, Mac, and VxWorks platforms.

Generated mutex and semaphore code typically consists of:

• In model initialization code, an initialization function call to create a mutex or
semaphore to control entry to a critical section of code.

• In model step code:

• Before code for a data transfer between tasks enters the critical section, mutex
lock or semaphore wait function calls to reserve a critical section of code.

• After code for a data transfer between tasks finishes executing the critical section,
mutex unlock or semaphore post function calls to release the critical section of
code.

• In model termination code, an optional destroy function call to explicitly delete the
mutex or semaphore.

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following mutex and
semaphore functions with application-specific implementations.

Function Key

Mutex Destroy RTW_MUTEX_DESTROY

Mutex Init RTW_MUTEX_INIT

Mutex Lock RTW_MUTEX_LOCK

Mutex Unlock RTW_MUTEX_UNLOCK

Semaphore Destroy RTW_SEM_DESTROY

Semaphore Init RTW_SEM_INIT

Semaphore Post RTW_SEM_POST

Semaphore Wait RTW_SEM_WAIT

51-20

 Code You Can Replace From Simulink Models

Operators

When generating C/C++ code from a Simulink model, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following operators with application-specific
implementations.

Mixed data type support indicates that you can specify different data types for different
inputs.

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Addition (+)1 RTW_OP_ADD Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Subtraction (-)1 RTW_OP_MINUS Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Multiplication
(*)2

RTW_OP_MUL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Division (/) RTW_OP_DIV Integer
Floating point
Fixed-point
Mixed

Scalar Real
Complex

Data type
conversion (cast)

RTW_OP_CAST Integer
Floating point3

Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Shift left (<<) RTW_OP_SL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix4

Real

51-21

51 Code Replacement Customization for Simulink Models in Embedded Coder

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Shift right
arithmetic (>>)5

RTW_OP_SRA Integer
Fixed-point
Mixed

Scalar
Vector
Matrix4

Real

Shift right
logical (>>)

RTW_OP_SRL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix4

Real

Element-
wise matrix
multiplication
(.*)6

RTW_OP_ELEM_MUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix right
division (/)

RTW_OP_RDIV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix left
division (\)

RTW_OP_LDIV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Matrix inversion
(inv)

RTW_OP_INV Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Complex
conjugation

RTW_OP_CONJUGATE Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Transposition
(.')

RTW_OP_TRANS Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

51-22

 Code You Can Replace From Simulink Models

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Hermitian
(complex
conjugate)
transposition (')

RTW_OP_HERMITIAN Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with
transposition2

RTW_OP_TRMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with Hermitian
transposition2

RTW_OP_HMMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
followed by shift
right arithmetic
(u1*u2>>u3)7

RTW_OP_MUL_SRA Integer
Fixed-point

Scalar Real

Multiplication
followed
by division
(u1*u2/u3)8

RTW_OP_MULDIV Integer
Fixed-point

Scalar Real

Greater than (>) RTW_OP_GREATER_

THAN

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Greater than or
equal (>=)

RTW_OP_GREATER_

THAN_OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than (<) RTW_OP_LESS_THAN Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

51-23

51 Code Replacement Customization for Simulink Models in Embedded Coder

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

Less than or
equal (<=)

RTW_OP_LESS_THAN_

OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Equal (==) RTW_OP_EQUAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Not equal (!=) RTW_OP_NOT_EQUAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

51-24

 Code You Can Replace From Simulink Models

Operator Key Data Type Support Scalar, Vector,
Matrix Support

Real,
Complex
Support

1 See “Addition and Subtraction Operator Code Replacement” on page 51-170
for details to consider when defining mappings for addition and subtraction code
replacements.

2 Can map to Basic Linear Algebra Subroutine (BLAS) multiplication functions.

3 Scaled floating point is not supported.

4 Shift operator replacement with matrix data is supported for shift values that you
specify with an input port. Replacement is not supported for shift values that you
specify in a block parameter dialog.

5 The code generator converts some arithmetic shift rights to logical shift rights. To
avoid unexpected results, when creating a code replacement library that includes a table
entry for an arithmetic shift right implementation, also include an entry for a logical
shift right implementation.

6 Use the multiplication (*) operator (RTW_OP_MUL) for scalar multiplication.

7 Requires scalar, real, or fixed-point data types with zero bias; output type
of the multiplication operation to accommodate all possible output values;
shift operand is an unsigned integer; and net slope is equal to 1 (U1_slope
* U2_slope == Mul_output_slope and Mul_output_slope ==
output_slope_of_shift_operation).

8 Requires scalar, real, or fixed-point data types with zero bias; output type of the
multiplication operation to accommodate all possible output values; and net slope
is equal to 1 (U1_slope * U2_slope == Mul_output_slope == U3_slope *
Div_output_slope).

More About
• “Lookup Table Function Code Replacement” on page 51-112
• “Develop a Code Replacement Library” on page 51-27
• “Quick Start Library Development” on page 51-28

51-25

51 Code Replacement Customization for Simulink Models in Embedded Coder

• “What Is Code Replacement?” on page 37-2

51-26

 Develop a Code Replacement Library

Develop a Code Replacement Library

Iterate through the following steps, as necessary, to develop a code replacement library:

1 “Identify Code Replacement Requirements” on page 51-38
2 “Prepare for Code Replacement Library Development” on page 51-41
3 “Define Code Replacement Mappings” on page 51-42
4 “Specify Build Information for Replacement Code” on page 51-59
5 “Register Code Replacement Mappings” on page 51-68
6 “Verify Code Replacements” on page 51-76
7 “Deploy Code Replacement Library” on page 51-93

To get started, see “Identify Code Replacement Requirements” on page 51-38.

To experiment with the process and tools, see “Quick Start Library Development” on
page 51-28.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Identify Code Replacement Requirements” on page 51-38
• “Quick Start Library Development” on page 51-28
• “What Is Code Replacement Customization?” on page 51-3

51-27

51 Code Replacement Customization for Simulink Models in Embedded Coder

Quick Start Library Development

This example shows how to develop a code replacement library that includes an entry for
generating replacement code for the math function sin. You use the Code Replacement
Tool.

Prerequisites

To complete this example, install the following software:

• MATLAB
• Simulink
• Simulink Coder
• Embedded Coder

For instructions on installing MathWorks products, see the “Installation and Activation”
(Installation, Licensing, and Activation). If you have installed MATLAB and want to see
what other MathWorks products are installed, in the Command Window, enter ver.

For a list of supported compilers, see http://www.mathworks.com/support/compilers/
current_release/.

Open the Code Replacement Tool

1 Start a new MATLAB session.
2 Create or navigate (cd) to an empty folder.
3 At the command prompt, enter the crtool command. The Code Replacement Tool

window opens.

Create Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table crl_table_sinfcn and click Apply. Later, when

you save the table, the tool saves it with the file name crl_table_sinfcn.m.

51-28

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

 Quick Start Library Development

Create Table Entry

Create a table entry that maps a sin function with double input and double output to
a custom implementation function.

1 In the left pane, select table crl_table_sinfcn. Then, select File > New entry >
Function. The new entry appears in the middle pane, initially without a name.

2 In the middle pane, select the new entry.
3 In the right pane, on the Mapping Information tab, from the Function menu,

select sin.
4 Leave Algorithm set to Unspecified, and leave parameters in the Conceptual

function group set to default values.
5 In the Replacement function group, name the replacement function sin_dbl.
6 Leave the remaining parameters in the Replacement function group set to default

values.

51-29

51 Code Replacement Customization for Simulink Models in Embedded Coder

7 Click Apply. The tool updates the Function signature preview to reflect the
specified replacement function name.

8 Scroll to the bottom of the Mapping Information tab and click Validate entry.
The tool validates your entry.

The following figure shows the completed mapping information.

51-30

 Quick Start Library Development

51-31

51 Code Replacement Customization for Simulink Models in Embedded Coder

Specify Build Information for Replacement Code

1 On the Build Information tab, for the Implementation header file parameter,
enter sin_dbl.h.

2 Leave the remaining parameters set to default values.
3 Click Apply.

4 Optionally, you can revalidate the entry. Return to the Mapping Information tab
and click Validate entry.

Create Another Table Entry

Create an entry that maps a sin function with single input and double output to
a custom implementation function named sin_sgl. Create the entry by copying and
pasting the sin_dbl entry.

1 In the middle pane, select the sin_dbl entry.
2 Select Edit > Copy
3 Select Edit > Paste
4 On the Mapping Information tab, in the Conceptual function section, set the

data type of input argument u1 to single.
5 In the Replacement function section, name the function sin_sgl. Set the data

type of input argument u1 to single.
6 Click Apply. Note the changes that appear for the Function signature preview.
7 On the Build Information tab, for the Implementation header file parameter,

enter sin_sgl.h. Leave the remaining parameters set to default values and click
Apply.

Validate the Code Replacement Table

1 Select Actions > Validate table.

51-32

 Quick Start Library Development

2 If the tool reports errors, fix them, and rerun the validation. Repeat fixing and
validating errors until the tool does not report errors. The following figure shows a
validation report.

Save the Code Replacement Table

Save the code replacement table to a MATLAB file in your working folder. Select File >
Save table. By default, the tool uses the table name to name the file. For this example,
the tool saves the table in the file crl_table_sinfcn.m.

Review the Code Replacement Table Definition

Consider reviewing the MATLAB code for your code replacement table definition. After
using the tool to create an initial version of a table definition file, you can update,
enhance, or copy the file in a text editor.

To review it, in MATLAB or another text editor, open the file crl_table_sinfcn.m.

Generate a Registration File

Before you can use your code replacement table, you must register it as part of a code
replacement library. Use the Code Replacement Tool to generate a registration file.

1 In the Code Replacement Tool, select File > Generate registration file.
2 In the Generate registration file dialog box, edit the dialog box fields to match the

following figure, and then click OK.

51-33

51 Code Replacement Customization for Simulink Models in Embedded Coder

3 In the Select location dialog box, specify a location for the registration file. The
location must be on the MATLAB path or in the current working folder. Save the file.
The tool saves the file as rtwTargetInfo.m.

Register the Code Replacement Table

At the command prompt, enter:

sl_refresh_customizations

Review and Test Code Replacements

Apply your code replacement library. Verify that the code generator makes code
replacements that you expect.

1 Check for errors. At the command line, invoke the table definition file. For example:

tbl = crl_table_sinfcn

tbl =

 TflTable with properties:

 Version: '1.0'

 ReservedSymbols: []

 StringResolutionMap: []

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 EnableTrace: 1

If an error exists in the definition file, the invocation triggers a message. Fix the
error and try again.

2 Use the Code Replacement Viewer to check your code replacement entries. For
example:

crviewer('Sin Function Example')

In the viewer, select entries in your table and verify that the content is what you
expect. The viewer can help you detect issues such as:

• Incorrect argument order.
• Conceptual argument names that do not match what the code generator expects.
• Incorrect priority settings.

51-34

 Quick Start Library Development

3 Identify an existing model or create a new model that includes a Trigonometric
Function block that is set to the sin function. For example:

4 Open the model and configure it for code generation with an Embedded Coder (ERT-
based) target.

5 See whether your library is listed as an available option for the Code Generation
> Interface > Code replacement library model configuration parameter. If it is,
select it.

If it is not listed, open the registration file, rtwTargetInfo.m. See whether you
entered the correct code replacement table name when you created the file. If you
hover the cursor over the selected library, a tool tip appears. This tip contains
information derived from your code replacement library registration file, such as the
library description and the list of tables it contains.

6 Configure the code generation report for code replacement analysis by setting the
following parameters:

• On the Code Generation > Report pane, select Create code generation
report and Open report automatically.

• On the Code Generation > Comments pane, select Include comments,
Simulink block / Stateflow object comments, and Simulink block
descriptions.

• On the All Parameters tab, select Code-to-model, Model-to-code, and
Summarize which blocks triggered code replacements.

7 Configure the model to generate code only. Before you build an executable, confirm
that the code generator is replacing code as expected.

8 Generate code for the model.
9 Review code replacement results in the Code Replacement Report section of the code

generation report.

51-35

51 Code Replacement Customization for Simulink Models in Embedded Coder

The report indicates that the code generator found a match and applied the
replacement code for the function sin_dbl.

10 Review the code replacements. In the model window, right-click the Trigonometric
Function block. Select C/C++ Code > Navigate to C/C++ Code. The code
generation report opens and highlights the code replacement in my_sin_func.c. In
this case, the code generator replaced sin with sin_dbl.

51-36

 Quick Start Library Development

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Develop a Code Replacement Library” on page 51-27
• “What Is Code Replacement Customization?” on page 51-3

51-37

51 Code Replacement Customization for Simulink Models in Embedded Coder

Identify Code Replacement Requirements

The first step to developing a code replacement library is to consider the following types
of requirements for the library.

Mapping Information Requirements

• Are you defining a code replacement mapping for the first time?
• Are you updating code replacement entries in an existing library? Or, are you creating

a new library?
• Are you rapid prototyping code replacements?
• Can you base your mappings on existing mappings?
• What type of code do you want to replace? Options include:

• Math operation
• Function
• BLAS operation
• CBLAS operation
• Net slope fixed-point operation
• Semaphore or mutex functions

• Do you want to change the inline or nonfinite behavior for functions?
• What specific functions and operations do you want to replace?
• What input and output arguments does the function or operator that you are

replacing take? For each argument, what is the data type, complexity, and
dimensionality?

• What does the prototype for your replacement code look like?

• What is the replacement function name?
• What are the input and output arguments?
• Are there return values?
• What is the data type, complexity, and dimensionality of each argument and

return value?

51-38

 Identify Code Replacement Requirements

Build Information Requirements

• Does your replacement function implementation require a header file? If yes, specify
the header file.

• If the replacement function implementation requires a header file, what is the path
for that file?

• Is the source file for the replacement function in your working folder? If not, you
can explicitly specify the source file name and extension. For example, if the file is
required in the generated makefile or specified in a build information object, specify
the source file.

• Does the replacement function use additional include files? If yes, what are they and
what are the paths for those files?

• Does the replacement function use additional source files? If yes, what are they and
what are the paths for those files?

• What compiler flags are required for compiling code that includes the replacement
code?

• What linker flags are required for building an executable that includes the
replacement code?

• Are the required header, source, and object files for building an executable that
includes your replacement code in the working folder for your project? If not, before
starting the build process, do you want the code generator to copy required files to the
build folder?

Registration Information Requirements

• What do you want to name your code replacement library?
• What code replacement tables do you want to include in the library? What are the file

names and paths for the tables?
• What is the purpose of the library? You can document the purpose as the library

description.
• Does the library apply to specific hardware devices? If yes, what devices?
• Are you developing a hierarchy of code replacement libraries? Is the library that you

are developing based (dependent) on another library? For example, you can specify a
general TI device library as the base library for a more specific TI C28x device
library.

51-39

51 Code Replacement Customization for Simulink Models in Embedded Coder

• Do you need to specify data alignment for the library? What data alignments are
required? For each specification, what type of alignment is required and for what
programming language?

Next, prepare for developing a library by reviewing a code replacement library
development checklist.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Develop a Code Replacement Library” on page 51-27
• “Prepare for Code Replacement Library Development” on page 51-41
• “What Is Code Replacement Customization?” on page 51-3

51-40

 Prepare for Code Replacement Library Development

Prepare for Code Replacement Library Development

After you identify your code replacement requirements, prepare for library development
by reviewing this checklist:

• Get familiar with the library development process.
• Decide whether to define code replacement mappings and produce a registration file

interactively with the Code Replacement Tool or programmatically.
• Identify or develop MATLAB code and Simulink models to test your code replacement

library.
• Consider the hierarchy and organization of your library. A library can consist

of multiple tables and each table can include multiple entries. How do you want
to organize the library to optimize reuse of tables and entries? For example, a
registration file can define code replacement tables organized in a hierarchy of code
replacement libraries based on entries that increase in specificity:

• Common entries
• Entries for TI devices
• Entries for TI C6xx devices
• Entries specific to the TI C67x device

• If support files, such as header files, additional source files, and dynamically linked
libraries are not in your current working folder, note their location. You need to
specify the paths for such files.

Next, based on your requirements and preparation, define code replacement mappings.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Identify Code Replacement Requirements” on page 51-38
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27
• “What Is Code Replacement Customization?” on page 51-3

51-41

51 Code Replacement Customization for Simulink Models in Embedded Coder

Define Code Replacement Mappings

After you prepare for library development, use your requirements to define code
replacement mappings. A code replacement mapping associates a conceptual
representation of a function or operator that is familiar to the code generator with a
custom implementation representation that specifies a C or C++ replacement function
prototype. You capture a mapping as an entry in a code replacement table:

• Interactively, by using the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

Choose an Approach for Defining Code Replacement Mappings

The following table lists situations to help you decide when to use the interactive or
programmatic approach.

Situation Approach

Defining mappings for the first
time.

Code Replacement Tool.

Rapid prototyping mappings. Code Replacement Tool to quickly generate, register,
and test mappings.

Developing a mapping as a
template or starting point for
defining similar mappings.

Code Replacement Tool to generate definition code
that you can copy and modify.

Modifying a registration file,
including copying and pasting
content.

MATLAB Editor to update the programming interface
directly.

Defining mappings that specify
attributes not available from
the Code Replacement Tool
(for example, sets of algorithm
parameters).

Programming interface.

Reusing existing code for new
mappings by copying, pasting,
and editing existing mappings.

Programming interface.

51-42

 Define Code Replacement Mappings

Define Mappings Interactively with the Code Replacement Tool

This example shows how to use the Code Replacement Tool to develop code replacement
mappings. The tool is ideal for getting started with developing mappings, rapid
prototyping, and developing a mapping to use as a starting point for defining similar
mappings.

Open the Code Replacement Tool

Do one of the following:

• In the Command Window, enter the command crtool.
• In the Configuration Parameters dialog box, navigate to All Parameters > Code

Generation > Code replacement library and click Custom.

An Embedded Coder license is not required to create a custom code replacement library.
However, you must have an Embedded Coder license to use a such a library.

By default, the tool displays, left to right, a root pane, a list pane, and a dialog pane. You
can manipulate the display:

• Drag boundaries to widen, narrow, shorten, or lengthen panes, and to resize table
columns.

• Select View > Show dialog pane to hide or display the right-most pane.
• Click a table column heading to sort the table based on contents of the selected

column.
• Right-click a table column heading and select Hide to remove the column from the

display. (You cannot hide the Name column.)

Create a Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table and click Apply. Later, when you save the table,

the tool uses the table name that you specify to name the file. For example, if you
enter the name my_sinfcn, the tool names the file my_sinfcn.m.

Create Table Entries

Create one or more table entries. Each entry maps the conceptual representation of a
function or operator to your implementation representation. The information that you
enter depends on the type of entry you create. Enter the following information:

51-43

51 Code Replacement Customization for Simulink Models in Embedded Coder

1 In the left pane, select the table to which you want to add the entry.
2 Select File > New entry > entry-type, where entry-type is one of:

• Math Operation
• Function
• BLAS Operation
• CBLAS Operation
• Net Slope Fixed-Point Operation
• Semaphore entry
• Customization entry

The new entry appears in the middle pane, initially without a name.
3 In the middle pane, select the new entry.
4 In the right pane, on the Mapping Information tab, from the Function or

Operation menu, select the function or operation that you want the code generator
to replace. Regardless of the entry type, make a selection from this menu. Your
selection determines what other information you specify.

Except for customization entries, you also specify information for your replacement
function prototype. You can also specify implementation attributes, such as the
rounding modes to apply.

5 If prompted, specify additional entry information that you want the code generator
to use when searching for a match. For example, when you select an addition or
subtraction operation, the tool prompts you to specify an algorithm (Cast before
operation or Cast after operation).

6 Review the conceptual argument information that the tool populates for the function
or operation. Conceptual input and output arguments represent arguments for
the function or operator being replaced. Conceptual arguments observe naming
conventions ('y1', 'u1', 'u2', ...) and data types familiar to the code generator.

If you do not want the data types for your implementation to be the same as the
conceptual argument types, clear the Make the conceptual and implementation
argument types the same check box. For example, most ANSI-C functions
operate on and return double data. Clear the check box if want to map a conceptual
representation of the function to an implementation representation that specifies an
argument and return value. For example, clear the check box to map the conceptual
representation of the function sin to an implementation representation that

51-44

 Define Code Replacement Mappings

specifies an argument and return value of type single (single sin(single)), of
type double (double sin(double). In this case, the code generator produces the
following code:

y = (single) sin(u1);

If you select Custom for a function entry, specify only conceptual argument
information.

7 Specify the name and argument information for your replacement function. As you
enter the information and click Apply, the tool updates the Function signature
preview.

8 Specify additional implementation attributes that apply. For example, depending on
the type and name of the entry that you specify, the tool prompts you to specify:

• Integer saturation mode
• Rounding modes
• Whether to allow inputs that include expressions
• Whether a function modifies internal or global state

9 Click Apply.

Validate Tables and Entries

The Code Replacement Tool provides a way to validate the syntax of code replacement
tables and table entries as you define them. If the tool finds validation errors, you can
address them and retry the validation. Repeat the process until the tool does not report
errors.

To Do

Validate table entries Select an entry, scroll to the bottom of the Mapping
Information tab, and click Validate entry.
Alternatively, select one or more entries, right-click,
and select Validate entries.

Validate a table Select the table. Then, select Actions > Validate
table.

Save a Table

When you save a table, the tool validates unvalidated content.

51-45

51 Code Replacement Customization for Simulink Models in Embedded Coder

1 Select File > Save table.
2 In the Browse For Folder dialog box, specify a location and name for the file.

Typically, you select a location on the MATLAB path. By default, the tool names the
file using the name that you specify for the table with the extension .m.

3 Click Save.

Open and Modify Tables

After saving a code replacement table, to make changes in the table:

1 Select File > Open table.
2 In the Import file dialog box, browse to the MATLAB file that contains the table.

Repeat the sequence to open and work on multiple tables.

If you open multiple tables, you can manage the tables together. For example, use the
tool to:

• Create new table entries.
• Delete entries.
• Copy and paste or cut and paste information between tables.

Define Mappings Programmatically

This example shows how to define a code replacement mapping programmatically. The
programming interface for defining code replacement table mappings is ideal for

• Modifying tables that you create with the Code Replacement Tool.
• Defining mappings for specialized entries that you cannot create with the Code

Replacement Tool.
• Replicating and modifying similar entries and tables.

Steps for defining a mapping programmatically are:

Create Code Replacement Table

1 Create a table definition file that contains a function definition. For example:
function hTable = crl_table_sinfcn()

2 Within the function body, create the table by calling the function RTW.TflTable.

51-46

 Define Code Replacement Mappings

hTable = RTW.TflTable;

Create Table Entry

For each function or operator that you want the code generator to replace, map
a conceptual representation of the function or operator to an implementation
representation as a table entry.

1 Within the body of a table definition file, create a code replacement entry object. Call
one of the following functions.

Entry Type Function

Math operation RTW.TflCOperationEntry

Function RTW.TflCFunctionEntry

BLAS operation RTW.TflBlasEntryGenerator

CBLAS operation RTW.TflCBlasEntryGenerator

Fixed-point addition
and subtraction
operations (support for
SlopesMustBeTheSame and
ZeroNetBias parameters)

RTW.TflCOperationEntryGenerator

Net slope fixed-point
operation

RTW.TflCOperationEntryGenerator_NetSlope

Semaphore or mutex entry RTW.TflCSemaphoreEntry

Custom function entry MyCustomFunctionEntry (where
MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntryML)

Custom operation entry MyCustomOperationEntry (where
MyCustomOperationEntry is a class derived from
RTW.TflCOperationEntryML)

For example:

hEnt = RTW.TflCFunctionEntry;

You can combine steps of creating the entry, setting entry parameters, creating
conceptual and implementation arguments, and adding the entry to a table with a

51-47

51 Code Replacement Customization for Simulink Models in Embedded Coder

single function call to registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry if you are creating an entry for a function and the
function implementation meets the following criteria:

• Implementation argument names and order match the names and order of
corresponding conceptual arguments.

• Input arguments are of the same type.
• The return and input argument names follow the code generator’s default naming

conventions:

• Return argument is y1.
• Input arguments are u1, u2, ..., un.

For example:

registerCFunctionEntry(hTable, 100, 1, 'sin', 'double', ...

 'sin_dbl', 'double', 'sin_dbl.h','','');

As another alternative, you can significantly reduce the amount of code that you write by
combining the steps of creating the entry and conceptual and implementation arguments
with a call to the createCRLEntry function. In this case, specify the conceptual and
implementation information as character vector specifications.

For example:

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

This approach does not support:

• C++ implementations
• Data alignment
• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, building

information)
• Semaphore and mutex function replacements

51-48

 Define Code Replacement Mappings

Set Entry Parameters

Set entry parameters, such as the priority, algorithm information, and implementation
(replacement) function name. Call the function listed in the following table for the entry
type that you created.

Entry Type Function

Math operation setTflCOperationEntryParameters

Function setTflCFunctionEntryParameters

BLAS operation setTflCOperationEntryParameters

CBLAS operation setTflCOperationEntryParameters

Fixed-point addition and subtraction
operations where there is a many-
to-one mapping, such as a mapping
for a range of fixed-point types to the
same replacement function (support
for SlopesMustBeTheSame and
ZeroNetBias parameters)

setTflCOperationEntryParameters

Net slope fixed-point operation setTflCOperationEntryParameters

Semaphore or mutex entry setTflCSemaphoreEntryParameters

Custom function entry setTflCFunctionEntryParameters

Custom operation entry setTflCOperationEntryParameters

To see a list of the parameters that you can set, at the command line, create a new entry
and omit the semicolon at the end of the command. For example:

hEnt = RTW.TflCFunctionEntry

hEnt =

 TflCFunctionEntry with properties:

 Implementation: [1x1 RTW.CImplementation]

 SlopesMustBeTheSame: 0

 BiasMustBeTheSame: 0

 AlgorithmParams: []

 ImplType: 'FCN_IMPL_FUNCT'

 AdditionalHeaderFiles: {0x1 cell}

 AdditionalSourceFiles: {0x1 cell}

51-49

51 Code Replacement Customization for Simulink Models in Embedded Coder

 AdditionalIncludePaths: {0x1 cell}

 AdditionalSourcePaths: {0x1 cell}

 AdditionalLinkObjs: {0x1 cell}

 AdditionalLinkObjsPaths: {0x1 cell}

 AdditionalLinkFlags: {0x1 cell}

 AdditionalCompileFlags: {0x1 cell}

 SearchPaths: {0x1 cell}

 Key: ''

 Priority: 100

 ConceptualArgs: [0x1 handle]

 EntryInfo: []

 GenCallback: ''

 GenFileName: ''

 SaturationMode: 'RTW_SATURATE_UNSPECIFIED'

 RoundingModes: {'RTW_ROUND_UNSPECIFIED'}

 TypeConversionMode: 'RTW_EXPLICIT_CONVERSION'

 AcceptExprInput: 1

 SideEffects: 0

 UsageCount: 0

 RecordedUsageCount: 0

 Description: ''

 StoreFcnReturnInLocalVar: 0

 TraceManager: [1x1 RTW.TflTraceManager]

To see the implementation parameters, enter:

hEnt.Implemenation

ans =

 CImplementation with properties:

 HeaderFile: ''

 SourceFile: ''

 HeaderPath: ''

 SourcePath: ''

 Return: []

 StructFieldMap: []

 Name: ''

 Arguments: [0x1 handle]

 ArgumentDescriptor: []

For example, to set entry parameters for the sin function and name your replacement
function sin_dbl, use the following function call:

51-50

 Define Code Replacement Mappings

setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Create Conceptual Arguments

Create conceptual arguments and add them to the entry’s array of conceptual arguments.

• Specify output arguments before input arguments.
• Specify argument names that comply with code generator argument naming

conventions:

• y1 for a return argument
• u1, u2, ..., un for input arguments

• Specify data types that are familiar to the code generator.
• The function signature, including argument naming, order, and attributes, must

fulfill the signature match sought by function or operator callers.
• The code generator determines the size of the value for an argument with an unsized

type, such as integer, based on hardware implementation configuration settings.

For each argument:

1 Identify whether the argument is for input or output, the name, and data type. If you
do not know what arguments to specify for a supported function or operation, use the
Code Replacement Tool to find them. For example, to find the conceptual arguments
for the sin function, open the tool, create a table, create a function entry, and in the
Function menu select sin.

2 Create and add the conceptual argument to an entry. You can choose a method from
the methods listed in this table.

If Then

You want simpler code or
want to explicitly specify
whether the argument
is scalar or nonscalar
(vector or matrix).

Call the function createAndAddConceptualArg. For
example:

createAndAddConceptualArg(hEnt, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

51-51

51 Code Replacement Customization for Simulink Models in Embedded Coder

If Then

The second argument specifies whether the argument is
scalar (RTW.TflArgNumeric orRTW.TflArgMatrix) .

You want to create an
argument based on
a built-in argument
definition (for example,
scalar or nonscalar).

Call getTflArgFromString to create the argument.
Then, call addConceptualArg to add the argument to
the entry.

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the second approach listed in the table for specifying the
conceptual output and input argument definitions for the sin function.

% Conceptual Args

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u1','double');

addConceptualArg(hEnt, arg);

Create Implementation Arguments

Create implementation arguments for the C or C++ replacement function and add them
to the entry.

• When replacing code, the code generator uses the argument names to determine how
it passes data to the implementation function.

51-52

 Define Code Replacement Mappings

• For function replacements, the order of implementation argument names must match
the order of the conceptual argument names.

• For operator replacements, the order of implementation argument names do not
have to match the order of the conceptual argument names. For example, for an
operator replacement for addition, y1=u1+u2, the conceptual arguments are y1, u1,
and u2, in that order. If the signature of your implementation function is t myAdd(t
u2, t u1), where t is a valid C type, based on the argument name matches, the
code generator passes the value of the first conceptual argument, u1, to the second
implementation argument of myAdd. The code generator passes the value of the
second conceptual argument, u2, to the first implementation argument of myAdd.

• For operator replacements, you can remap operator output arguments to
implementation function input arguments.

For each argument:

1 Identify whether the argument is for input or output, the name, and the data type.
2 Create and add the implementation argument to an entry. You can choose a method

from the methods listed in this table.

If Then

You want to populate
implementation
arguments as copies
of previously created
matching conceptual
arguments

Call the function
copyConceptualArgsToImplementation. For example:

copyConceptualArgsToImplementation(hEnt);

You want to create and
add implementation
arguments individually,
or vary argument
attributes, while
maintaining conceptual
argument order

Call functions createAndSetCImplementationReturn
andcreateAndAddImplementationArg . For example:

createAndSetCImplementationReturn(hEnt,

 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry,

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

51-53

51 Code Replacement Customization for Simulink Models in Embedded Coder

If Then
 'IOType', 'RTW_IO_INPUT',...

 'IsSigned', true,...

 'WordLength', 32, ...

 'FractionLength', 0);

51-54

 Define Code Replacement Mappings

If Then

You want to minimize
the amount of code,
or specify constant
arguments to pass to
the implementation
function

Create the argument with a call to the function
getTflArgFromString. Then, use the convenience
method setReturn or addArgument to specify whether
an argument is a return value or argument and to add
the argument to the entry’s array of implementation
arguments. For example:

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','double');

hEnt.Implementation.addArgument(arg);

The following call to getTflArgFromString passes the
constant 0 to argument u2:

arg = getTflArgFromString(hEnt, 'u2', 'int16', 0)

hEnt.Implementation.addArgument(arg);

For semaphore and mutex entries, use the functions
getTflDWorkFromString and addDWorkArg to
create and add a DWork argument to the entry. Then
create implementation arguments as shown above with
getTflArgFromString and the convenience methods
setReturn and addArgument. For example:

arg = getTflDWorkFromString('d1', 'void*')

hEnt.addDWorkArg(arg);

arg = hEnt.getTflArgFromString('y1', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setRetrurn(arg);

arg = hEnt.getTflArgFromString('u1', 'integer');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('d1', 'void**');

hEnt.Implementation.addArgument(arg);

51-55

51 Code Replacement Customization for Simulink Models in Embedded Coder

If Then

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the third approach listed in the table for specifying the
implementation output and input argument definitions for the sin function:

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

Add Entry to Table

Add an entry to a code replacement table by calling the function addEntry.

addEntry(hTable, hEnt);

Validate Entry

After you create or modify a code replacement table entry, validate it by invoking it at
the MATLAB command line. For example:

hTbl = crl_table_sinfcn

hTbl =

RTW.TflTable

 Version: '1.0'

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 ReservedSymbols: []

51-56

 Define Code Replacement Mappings

 StringResolutionMap: []

If the table includes errors, MATLAB reports them. The following examples shows how
MATLAB reports a typo in a data type name:
hTbl = crl_table_sinfcn

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Save Table

Save the table definition file. Use the name of the table definition function to name the
file, for example, crl_table_sinfcn.m.

Next, from your requirements, determine whether you need to specify build information
for your replacement code.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Math Function Code Replacement” on page 51-94
• “Memory Function Code Replacement” on page 51-96
• “Nonfinite Function Code Replacement” on page 51-99
• “Semaphore and Mutex Function Replacement” on page 51-102
• “Algorithm-Based Code Replacement” on page 51-109
• “Lookup Table Function Code Replacement” on page 51-112
• “Data Alignment for Code Replacement” on page 51-133
• “Replace MATLAB Functions with Custom Code Using coder.replace” on page

51-142
• “Replace MATLAB Functions Specified in MATLAB Function Blocks” on page

51-148
• “Customize Match and Replacement Process” on page 51-153
• “Scalar Operator Code Replacement” on page 51-168
• “Addition and Subtraction Operator Code Replacement” on page 51-170
• “Small Matrix Operation to Processor Code Replacement” on page 51-174
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

51-178

51-57

51 Code Replacement Customization for Simulink Models in Embedded Coder

• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page
51-186

• “Remap Operator Output to Function Input” on page 51-192
• “Customize Code Match and Replacement for Scalar Operations” on page 51-161
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Binary-Point-Only Scaling Code Replacement” on page 51-203
• “Slope Bias Scaling Code Replacement” on page 51-207
• “Net Slope Scaling Code Replacement” on page 51-211
• “Equal Slope and Zero Net Bias Code Replacement” on page 51-218
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Shift Left Operations and Code Replacement” on page 51-226
• “Optimize Generated Code By Developing and Using Code Replacement Libraries -

Simulink®”
• “Prepare for Code Replacement Library Development” on page 51-41
• “Specify Build Information for Replacement Code” on page 51-59
• “Develop a Code Replacement Library” on page 51-27
• “What Is Code Replacement Customization?” on page 51-3

51-58

 Specify Build Information for Replacement Code

Specify Build Information for Replacement Code

After you define code replacement mappings, determine whether you need to specify
build information for your replacement code. A code replacement table entry can specify
build information for the code generator to use when replacing code for a match. For
example, specify files for implementation replacement code if you are using a generated
makefile and the code generation software compiles the code.

Add build information to an entry:

• Interactively, by using the Build Information tab in the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

Build Information

The build information can include:

• Paths and file names for header files
• Paths and file names for source files
• Paths and file names for object files
• Compile flags
• Link flags

Choose an Approach for Specifying Build Information

The following table lists situations to help you decide when to use an interactive or
programmatic approach to specifying build information:

Situation Approach

Creating code replacement
entries for the first time.

Code Replacement Tool.

You used the Code Replacement
Tool to create the entries for
which the build information
applies.

Code Replacement Tool to specify the build
information quickly .

Rapid prototyping entries. Code Replacement Tool to generate, register, and test
entries quickly.

51-59

51 Code Replacement Customization for Simulink Models in Embedded Coder

Situation Approach

Developing an entry to use as
a template or starting point for
defining similar entries.

Code Replacement Tool to generate entry code that
you can copy and modify.

Modifying existing mappings. MATLAB Editor to update the programming interface
directly.

• If an entry uses header, source, or object files, consider whether to make the files
accessible to the code generator. You can copy files to the build folder or you can
specify individual file names and paths explicitly.

• If you specify additional header files/include paths or source files/paths and you copy
files, the compiler and utilities such as packNGo might find duplicate instances of
files (an instance in the build folder and an instance in the original folder).

• If you choose to copy files to the build folder and you are using the packNGo function
to relocate static and generated code files to another development environment:

• In the call to packNGo, specify the property-value pair ‘minimalHeaders’ true
(the default). That setting instructs the function to include the minimal header
files required to build the code in the zip file.

• Do not collocate files that you copy with files that you do not copy. If the packNGo
function finds multiple instances of the same file, the function returns an error.

• If you use the programming interface, paths that you specify can include tokens. A
token is a variable defined as a character vector or cell array of character vectors
in the MATLAB workspace that you enclose with dollar signs ($variable$). The
code generator evaluates and replaces a token with the defined value. For example,
consider the path $myfolder$\folder1, where myfolder is a character vector
variable defined in the MATLAB workspace as 'd:\work\source\module1'. The
code generator generates the custom path as d:\work\source\module1\folder1.

Specify Build Information Interactively with the Code Replacement Tool

The Code Replacement Tool provides a quick, easy way for you to specify build
information for code replacement table entries. It is ideal for getting started with
defining a table entry, rapid prototyping, and developing table entries to use as a starting
point for defining similar mappings.

1 Determine the information that you must specify.

51-60

 Specify Build Information for Replacement Code

2 Open the Code Replacement Tool.
3 Select the code replacement table entry for which you want to specify the build

information. In the left pane, select the table that contains the entry. In the middle
pane, select the entry that you want to modify.

4 In the right pane, select the Build Information tab.
5 On the Build Information tab, specify your build information.

Parameter Specify

Implementation header file File name and extension for the header file
the code generator needs to generate the
replacement code. For example, sin_dbl.h.

Implementation source file File name and extension for the C or C++ source
file the code generator needs to generate the
replacement code. For example, sin_dbl.c.

Additional header files/include
paths

Paths and file names for additional header
files the code generator needs to generate
the replacement code. For example, C:\libs
\headerFiles and C:\libs\headerFiles
\common.h. This parameter adds -I to the
compile line in the generated makefile.

Additional source files/ paths Paths and file names for additional source
files the code generator needs to generate
the replacement code. For example, C:
\libs\srcFiles and C:\libs\srcFiles
\common.c. This parameter adds -I to the
compile line in the generated makefile.

Additional object files/ paths Paths and file names for additional object files
the linker needs to build the replacement code.
For example, C:\libs\objFiles and C:
\libs\objFiles\common.obj.

Additional link flags Flags the linker needs to generate an executable
file for the replacement code.

Additional compile flags Flags the compiler needs to generate object code
for the replacement code.

Copy files to build directory Whether to copy header, source, or object files,
which are required to generate replacement

51-61

51 Code Replacement Customization for Simulink Models in Embedded Coder

Parameter Specify

code, to the build folder before code generation.
If you specify files with Additional header
files/include paths or Additional source
files/ paths and you copy files, the compiler
and utilities such as packNGo might find
duplicate instances of files.

6 Click Apply.
7 Select the Mapping Information tab. Scroll to the bottom of that table and click

Validate entry. The tool validates the changes that you made to the entry.
8 Save the table that includes the entry that you just modified.

Specify Build Information Programmatically

The programming interface for specifying build information for a code replacement entry
is ideal for:

• Modifying entries created with the Code Replacement Tool.
• Replicating and then modifying similar entries and tables.

The basic workflow for specifying build information programmatically is:

1 Identify or create the code replacement entry that you want to specify the build
information.

2 Determine what information to specify.
3 Specify your build information.

Specify Action

Implementation
header file

Use one of the following:

• Set properties ImplementationHeaderFile
and ImplementationHeaderPath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.h', ...

51-62

 Specify Build Information for Replacement Code

Specify Action
 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

• Set argument headerFile in a call to
registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry

Implementation
source file

Set properties ImplementationSourceFile
and ImplementationSourcePath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.c', ...

 'ImplementationHeaderPath', 'D:/lib/sourceFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Additional header
files/include paths

For each file, specify the file name and path in calls to the functions
addAdditionalHeaderFile and addAdditionalIncludePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalHeaderFile(hEnt, 'common.h');

addAdditionalIncludePath(hEnt, fullfile(libdir, 'include'));

These functions add -I to the compile line in the generated makefile.

51-63

51 Code Replacement Customization for Simulink Models in Embedded Coder

Specify Action

Additional source
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalSourceFile and addAdditionalSourcePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalSourceFile(hEnt, 'common.c');

addAdditionalSourcePath(hEnt, fullfile(libdir, 'src'));

These functions add -I to the compile line in the generated makefile.
Additional object
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalLinkObj and addAdditionalLinkObjPath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalLinkObj(hEnt, 'sin.o');

addAdditionalLinkObjPath(hEnt, fullfile(libdir, 'bin'));

Compile flags Set the entry property AdditionalCompileFlags to a cell array of
character vectors representing the required compile flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-Zi -Wall', '-03'};

Link flags Set the entry property AdditionalLinkFlags to a cell array of character
vectors representing the required link flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-MD -Gy', '-T'};

51-64

 Specify Build Information for Replacement Code

Specify Action

Whether to copy
header, source, or
object files, which
are required to
generate replacement
code, to the build
folder before code
generation

Use one of the following:

• Set property GenCallback to 'RTW.copyFileToBuildDir'
in a call to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.h', ...

 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl'

 'GenCallback', 'RTW.copyFileToBuildDir');

• Set argument genCallback in a call to
registerCFunctionEntry, registerCPPFunctionEntry,
or registerCPromotableMacroEntry to
'RTW.copyFileToBuildDir'.

If a match occurs for a table entry, a call to the function
RTW.copyFileToBuildDir copies required files to the build folder.

If you specify additional header files/include paths or additional source
files/paths and you copy files, the compiler and utilities such as packNGo
might find duplicate instances of files.

4 Save the table that includes the entry that you added or modified.

The following example defines a table entry for an optimized multiplication function that
takes signed 32-bit integers and returns a signed 32-bit integer, taking saturation into
account. Multiplications in the generated code are replaced with calls to the optimized
function. The optimized function does not reside in the build folder. For the code
generator to access the files, copy them into the build folder to be compiled and linked
into the application.

The table entry specifies the source and header file names and paths. To
request the copy operation, the table entry sets the genCallback property to
'RTW.copyFileToBuildDir' in the call to the setTflCOperationEntryParameters
function. In this example, the header file s32_mul.h contains an inlined function that
invokes assembly functions contained in s32_mul.s. If a match occurs for the table

51-65

51 Code Replacement Customization for Simulink Models in Embedded Coder

entry, the function RTW.copyFileToBuildDir copies the specified source and header
files to the build folder for use during the remainder of the build process.
function hTable = make_my_crl_table

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s32_s32_sat', ...

 'ImplementationHeaderFile', 's32_mul.h', ...

 'ImplementationSourceFile', 's32_mul.s', ...

 'ImplementationHeaderPath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'ImplementationSourcePath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'GenCallback', 'RTW.copyFileToBuildDir');

.

.

.

addEntry(hTable, op_entry);

The following example uses the functions addAdditionalHeaderFile,
addAdditionalIncludePath, addAdditionalSourceFile,
addAdditionalSourcePath, addAdditionalLinkObj, and
addAdditionalLinkObjPath in addition to the code generation callback function
RTW.copyFileToBuildDir.
hTable = RTW.TflTable;

% Path to external source, header, and object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_UNSPECIFIED', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_add_s32_s32', ...

 'ImplementationHeaderFile', 's32_add_s32_s32.h', ...

 'ImplementationSourceFile', 's32_add_s32_s32.c'...

 'GenCallback', 'RTW.copyFileToBuildDir');

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

.

51-66

 Specify Build Information for Replacement Code

.

.

addEntry(hTable, op_entry);

Next, include your code replacement table in a code replacement library and register the
library with the code generator.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Register Code Replacement Mappings” on page 51-68
• “Develop a Code Replacement Library” on page 51-27
• “What Is Code Replacement Customization?” on page 51-3

51-67

51 Code Replacement Customization for Simulink Models in Embedded Coder

Register Code Replacement Mappings

After you define code replacement entries and specify build information in a code
replacement table, you can include the table in a code replacement library that you
register with the code generator. When registered, a library appears in the list of
available code replacement libraries that you can choose from when configuring the code
generator.

Register a code replacement table as a code replacement library:

• Interactively, by using the Code Replacement Tool
• Programmatically, by using a MATLAB programming interface

Choose an Approach for Creating the Registration File

The following table lists situations to help you decide when to use an interactive or
programmatic approach to creating a registration file:

If... Then...

Registering a code replacement
table for the first time

Use the Code Replacement Tool.

You used the Code Replacement
Tool to create the table

Use the Code Replacement Tool to quickly register the
table.

Rapid prototyping code
replacement

Use the Code Replacement Tool to quickly generate,
register, and test entries.

Creating registration file to use
as a template or starting point
for defining similar registration
files

Use the Code Replacement Tool to generate code that
you can copy and modify.

Modifying existing registration
files

Use the MATLAB Editor to update the registration
file.

Defining multiple code
replacement libraries in one
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

Defining code replacement
library hierarchy in a
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

51-68

 Register Code Replacement Mappings

Create Registration File Interactively with the Code Replacement Tool

The Code Replacement tool provides a quick, easy way for you to create a registration
file for a code replacement table. It is ideal for getting started, rapid prototyping,
and generating a registration file that you want to use as a starting point for similar
registrations.

1 After you validate and save a code replacement table, select File > Generate
registration file to open the Generate registration file dialog box.

2 Enter the registration information. Minimally, specify:

For... Specify...

Registry name Text naming the code replacement library. For example, Sin
Function Example.

Table list Text naming one or more code replacement tables to include
in the library. Specify each table as one of the following:

• Name of a table file on the MATLAB search path
• Absolute path to a table file
• Path to a table file relative to $(MATLAB_ROOT)

51-69

51 Code Replacement Customization for Simulink Models in Embedded Coder

For... Specify...

You can specify multiple tables. If you do, separate the table
specifications with a comma. For example:

crl_table_sinfcn, c:/work_crl/crl_table_muldiv

See “Registration Files That Define Multiple Code
Replacement Libraries” on page 52-61 for examples of
each type of table specification.

Optionally, you can specify:

For... Specify...

Description Text that describes the purpose and content of the library.
Target HW device Text naming one or more hardware devices the code

replacement library supports. Separate names with a
comma. To support all device types, enter an asterisk (*). For
example, TI C28x, TI C62x.

Base CRL Text naming a code replacement library that you want to
serve as a base library for the library you are registering.
Use this field to specify library hierarchies. For example,
you can specify a general TI device library as the base
library for a more specific TI C28x device library.

Generate data
alignment
specification

Flag that enables data alignment specification.

Create Registration File Programmatically

The programming interface for creating a registration file for a code replacement table is
ideal for:

• Modifying registration files created with the Code Replacement Tool
• Replicating and modifying similar registration files
• Defining multiple code replacement libraries in one registration file

51-70

 Register Code Replacement Mappings

The basic workflow for creating a registration file programmatically consists of the
following steps:

1 Define an rtwTargetInfo function. The code generator recognizes this function
as a customization file. The function definition must include at least the following
content:

function rtwTargetInfo(cm)

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'crl-name';

this(1).TableList = {'table',...};

For... Replace...

this(1).Name = 'crl-name'; crl-name with text naming the code
replacement library. For example, Sin
Function Example.

this(1).TableList =

{'table',...};

table with text that identifies the code
replacement table that contains your code
replacement entries. Specify a table as one of
the following:

• Name of a table file on the MATLAB search
path

• Absolute path to a table file
• Path to a table file relative to

$(MATLAB_ROOT)

You can specify multiple tables. If you do,
separate the table specifications with commas.

Optionally, you can specify:

51-71

51 Code Replacement Customization for Simulink Models in Embedded Coder

For... Replace...

this(1).Description =

'text'

text with text that describes the purpose and
content of the library.

this(1).TargetHWDeviceType

= {'device-type',...}

device-type with text that names a hardware
device the code replacement library supports.
You can specify multiple device types. Separate
device types with a comma. For example, TI
C28x, TI C62x. To support all device types,
enter an asterisk (*).

this(1).BaseTfl = 'base-

lib'

base-lib with text that names a code
replacement library that you want to serve as a
base library for the library you are registering.
Use this field to specify library hierarchies.
For example, you can specify a general TI
device library as the base library for a TI
C28x device library.

See “Registration Files That Define Code
Replacement Library Hierarchies” on page
52-61 for an example.

For example:

function rtwTargetInfo(cm)

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'Sin Function Example';

this(1).TableList = {'crl_table_sinfcn'};

this(1).TargetHWDeviceType = {'*'};

this(1).Description = 'Example - sin function replacement';

2 Save the file with the name rtwTargetInfo.m.
3 Place the file on the MATLAB path. When the file is on the MATLAB path, the code

generator reads the file after starting and applies the customizations during the
current MATLAB session.

51-72

 Register Code Replacement Mappings

Register a Code Replacement Library

Before you can use the code replacement tables defined in a registration file, refresh
Simulink customizations within the current MATLAB session. To initiate a refresh, enter
the following command:

sl_refresh_customizations

Register a Library that Includes Multiple Code Replacement Tables

Use the programming interface to create a registration file that defines a code
replacement library that includes multiple code replacement tables. The following
example defines a library that includes multiple tables. The TableList fields specify
tables that reside at different locations. The tables reside on the MATLAB search path or
at locations specified with a path.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library for use with model: rtwdemo_crladdsub

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Addition & Subtraction Examples';

 thisCrl(1).Description = 'Example of addition/subtraction op replacement';

 thisCrl(1).TableList = {'crl_table_addsub'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlmuldiv

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'Multiplication & Division Examples';

 thisCrl(2).Description = 'Example of mult/div op repl for built-in integers';

 thisCrl(2).TableList = {'c:/work_crl/crl_table_muldiv'};

 thisCrl(2).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlfixpt

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'Fixed-Point Examples';

 thisCrl(3).Description = 'Example of fixed-point operator replacement';

 thisCrl(3).TableList = {fullfile('$(MATLAB_ROOT)', ...

 'toolbox','rtw','rtwdemos','crl_demo','crl_table_fixpt')};

 thisCrl(3).TargetHWDeviceType = {'*'};

Registration Files That Define Code Replacement Library Hierarchies

Using the programming interface, you can organize multiple code replacement libraries
in a hierarchy. The following example shows a registration file that defines four code

51-73

51 Code Replacement Customization for Simulink Models in Embedded Coder

replacement tables organized in a hierarchy of four code replacement libraries. The
tables include entries that increase in specificity: common entries, entries for TI devices,
entries for TI C6xx devices, and entries specific to the TI C67x device.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library that includes common entries

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Common Replacements';

 thisCrl(1).Description = 'Common code replacement entries shared by other libraries';

 thisCrl(1).TableList = {'crl_table_general'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for TI devices

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'TI Device Replacements';

 thisCrl(2).Description = 'Code replacement entries shared across TI devices';

 thisCrl(2).TableList = {'crl_table_TI_devices'};

 thisCrl(2).TargetHWDeviceType = {'TI C28x', 'TI C55x', 'TI C62x', 'TI C64x', 'TI 67x'};

 thisCrl(1).BaseTfl = 'Common Replacements'

 % Register a code replacement library for TI c6xx devices

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c6xx Device Replacements';

 thisCrl(3).Description = 'Code replacement entries shared across TI C6xx devices';

 thisCrl(3).TableList = {'crl_table_TIC6xx_devices'};

 thisCrl(3).TargetHWDeviceType = {'TI C62x', 'TI C64x', 'TI 67x'};

 % Register a code replacement library for the TI c67x device

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c67x Device Replacements';

 thisCrl(3).Description = 'Code replacement entries for the TI C67x device';

 thisCrl(3).TableList = {'crl_table_TIC67x_device'};

 thisCrl(3).TargetHWDeviceType = {'TI 67x'};

After registering your code replacement mappings, verify that code replacements occur.

More About
• “Troubleshoot Code Replacement Library Registration” on page 51-75
• “Specify Build Information for Replacement Code” on page 51-59
• “Verify Code Replacements” on page 51-76
• “Develop a Code Replacement Library” on page 51-27
• “What Is Code Replacement Customization?” on page 51-3

51-74

 Troubleshoot Code Replacement Library Registration

Troubleshoot Code Replacement Library Registration

If a code replacement library is not listed as a configuration option or does not appear in
the Code Replacement Viewer:

• Refresh the library registration information within the current MATLAB
session (RTW.TargetRegistry.getInstance('reset'); or for the Simulink
environment,sl_refresh_customizations).

• See whether the registration file, rtwTargetInfo.m, contains an error.

More About
• “Register Code Replacement Mappings” on page 51-68

51-75

51 Code Replacement Customization for Simulink Models in Embedded Coder

Verify Code Replacements
After you create or modify and register a code replacement table, use the following
techniques to examine and verify the table and its entries.

• Invoke the table definition file at the command prompt.
• Use the Code Replacement Viewer to examine libraries, tables, and entries.
• Trace code replacements from the source where you applied the code replacement

library.
• Examine code replacement hits and misses logged during code generation.

Code Replacement Hits and Misses

The code generator logs code replacement table entries for which it finds and does not
find matches in the hit cache and miss cache, respectively. When a code replacement
entry match fails and code is not replaced, the code generator logs the call site object
(CSO) for the miss in the miss cache. When an entry match succeeds, the code generator
logs the matched entry in the hit cache.

The code generator overwrites the hit and miss cache data each time it produces code.
The cache data reflects hits and misses for only the last application component (MATLAB
code or Simulink model) for which you generate code.

You can use the Code Replacement Viewer to review trace information based on logged
hit and miss trace data. The hit cache provides trace information that helps to verify code
replacements.

The miss cache and related miss data collected and stored in code replacement tables
provide trace information for misses. Use this information for misses to troubleshoot
expected code replacements that do not occur. Trace information for a miss:

• Identifies the call site object.
• Provides a link to the relevant source location for the miss.
• Includes information about the reason for the miss.

Validate Table Definition File

After you create or modify a code replacement table definition file, validate it. At the
command prompt, specify the name of the table in a call to the isvalid function. For
example:

51-76

 Verify Code Replacements

isvalid(crl_table_sinfcn)

ans =

 1

MATLAB displays errors that occur. In the following example, MATLAB detects a typo in
a data type name.

isvalid(crl_table_sinfcn)

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Review Library Content

After you create or modify a code replacement library, use the Code Replacement Viewer
to review and verify the list of tables in the library and the entries in each table.

1 Open the viewer to display the contents of your library. At the command prompt,
enter the following command:

crviewer('library')

For example:

crviewer('Addition & Subtraction Examples')

51-77

51 Code Replacement Customization for Simulink Models in Embedded Coder

2 Review the list of tables in the left pane. Are tables missing? Are the tables listed in
the correct relative order? By default, the viewer displays tables in search order.

3 In the left pane, click each table and review the list of entries in the center pane. Are
entries missing? Does the list include extraneous or unexpected entries?

51-78

 Verify Code Replacements

Review Table Content

After you create or modify a code replacement table, use the Code Replacement Viewer to
review and verify table entries.

1 Open the viewer to display the contents of your table. At the command prompt, enter
the following command. table is a MATLAB file that defines code replacement
tables. The file must be in the current folder or on the MATLAB path.

crviewer(table)

For example:

crviewer(crl_table_addsub)

51-79

51 Code Replacement Customization for Simulink Models in Embedded Coder

2 Review the list of entries in the center pane. Are entries missing? Does the list
include extraneous or unexpected entries? By default, the viewer displays entries in
search order.

3 In the center pane, click each entry and verify the entry information in the right
pane.

51-80

 Verify Code Replacements

• Argument order is correct.

51-81

51 Code Replacement Customization for Simulink Models in Embedded Coder

• Conceptual argument names match code generator naming conventions.
• Implementation argument names are correct.
• Algorithm properties (for example, saturation and rounding mode) are set

correctly.
• Header or source file specification is not missing.
• I/O types are correct.
• Relative priority of entries is correct.

Review Code Replacements

After you review the content of your code replacement library and tables, generate code
and a code generation report. Verify that the code generator replaces code as you expect.

The Code Replacements Report details the code replacement library functions that the
code generator uses for code replacements. The report provides a mapping between each
replacement instance and the model element that triggered the replacement.

The following example illustrates two complementary approaches to reviewing code
replacements:

• Check the Code Replacements Report section of the code generation report for
expected replacements.

• Trace code replacements.

For models that consist of model hierarchies, repeat the following procedure for each
model in the hierarchy. Generate code for and review the trace information of each
referenced model separately. Logged cache hit and miss information captured in the
Code Replacement Viewer is valid for the last model for which code was generated. As
you generate code for each model in the hierarchy, the code generator overwrites logged
information.

1 Open the model where you anticipate that a function or operator replacement occurs.
This example uses the model rtwdemo_crladdsub.

2 Configure the code generator to use your code replacement library. For this example,
set the library to Addition & Subtraction Examples.

3 Configure the code generation report to include the Code Replacements Report. On
the Code Generation > Report pane, select Create code generation report and

51-82

 Verify Code Replacements

Open report automatically. On the All Parameters tab, select Model-to-code
and Summarize which blocks triggered code replacements.

4 Configure comments for the generated code. On the Code Generation >
Comments pane, select:

• Include comments
• Either or both of Simulink block / Stateflow object comments and

Simulink block descriptions

In the Code Replacements Report, these options include Simulink block
information.

5 Configure the code generator to generate only code. Before you build an executable
file, review your code replacements in the generated code.

6 Generate code and a report.
7 Open the Code Replacements Report section of the code generation report.

51-83

51 Code Replacement Customization for Simulink Models in Embedded Coder

The report lists the replacement functions that the code generator used. It provides a
mapping between each replacement instance and the Simulink block that triggered
the replacement.

Review the report:

• Check whether expected function and operator code replacements occurred.
• In the replacements sections, click each block link to see the source that triggered

the reported code replacement.
8 In the Simulink model window, use model-to-code highlighting to trace code

replacements. Identify and right-click a block where you expected code replacement
to occur. Select C/C++ Code > Navigate to C/C++ Code. The code generation
report appears with the corresponding replacement code highlighted. In the example
model rtwdemo_crladdsub, right-click the Add8 block and select C/C++ Code >
Navigate to C/C++ Code.

51-84

 Verify Code Replacements

Inspect the generated code to see if the function or operator replacement occurred as
you expected.

If a function or operator is not replaced as expected, the code generator used a higher-
priority (lower-priority value) match or did not find a match.

To analyze and troubleshoot code replacement misses, use the trace information that the
Code Replacement Viewer provides. See “Troubleshoot Code Replacement Misses” on
page 51-86.

Next, deploy your code replacement library for others to use.

More About
• “Troubleshoot Code Replacement Misses” on page 51-86
• “Register Code Replacement Mappings” on page 51-68
• “Deploy Code Replacement Library” on page 51-93
• “What Is Code Replacement Customization?” on page 51-3

51-85

51 Code Replacement Customization for Simulink Models in Embedded Coder

Troubleshoot Code Replacement Misses

Use miss reason messages that appear in the Code Replacement Viewer to analyze and
correct code replacement misses.

Miss Reason Messages

The Code Replacement Viewer displays miss reason messages in trace information for
code replacement misses. A legend listing each message that appears in the miss report
precedes the report details. A message consists of:

• Numeric identifier, which identifies the message in the report details.
• Message text, which in some cases includes placeholders for names of arguments, call

site object values, table entry values, and property names.

For example:

1. Mismatched data types (argument name, CSO value, table entry value)

The parenthetical information represents placeholders for actual values that appear in
the report details.

In the Miss Source Locations table that lists the miss details, the Reason column
includes:

• The message identifier, as listed in the legend.
• The placeholder values for that instance of the miss reason message.

The following Reason details indicate a data type mismatch because the call site object
specifies data type int8 for arguments y1, u1, and u2, while the code replacement table
entry specifies uint32.

1. y1, int8, uint32

 u1, int8, uint32

 u2, int8, uint32

Depending on your situation and the reported miss reason, troubleshoot reported misses
by looking for instances of the following:

• A typo in the code replacement table entry definition or a source parameter setting.
• Information missing from the code replacement table entry or a source parameter

setting.

51-86

 Troubleshoot Code Replacement Misses

• Invalid or incorrect information in the code replacement table entry definition or a
source parameter setting.

• Arguments incorrectly ordered in the code replacement table entry definition or the
source being replaced with replacement code.

• Failed algorithm classification for an addition or subtraction operation due to:

• An ideal accumulator not being calculated because the type of an input argument
is not fixed-point or the slope adjustment factors of the input arguments are not
equal.

• Input or output casts with a floating-point cast type.
• Input or output casts with cast types that have different slope adjustment factors

or biases.
• Output casts not being convertible to a single output cast.
• Input casts resulting in loss of bits.

Analyze and Correct Code Replacement Misses

The following example shows how to use Code Replacement Viewer trace information to
troubleshoot code replacement misses. You must have already reviewed and tested code
replacements for your model.

1 Review the code generated for a model element, looking for expected code
replacements. For this example, examine the code generated for block Sub32
in model rtwdemo_crladdsub. Right-click the block and select C/C++ Code >
Navigate to C/C++ Code.

The Code Generation Report opens to the location of the generated code for that
block.

The code generator replaced code, but the replacement was for the signed version of
the 32-bit subtraction operation. You expected an unsigned operation.

2 Regenerate or reopen the Code Replacements Report for your model. If you already
generated the code generation report that includes the Code Replacements Report

51-87

51 Code Replacement Customization for Simulink Models in Embedded Coder

for model rtwdemo_crladdsub, open the file rtwdemo_crladdsub_ert_rtw/html/
rtwdemo_crladdsub_codegen_rpt.html. For information on how to regenerate
the report, see “Review Code Replacements” on page 51-82.

3 Click the link to open the Code Replacement Viewer.
4 In the viewer left pane, select your code replacement table. The following display

shows entries for code replacement table crl_table_addsub.

5 In the middle pane, select table entry RTW_OP_MINUS with implementation function
u32_sub_u32_u32.

6 In the right pane, select the Trace Information tab.

51-88

 Troubleshoot Code Replacement Misses

The Trace Information is a table that lists the following information for each miss:

• Call site object preview. The call site object is the conceptual representation of
a subtraction operator. The code generator uses this object to query the code
replacement library for a match.

51-89

51 Code Replacement Customization for Simulink Models in Embedded Coder

• A link to the source location in the model for which the code generator considered
replacing code.

• The reasons that the miss occurred. For the list of reasons that misses occur, see
“Miss Reason Messages” on page 51-86.

For this example, the report shows misses for two blocks: Sub32 and Sub8.
7 Find that source in the trace information. Depending on your situation and the

reported miss reason, consider looking for a condition such as a typo in the code
replacement table entry definition or in a source parameter setting. “Miss Reason
Messages” on page 51-86 lists conditions to consider.

For this example, determine why code for the Sub32 block was not replaced with
code for an unsigned 32-bit subtraction operation. The miss reason for the Sub32
block indicates a data type mismatch. The data type in the call site object for the
three arguments is a signed 32-bit integer. The code replacement entry specifies an
unsigned 32-bit integer.

8 Correct the model or code replacement table entry. If the issue is in the model, use
the source location link in the trace information to find the model element to correct.
For this example, you expected an unsigned subtraction operation for the Sub32
block. Click the link in the trace report for the Sub32 block.

The model opens with the Sub32 block highlighted.

51-90

 Troubleshoot Code Replacement Misses

Change the data type setting for the two input signals and the output signal for the
Sub32 block to uint32.

9 Regenerate code. Use the Code Replacement Viewer trace information to verify that
your model or code replacement table entry corrects the code replacement issue. In
the following display, the trace information shows a hit for block Sub32.

51-91

51 Code Replacement Customization for Simulink Models in Embedded Coder

More About
• “Verify Code Replacements” on page 51-76

51-92

 Deploy Code Replacement Library

Deploy Code Replacement Library

After you verify code replacements and are ready to package and deploy a code
replacement library for others to use:

1 Move your code replacement table files to an area that is on the MATLAB search
path and that is accessible to and shared by other users.

2 Move the rtwTargetInfo.m registration file, to an area that is on the MATLAB
search path and that is accessible to and shared by other users. If you are deploying
a library to a folder in a development environment that already contains a
rtwTargetInfo.m file, copy the registration code from your code replacement
library version of rtwTargetInfo.m and paste it into the shared version of that file.

3 Register the library customizations or restart MATLAB.
4 Verify that the libraries are available for configuring the code generator and that

code replacements occur as expected.
5 Inform users that the libraries are available and provide direction on when and how

to apply them.

More About
• “Verify Code Replacements” on page 51-76
• “Relocate Code to Another Development Environment” (Simulink Coder)
• “Develop a Code Replacement Library” on page 51-27
• “What Is Code Replacement Customization?” on page 51-3

51-93

51 Code Replacement Customization for Simulink Models in Embedded Coder

Math Function Code Replacement
This example shows how to define a code replacement mapping for a math function. The
example defines a mapping for the sin function programmatically. Alternatively, you can
use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_sinfcn2()

%CRL_TABLE_SINFCN2 - Define function entry for code replacement table.

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for sin function replacement

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'sin', ...

 'Priority', 30, ...

 'ImplementationName', 'mySin', ...

 'ImplementationHeaderFile', 'basicMath.h',...

 'ImplementationSourceFile', 'basicMath.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.
createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'DataTypeMode', 'double');

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call
to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.

51-94

 Math Function Code Replacement

copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Algorithm-Based Code Replacement” on page 51-109
• “Data Alignment for Code Replacement” on page 51-133
• “Reserved Identifiers and Code Replacement” on page 51-152
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-95

51 Code Replacement Customization for Simulink Models in Embedded Coder

Memory Function Code Replacement

This example shows how to define a code replacement mapping for a memory
function. The example defines a mapping for the memcpy function programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_memcpy()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for void* memcpy(void*, void*, size_t)

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
% Set SideEffects to 'true' for function returning void to prevent it from

% being optimized away.

setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'memcpy', ...

 'Priority', 90, ...

 'ImplementationName', 'memcpy_int', ...

 'ImplementationHeaderFile', 'memcpy_int.h',...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, u2, and u3. There are multiple ways to set up
the conceptual arguments. This example uses calls to the getTflArgFromString
and addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'void*');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u3', 'size_t');

addConceptualArg(fcn_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

51-96

 Memory Function Code Replacement

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.

copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that uses the memcpy function for vector assignments. For example,

use In, Out, and Mux blocks to create the following model. (Alternatively, open the
example model rtwdemo_crlmath and copy the contents of Subsystem1 to a new
model.)

3 Select the diagram and use Edit > Subsystem to make it a subsystem.

4 Configure the subsystem with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Optimization > Signals and Parameters pane, select Use memcpy

for vector assignment and set Memcpy threshold (bytes) to 64.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your memory function entry.

51-97

51 Code Replacement Customization for Simulink Models in Embedded Coder

5 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3
source blocks. For each, set Port dimensions to [1,100], and set Data type to
int32. Apply the changes. Save the model.

6 Generate code and a code generation report.
7 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Data Alignment for Code Replacement” on page 51-133
• “Reserved Identifiers and Code Replacement” on page 51-152
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-98

 Nonfinite Function Code Replacement

Nonfinite Function Code Replacement
This example shows how to define a code replacement mapping for nonfinite utility
functions.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_nonfinite()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create entries for the function mappings. To minimize the size of this function, the
example uses a local function, locAddFcnEnt, to group lines of code repeated for
each entry. A call to the RTW.TflCFunctionEntry function creates an entry for the
collection of local function entry definitions.
%% Create entries for nonfinite utility functions

% locAddFcnEnt(hTable, key, implName, out, in1, hdr)

locAddFcnEnt(hTable, 'getNaN', 'getNaN', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getNaN', 'getNaNF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getInf', 'getInfF', 'single', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInf', 'double', 'void', 'nonfin.h');

locAddFcnEnt(hTable, 'getMinusInf', 'getMinusInfF', 'single', 'void', 'nonfin.h');

%% Local Function

function locAddFcnEnt(hTable, key, implName, out, in1, hdr)

 if isempty(hTable)

 return;

 end

 fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
 setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', key, ...

 'Priority', 90, ...

 'ImplementationName', implName, ...

 'ImplementationHeaderFile', hdr);

5 Create conceptual arguments y1 and u1. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
 arg = getTflArgFromString(hTable, 'y1', out);

 arg.IOType = 'RTW_IO_OUTPUT';

 addConceptualArg(fcn_entry, arg);

51-99

51 Code Replacement Customization for Simulink Models in Embedded Coder

 arg = getTflArgFromString(hTable, 'u1', in1);

 addConceptualArg(fcn_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call
to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that uses a nonfinite function. For example, create a model that

includes a Math Function block that is set to the rem function. For example:

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your memory function entry and select Support: non-finite
numbers.

4 In the Model Explorer, configure the Signal Attributes for the In1 and Constant
source blocks. For each source block, set Data type to double. Apply the changes.
Save the model.

5 Generate code and a code generation report.
6 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7

51-100

 Nonfinite Function Code Replacement

• “Define Code Replacement Mappings” on page 51-42
• “Data Alignment for Code Replacement” on page 51-133
• “Reserved Identifiers and Code Replacement” on page 51-152
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-101

51 Code Replacement Customization for Simulink Models in Embedded Coder

Semaphore and Mutex Function Replacement

You can create a code replacement table for a custom target that supports concurrent
execution. Create table entries that specify custom implementations of semaphore or
mutex operations. The table must have four semaphore entries, four mutex entries, or
both, and include the table in a custom code replacement library. (The semaphore or
mutex entries are mutually dependent. Provide them in complete sets of four.)

Note: A custom target that supports concurrent multitasking must set the target
configuration parameter ConcurrentExecutionCompliant. For more information, see
“Support Concurrent Execution of Multiple Tasks” (Simulink Coder).

If the build process generates semaphore or mutex function calls for data transfer
between tasks during code generation for a multicore target environment, use a
custom library. The library can specify code replacements for custom semaphore or
mutex implementations that are optimal for your target environment. Using the Code
Replacement Tool (crtool) or equivalent code replacement functions, you can:

• Configure code replacement table entries for custom semaphore or mutex functions.
During system startup, execution of the code for data transfer between tasks, and
system shutdown the generated code calls these functions.

• Configure DWork arguments that represent global data, which the semaphore or
mutex functions access. A DWork pointer is passed to the model entry functions.

Generated mutex and semaphore code typically consists of these elements:

Code Generated Code

Model initialization Initialization function call that creates a mutex or
semaphore function to control entry to a critical section of
code.

Model step • Before code for a data transfer between tasks enters
the critical section, mutex lock or semaphore wait
function calls reserve the critical section of code.

• After code for a data transfer between tasks finishes
executing the critical section, mutex unlock or
semaphore post function calls release the critical
section of code.

51-102

 Semaphore and Mutex Function Replacement

Code Generated Code

Model termination Optional destroy function call to delete the mutex or
semaphore explicitly.

This example shows how to create code replacement table entries for a mutex
replacement scenario. You configure a multicore target model for concurrent execution
and for data transfer between tasks of differing rates, which Rate Transition blocks
handle. In the generated code for the model, each Rate Transition block has a separate,
unique mutex. Mutex lock and unlock operations within the Rate Transition block
generated code share access to the same global data. They achieve this by using the
unique mutex created for that Rate Transition block.

1 Open the Code Replacement Tool.
2 Create and open a new table.
3 Name the table crl_table_rt_mutex.
4 Create an entry for a mutex initialization function replacement.

a Select File > New entry > Semaphore entry to open a new table entry for
configuring a semaphore or mutex replacement.

b In the Mapping Information tab, use the Function parameter to select
Mutex Init. Initial default values for the table entry appear. In the
Conceptual function section, typically you can leave the argument settings at
their defaults.

c In the DWork attributes section, the Allocate DWork option is selected. The
dialog box provides a unique entry tag for the DWork argument d1.

51-103

51 Code Replacement Customization for Simulink Models in Embedded Coder

On the DWork attributes pane, configure a DWork argument to the
replacement function. The DWork argument supports sharing of a semaphore or
mutex between:

• Code that creates the semaphore or mutex
• Code that requests and relinquishes access
• Code that deletes the semaphore or mutex

In this example, the DWork argument for the Mutex Init function defines a
unique entry tag, entry_25576. That function also defines DWork arguments
for Mutex Lock, Mutex Unlock, and Mutex Destroy, which reference the
entry tag to share the DWork data.

The only data type supported for the DWork Data type parameter is void*.
d In the Replacement function section, enter a function name in the Name

field. This example uses myMutexCreate. In the list of Function arguments,
leave the DWork argument d1 data type as void**.

The C function signature preview is:

void myMutexCreate (void** d1);

51-104

 Semaphore and Mutex Function Replacement

e In the Replacement function section, select Function modifies internal
or global state. This option instructs the code generator not to optimize away
the implementation function described by this entry because it accesses global
memory values. Click Apply. Optionally, you can click Validate entry to
validate the information entered in the Mapping Information tab.

To create a sample table entry, configure the replacement function signature
without the replacement function and its build information. If header and source
files for these functions are available, select the Build Information table to
specify them.

f The Mutex Init table entry is complete. Optionally, you can save the table to a
file, and inspect the MATLAB code created for the table definition so far.

5 Repeat the following sequence to create the table entries for the mutex lock, unlock,
and destroy function replacements. Each table entry references the DWork unique
tag entry, entry_25576, defined in the Mutex Init table entry.

a Select File > New entry > Semaphore entry.
b In the Mapping Information tab, use the Function parameter to select

Mutex Lock, Mutex Unlock, or Mutex Destroy. Initial default values for the
table entry appear. In the Conceptual function section, typically you can leave
the argument settings at their defaults.

c For a Rate Transition block mutex, the wait, post, and destroy functions operate
on the DWork allocated at system startup by the mutex initialization function.
In the DWork attributes section, verify that the Allocate DWork option is
cleared. From the DWork Allocator entry drop-down list, select the entry tag
matching the value in the Mutex Init table entry. In this example, the entry
tag is entry_25576.

d In the Replacement function section, Name field, enter a function name. This
example uses myMutexLock, myMutexUnlock, and myMutexDelete. In the list
of Function arguments, leave the DWork argument d1 data type as void*.

51-105

51 Code Replacement Customization for Simulink Models in Embedded Coder

e In the Implementation attributes section, select the option Function
modifies internal or global state. This option instructs the code generator
not to optimize away the implementation function described by this entry
because it accesses global memory values.

f Optionally, supply build information for the replacement function on the Build
Information tab.

g Click Apply. In the middle pane, right-click the table entry and select Validate
entry(s).

6 When you have added the table entries for Mutex Lock, Mutex Unlock, and Mutex
Destroy to the entry for Mutex Init, the rate transition mutex replacement table
is complete. In the left-most pane, right-click the table name and select Validate
table. Address errors and repeat the table validation.

51-106

 Semaphore and Mutex Function Replacement

7 Save the table to a MATLAB file in your working folder, for example, using File >
Save table. The name of the saved file is the table name, crl_table_rt_mutex,
with an .m extension. Optionally, you can open the saved file and examine the
MATLAB code for the code replacement table definition.

To test this example:

1 Register the code replacement mapping.
2 Create a model that contains a rate transition for which the build process generates

mutex function calls. For example:

3 Configure the model for a multicore target environment and the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your mutex entry.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42

51-107

51 Code Replacement Customization for Simulink Models in Embedded Coder

• “Data Alignment for Code Replacement” on page 51-133
• “Reserved Identifiers and Code Replacement” on page 51-152
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-108

 Algorithm-Based Code Replacement

Algorithm-Based Code Replacement

For some math function blocks, you can control code replacement based on the
computation or approximation algorithm configured for that block. For example, you can
configure:

• The Reciprocal Sqrt block to use the Newton-Raphson or Exact computation
method.

• The Trigonometric Function block, with Function set to sin, cos, or sincos, to use
the approximation method CORDIC or None.

You can define code replacement entries to replace these functions for one or all of the
available computation methods. For example, you can define an entry to replace only
Newton-Raphson instances of the rSqrt function.

To set the algorithm for a function in an entry definition, use the EntryInfoAlgorithm
property in a call to the function setTflCFunctionEntryParameters. The following
table lists arguments for specifying the computation method to match during code
generation.

Function Argument

rSqrt • 'RTW_DEFAULT' (match the default computation method,
Exact)

• 'RTW_NEWTON_RAPHSON'

• 'RTW_UNSPECIFIED' (match any computation method)
sin

cos

sincos

• 'RTW_CORDIC'

• 'RTW_DEFAULT' (match the default approximation
method, None)

• 'RTW_UNSPECIFIED' (match any approximation method)

For example, to replace only Newton-Raphson instances of the rSqrt function, create
an entry as follows:

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_rsqrt()

%CRL_TABLE_RSQRT - Define function entry for code replacement table.

2 Within the function body, create the table by calling the function RTW.TflTable.

51-109

51 Code Replacement Customization for Simulink Models in Embedded Coder

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for rsqrt function replacement

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'rSqrt', ...

 'Priority', 80, ...

 'ImplementationName', 'rsqrt_newton', ...

 'ImplementationHeaderFile', 'rsqrt.h', ...

 'EntryInfoAlgorithm', 'RTW_NEWTON_RAPHSON');

5 Create conceptual arguments y1 and u1. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'DataTypeMode', 'double');

createAndAddConceptualArg(e, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'DataTypeMode', 'double');

6 Copy the conceptual arguments to the implementation arguments. This example
uses a call to the copyConceptualArgsToImplementation function to create
and add implementation arguments to the entry by copying matching conceptual
arguments.
copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

The generated code for a Newton-Raphson instance of the rSqrt function looks like the
following code:

/* Model step function */

51-110

 Algorithm-Based Code Replacement

void mrsqrt_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 * Sqrt: '<Root>/rSqrtBlk'

 */

 mrsqrt_Y.Out1 = rsqrt_newton(mrsqrt_U.In1);

}

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Math Function Code Replacement” on page 51-94
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-111

51 Code Replacement Customization for Simulink Models in Embedded Coder

Lookup Table Function Code Replacement

You can configure the algorithm for table lookup operations and index searches to better
meet your application code requirements. Use the Algorithm tab of lookup table blocks.
For example, you can specify the interpolation, extrapolation, and index search methods.

Lookup Table Algorithm Replacement

If the code generated for available algorithm options does not meet requirements for your
application, create custom code replacement table entries to replace generated algorithm
code. You can create the table entries programmatically or interactively by using the
Code Replacement Tool.

For more information about using lookup table blocks, see “Nonlinearity” (Simulink).

Lookup Table Function Signatures

To create code replacement table entries for a function corresponding to a lookup table
algorithm, you must have:

• Information about the conceptual function signature.
• Relevant algorithm parameters.

The following table provides the conceptual function signature information.

Conceptual Function Signature Argument Summary

y1 = interp1D(u1, u2, u3, u4) y1 – output
u1 – index
u2 – fraction
u3 – table data
u4 – table dimension length

y1 = interp2D(u1, u2, u3, u4, u5, u6, u7) y1 – output
u1, u3 – index
u2, u4 – fraction
u5 – table data
u6, u7 – table dimension lengths

y1 = interp3D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10)

y1 – output
u1, u3, u5 – index

51-112

 Lookup Table Function Code Replacement

Conceptual Function Signature Argument Summary

u2, u4, u6 – fraction
u7 – table data
u8, u9, u10 – table dimension
lengths

y1 = interp4D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13)

y1 – output
u1, u3, u5, u7 – index
u2, u4, u6, u8 – fraction
u9 – table data
u10, u11, u12, u13 – table
dimension lengths

y1 = interp5D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13, u14, u15, u16)

y1 – output
u1, u3, u5, u7, u9 – index
u2, u4, u6, u8, u10 – fraction
u11 – table data
u12, u13, u14, u15, u16 – table
dimension lengths

y1 = interpND({ui, uf,}... ut, un...) y1 – output
ui, uf is an index and fraction pair
per dimension
ut – table data
un – table dimension lengths

Explicit values
y1 = lookup1D(u1, u2, u3, u4)

y1 – output
u1 – input
u2 – breakpoint data
u3 – table data
u4 – table dimension length

Even spacing
y1 = lookup1D(u1, u2, u3, u4, u5)

y1 – output
u1 – input
u2 – first point of breakpoint data
u3 – spacing of breakpoints
u4 – table data
u5 – table dimension length

51-113

51 Code Replacement Customization for Simulink Models in Embedded Coder

Conceptual Function Signature Argument Summary

Explicit values
y1 = lookup2D(u1, u2, u3, u4, u5, u6, u7)

y1 – output
u1, u2 – input
u3, u4 – breakpoint data
u5 – table data
u6, u7 – table dimension lengths

Even spacing
y1 = lookup2D(u1, u2, u3, u4, u5, u6, u7, u8,

u9)

y1 – output
u1, u2 – input
u3, u5 – first point of breakpoint
data
u4, u6 – spacing of breakpoints
u7 – table data
u8, u9 – table dimension lengths

Explicit spacing
y1 = lookup3D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10)

y1 – output
u1, u2, u3 – input
u4, u5, u6 – breakpoint data
u7 – table data
u8, u9, u10 – table dimension
lengths

Even spacing
y1 = lookup3D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13)

y1 – output
u1, u2, u3 – input
u4, u6, u8 – first point of
breakpoint data
u5, u7, u9 – spacing of breakpoints
u10 – table data
u11, u12, u13 – table dimension
lengths

Explicit values
y1 = lookup4D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13)

y1 – output
u1, u2, u3, u4 – input
u5, u6, u7, u8 – breakpoint data
u9 – table data
u10, u11, u12, u13 – table
dimension lengths

51-114

 Lookup Table Function Code Replacement

Conceptual Function Signature Argument Summary

Even spacing
y1 = lookup4D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13, u14, u15, u16, u17)

y1 – output
u1, u2, u3, u4 – input
u5, u7, u9, u11 – first point of
breakpoint data
u6, u8, u10, u12 – spacing of
breakpoints
u13 – table data
u14, u15, u16, u17 – table
dimension lengths

Explicit values
y1 = lookup5D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13, u14, u15, u16)

y1 – output
u1, u2, u3, u4, u5 – input
u6, u7, u8, u9, u10 – breakpoint
data
u11 – table data
u12, u13, u14, u15, u16 – table
dimension lengths

Even spacing
y1 = lookup5D(u1, u2, u3, u4, u5, u6, u7, u8,

u9, u10, u11, u12, u13, u14, u15, u16, u17,

u18, u19, u20, u21)

y1 – output
u1, u2, u3, u4, u5 – input
u6, u8, u10, u12, u14 – first
point of breakpoint data
u7, u9, u11, u13, u15 – spacing
of breakpoints
u16 – table data
u17, u18, u19, u20, u21 – table
dimension lengths

Explicit values
y1 = lookupND(un,..., ub,..., ut, un...)

y1 – output
un, input per dimension
ub, breakpoint per dimension
ut – table data
un – table dimension lengths

51-115

51 Code Replacement Customization for Simulink Models in Embedded Coder

Conceptual Function Signature Argument Summary

Even spacing
y1 = lookupND(un,..., {ufn, usn,}... ut,

un...)

y1 – output
un – input per dimension
ufn – first point of breakpoint data
per dimension
usn – spacing of breakpoint per
dimension
ut – table data
un – table dimension lengths

y1 = lookupND_Direct(u1, u2,...ui, ui+1) y1 – output
u1...ui – input
ui+1 – table data

Explicit values
y1, y2 = prelookup(u1, u2, u3)

y1 – index
y2 – fraction
u1 – input
u2 – breakpoint data
u3 – number of breakpoints

Evenly spaced
y1, y2 = prelookup(u1, u2, u3, u4)

y1 – index
y2 – fraction
u1 – input
u2 – first point of breakpoint data
u3 – spacing of breakpoints
u4 – number of breakpoints

When defining a table entry programmatically, you might also need to change the values
of required (primary) and optional algorithm parameters.

• Set values for required parameters to achieve code replacement.
• If you do not set a value for an optional parameter, the algorithm parameter software

applies don’t care. The code replacement software ignores the parameter while
searching for matches.

To look up algorithm parameter information for a lookup table function:

1 Create a table entry for a function.

tableEntry = RTW.TflCFunctionEntry;

51-116

 Lookup Table Function Code Replacement

2 Identify the lookup table function in the table entry. Use the Key table entry
parameter in a call to setTflCFunctionEntryParameters. The following example
identifies an entry for the prelookup function.
setTflCFunctionEntryParameters(tableEntry, ...

 'Key', 'prelookup', ...

 'Priority', 100, ...

 'ImplementationName', 'myPrelookup');

3 Get the algorithm parameter set for the entry with a call to
getAlgorithmParameters.
algParams = getAlgorithmParameters(tableEntry);

algParams =

 Prelookup with properties:

 ExtrapMethod: [1x1 coder.algorithm.parameter.ExtrapMethod]

 RndMeth: [1x1 coder.algorithm.parameter.RndMeth]

 IndexSearchMethod: [1x1 coder.algorithm.parameter.IndexSearchMethod]

 UseLastBreakpoint: [1x1 coder.algorithm.parameter.UseLastBreakpoint]

 RemoveProtectionInput: [1x1 coder.algorithm.parameter.RemoveProtectionInput]

4 Examine information available for each parameter.
algParams.ExtrapMethod

ans =

 ExtrapMethod with properties:

 Name: 'ExtrapMethod'

 Options: {'Linear' 'Clip'}

 Primary: 1

 Value: {'Linear'}

algParams.RndMeth

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

 Primary: 0

 Value: {1x7 cell}

algParams.RndMeth.Value

ans =

 Columns 1 through 6

 'Ceiling' 'Convergent' 'Floor' 'Nearest' 'Round' 'Simplest'

 Column 7

 'Zero'

algParams.IndexSearchMethod

51-117

51 Code Replacement Customization for Simulink Models in Embedded Coder

ans =

 IndexSearchMethod with properties:

 Name: 'IndexSearchMethod'

 Options: {'Linear search' 'Binary search' 'Evenly spaced points'}

 Primary: 0

 Value: {'Binary search' 'Evenly spaced points' 'Linear search'}

algParams.UseLastBreakpoint

ans =

 UseLastBreakpoint with properties:

 Name: 'UseLastBreakpoint'

 Options: {'off' 'on'}

 Primary: 0

 Value: {'off' 'on'}

algParams.RemoveProtectionInput

ans =

 RemoveProtectionInput with properties:

 Name: 'RemoveProtectionInput'

 Options: {'off' 'on'}

 Primary: 0

 Value: {'off' 'on'}

Interactive Mapping with Code Replacement Tool

This example shows how to specify a code replacement table entry for a lookup table
algorithm by using the Code Replacement Tool.

Open and Examine Example Replacement Function

Identify or create the C or C++ replacement function for the algorithm that you want to
use in place of a Simulink software algorithm.

This example uses the following C replacement function header and source files, which
are in the folder matlab/toolbox/rtw/rtwdemos/crl_demo:

• myLookup1D.h

• myLookup1D.c

Place a copy of these files in your working folder.

Open and examine the code for myLookup1D.h.

51-118

 Lookup Table Function Code Replacement

#include "rtwtypes.h"

real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl);

Open and examine the code in myLookup1D.c. Note the function signature. When you
enter the implementation argument specification in the Code Replacement Tool, specify
argument properties.
#include "myLookup1D.h"

real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl)

{

 real_T y;

 uint16_T frac;

 uint32_T bpIdx;

 uint32_T maxIndex=tdl-1;

 if (u0 <= bp0[0U]) {

 bpIdx = 0U;

 frac = 0U;

 } else if (u0 < bp0[maxIndex]) {

 bpIdx = maxIndex >> 1U;

 while ((u0 < bp0[bpIdx]) && (bpIdx > 0U)) {

 bpIdx--;

 }

 while ((bpIdx < maxIndex - 1U) && (u0 >= bp0[bpIdx + 1U])) {

 bpIdx++;

 }

 frac = (uint16_T)((u0 - bp0[bpIdx]) / (bp0[bpIdx + 1U] -

 bp0[bpIdx]) * 32768.0);

 } else {

 bpIdx = maxIndex;

 frac = 0U;

 }

 if (bpIdx == maxIndex) {

 y = table[bpIdx];

 } else {

 y = (table[bpIdx + 1U] - table[bpIdx]) * ((real_T)frac * 3.0517578125E-5) +

 table[bpIdx];

 }

 return y;

}

Open and Examine the Example Model

This example uses the model rtwdemo_crllookup1D to test your code replacement
specification. Place a copy of the model in your working folder and name it
my_lookup1d.slx.

Open and examine the model. Note input and output specifications and block parameter
settings. To achieve a match, you must specify conceptual arguments based on how the 1-
D Lookup Table block is configured in the example model.

51-119

51 Code Replacement Customization for Simulink Models in Embedded Coder

Create Code Replacement Table

1 At the command prompt, enter crtool to open the Code Replacement Tool.
2 Add a new table, select that table, and add a new function entry.
3 On the Mapping Information tab, select Custom for the Function parameter.
4 Look up the call signature and algorithm parameter information for the lookup table

function that you want to update with an algorithm replacement. See “Lookup Table
Function Signatures” on page 51-112.

For this example, you replace the algorithm for the conceptual function associated
with the 1-D Lookup Table block. The signature for that function is:

y1 = lookup1D(u1, u2, u3, u4)

Arguments u1, u2, u3, u4 represent input, breakpoint data, table data, and table
dimension length, respectively. The function returns output to y1.

5 To the right of the Function drop-down list, in the function-name text box, enter
the name of the Simulink lookup table function. For this example, type the name
lookup1D. Type the name exactly as it appears in the documented signature,
including character casing. Press Enter.

The tool displays algorithm parameter settings that trigger a match for the 1-
D Lookup Table block in the example model. Required parameters appear with
only one value. For this example, do not change the values. Optional parameters
appear with multiple values. Changes to optional parameters do not affect the match
process.

6 Specify the conceptual arguments. Under the Conceptual arguments list box,
click + to add the arguments that are in the documented function signature. The
lookup1D function takes one output argument and four input arguments. Click +
five times.

51-120

 Lookup Table Function Code Replacement

The tool creates an output argument y1 and four input arguments u1, u2, u3, and
u4. By default, the four arguments are scalars of type double.

You can adjust the conceptual argument properties. For this example, you do not
make changes for y1 and u1. However, as the block parameter dialog box for the
example model shows, you must adjust the argument properties for the breakpoint
and table data arguments.

Adjust the conceptual argument properties by using the following table. Click Apply.

Signature
Argument
Name

Conceptual
Argument Name

Data type I/O type Argument
type

Lower range Upper range

y y1 double OUTPUT Scalar Not
applicable

Not
applicable

u1 u1 double INPUT Scalar Not
applicable

Not
applicable

bp1 u2 double INPUT Matrix [0 0] [Inf Inf]

51-121

51 Code Replacement Customization for Simulink Models in Embedded Coder

Signature
Argument
Name

Conceptual
Argument Name

Data type I/O type Argument
type

Lower range Upper range

table u3 double INPUT Matrix [0 0] [Inf Inf]

tdl u4 uint32 INPUT Scalar Not
applicable

Not
applicable

7 Enter information for the replacement function prototype. The prototype for the
example function is:
real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl)

In the Replacement function > Function prototype section, type the function
name my_Lookup1D_Repl in the Name text box.

8 Specify the arguments for the replacement function. Under the Function
arguments list box, click + five times to add five implementation arguments.

You might need to adjust the function argument properties. As the replacement
function signature shows, adjust the argument properties for the breakpoint, table
data, and table dimension length arguments. For u2 (breakpoints) and u3 (table),
select the Const check box. For u4, set Data type to uint32.

The function signature preview should appear as follows:
double my_Lookup1D_Repl(double u1, const double* u2, const double* u3, uint32 u4)

9 Set relevant implementation attributes. Use the default settings.
10 Validate the entry. If the tool reports errors, fix them, and retry the validation.

Repeat the procedure until the tool does not report errors.
11 Save the code replacement table in your working folder as

my_lookup_replacement_table.m.

Specify Build Information

On the Build Information tab, specify information relevant to generating C or
C++ code and building an executable from the model. Enter myLookup1D.h for
Implementation Header File and myLookup1D.c for Implementation Source File.

51-122

 Lookup Table Function Code Replacement

If you copied the example files to a folder other than the working folder containing the
test model, lookup1d.slx, specify the source and header file paths. Otherwise, leave
the other Build Information parameters set to default values. Click Apply.

Test the Entry

To test this example:

1 Register the code replacement mapping.
2 Use the example model rtwdemo_crllookup1D.
3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your lookup table function entry.

Programmatic Specification

This example shows how to specify code replacement table entries for lookup table
functions programmatically.

Open and Examine Example Replacement Function

Identify or create the C or C++ replacement function for the algorithm that you want to
use in place of a Simulink software algorithm.

This example uses the following C replacement function header and source files, which
are in the folder matlab/toolbox/rtw/rtwdemos/crl_demo:

• myLookup1D.h

• myLookup1D.c

Place a copy of these files in your working folder.

Open and examine the code for myLookup1D.h.
#include "rtwtypes.h"

real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl);

Open and examine the code in myLookup1D.c. Note the function signature. When you
enter the implementation argument specification in the Code Replacement Tool, specify
argument properties.

51-123

51 Code Replacement Customization for Simulink Models in Embedded Coder

#include "myLookup1D.h"

real_T my_Lookup1D_Repl(real_T u0, const real_T *bp0, const real_T *table, uint32_T tdl)

{

 real_T y;

 uint16_T frac;

 uint32_T bpIdx;

 uint32_T maxIndex=tdl-1;

 if (u0 <= bp0[0U]) {

 bpIdx = 0U;

 frac = 0U;

 } else if (u0 < bp0[maxIndex]) {

 bpIdx = maxIndex >> 1U;

 while ((u0 < bp0[bpIdx]) && (bpIdx > 0U)) {

 bpIdx--;

 }

 while ((bpIdx < maxIndex - 1U) && (u0 >= bp0[bpIdx + 1U])) {

 bpIdx++;

 }

 frac = (uint16_T)((u0 - bp0[bpIdx]) / (bp0[bpIdx + 1U] -

 bp0[bpIdx]) * 32768.0);

 } else {

 bpIdx = maxIndex;

 frac = 0U;

 }

 if (bpIdx == maxIndex) {

 y = table[bpIdx];

 } else {

 y = (table[bpIdx + 1U] - table[bpIdx]) * ((real_T)frac * 3.0517578125E-5) +

 table[bpIdx];

 }

 return y;

}

Review Lookup Function Signature

Look up the call signature information for the lookup function that you want to update
with an algorithm replacement. See “Lookup Table Function Signatures” on page
51-112.

Replace the algorithm for the function associated with the 1–D Lookup Table block. The
signature for that function is:

y1 = lookup1D(u1, u2, u3, u4)

Arguments u1, u2, u3, and u4 represent input, breakpoint data, table data, and table
dimension length, respectively. The function returns output to y1.

51-124

 Lookup Table Function Code Replacement

Create Code Replacement Entry

Create a code replacement table file as a MATLAB function, that describes the lookup
table function code replacement table entries. Place a copy of the file matlab/toolbox/
rtw/rtwdemos/crl_demo/crl_table_lookup1D.m in your working folder. This file
defines a code replacement table for the C function my_Lookup1D_Repl.

Open crl_table_lookup1D.m and examine the definition.

1 Create a table definition file that contains a function definition. For example:

function hLib = my_lookup_replacement_table

2 Within the function body, create the table by calling the function RTW.TflTable.

hLib = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function. The function key, implementation
name, and header and source files in the function call identify the Simulink lookup
table function name, lookup1D, and the following information for replacement
function my_Lookup1D_Repl:

• Function name
• Header file
• Source file

Specify the Simulink lookup table function name exactly as it appears in the
documented signature, including character casing (see “Lookup Table Function
Signatures” on page 51-112). If you copied the example files to a folder other than
the working folder that contains the test model, rtwdemo_crllookup1D, specify the
source and header file paths.

setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'lookup1D', ...

 'Priority', 100, ...

 'ImplementationName', 'my_Lookup1D_Repl', ...

 'ImplementationHeaderFile', 'myLookup1D.h', ...

 'ImplementationSourceFile', 'myLookup1D.c', ...

 'GenCallback', 'RTW.copyFileToBuildDir');

51-125

51 Code Replacement Customization for Simulink Models in Embedded Coder

5 Create conceptual arguments and add them to the entry. This example uses calls to
the getTflArgFromString and addConceptualArg functions to create and add
the arguments.

The example defines five conceptual arguments for the lookup1D function, one
output argument y1 and four input arguments u1, u2, u3, and u4. Arguments y1
and u1 are defined as scalar double data. Arguments u2 and u3 represent bp1 and
table in the signature and are defined as 1x10 matrices of double data. Argument
u4 represents tdl and is defined as scalar of uint32 data. This definition triggers a
match with the example model.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u1','double');

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u2', 'RTW_IO_INPUT', 'double');

arg.DimRange = [0 0; Inf Inf];

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u3', 'RTW_IO_INPUT', 'double');

arg.DimRange = [0 0; Inf Inf];

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u4','uint32');

addConceptualArg(hEnt, arg);

6 Review the algorithm parameter information for the lookup function that you want
to update with an algorithm replacement. Use the getAlgorithmParameters
function to display the parameter information.
algParams = getAlgorithmParameters(hEnt)

algParams =

 Lookup with properties:

 InterpMethod: [1x1 coder.algorithm.parameter.InterpMethod]

 ExtrapMethod: [1x1 coder.algorithm.parameter.ExtrapMethod]

 RndMeth: [1x1 coder.algorithm.parameter.RndMeth]

 IndexSearchMethod: [1x1 coder.algorithm.parameter.IndexSearchMethod]

 UseLastTableValue: [1x1 coder.algorithm.parameter.UseLastTableValue]

 RemoveProtectionInput: [1x1 coder.algorithm.parameter.RemoveProtectionInput]

 SaturateOnIntegerOverflow: [1x1 coder.algorithm.parameter.SaturateOnIntegerOverflow]

 SupportTunableTableSize: [1x1 coder.algorithm.parameter.SupportTunableTableSize]

 BPPower2Spacing: [1x1 coder.algorithm.parameter.BPPower2Spacing]

Examine the information for each parameter. The Options property lists possible
values. Primary indicates whether a parameter is required (1) or optional (0). The

51-126

 Lookup Table Function Code Replacement

Value property specifies the current value. For required parameters, initially,
Value is set to the default value for a given lookup table function.

algParams.InterpMethod

ans =

 InterpMethod with properties:

 Name: 'InterpMethod'

 Options: {'Linear' 'Flat' 'Nearest'}

 Primary: 1

 Value: {'Linear'}

algParams.RndMeth

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

 Primary: 0

 Value: {1x7 cell}

algParams.RndMeth.Options

ans =

 Columns 1 through 5

 'Ceiling' 'Convergent' 'Floor' 'Nearest' 'Round'

 Columns 6 through 7

 'Simplest' 'Zero'

algParams.RndMeth

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

51-127

51 Code Replacement Customization for Simulink Models in Embedded Coder

 Primary: 0

 Value: {1x7 cell}

.

.

.

7 Set the algorithm properties for the lookup1D table entry. Assign a value to each
parameter. Update the parameter settings for the entry by calling the function
setAlgorithmParameters. The following parameter settings trigger a match with
the example model.

algParams.InterpMethod = 'Linear';

algParams.ExtrapMethod = 'Clip';

algParams.RndMeth = 'Round';

algParams.IndexSearchMethod = 'Linear search';

algParams.UseLastTableValue = 'Evenly spaced point';

algParams.RemoveProtectionInput = 'off';

algParams.SaturateOnIntegerOverflow = 'off';

algParams.SupportTunableTableSize = 'off';

algParams.BPPower2Spacing = 'off';

setAlgorithmParameters(hEnt, algParams);

ans =

 RndMeth with properties:

 Name: 'RndMeth'

 Options: {1x7 cell}

 Primary: 0

 Value: {1x7 cell}

.

.

.

To verify your changes, call getAlgorithmParameters to get the parameter set for
the table entry. Examine the value of each parameter.

getAlgorithmParameters(hEnt, algParams);

algParams.InterpMethod.Value

ans =

 'Linear'

algParams.ExtrapMethod.Value

51-128

 Lookup Table Function Code Replacement

ans =

 'Clip'

algParams.RndMeth.Value

ans =

 'Round'

.

.

.

8 Create the implementation arguments and add them to the entry. This example
uses calls to the getTflArgFromString function to create five implementation
arguments that map to arguments in the replacement function prototype: one output
argument y1 and four input arguments u1, u2, u3, and u4. The convenience methods
setReturn and addArgument specify whether an argument is a return value or
argument. The addArgument function also adds each argument to the entry’s array
of implementation arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double*');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u3','double*');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u4','uint32');

hEnt.Implementation.addArgument(arg);

9 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hLib, hEnt);

10 Save the table definition file. Use the name of the table definition function to name
the file.

51-129

51 Code Replacement Customization for Simulink Models in Embedded Coder

Test the Entry

To test this example:

1 Register the code replacement mapping.
2 Use the example model rtwdemo_crllookup1D.
3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your lookup table function entry.

Sample Code Replacement Definition for the lookup2D Function

The following code shows a replacement definition for the lookup2D function.

function hLib = my_2dlookup_replacement_table

hLib = RTW.TflTable;

hEnt = RTW.TflCFunctionEntry;

setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'lookup2D', ...

 'Priority', 100, ...

 'ImplementationName', 'custom_lookup2d', ...

 'ImplementationHeaderFile', 'custom_lookup2d.h', ...

 'ImplementationSourceFile', 'custom_lookup2d.c', ...

 'GenCallback', 'RTW.copyFileToBuildDir');

% Conceptual Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u1','double');

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u2','double');

addConceptualArg(hEnt, arg);

51-130

 Lookup Table Function Code Replacement

arg = RTW.TflArgMatrix('u3', 'RTW_IO_INPUT', 'double');

arg.DimRange = [1 1; 10 1];

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u4', 'RTW_IO_INPUT', 'double');

arg.DimRange = [1 1; 10 1];

addConceptualArg(hEnt, arg);

arg = RTW.TflArgMatrix('u5', 'RTW_IO_INPUT', 'double');

arg.DimRange = [1 1; 10 1];

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u6','uint32');

addConceptualArg(hEnt, arg);

arg = hEnt.getTflArgFromString('u7','uint32');

addConceptualArg(hEnt, arg);

% Algorithm Parameters

addAlgorithmProperty(hEnt, 'ExtrapMethod','Clip');

addAlgorithmProperty(hEnt, 'IndexSearchMethod','Linear search');

addAlgorithmProperty(hEnt, 'InterpMethod','Linear');

addAlgorithmProperty(hEnt, 'RemoveProtectionInput','off');

addAlgorithmProperty(hEnt, 'UseLastTableValue','on');

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u3','double*');

arg.Type.BaseType.ReadOnly = true;

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u4','double*');

51-131

51 Code Replacement Customization for Simulink Models in Embedded Coder

arg.Type.BaseType.ReadOnly = true;

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u5','double*');

arg.Type.BaseType.ReadOnly = true;

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u6','uint32');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u7','uint32');

hEnt.Implementation.addArgument(arg);

hLib.addEntry(hEnt);

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Data Alignment for Code Replacement” on page 51-133
• “Reserved Identifiers and Code Replacement” on page 51-152
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-132

 Data Alignment for Code Replacement

Data Alignment for Code Replacement

Code replacement libraries can align data objects passed into a replacement function to a
specified boundary.

Code Replacement Data Alignment

You can take advantage of function implementations that require aligned data
to optimize application performance. To configure data alignment for a function
implementation:

1 Specify the data alignment requirements in a code replacement entry. Specify
alignment separately for each implementation function argument or collectively for
all function arguments. See “Specify Data Alignment Requirements for Function
Arguments” on page 51-133.

2 Specify the data alignment capabilities and syntax for one or more compilers.
Include the alignment specifications in a library registration entry in the
rtwTargetInfo.m file. See “Provide Data Alignment Specifications for Compilers”
on page 51-135.

3 Register the library containing the table entry and alignment specification object.
4 Configure the code generator to use the code replacement library and generate code.

Observe the results.

For examples, see “Basic Example of Code Replacement Data Alignment” on page
51-139 and the “Data Alignment for Function Implementations” section of the
“Optimize Generated Code By Developing and Using Code Replacement Libraries -
Simulink®” example page.

Specify Data Alignment Requirements for Function Arguments

To specify the data alignment requirement for an argument in a code replacement entry:

• If you are defining a replacement function in a code replacement table registration
file, create an argument descriptor object (RTW.ArgumentDescriptor). Use its
AlignmentBoundary property to specify the required alignment boundary and
assign the object to the argument Descriptor property.

• If you are defining a replacement function using the Code Replacement Tool, on
the Mapping Information tab, in the Argument properties section for the
replacement function, enter a value for the Alignment value parameter.

51-133

51 Code Replacement Customization for Simulink Models in Embedded Coder

The AlignmentBoundary property (or Alignment value parameter) specifies the
alignment boundary for data passed to a function argument, in number of bytes. The
AlignmentBoundary property is valid only for addressable objects, including matrix and
pointer arguments. It is not applicable for value arguments. Valid values are:

• -1 (default) — If the data is a Simulink.Bus, Simulink.Signal, or
Simulink.Parameter object, specifies that the code generator determines an
optimal alignment based on usage. Otherwise, specifies that there is not an alignment
requirement for this argument.

• Positive integer that is a power of 2, not exceeding 128 — Specifies number of bytes
in the boundary. The starting memory address for the data allocated for the function
argument is a multiple of the specified value. If you specify an alignment boundary
that is less than the natural alignment of the argument data type, the alignment
directive is emitted in the generated code. However, the target compiler ignores the
directive.

The following code specifies the AlignmentBoundary for an argument as 16 bytes.

hLib = RTW.TflTable;

entry = RTW.TflCOperationEntry;

arg = getTflArgFromString(hLib, 'u1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

51-134

 Data Alignment for Code Replacement

The equivalent alignment boundary specification in the Code Replacement Tool dialog
box is in this figure.

Note: If your model imports Simulink.Bus, Simulink.Parameter, or
Simulink.Signal objects, specify an alignment boundary in the object properties,
using the Alignment property. For more information, see Simulink.Bus,
Simulink.Parameter, and Simulink.Signal.

Provide Data Alignment Specifications for Compilers

To support data alignment in generated code, describe the data alignment capabilities
and syntax for your compilers in the code replacement library registration. Provide one or
more alignment specifications for each compiler in a library registry entry.

To describe the data alignment capabilities and syntax for a compiler:

• If you are defining a code replacement library registration entry in a
rtwTargetInfo.m customization file, add one or more AlignmentSpecification
objects to an RTW.DataAlignment object. Attach the RTW.DataAlignment object to
the TargetCharacteristics object of the registry entry.

The RTW.DataAlignment object also has the property DefaultMallocAlignment,
which specifies the default alignment boundary, in bytes, that the compiler uses for
dynamically allocated memory. If the code generator uses dynamic memory allocation
for a data object involved in a code replacement, this value determines if the memory
satisfies the alignment requirement of the replacement. If not, the code generator
does not use the replacement. The default value for DefaultMallocAlignment is
-1, indicating that the default alignment boundary used for dynamically allocated
memory is unknown. In this case, the code generator uses the natural alignment of
the data type to determine whether to allow a replacement.

51-135

51 Code Replacement Customization for Simulink Models in Embedded Coder

Additionally, you can specify the alignment boundary for complex types by using the
addComplexTypeAlignment function.

• If you are generating a customization file function using the Code Replacement Tool,
fill out the following fields for each compiler.

Click the plus (+) symbol to add additional compiler specifications.

For each data alignment specification, provide the following information.

Alignment-

Specification

Property

Dialog Box
Parameter

Description

AlignmentType Alignment
type

Cell array of predefined enumerated strings, specifying
which types of alignment this specification supports.

• DATA_ALIGNMENT_LOCAL_VAR — Local variables.
• DATA_ALIGNMENT_GLOBAL_VAR — Global variables.
• DATA_ALIGNMENT_STRUCT_FIELD — Individual

structure fields.
• DATA_ALIGNMENT_WHOLE_STRUCT — Whole structure,

with padding (individual structure field alignment, if

51-136

 Data Alignment for Code Replacement

Alignment-

Specification

Property

Dialog Box
Parameter

Description

specified, is favored and takes precedence over whole
structure alignment).

Each alignment specification must specify at
least DATA_ALIGNMENT_GLOBAL_VAR and
DATA_ALIGNMENT_STRUCT_FIELD.

AlignmentPosition Alignment
position

Predefined enumerated string specifying the position in
which you must place the compiler alignment directive for
alignment type DATA_ALIGNMENT_WHOLE_STRUCT:

• DATA_ALIGNMENT_PREDIRECTIVE — The alignment
directive is emitted before struct st_tag{…}, as part
of the type definition statement (for example, MSVC).

• DATA_ALIGNMENT_POSTDIRECTIVE — The alignment
directive is emitted after struct st_tag{…}, as part of
the type definition statement (for example, gcc).

• DATA_ALIGNMENT_PRECEDING_STATEMENT —
The alignment directive is emitted as a standalone
statement immediately preceding the definition of the
structure type. A semicolon (;) must terminate the
registered alignment syntax.

• DATA_ALIGNMENT_FOLLOWING_STATEMENT —
The alignment directive is emitted as a standalone
statement immediately following the definition of the
structure type. A semicolon (;) must terminate the
registered alignment syntax.

For alignment types other than
DATA_ALIGNMENT_WHOLE_STRUCT, code generation uses
alignment position DATA_ALIGNMENT_PREDIRECTIVE.

51-137

51 Code Replacement Customization for Simulink Models in Embedded Coder

Alignment-

Specification

Property

Dialog Box
Parameter

Description

AlignmentSyntax-

Template

Alignment
syntax

Specifies the alignment directive string that the compiler
supports. The string is registered as a syntax template that
has placeholders in it. These placeholders are supported:

• %n — Replaced by the alignment boundary for the
replacement function argument.

• %s — Replaced by the aligned symbol, usually the
identifier of a variable.

For example, for the gcc compiler, you can specify
__attribute__((aligned(%n))), or for the MSVC
compiler, __declspec(align(%n)).

SupportedLanguagesSupported
languages

Cell array specifying the languages to which this alignment
specification applies, among c and c++. Sometimes
alignment syntax and position differ between languages for
a compiler.
.

Here is a data alignment specification for the GCC compiler:

da = RTW.DataAlignment;

as = RTW.AlignmentSpecification;

as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...

 'DATA_ALIGNMENT_STRUCT_FIELD', ...

 'DATA_ALIGNMENT_GLOBAL_VAR'};

as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';

as.AlignmentPosition = 'DATA_ALIGNMENT_PREDIRECTIVE';

as.SupportedLanguages = {'c', 'c++'};

da.addAlignmentSpecification(as);

tc = RTW.TargetCharacteristics;

tc.DataAlignment = da;

Here is the corresponding specification in the Generate customization dialog box of
the Code Replacement Tool.

51-138

 Data Alignment for Code Replacement

Basic Example of Code Replacement Data Alignment

A simple example of the complete workflow for data alignment specified for code
replacement is:

1 Create and save the following code replacement table definition file,
crl_table_mmul_4x4_single_align.m. This table defines a replacement entry
for the * (multiplication) operator, the single data type, and input dimensions
[4,4]. The entry also specifies a data alignment boundary of 16 bytes for each
replacement function argument. The entry expresses the requirement that the
starting memory address for the data allocated for the function arguments during
code generation is a multiple of 16.
function hLib = crl_table_mmul_4x4_single_align

%CRL_TABLE_MMUL_4x4_SINGLE_ALIGN - Describe matrix operator entry with data alignment

hLib = RTW.TflTable;

entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 90, ...

 'ImplementationName', 'matrix_mul_4x4_s');

% conceptual arguments

createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'single', ...

 'DimRange', [4 4]);

51-139

51 Code Replacement Customization for Simulink Models in Embedded Coder

createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'single', ...

 'DimRange', [4 4]);

createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'single', ...

 'DimRange', [4 4]);

% implementation arguments

arg = getTflArgFromString(hLib, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hLib, 'y1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hlib, 'u1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hLib, 'u2','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

hLib.addEntry(entry);

2 Create and save the following registration file, rtwTargetInfo.m. If
you want to compile the code generated in this example, first modify the
AlignmentSyntaxTemplate property for the compiler that you use. For
example, for the MSVC compiler, replace the gcc template character vector
__attribute__((aligned(%n))) with __declspec(align(%n)).

function rtwTargetInfo(cm)

% rtwTargetInfo function to register a code replacement library (CRL)

% for use with code generation

 % Register the CRL defined in local function locCrlRegFcn

 cm.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

% Local function to define a CRL containing crl_table_mmul_4x4_single_align

function thisCrl = locCrlRegFcn

 % create an alignment specification object, assume gcc

51-140

 Data Alignment for Code Replacement

 as = RTW.AlignmentSpecification;

 as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...

 'DATA_ALIGNMENT_GLOBAL_VAR', ...

 'DATA_ALIGNMENT_STRUCT_FIELD'};

 as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';

 as.SupportedLanguages={'c', 'c++'};

 % add the alignment specification object

 da = RTW.DataAlignment;

 da.addAlignmentSpecification(as);

 % add the data alignment object to target characteristics

 tc = RTW.TargetCharacteristics;

 tc.DataAlignment = da;

 % Instantiate a CRL registry entry

 thisCrl = RTW.TflRegistry;

 % Define the CRL properties

 thisCrl.Name = 'Data Alignment Example';

 thisCrl.Description = 'Example of replacement with data alignment';

 thisCrl.TableList = {'crl_table_mmul_4x4_single_align'};

 thisCrl.TargetCharacteristics = tc;

end % End of LOCCRLREGFCN

3 To register your library with code generator without having to restart MATLAB,
enter this command:

RTW.TargetRegistry.getInstance('reset');

4 Configure the code generator to use your code replacement library.
5 Generate code and a code generation report.
6 Review the code replacements. For example, check whether a multiplication

operation is replaced with a matrix_mul_4x4_s function call. In mmalign.h,
check whether the gcc alignment directive __attribute__((aligned(16))) is
generated to align the function variables.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-141

51 Code Replacement Customization for Simulink Models in Embedded Coder

Replace MATLAB Functions with Custom Code Using
coder.replace

The coder.replace function provides the ability to replace a specified MATLAB
function with a code replacement function in generated code. Use coder.replace in
MATLAB code from which you want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

You can replace MATLAB functions that have:

• Single or multiple inputs
• Single or multiple outputs
• Scalar and matrix inputs and outputs

Supported types include:

• single, double (complex and noncomplex)
• int8, uint8 (complex and noncomplex)
• int16, uint16 (complex and noncomplex)
• int32, uint32 (complex and noncomplex)
• Fixed-point integers
• Mixed types (different type on each input)

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-142

 Replace coder.ceval Calls to External Functions

Replace coder.ceval Calls to External Functions
The coder.ceval function calls external C/C++ functions from code generated from
MATLAB code. The code replacement software supports replacement of the function
that you specify in a call to coder.ceval. An application of this code replacement
scenario is to write generic MATLAB code that you can customize for different platforms
with code replacements. A code replacement library can define hardware-specific code
replacements for the function call. Use coder.ceval in MATLAB code from which you
want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

Example Files

For the examples in “Interactive External Function Call Replacement Specification with
Code Replacement Tool” on page 52-107 and “Programmatic External Function Call
Replacement Specification” on page 52-108 you must have set up the following:

• Custom C function my_add.c.

/* my_add.c */

#include "my_add.h"

double my_add(double in1, double in2)

{

 return in1 + in2;

}

• Custom C header file my_add.h.

/* my_add.h */

double my_add(double in1, double in2);

• MATLAB function call_my_add.m, which uses coder.ceval to invoke my_add.c.

function y = call_my_add(in1, in2) %#codegen

y=0.0;

if ~coder.target('Rtw')

% Executing in MATLAB, call MATLAB equivalent of C function my_add

51-143

51 Code Replacement Customization for Simulink Models in Embedded Coder

 y= in1+in2;

else

% Executing in generated code, call C function my_add

 y = coder.ceval('my_add', in1, in2);

end

• MATLAB test function call_my_add_test.m, which calls call_my_add.m.

in1=10;

in2=20;

y = call_my_add(in1, in2);

disp('Output')

disp('y =')

disp(y);

• Replacement C function my_add_replacement.c.

/* my_add_replacement.c */

#include "my_add_replacement.h"

double my_add_replacement(double in1, double in2)

{

 return in1 + in2;

}

• Replacement C header file my_add_replacement.h.

/* my_add_replacement.h */

double my_add_replacement(double in1, double in2);

Interactive External Function Call Replacement Specification with Code
Replacement Tool

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry interactively with the Code Replacement Tool.

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval, a MATLAB test function, and the source and header
files for your replacement code. To follow along with this example, set up the files
identified in “Example Files” on page 52-106.

51-144

 Replace coder.ceval Calls to External Functions

2 In the Code Replacement Tool, add a table, select that table, and add a function
entry. For more information, see “Define Code Replacement Mappings” on page
52-30.

3 On the Mapping Information tab, select Custom for the Function parameter.
4 In the function-name text box, type the custom function name. For this example,

type the name my_add.
5 Under the Conceptual arguments list box, click + to add three arguments. By

default, the tool creates an output argument y1 and input arguments u1 and u2 of
type double.

6 In the Replacement function > Function prototype section, type the name
my_add_replacement in the Name text box.

7 Under the Function arguments list box, click + to add three function
implementation arguments. By default, the tool creates an output argument y1 and
input arguments u1 and u2 of type double. Use the default settings.

8 In the Function signature preview box, if you see the expected function
signature, click Apply. The function signature for this example, appears as:

double my_add_replacement(double u1, double u2);

9 On the Build Information tab, specify my_add_replacement.h for the
Implementation header file parameter and my_add_replacement.c for the
Implementation source file.

10 Click Validate entry.
11 Save the code replacement table in the same folder as my_add_replacement.c.

Name the file crl_table_my_add.m.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

Programmatic External Function Call Replacement Specification

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry programmatically.

51-145

51 Code Replacement Customization for Simulink Models in Embedded Coder

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval to invoke the C/C++ function, a MATLAB test function,
and the source and header files for your replacement code. To follow along with this
example, set up the files identified in “Example Files” on page 52-106.

2 Create a table definition file that contains a function definition. For example:

function hLib = crl_table_my_add

3 Within the function body, create the table by calling the function RTW.TflTable.
4 Create an entry for the function mapping with a call to the

RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

5 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.

hEnt.setTflCFunctionEntryParameters(...

 'Key', 'my_add', ...

 'Priority', 100, ...

 'ImplementationName', 'my_add_replacement', ...

 'ImplementationHeaderFile', 'my_add_replacement.h', ...

 'ImplementationSourceFile', 'my_add_replacement.c');

6 Create conceptual arguments y1, u1, and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.addConceptualArg(arg);

7 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments.
These functions map to arguments in the replacement function prototype: output
argument y1 and input arguments u1 and u2. For each argument, the example
uses the convenience method setReturn or addArgument to specify whether an
argument is a return value or argument. For each argument, this example adds the
argument to the entry array of implementation arguments.

51-146

 Replace coder.ceval Calls to External Functions

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

hLib.addEntry(hEnt);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Integrate MATLAB Algorithm in Model” (Simulink)
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-147

51 Code Replacement Customization for Simulink Models in Embedded Coder

Replace MATLAB Functions Specified in MATLAB Function Blocks

This example shows how to use code replacement to replace a MATLAB function
specified in a MATLAB Function block.

1 Open the ex_replace model. At the command prompt, enter:

addpath(fullfile(docroot,'toolbox','ecoder','examples'))

ex_replace

2 View the MATLAB Function Block code. In the model, double-click the MATLAB
Function block to view the code in the MATLAB editor.

function y = customFcn(u1, u2) %#codegen

% This block supports MATLAB for code generation.

% Replace this MATLAB function with CRL replacement function and if no

% CRL replacement is found, generate an error during code generation.

coder.replace('-errorifnoreplacement');

assert(isa(u1,'int32'));

assert(isa(u2,'int32'));

y = power(u1,u2);

The coder.replace('-errorifnoreplacement') statement instructs the code
generator to replace this MATLAB function with a code replacement library function.
The code generator produces an error if it does not find a match.

3 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_coderreplace()

4 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

5 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

6 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'customFcn', ...

51-148

 Replace MATLAB Functions Specified in MATLAB Function Blocks

 'Priority', 100, ...

 'ImplementationName', 'scalarFcnReplacement', ...

 'ImplementationHeaderFile', 'MyMath.h', ...

 'ImplementationSourceFile', 'MyMath.c')

7 Create conceptual arguments y1, u1, and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.
arg = getTflArgFromString(hEnt, 'y1','int32');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u1','int32');

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u2','int32');

addConceptualArg(hent, arg);

8 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments
that map to arguments in the replacement function prototype: output argument
void, input arguments u1 and u2, and output argument y1. The convenience
methods setReturn and addArgument specify whether an argument is a return
value or argument. The addArgument function also adds each argument to the
entry’s array of implementation arguments.

arg = getTflArgFromString(hEnt, 'void','void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','int32');

hEnt.Implementation.addArgument(arg);

arg = getTflArgFromString(hEnt, 'u2','int32');

hEnt.Implementation.addArgument(arg);

arg = getTflArgFromString(hEnt, 'y1','int32*');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.addArgument(arg);

9 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hLib, hEnt);

10 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

51-149

51 Code Replacement Customization for Simulink Models in Embedded Coder

1 Register the code replacement mapping.
2 Create files MyMath.c and MyMath.h that define the replacement function,

scalarFcnReplacement, which has two int32 inputs and one int32 output.

MyMath.c

#include "MyMath.h"

void scalarFcnReplacement(int32_T u1, int32_T u2, int32_T* y1) {

 *y1 = u1^u2;

}

MyMath.h

#ifndef _ScalarMath_h

#define _ScalarMath_h

#include "rtwtypes.h"

#ifdef __cplusplus

extern "C" {

#endif

extern void scalarFcnReplacement(int32_T u1, int32_T u2, int32_T* y1);

#ifdef __cplusplus

}

#endif

#endif

3 Open the ex_replace model.
4 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
5 Generate the replacement code and a code generation report.
6 Review the code replacements. In the code generation report, view the generated

code for ex_replace.c.

void ex_replace_step(void)

{

 int32_T y;

 scalarFcnReplacement(ex_replace_U.In1, ex_replace_U.In2, &y);

 ex_replace_Y.Out1 = y;

51-150

 Replace MATLAB Functions Specified in MATLAB Function Blocks

}

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-151

51 Code Replacement Customization for Simulink Models in Embedded Coder

Reserved Identifiers and Code Replacement

The code generator and C programming language use, internally, reserved keywords for
code generation. Do not use reserved keywords as identifiers or function names. Reserved
keywords for code generation include many code replacement library identifiers, the
majority of which are function names, such as acos.

To view a list of reserved identifiers for the code replacement library that you
use to generate code, specify the name of the library in a call to the function
RTW.TargetRegistry.getInstance.getTflReservedIdentifiers. For example:
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

In a code replacement table, the code generator registers each function implementation
name defined by a table entry as a reserved identifier. You can register additional
reserved identifiers for the table on a per-header-file basis. Providing additional reserved
identifiers can help prevent duplicate symbols and other identifier-related compile and
link issues.

To register additional code replacement reserved identifiers, use the
setReservedIdentifiers function. This function registers specified reserved
identifiers to be associated with a code replacement table.

You can register up to four reserved identifier structures in a code replacement table.
You can associate one set of reserved identifiers with a code replacement library, while
the other three (if present) must be associated with ANSI C. The following example
shows a reserved identifier structure that specifies two identifiers and the associated
header file.
d{1}.LibraryName = 'ANSI_C';

d{1}.HeaderInfos{1}.HeaderName = 'math.h';

d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

The code generator adds the identifiers to the list of reserved identifiers and honors them
during the build procedure.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Customize Match and Replacement Process” on page 51-153
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-152

 Customize Match and Replacement Process

Customize Match and Replacement Process

During the build process, the code generator uses:

• Preset match criteria to identify functions and operators for which application-specific
implementations replace default implementations.

• Preset replacement function signatures.

It is possible that preset match criteria and preset replacement function signatures do
not completely meet your function and operator replacement needs. For example:

• You want to replace an operator with a particular fixed-point implementation
function only when fraction lengths are within a particular range.

• When a match occurs, you want to modify your replacement function signature based
on compile-time information, such as passing fraction-length values into the function.

To add extra logic into the code replacement match and replacement process, create
custom code replacement table entries. With custom entries, you can specify additional
match criteria and modify the replacement function signature to meet application needs.

To create a custom code replacement entry:

1 Create a custom code replacement entry class, derived from
RTW.TflCFunctionEntryML (for function replacement) or

RTW.TflCOperationEntryML (for operator replacement).
2 In your derived class, implement a do_match method with a fixed preset signature

as a MATLAB function. In your do_match method, provide either or both of the
following customizations that instantiate the class:

• Add match criteria that the base class does not provide. The base class provides a
match based on:

• Argument number
• Argument name
• Signedness
• Word size
• Slope (if not specified with wildcards)
• Bias (if not specified with wildcards)
• Math modes, such as saturation and rounding

51-153

51 Code Replacement Customization for Simulink Models in Embedded Coder

• Operator or function key
• Modify the implementation signature by adding additional arguments or setting

constant input argument values. You can inject a constant value, such as an
input scaling value, as an additional argument to the replacement function.

3 Create code replacement entries that instantiate the custom entry class.
4 Register a library containing the code replacement table that includes your entries.

During code generation, the code replacement match process tries to match function or
operator call sites with the base class of your derived entry class. If the process finds a
match, the software calls your do_match method to execute your additional match logic
(if any) and your replacement function customizations (if any).

Customize Code Match and Replacement for Functions

This example shows how to use custom code replacement table entries to refine the
match and replacement logic for functions. The example shows how to:

• Modify a sine function replacement only if the integer size on the current target
platform is 32 bits.

• Change the replacement such that the implementation function passes in a degrees-
versus-radians flag as an input argument.

1 To exercise the table entries that you create in this example, create an ERT-based
model with a sine function block. For example:

In the Inport block parameters, set the signal Data type to double. If the value
selected for Configuration Parameters > Hardware Implementation > Device
type supports an integer size other than 32, do one of the following:

• Select a temporary target platform with a 32-bit integer size.
• Modify the code to match the integer size of your target platform.

2 Create a class, for example TflCustomFunctionEntry, that is derived from the
base class RTW.TflCFunctionEntryML. The derived class defines a do_match
method with the signature:

51-154

 Customize Match and Replacement Process

function ent = do_match(hThis, ...

 hCSO, ...

 targetBitPerChar, ...

 targetBitPerShort, ...

 targetBitPerInt, ...

 targetBitPerLong, ...

 targetBitPerLongLong)

In the do_match signature:

• ent is the return handle, which is returned either as empty (indicating that the
match failed) or as a TflCFunctionEntry handle.

• hThis is a handle to the class instance.
• hCSO is a handle to an object that the code generator creates for querying the

library for a replacement.
• Remaining arguments are the number of bits for various data types of the current

target.

The do_match method:

• Adds required additional match criteria that the base class does not provide.
• Makes required modifications to the implementation signature.

In this case, the do_match method must match only targetBitPerInt,
representing the number of bits in the C int data type for the current target, to the
value 32. If the code generator finds a match, the method sets the return handle and
creates and adds an input argument. The input argument represents whether units
are expressed as degrees or radians, to the replacement function signature.

Alternatively, create and add the additional implementation function argument for
passing a units flag in each code replacement table definition file that instantiates
this class. In that case, this class definition code does not create the argument. That
code sets only the argument value. For an example of creating and adding additional
implementation function arguments in a table definition file, see “Customize Code
Match and Replacement for Scalar Operations” on page 51-161.

classdef TflCustomFunctionEntry < RTW.TflCFunctionEntryML

 methods

 function ent = do_match(hThis, ...

 hCSO, ... %#ok

 targetBitPerChar, ... %#ok

51-155

51 Code Replacement Customization for Simulink Models in Embedded Coder

 targetBitPerShort, ... %#ok

 targetBitPerInt, ... %#ok

 targetBitPerLong, ... %#ok

 targetBitPerLongLong) %#ok

 % DO_MATCH - Create a custom match function. The base class

 % checks the types of the arguments prior to calling this

 % method. This will check additional data and perhaps modify

 % the implementation function.

 ent = []; % default the return to empty, indicating the match failed.

 % Match sine function only if the target int size is 32 bits

 if targetBitPerInt == 32

 % Need to modify the default implementation, starting from a copy

 % of the standard TflCFunctionEntry.

 ent = RTW.TflCFunctionEntry(hThis);

 % If the target int size is 32 bits, the implementation function

 % takes an additional input flag argument indicating degress vs.

 % radians. The additional argument can be created and added either

 % in the CRL table definition file that instantiates this class, or

 % here in the class definition, as follows:

 createAndAddImplementationArg(ent, 'RTW.TflArgNumericConstant', ...

 'Name', 'u2', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 1);

 end

 end

 end

end

Exit the class folder and return to the previous working folder.
3 Create and save the following code replacement table definition file,

crl_table_custom_sinfcn_double.m. This file defines a code replacement
table that contains a function table entry for sine with double input and
output. This entry instantiates the derived class from the previous step,
TflCustomFunctionEntry.
function hTable = crl_table_custom_sinfcn_double

hTable = RTW.TflTable;

%% Add TflCustomFunctionEntry

fcn_entry = TflCustomFunctionEntry;

setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'sin', ...

 'Priority', 30, ...

 'ImplementationName', 'mySin', ...

 'ImplementationHeaderFile', 'mySin.h', ...

 'ImplementationSourceFile', 'mySin.c');

51-156

 Customize Match and Replacement Process

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'DataTypeMode', 'double');

% TflCustomFunctionEntry class do_match method will create and add

% an implementation function argument during code generation if

% the supported integer size on the current target is 32 bits.

copyConceptualArgsToImplementation(fcn_entry);

addEntry(hTable, fcn_entry);

4 Check the validity of the code replacement table entry.

• At the command prompt, invoke the table definition file.

tbl = crl_table_custom_sinfcn_double

• In the Code Replacement Viewer, view the table definition file.

crviewer(crl_table_custom_sinfcn_double)

Customize Code Match and Replacement for Nonscalar Operations

This example shows how to create custom code replacement entries that add logic to
the code match and replacement process for a nonscalar operation. Custom entries
specify additional match criteria or modify the replacement function signature to meet
application needs.

This example restricts the match criteria for an element-wise multiplication replacement
to entries with a specific dimension range. When a match occurs, the custom do_match
method modifies the replacement signature to pass the number of elements into the
function.

Files for developing and testing this code replacement library example are available in
matlab/help/toolbox/ecoder/examples/code_replacement/custom_elemmult:

• do_match method — @MyElemMultEntry/MyElemMultEntry.m
• Replacement function source and header files — src/myMulImplLib.c and src/

myMulImplLib.h

• Model — myElemMul.slx

51-157

51 Code Replacement Customization for Simulink Models in Embedded Coder

• Code replacement table definition — myElemMultCrlTable.m
• Registration file — rtwTargetInfo.m

To create custom code replacement entries that add logic to the code replacement match
and replacement process:

1 Create a class, for example MyElemMultEntry, which is derived from the base class
RTW.TflCOperationEntryML. The derived class defines a do_match method with
the following signature:

function ent = do_match(hThis, ...

 hCSO, ...

 targetBitPerChar, ...

 targetBitPerShort, ...

 targetBitPerInt, ...

 targetBitPerLong, ...

 targetBitPerLongLong)

In the do_match signature:

• ent is the return handle, which is returned as empty (indicating that the match
failed) or as a TflCOperationEntry handle.

• hThis is the handle to the derived instance.
• hCSO is a handle to an object that the code generator creates for querying the

library for a replacement.
• Remaining arguments are the number of bits for various data types of the current

target.

The do_match method:

• Adds match criteria that the base class does not provide.
• Makes changes to the implementation signature.

The do_match method relies on the base class for checking data types and
dimension ranges. If the code generator finds a match, do_match:

• Sets the return handle.
• Uses the conceptual arguments to compute the number of elements in the array.

In the replacement entry returned, sets the value of the constant implementation
argument as the number of elements of the array.

51-158

 Customize Match and Replacement Process

• Updates the code replacement entry such that it matches CSOs that have the
same argument dimensions.

classdef MyElemMulyEntry < RTW.TflCOperationEntryML

 methods

 function obj = MyElemMultEntry(varargin)

 mlock;

 obj@RTW.TflCOperationEntryML(varargin{:});

 end

 function ent = do_match(hThis, ...

 hCSO, ... %#ok

 targetBitPerChar, ... %#ok

 targetBitPerShort, ... %#ok

 targetBitPerInt, ... %#ok

 targetBitPerLong, ... %#ok

 targetBitPerLongLong) %#ok

 % Fourth implementation arg represents number of elements for producing matches.

 assert(strcmp(hThis.Implementation.Arguments(4).Name,'numElements'));

 ent = RTW.TflCOperationEntry(hThis);

 % Calculate number of elements and set value of injected constant.

 ent.Implementation.Arguments(4).Value = prod(hCSO.ConceptualArgs(1).DimRange(1,:));

 % Since implementation has been modified for specific DimRange, update

 % returned entry to match similar CSOs only.

 for idx =1:3

 ent.ConceptualArgs(idx).DimRange = hCSO.ConceptualArgs(idx).DimRange;

 end

 end

 end

end

2 Create and save the following code replacement table definition file,
myElemMultCrlTable.m. This file defines a code replacement table that contains
an operator entry generator for element-wise multiplication. The table entry:

• Instantiates the derived class myElemMultEntry from the previous step.
• Sets operator entry parameters with the call to

the setTflCOperationEntryParameters function.
• Creates conceptual arguments y1, u1, and u2. The argument class

RTW.TflArgMatrix specifies matrix arguments to match. The three arguments
are set up to match 2-dimensional matrices with at least two elements in each
dimension.

51-159

51 Code Replacement Customization for Simulink Models in Embedded Coder

• Calls the getTflArgFromString function to create a return value and four
implementation arguments. Arguments u1 and u2 are the operands, y1 is the
product, and the fourth argument is the number of elements.

Alternatively, the do_match method of the derived class myElemMultEntry can
create and add the implementation arguments. When the number of additional
implementation arguments required can vary based on compile-time information,
use the alternative approach.

• Calls addEntry to add the entry to a code replacement table.

function hLib = myElemMultCrlTable

libPath = fullfile(fileparts(which(mfilename)),'src');

hLib = RTW.TflTable;

%---------- entry: RTW_OP_ELEM_MUL -----------

hEnt = MyElemMultEntry;

hEnt.setTflCOperationEntryParameters(...

 'Key', 'RTW_OP_ELEM_MUL', ...

 'Priority', 100, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'myElemMul_s32', ...

 'ImplementationSourceFile', 'myMulImplLib.c', ...

 'ImplementationSourcePath', libPath, ...

 'ImplementationHeaderFile', 'myMulImplLib.h', ...

 'ImplementationHeaderPath', libPath, ...

 'SideEffects', true, ...

 'GenCallback','RTW.copyFileToBuildDir');

% Conceptual Args

arg = RTW.TflArgMatrix('y1', 'RTW_IO_OUTPUT', 'int32');

arg.DimRange = [2 2; Inf Inf];

hEnt.addConceptualArg(arg);

arg = RTW.TflArgMatrix('u1', 'RTW_IO_INPUT', 'int32');

arg.DimRange = [2 2; Inf Inf];

hEnt.addConceptualArg(arg);

arg = RTW.TflArgMatrix('u2', 'RTW_IO_INPUT', 'int32');

arg.DimRange = [2 2; Inf Inf];

hEnt.addConceptualArg(arg);

51-160

 Customize Match and Replacement Process

% Implementation Args

arg = hEnt.getTflArgFromString('unused','void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','int32*');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','int32*');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('y1','int32*');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('numElements','uint32',0);

hEnt.Implementation.addArgument(arg);

hLib.addEntry(hEnt);

3 Check the validity of the code replacement table entry.

• At the command prompt, invoke the table definition file.

tbl = myElemMultCrlTable

• In the Code Replacement Viewer, view the table definition file.

crviewer(myElemMultCrlTable)

Customize Code Match and Replacement for Scalar Operations

This example shows how to create custom code replacement entries that add logic
to the code match and replacement process for a scalar operation. Custom entries
specify additional match criteria or modify the replacement function signature to meet
application needs.

For example:

• When fraction lengths are within a specific range, replace an operator with a fixed-
point implementation function.

• When a match occurs, modify the replacement function signature based on compile-
time information, such as passing fraction-length values into the function.

51-161

51 Code Replacement Customization for Simulink Models in Embedded Coder

This example modifies a fixed-point addition replacement such that the implementation
function passes in the fraction lengths of the input and output data types as arguments.

To create custom code replacement entries that add logic to the code replacement match
and replacement process:

1 Create a class, for example TflCustomOperationEntry, that is derived from the
base class RTW.TflCOperationEntryML. The derived class defines a do_match
method with the following signature:

function ent = do_match(hThis, ...

 hCSO, ...

 targetBitPerChar, ...

 targetBitPerShort, ...

 targetBitPerInt, ...

 targetBitPerLong, ...

 targetBitPerLongLong)

In the do_match signature:

• ent is the return handle, which is returned as empty (indicating that the match
failed) or as a TflCOperationEntry handle.

• hThis is the handle to the class instance.
• hCSO is a handle to an object that the code generator creates for querying the

library for a replacement.
• Remaining arguments are the number of bits for various data types of the current

target.

The do_match method adds match criteria that the base class does not provide.
The method makes modifications to the implementation signature. In this case, the
do_match method relies on the base class for checking word size and signedness.
do_match must match only the number of conceptual arguments to the value 3
(two inputs and one output) and the bias for each argument to value 0. If the code
generator finds a match, do_match:

• Sets the return handle.
• Removes slope and bias wild cards from the conceptual arguments (the match is

for specific slope and bias values).
• Writes fraction-length values for the inputs and output into replacement function

arguments 3, 4, and 5.

51-162

 Customize Match and Replacement Process

You can create and add three additional implementation function arguments for
passing fraction lengths in the class definition or in each code replacement entry
definition that instantiates this class. This example creates the arguments, adds
them to a code replacement table definition file, and sets them to specific values in
the class definition code.

classdef TflCustomOperationEntry < RTW.TflCOperationEntryML

 methods

 function ent = do_match(hThis, ...

 hCSO, ... %#ok

 targetBitPerChar, ... %#ok

 targetBitPerShort, ... %#ok

 targetBitPerInt, ... %#ok

 targetBitPerLong, ... %#ok

 targetBitPerLongLong) %#ok

 % DO_MATCH - Create a custom match function. The base class

 % checks the types of the arguments prior to calling this

 % method. This class will check additional data and can

 % modify the implementation function.

 % The base class checks word size and signedness. Slopes and biases

 % have been wildcarded, so the only additional checking to do is

 % to check that the biases are zero and that there are only three

 % conceptual arguments (one output, two inputs)

 ent = []; % default the return to empty, indicating the match failed

 if length(hCSO.ConceptualArgs) == 3 && ...

 hCSO.ConceptualArgs(1).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(2).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(3).Type.Bias == 0

 % Modify the default implementation. Since this is a

 % generator entry, a concrete entry is created using this entry

 % as a template. The type of entry being created is a standard

 % TflCOperationEntry. Using the standard operation entry

 % provides required information, and you do not need

 % a custom match function.

 ent = RTW.TflCOperationEntry(hThis);

 % Since this entry is modifying the implementation for specific

 % fraction-length values (arguments 3, 4, and 5), the conceptual argument

 % wild cards must be removed (the wildcards were inherited from the

 % generator when it was used as a template for the concrete entry).

 % This concrete entry is now for a specific slope and bias.

 % hCSO holds the slope and bias values (created by the code generator).

 for idx=1:3

 ent.ConceptualArgs(idx).CheckSlope = true;

 ent.ConceptualArgs(idx).CheckBias = true;

 % Set the specific Slope and Biases

51-163

51 Code Replacement Customization for Simulink Models in Embedded Coder

 ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope;

 ent.ConceptualArgs(idx).Type.Bias = 0;

 end

 % Set the fraction-length values in the implementation function.

 ent.Implementation.Arguments(3).Value = ...

 -1.0*hCSO.ConceptualArgs(2).Type.FixedExponent;

 ent.Implementation.Arguments(4).Value = ...

 -1.0*hCSO.ConceptualArgs(3).Type.FixedExponent;

 ent.Implementation.Arguments(5).Value = ...

 -1.0*hCSO.ConceptualArgs(1).Type.FixedExponent;

 end

 end

 end

end

Exit the class folder and return to the previous working folder.
2 Create and save the following code replacement table definition file,

crl_table_custom_sinfcn_double.m. This file defines a code replacement table
that contains a single operator entry, an entry generator for unsigned 32-bit fixed-
point addition operations, with arbitrary fraction-length values on the inputs and the
output. The table entry:

• Instantiates the derived class TflCustomOperationEntry from the previous
step. If you want to replace word sizes and signedness attributes, you can use the
same derived class, but not the same entry, because you cannot use a wild card
with the WordLength and IsSigned arguments. For example, to support uint8,
int8, uint16, int16, and int32, add five other distinct entries. To use different
implementation functions for saturation and rounding modes other than overflow
and round to floor, add entries for those match permutations.

• Sets operator entry parameters with the call to
the setTflCOperationEntryParameters function.

• Calls the createAndAddConceptualArg function to create conceptual
arguments y1, u1, and u2.

• Calls createAndSetCImplementationReturn and
createAndAddImplementationArg to define the signature for the replacement
function. Three of the calls to createAndAddImplementationArg create
implementation arguments to hold the fraction-length values for the inputs and
output. Alternatively, the entry can omit those argument definitions. Instead, the
do_match method of the derived class TflCustomOperationEntry can create
and add the three implementation arguments. When the number of additional
implementation arguments required can vary based on compile-time information,
use the alternative approach.

51-164

 Customize Match and Replacement Process

• Calls addEntry to add the entry to a code replacement table.

function hTable = crl_table_custom_add_ufix32

hTable = RTW.TflTable;

%% Add TflCustomOperationEntry

op_entry = TflCustomOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationName', 'myFixptAdd', ...

 'ImplementationHeaderFile', 'myFixptAdd.h', ...

 'ImplementationSourceFile', 'myFixptAdd.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

51-165

51 Code Replacement Customization for Simulink Models in Embedded Coder

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

% Specify replacement function signature

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

% Add 3 fraction-length args. Actual values are set during code generation.

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

51-166

 Customize Match and Replacement Process

 'Name', 'fl_out', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

addEntry(hTable, op_entry);

3 Check the validity of the operator entry.

• At the command prompt, invoke the table definition file.

tbl = crl_table_custom_sinfcn_double

• In the Code Replacement Viewer, view the table definition file.

crviewer(crl_table_custom_sinfcn_double)

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-167

51 Code Replacement Customization for Simulink Models in Embedded Coder

Scalar Operator Code Replacement

This example shows how to define a code replacement mapping for a scalar operator. The
example defines a mapping for the + (addition) operator programmatically. Alternatively,
you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set function entry parameters with a call to the
setTflCOperationEntryParameters function.
% Define addition operation of built-in uint8 data type

% Saturation on, Rounding unspecified

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

51-168

 Scalar Operator Code Replacement

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(op_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that includes an Add block, such as this model.

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
4 Generate code and a code generation report.
5 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27
• “What Is Code Replacement Customization?” on page 51-3

51-169

51 Code Replacement Customization for Simulink Models in Embedded Coder

Addition and Subtraction Operator Code Replacement

Consider the following when defining mappings for addition and subtraction operator
code replacements.

Algorithm Options

When creating a code replacement table entry for an addition or subtraction operator,
first determine the type of algorithm that your library function implements.

• Cast-before-operation (CBO), default — Prior to performing the addition or
subtraction operation, the algorithm type casts input values to the output type. If
the output data type cannot exactly represent the input values, losses can occur as a
result of the cast to the output type. Additional loss can occur when the result of the
operation is cast to the final output type.

• Cast-after-operation (CAO) — The algorithm computes the ideal result of the addition
or subtraction operation of the two inputs. The algorithm then type casts the result
to the output data type. Loss occurs during the type cast. This algorithm behaves
similarly to the C language except when the signedness of the operands does not
match. For example, when you add a signed long operand to an unsigned long
operand, standard C language rules convert the signed long operand to an unsigned
long operand. The result is a value that is not ideal.

Interactive Specification with Code Replacement Tool

When you use the Code Replacement Tool to create a code replacement table entry for an
addition or subtraction operation, the tool displays an Algorithm menu. Use that menu
to specify the Cast before operation or Cast after operation algorithm for that
entry.

51-170

 Addition and Subtraction Operator Code Replacement

Programmatic Specification

Create a code replacement table file, as a MATLAB function, that describes
the addition or subtraction code replacement table entry. In the call to
setTflCOperationEntryParameters, set at least these parameters:

• Key to RTW_OP_ADD or RTW_OP_MINUS
• ImplementationName to the name of your replacement function
• EntryInfoAlgorithm to RTW_CAST_BFORE_OP (cast-before-operation) or

RTW_CAST_AFTER_OP (cast-after-operation)

This example sets parameters for a code replacement operator entry for a cast-after-
operation implementation of a uint8 addition.
op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'EntryInfoAlgorithm', 'RTW_CAST_AFTER_OP', ...

 'ImplementationName', 'u8_add_u8_u8');

For more information, see setTflCOperationEntryParameters.

Algorithm Classification

During code generation, the code generator examines addition and subtraction
operations, including adjacent type cast operations, to determine the type of algorithm
to compute the expression result. Based on the data types in the expression and the type
of the accumulator (type used to hold the result of the addition or subtraction operation),
the code generator uses these rules.

• Floating-point types only

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double double double double CBO, CAO
double double double single —
double double single double —
double double single single CBO
double single double double CBO, CAO

51-171

51 Code Replacement Customization for Simulink Models in Embedded Coder

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double single double single —
double single single double —
double single single single CBO
single single single single CBO, CAO
single single single double —
single single double single —
single single double double CBO, CAO

• Floating-point and fixed-point types on the immediate addition or subtraction
operation

Algorithm Conditions

CBO One of the following is true:

• Operation type is double.
• Operation type is single and input types are single or fixed-point.

CAO Operation type is a superset of input types—that is, output type can
represent values of input types without loss of data.

• Fixed-point types only

Algorithm Conditions

CBO At least one of the following is true:

• Accumulator type equals output type (Tacc == Tout).
• Output type is a superset of input types (Tacc >= {Tin1, Tin2})

and accumulator type is a superset of output type (Tacc >= Tout).
• Operation does not incur range or precision loss.

CAO Net bias is zero and the data types in the expression have equal slope
adjustment factors. For more information on net bias, see “Addition”
or “Subtraction” in “Fixed-Point Operator Code Replacement” on
page 52-146 (for MATLAB code) or “Fixed-Point Operator Code
Replacement” on page 51-195 (for Simulink models).

51-172

 Addition and Subtraction Operator Code Replacement

In many cases, the numerical result of a CBO operation is equal to that of a CAO
operation. For example, if the input and output types are such that the operation
produces the ideal result, as in the case of int8 + int8 —> int16. To maximize the
probability of code replacement occurring in such cases, set the algorithm to cast-after-
operation.

Limitations

• The code generator does not replace operations with nonzero net bias.
• When classifying an operation as a CAO operation, the code generator includes the

adjacent casts in the expression when the expression involves only fixed-point types.
Otherwise, the code generator classifies and replaces only the immediate addition or
subtraction operation. Casts that the code generator excludes from the classification
appear in the generated code.

• To enable the code generator to include multiple cast operations, which follow an
addition or subtraction of fixed-point data, in the classification of an expression, the
rounding mode must be simplest or floor. Consider the expression y=(cast A)
(cast B)(u1+u2). If the rounding mode of (cast A), (cast B), and the addition
operator (+) are set to simplest or floor, the code generator takes into account
(cast A) and (cast B) when classifying the expression and performing the
replacement only.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Develop a Code Replacement Library” on page 51-27

51-173

51 Code Replacement Customization for Simulink Models in Embedded Coder

Small Matrix Operation to Processor Code Replacement
This example shows how to define code replacement mappings that replace nonscalar
small matrix operations with processor-specific intrinsic functions. The example defines
a table containing two matrix operator replacement entries for the + (addition) operator
and the double data type. The example defines the function mapping programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_matrix_add_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the first operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create table entry for matrix_sum_2x2_double

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The code generator
ignores saturation and rounding modes for floating-point nonscalar addition
and subtraction. For code replacement entries for nonscalar addition and
subtraction operations that do not involve fixed-point data, in the call to
setTflCOperationEntryParameters, specify 'RTW_SATURATE_UNSPECIFIED'
for the SaturationMode property and {'RTW_ROUND_UNSPECIFIED'} for
RoundingModes.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_2x2_double', ...

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. To specify a matrix argument in the function call, use the argument

51-174

 Small Matrix Operation to Processor Code Replacement

class RTW.TflArgMatrix. Specify the base type and the dimensions for which the
argument is valid. The first table entry specifies [2 2] and the second table entry
specifies [3 3].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
to create the arguments. The convenience methods setReturn and addArgument
specify whether an argument is a return value or argument and adds the argument
to the entry’s array of implementation arguments.
arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Create the entry for the second operator mapping.

% Create table entry for matrix_sum_3x3_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_3x3_double', ...

51-175

51 Code Replacement Customization for Simulink Models in Embedded Coder

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model that includes an Add block.

51-176

 Small Matrix Operation to Processor Code Replacement

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
4 In the Model Explorer, configure the Signal Attributes for the In1 and In2 source

blocks. For each source block, set Port dimensions to [3,3], and set Data type to
double. Apply the changes. Save the model.

5 Generate code and a code generation report.
6 Review the code replacements. The code generator replaces the + operator with

matrix_sum_3x3_double in the generated code.
7 Reconfigure Port dimensions for In1 and In2 to [2 2], regenerate code. Observe

that code containing the + operator is replaced with matrix_sum_2x2_double.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

51-178
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

51-186
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-177

51 Code Replacement Customization for Simulink Models in Embedded Coder

Matrix Multiplication Operation to MathWorks BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with Basic Linear Algebra Subroutine (BLAS) multiplication
functions xgemm and xgemv. The example defines code replacement entries that map
floating-point matrix/matrix and matrix/vector multiplication operations to MathWorks
BLAS library multiplication functions dgemm and dgemv. The example defines the
function mappings programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_tmwblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the BLAS function library. If your replacement functions are on
the MATLAB search path or are in your working folder, you can skip this step.
% Define library path for Windows or UNIX

arch = computer('arch');

if ~ispc

 LibPath = fullfile('$(MATLAB_ROOT)', 'bin', arch);

else

 % Use Stateflow to get the compiler info

 compilerInfo = sf('Private','compilerman','get_compiler_info');

 compilerName = compilerInfo.compilerName;

 if strcmp(compilerName, 'msvc90') || ...

 strcmp(compilerName, 'msvc80') || ...

 strcmp(compilerName, 'msvc71') || ...

 strcmp(compilerName, 'msvc60'), ...

 compilerName = 'microsoft';

 end

 LibPath = fullfile('$(MATLAB_ROOT)', 'extern', 'lib', arch, compilerName);

end

51-178

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for dgemm32

op_entry = RTW.TflBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCFunctionEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation
and rounding modes for floating-point nonscalar addition and subtraction. For
code replacement entries for nonscalar addition and subtraction operations that do
not involve fixed-point data, in the call to setTflCFunctionEntryParameters,
specify 'RTW_SATURATE_UNSPECIFIED' for the SaturationMode property and
{'RTW_ROUND_UNSPECIFIED'} for RoundingModes.
if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemm32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath}, ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf], while the conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

51-179

51 Code Replacement Customization for Simulink Models in Embedded Coder

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
and RTW.TflArgCharConstant functions to create the arguments. The example
code configures special implementation arguments that are required for dgemm
and dgemv function replacements. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.

% Using RTW.TflBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(char* TRANSA, char* TRANSB, int* M, int* N, int* K,

% type* ALPHA, type* u1, int* LDA, type* u2, int* LDB,

% type* BETA, type* y, int* LDC)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and inserts them into the

% generated code. TRANSA and TRANSB are set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANSA');

% Possible values for PassByType property are

% RTW_PASSBY_AUTO, RTW_PASSBY_POINTER,

% RTW_PASSBY_VOID_POINTER, RTW_PASSBY_BASE_POINTER

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = RTW.TflArgCharConstant('TRANSB');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

51-180

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.

51-181

51 Code Replacement Customization for Simulink Models in Embedded Coder

% Create table entry for dgemv32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemv32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath},...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(char* TRANS, int* M, int* N,

% type* ALPHA, type* u1, int* LDA, type* u2, int* INCX,

% type* BETA, type* y, int* INCY)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY, and insert them into the

% generated code. TRANS will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANS');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

51-182

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX','integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

51-183

51 Code Replacement Customization for Simulink Models in Embedded Coder

To test this example:

1 Register the code replacement mapping.
2 Create a model that includes two Product blocks.

3 For each Product block, set the block parameter Multiplication to the value
Matrix(*).

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3

source blocks. For In1 and In2, set Port dimensions to [3 3] and set the Data
type to double. For In3, set Port dimensions to [3 1] and set the Data type to
double.

6 Generate code and a code generation report.
7 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Small Matrix Operation to Processor Code Replacement” on page 51-174
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

51-186
• “Data Alignment for Code Replacement” on page 51-133

51-184

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-185

51 Code Replacement Customization for Simulink Models in Embedded Coder

Matrix Multiplication Operation to ANSI/ISO C BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with ANSI/ISO C BLAS multiplication functions xgemm
and xgemv. The example defines code replacement entries that map floating-point
matrix/matrix and matrix/vector multiplication operations to ANSI/ISO C BLAS library
multiplication functions dgemm and dgemv. The example defines the function mappings
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the CBLAS function library. For example:
LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'crl_demo');

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for cblas_dgemm

op_entry = RTW.TflCBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation and
rounding modes for floating-point nonscalar addition and subtraction.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

51-186

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemm', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf]. The conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. The example code configures special
implementation arguments that are required for dgemm and dgemv function
replacements. The convenience methods setReturn and addArgument specify
whether an argument is a return value or argument and adds the argument to the
entry’s array of implementation arguments.

% Using RTW.TflCBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, enum TRANSB, int M, int N, int K,

% type ALPHA, type* u1, int LDA, type* u2, int LDB,

51-187

51 Code Replacement Customization for Simulink Models in Embedded Coder

% type BETA, type* y, int LDC)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSB', 'integer', 111);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

51-188

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.
% Create table entry for cblas_dgemv

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemv', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflCBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, int M, int N,

% type ALPHA, type* u1, int LDA, type* u2, int INCX,

% type BETA, type* y, int INCY)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY and insert them into the

% generated code.

51-189

51 Code Replacement Customization for Simulink Models in Embedded Coder

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M','integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.

51-190

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

2 Create a model that includes two Product blocks.

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
4 For each Product block, set the block parameter Multiplication to the value

Matrix(*).
5 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3

source blocks. For In1 and In2, set Port dimensions to [3 3]. Set the Data type
to double. For In3, set Port dimensions to [3 1]. Set the Data type to double.

6 Generate code and a code generation report.
7 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Small Matrix Operation to Processor Code Replacement” on page 51-174
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

51-178
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-191

51 Code Replacement Customization for Simulink Models in Embedded Coder

Remap Operator Output to Function Input

If your generated code must meet a specific coding pattern or you want more flexibility,
for example, to further improve performance, you can remap operator outputs to input
positions in an implementation function argument list.

Note: Remapping outputs to implementation function inputs is supported only for
operator replacement.

For example, for a sum operation, the code generator produces code similar to:

add8_Y.Out1 = u8_add_u8_u8(add8_U.In1, add8_U.In2);

If you remap the output to the first input, the code generator produces code similar to:

u8_add_u8_u8(&add8_Y.Out1;, add8_U.In1, add8_U.In2);

The following table definition file for a sum operation remaps operator output y1 as the
first function input argument.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. In the function call, set the
property SideEffects to true.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c', ...

 'SideEffects', true);

51-192

 Remap Operator Output to Function Input

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. When defining the implementation function return
argument, create a new void output argument, for example, y2. When defining the
implementation function argument for the conceptual output argument (y1), set
the operator output argument as an additional input argument. Mark its IOType
as output. Make its type a pointer type. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.
% Create new void output y2

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

% Set y1 as first input arg, mark IOType as output, and use pointer type

arg=getTflArgFromString(hTable, 'y1', 'uint8*');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u1', 'uint8');

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u2', 'uint8');

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.

51-193

51 Code Replacement Customization for Simulink Models in Embedded Coder

2 Create a model that includes an Add block.

3 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
• On the All Parameters tab, set the Optimize global data access parameter

to Use global to hold temporary results to reduce data copies in the
generated code.

4 Generate code and a code generation report.
5 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

51-194

 Fixed-Point Operator Code Replacement

Fixed-Point Operator Code Replacement

If you have a Fixed-Point Designer license, you can define fixed-point operator code
replacement entries to match:

• A binary-point-only scaling combination on the operator inputs and output.
• A slope bias scaling combination on the operator inputs and output.
• Relative scaling or net slope between multiplication or division operator inputs

and output. Use one of these methods to map a range of slope and bias values to a
replacement function for multiplication or division.

• Equal slope and zero net bias across addition or subtraction operator inputs and
output. Use this method to disregard specific slope and bias values and map relative
slope and bias values to a replacement function for addition or subtraction.

Common Ways to Match Fixed-Point Operator Entries

The following table maps common ways to match fixed-point operator code replacement
entries with the associated fixed-point parameters that you specify in a code replacement
table definition file.

Match Create entry Minimally specify parameters

A specific binary-point-
only scaling combination
on the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

• CheckSlope: Specify the value
true.

• CheckBias: Specify the value true.
• DataTypeMode (or

DataType/Scaling equivalent):
Specify fixed-point binary-point-only
scaling.

• FractionLength: Specify a
fraction length (for example, 3).

A specific slope bias
scaling combination on
the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

51-195

51 Code Replacement Customization for Simulink Models in Embedded Coder

Match Create entry Minimally specify parameters

• CheckSlope: Specify the value
true.

• CheckBias: Specify the value true.
• DataTypeMode (or DataType/

Scaling equivalent): Specify fixed-
point [slope bias] scaling.

• Slope (or
SlopeAdjustmentFactor/
FixedExponent equivalent):
Specify a slope value (for example,
15).

• Bias: Specify a bias value (for
example, 2).

Net slope between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator_NetSlope

setTflCOperationEntryParameters

function:

• NetSlopeAdjustmentFactor:
Specify the slope adjustment factor
(F) part of the net slope, F2E (for
example, 1.0).

• NetFixedExponent: Specify the
fixed exponent (E) part of the net
slope, F2E (for example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

51-196

 Fixed-Point Operator Code Replacement

Match Create entry Minimally specify parameters

Relative scaling between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• RelativeScalingFactorF:
Specify the slope adjustment factor
(F) part of the relative scaling factor,
F2

E (for example, 1.0).
• RelativeScalingFactorE:

Specify the fixed exponent (E) part
of the relative scaling factor, F2E (for
example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

Equal slope and zero net
bias across operator inputs
and output (addition and
subtraction).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• SlopesMustBeTheSame: Specify
the value true.

• MustHaveZeroNetBias: Specify
the value true.

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

51-197

51 Code Replacement Customization for Simulink Models in Embedded Coder

Fixed-Point Numbers and Arithmetic

Fixed-point numbers use integers and integer arithmetic to represent real numbers and
arithmetic with the following encoding scheme:

V V SQ B= = +%

• V is an arbitrarily precise real-world value.

• %V is the approximate real-world value that results from fixed-point representation.

• Q is an integer that encodes %V , referred to as the quantized integer.

•
S is a coefficient of Q , referred to as the slope.

• B is an additive correction, referred to as the bias.

The general equation for an operation between fixed-point operands is:

S Q B S Q B op S Q BO O O+() = +() < > +
1 1 1 2 2 2

()

The objective of fixed-point operator replacement is to replace an operator that accepts
and returns fixed-point or integer inputs and output with a function that accepts
and returns built-in C numeric data types. The following sections provide additional
programming information for each supported operator.

Addition

The operation V0 = V1 + V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ +

+ -Ê

Ë
Á

ˆ

¯
˜

If an addition replacement function is defined such that the scaling on the operands and
sum are equal and the net bias

51-198

 Fixed-Point Operator Code Replacement

B B B

S

1 2 0

0

+ -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_add_s8_s8 that adds two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Subtraction

The operation V0 = V1 − V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜ +

- -Ê

Ë
Á

ˆ

¯
˜

If a subtraction replacement function is defined such that the scaling on the operands
and difference are equal and the net bias

B B B

S

1 2 0

0

- -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_sub_s8_s8 that subtracts two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Multiplication

There are different ways to specify multiplication replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. Use the TflCOperationEntry class

51-199

51 Code Replacement Customization for Simulink Models in Embedded Coder

and specify the exact values of slope and bias on each argument. For scenarios where
there are numerous slope/bias combinations, it is not feasible to specify each value with a
different entry. Use a net slope entry or create a custom entry.

The operation V0 = V1 * V2 implies, for binary-point-only scaling, that

S Q S Q S Q

Q
S S

S
Q Q

Q S Q Q
n

0 0 1 1 2 2

0

1 2

0

1 2

0 1 2

= () ()

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

It is common to replace all multiplication operations that have a net slope of 1.0 with
a function that performs C-style multiplication. For example, to replace all signed 8-
bit multiplications that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the
function setTflCOperationEntryParameters.) For the s8_mul_s8_u8 function, set
NetSlopeAdjustmentFactor to 1 and NetFixedExponent to 0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Division

There are different ways to specify division replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. For this, use the TflCOperationEntry
class and specify the exact values of slope and bias on each argument. For scenarios
where there are numerous slope/bias combinations, it is not feasible to specify each
value with a different entry. For this, use a net slope entry or create a custom entry (see
“Customize Match and Replacement Process” on page 51-153).

The operation V0 = (V1 / V2) implies, for binary-point-only scaling, that

51-200

 Fixed-Point Operator Code Replacement

S Q
S Q

S Q

Q S
Q

Q
n

0 0

1 1

2 2

0

1

2

=
Ê

Ë
Á

ˆ

¯
˜

=
Ê

Ë
Á

ˆ

¯
˜

where Sn is the net slope.

It is common to replace all division operations that have a net slope of 1.0 with
a function that performs C-style division. For example, to replace all signed 8-
bit divisions that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.) For the s16_netslope0p5_div_s16_s16
function, you would set NetSlopeAdjustmentFactor to 1 and NetFixedExponent to
0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Data Type Conversion (Cast)

The data type conversion operation V0 = V1 implies, for binary-point-only scaling, that

Q
S

S
Q

Q S Q
n

0

1

0

1

0 1

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

Shift

The shift left or shift right operation V0 = (V1 / 2n) implies, for binary-point-only scaling,
that

51-201

51 Code Replacement Customization for Simulink Models in Embedded Coder

S Q
S Q

Q
S

S

Q

Q S
Q

n

n

n n

0 0

1 1

0

1

0

1

0

1

2

2

2

= Ê
Ë
Á

ˆ
¯
˜

=
Ê

Ë
Á

ˆ

¯
˜ + Ê

Ë
Á

ˆ
¯
˜

= Ê
Ë
Á

ˆ
¯
˜

where Sn is the net slope.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Binary-Point-Only Scaling Code Replacement” on page 51-203
• “Slope Bias Scaling Code Replacement” on page 51-207
• “Net Slope Scaling Code Replacement” on page 51-211
• “Equal Slope and Zero Net Bias Code Replacement” on page 51-218
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Shift Left Operations and Code Replacement” on page 51-226
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-202

 Binary-Point-Only Scaling Code Replacement

Binary-Point-Only Scaling Code Replacement
You can define code replacement entries for operations on fixed-point data types such
that they match a binary-point-only scaling combination on operator inputs and output.
These binary-point-only scaling entries can map the specified binary-point-scaling
combination to a replacement function for addition, subtraction, multiplication, or
division.

This example creates a code replacement entry for multiplication of fixed-point data
types. You specify arguments using binary-point-only scaling. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_binptscale

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as multiplication, the saturation mode as saturate on integer
overflow, rounding modes as unspecified, and the name of the replacement function
as s32_mul_s16_s16_binarypoint.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s16_s16_binarypoint', ...

 'ImplementationHeaderFile', 's32_mul_s16_s16_binarypoint.h', ...

 'ImplementationSourceFile', 's32_mul_s16_s16_binarypoint.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode is
binary-point-only scaling, and its derived slope and bias values must exactly match
the call-site slope and bias values. The output argument is 32 bits, signed, with a

51-203

51 Code Replacement Customization for Simulink Models in Embedded Coder

fraction length of 28. The input arguments are 16 bits, signed, with fraction lengths
of 15 and 13.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 28);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 15);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 13);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output argument is
32 bits and signed (int32). The input arguments are 16 bits and signed (int16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

51-204

 Binary-Point-Only Scaling Code Replacement

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to fixdt(1,16,15).
• Set the Inport 2 Data type to fixdt(1,16,13).
• In the Product block:

• Set Output data type to fixdt(1,32,28).
• Select the option Saturate on integer overflow.

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 Generate code and a code generation report.

51-205

51 Code Replacement Customization for Simulink Models in Embedded Coder

6 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Shift Left Operations and Code Replacement” on page 51-226
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-206

 Slope Bias Scaling Code Replacement

Slope Bias Scaling Code Replacement
You can define code replacement for operations on fixed-point data types as matching
a slope bias scaling combination on the operator inputs and output. The slope bias
scaling entries can map the specified slope bias combination to a replacement function for
addition, subtraction, multiplication, or division.

This example creates a code replacement entry for division of fixed-point data types. You
specify arguments using slope bias scaling. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_s16divslopebias

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as saturate on integer overflow,
rounding modes as round to ceiling, and the name of the replacement function as
s16_div_s16_s16_slopebias.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'ImplementationName', 's16_div_s16_s16_slopebias', ...

 'ImplementationHeaderFile', 's16_div_s16_s16_slopebias.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16_slopebias.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode
is slope bias scaling, and its specified slope and bias values must exactly match the
call-site slope and bias values. The output argument and input arguments are 16
bits, signed, each with specific slope bias specifications.

51-207

51 Code Replacement Customization for Simulink Models in Embedded Coder

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 13, ...

 'Bias', 5);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

51-208

 Slope Bias Scaling Code Replacement

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to fixdt(1,16,15,2).
• Set the Inport 2 Data type to fixdt(1,16,13,5).
• In the Divide block:

• Set Output data type to Inherit: Inherit via back propagation.
• Set Integer rounding mode to Ceiling.
• Select the option Saturate on integer overflow.

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.

51-209

51 Code Replacement Customization for Simulink Models in Embedded Coder

5 Generate code and a code generation report.
6 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Shift Left Operations and Code Replacement” on page 51-226
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-210

 Net Slope Scaling Code Replacement

Net Slope Scaling Code Replacement

Multiplication and Division with Saturation

You can define code replacement entries for operations on fixed-point data types as
matching net slope between operator inputs and output. The net slope entries can map a
range of slope and bias values to a replacement function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using wrap on overflow saturation mode and a net slope. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netslopesaturate

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.
wv = [16,32];

for iy = 1:2

 for inum = 1:2

 for iden = 1:2

 hTable = getDivOpEntry(hTable, ...

 fixdt(1,wv(iy)),fixdt(1,wv(inum)),fixdt(1,wv(iden)));

 end

 end

end

%---

function hTable = getDivOpEntry(hTable,dty,dtnum,dtden)

%---

% Create an entry for division of fixed-point data types where

% arguments are specified using Slope and Bias scaling

% Saturation on, Rounding unspecified

funcStr = sprintf('user_div_%s_%s_%s',...

 typeStrFunc(dty),...

 typeStrFunc(dtnum),...

 typeStrFunc(dtden));

51-211

51 Code Replacement Customization for Simulink Models in Embedded Coder

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as wrap on overflow, rounding
modes as unspecified, and the name of the replacement function as user_div_*.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the net slope F2E.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW',...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'},...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

 'ImplementationName', funcStr, ...

 'ImplementationHeaderFile', [funcStr,'.h'], ...

 'ImplementationSourceFile', [funcStr,'.c']);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. Specify each argument as fixed-point and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dty.Signed,...

 'WordLength', dty.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtnum.Signed,...

 'WordLength', dtnum.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

51-212

 Net Slope Scaling Code Replacement

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtden.Signed,...

 'WordLength', dtden.WordLength,...

 'Bias', 0);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. Implementation arguments must describe
fundamental numeric data types (not fixed-point data types). The convenience
methods setReturn and addArgument specify whether an argument is a return
value or argument. These methods add the argument to the entry array of
implementation arguments.

arg = getTflArgFromString(hTable, 'y1', typeStrBase(dty));

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', typeStrBase(dtnum));

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2',typeStrBase(dtden));

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Define functions that determine the data type word length.

%---

function str = typeStrFunc(dt)

%---

if dt.Signed

 sstr = 's';

else

 sstr = 'u';

end

str = sprintf('%s%d',sstr,dt.WordLength);

%---

function str = typeStrBase(dt)

%---

if dt.Signed

 sstr = ;

else

 sstr = 'u';

end

str = sprintf('%sint%d',sstr,dt.WordLength);

51-213

51 Code Replacement Customization for Simulink Models in Embedded Coder

9 Save the table definition file. Use the name of the table definition function to name
the file.

Multiplication and Division with Rounding Mode and Additional
Implementation Arguments

You can define code replacement entries for multiplication and division operations on
fixed-point data types such that they match the net slope between operator inputs and
output. The net slope entries can map a range of slope and bias values to a replacement
function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using the ceiling rounding mode and a net slope scaling factor. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netsloperound

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as division, the saturation mode as saturation off, rounding modes as
round to ceiling, and the name of the replacement function as s16_div_s16_s16.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the relative scaling factor F2E.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

51-214

 Net Slope Scaling Code Replacement

 'ImplementationName', 's16_div_s16_s16', ...

 'ImplementationHeaderFile', 's16_div_s16_s16.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Specify each argument as fixed-point, 16 bits, and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

51-215

51 Code Replacement Customization for Simulink Models in Embedded Coder

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to int16.
• Set the Inport 2 Data type to fixdt(1,16,-5).
• In the Divide block:

• Set Output data type to fixdt(1,16,-13).
• Set Integer rounding mode to Ceiling.

4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.

51-216

 Net Slope Scaling Code Replacement

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 Generate code and a code generation report.
6 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Shift Left Operations and Code Replacement” on page 51-226
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-217

51 Code Replacement Customization for Simulink Models in Embedded Coder

Equal Slope and Zero Net Bias Code Replacement

You can define code replacement entries for addition or subtraction of fixed-point data
types such that they match relative slope and bias values (equal slope and zero net bias)
across operator inputs and output. These entries allow you to disregard slope and bias
values. Map relative slope and bias values to a replacement function for addition or
subtraction.

This example creates a code replacement entry for addition of fixed-point data types.
Slopes must be equal and net bias must be zero across the operator inputs and output.
The example defines the function mapping programmatically. Alternatively, you can use
the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_slopeseq_netbiaszero

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator function, which provides access to the fixed-
point parameters SlopesMustBeTheSame and MustHaveZeroNetBias.

op_entry = RTW.TflCOperationEntryGenerator;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify
the type of operation as addition, the saturation mode as saturation
off, rounding modes as unspecified, and the name of the replacement
function as u16_add_SameSlopeZeroBias. SlopesMustBeTheSame and
MustHaveZeroNetBias are set to true, indicating that slopes must be equal and
net bias must be zero across the addition inputs and output.

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'SlopesMustBeTheSame', true, ...

 'MustHaveZeroNetBias', true, ...

 'ImplementationName', 'u16_add_SameSlopeZeroBias', ...

 'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h', ...

 'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');

51-218

 Equal Slope and Zero Net Bias Code Replacement

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as 16 bits and unsigned. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and unsigned (uint16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

51-219

51 Code Replacement Customization for Simulink Models in Embedded Coder

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example:

1 Register the code replacement mapping.
2 Create a model.

3 For this model:

• Set the Inport 1 Data type to fixdt(0,16,13).
• Set the Inport 2 Data type to fixdt(0,16,13).
• In the Add block:

• Verify that Output data type is set to its default, Inherit via internal
rule.

• Set Integer rounding mode to Zero.
4 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
5 Generate code and a code generation report.

51-220

 Equal Slope and Zero Net Bias Code Replacement

6 Review the code replacements.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Shift Left Operations and Code Replacement” on page 51-226
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-221

51 Code Replacement Customization for Simulink Models in Embedded Coder

Data Type Conversions (Casts) and Operator Code Replacement

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

Casts from int32 To int16

This example creates a code replacement entry that replaces int32 to int16
data type conversion (cast) operations. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_int32_to_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_sat_cast.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'ImplementationName', 'my_sat_cast', ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.

51-222

 Data Type Conversions (Casts) and Operator Code Replacement

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

6 Create the int32 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as implementation input argument.
arg = getTflArgFromString(hTable, 'u1', 'int32');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hLib, hEnt);

8 Save the table definition file. Use the name of the table definition function to name
the file.

Casts Using Net Slope

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

This example creates a code replacement entry to replace data type conversions (casts)
of fixed-point data types by using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_fixpt_net_slope

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type

51-223

51 Code Replacement Customization for Simulink Models in Embedded Coder

of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_cast. NetSlopeAdjustmentFactor and NetFixedExponent specify the
F and E parts of the net slope F2E.
InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL), ...

 'ImplementationName', 'my_fxp_cast', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and

51-224

 Data Type Conversions (Casts) and Operator Code Replacement

createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Shift Left Operations and Code Replacement” on page 51-226
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-225

51 Code Replacement Customization for Simulink Models in Embedded Coder

Shift Left Operations and Code Replacement

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

Shift Lefts for int16 Data

This example creates a code replacement entry to replace shift left operations for int16
data. The example defines the function mapping programmatically. Alternatively, you
can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left and the name of the replacement function as my_shift_left.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'ImplementationName', 'my_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.
arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

51-226

 Shift Left Operations and Code Replacement

6 Create the int16 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as an implementation input argument.
arg = getTflArgFromString(hTable, 'u1', 'int16');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, the example disables type checking by setting the
CheckType property to false. Convenience method addArgument specifies the
argument as implementation input argument.
arg = getTflArgFromString(hTable, 'u2', 'int8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

• The function getTflArgFromString is called to create an int8 input argument.
This argument is added to the operator entry both as the third conceptual argument
and the second implementation input argument.

• Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

• Save the table definition file. Use the name of the table definition function to name
the file.

Shift Lefts Using Net Slope

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

This example creates a code replacement entry to replace shift left operations
for fixed-point data using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_fixpt_net_slope

51-227

51 Code Replacement Customization for Simulink Models in Embedded Coder

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function. This function
provides access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_shift_left. NetSlopeAdjustmentFactor and NetFixedExponent
specify the F and E parts of the net slope F2E.
InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL),...

 'ImplementationName', 'my_fxp_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

51-228

 Shift Left Operations and Code Replacement

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, type checking is disabled by setting the CheckType
property to false. Convenience method addArgument specifies the argument as
implementation input argument.
arg = getTflArgFromString(hTable, 'u2', 'uint8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

51-229

51 Code Replacement Customization for Simulink Models in Embedded Coder

More About
• “Code You Can Replace From Simulink Models” on page 51-7
• “Define Code Replacement Mappings” on page 51-42
• “Fixed-Point Operator Code Replacement” on page 51-195
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 51-222
• “Data Alignment for Code Replacement” on page 51-133
• “Remap Operator Output to Function Input” on page 51-192
• “Customize Match and Replacement Process” on page 51-153
• “Develop a Code Replacement Library” on page 51-27

51-230

52

Code Replacement Customization for
MATLAB Code

• “What Is Code Replacement Customization?” on page 52-3
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Develop a Code Replacement Library” on page 52-15
• “Quick Start Library Development” on page 52-16
• “Identify Code Replacement Requirements” on page 52-26
• “Prepare for Code Replacement Library Development” on page 52-29
• “Define Code Replacement Mappings” on page 52-30
• “Specify Build Information for Replacement Code” on page 52-47
• “Register Code Replacement Mappings” on page 52-56
• “Troubleshoot Code Replacement Library Registration” on page 52-63
• “Verify Code Replacements” on page 52-64
• “Troubleshoot Code Replacement Misses” on page 52-74
• “Deploy Code Replacement Library” on page 52-81
• “Math Function Code Replacement” on page 52-82
• “Memory Function Code Replacement” on page 52-84
• “Specify In-Place Code Replacement” on page 52-86
• “Data Alignment for Code Replacement” on page 52-91
• “Replace MATLAB Functions with Custom Code Using coder.replace” on page

52-105
• “Replace coder.ceval Calls to External Functions” on page 52-106
• “Reserved Identifiers and Code Replacement” on page 52-111
• “Customize Match and Replacement Process” on page 52-112
• “Scalar Operator Code Replacement” on page 52-120

52 Code Replacement Customization for MATLAB Code

• “Addition and Subtraction Operator Code Replacement” on page 52-122
• “Small Matrix Operation to Processor Code Replacement” on page 52-126
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

52-130
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

52-137
• “Remap Operator Output to Function Input” on page 52-143
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Binary-Point-Only Scaling Code Replacement” on page 52-154
• “Slope Bias Scaling Code Replacement” on page 52-157
• “Net Slope Scaling Code Replacement” on page 52-160
• “Equal Slope and Zero Net Bias Code Replacement” on page 52-166
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Shift Left Operations and Code Replacement” on page 52-173

52-2

 What Is Code Replacement Customization?

What Is Code Replacement Customization?

Customize how and when the code generator replaces C/C++ code that it generates by
default for functions and operators by developing a custom code replacement library. You
can develop libraries interactively with the Code Replacement Tool or programmatically.

• Develop libraries tailored to specific application requirements
• Add identifiers to the list of reserved keywords the code generator considers during

code replacement
• Customize the code generator’s match and replacement process for functions

To get started, “Quick Start Library Development” on page 51-28.

Code Replacement Match and Replacement Process

When the code generator encounters a call site for a function or operator, it:

1 Creates and partially populates a code replacement entry object with the function or
operator name or key and conceptual arguments.

2 Uses the entry object to query the configured code replacement library for a
conceptual representation match. The code generator searches the tables in a code
replacement library for a match in the order that the tables appear in the library.
When searching for a match, the code generator takes into account:

• Conceptual name or key
• Arguments, including quantity, type, type qualifiers, and complexity
• Algorithm (computation method)
• Fixed-point saturation and rounding modes
• Priority

3 When a match exists, the code generator returns a code replacement object, fully
populated with the conceptual representation, implementation representation,
and priority. If the code generator finds multiple matches within a table, the entry
priority determines the match. The priority can range from 0 to 100. The highest
priority is 0. The code generator uses a higher-priority entry over a similar entry
with a lower priority.

4 Uses the C or C++ replacement function prototype in the code replacement object to
generate code.

52-3

52 Code Replacement Customization for MATLAB Code

Code Replacement Customization Limitations

• Code replacement verification — It is possible that code replacement behaves
differently than you expect. For example, data types that you observe in code
generator input might not match what the code generator uses as intermediate data
types during an operation. Verify code replacements by examining generated code.
See “Verify Code Replacements” on page 52-64.

• Tokens in file paths—You can include tokens in file paths when specifying build
information for a code replacement entry by using the programming interface only.
The ability to include tokens is not available from the Code Replacement Tool. See
“Specify Build Information for Replacement Code” on page 52-47.

• Addition and subtraction operation replacements—See “Addition and Subtraction
Operator Code Replacement” on page 52-122for relevant limitations.

• coder.replace function — See coder.replace for relevant limitations.
• coder.dataAlignment function — See coder.dataAlignment for relevant

limitations.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Develop a Code Replacement Library” on page 52-15
• “Quick Start Library Development” on page 52-16
• “What Is Code Replacement?” (MATLAB Coder)

52-4

 Code You Can Replace from MATLAB Code

Code You Can Replace from MATLAB Code

Code that the code generator replaces depends on the code replacement library (CRL)
that you use. By default, the code generator does not apply a code replacement library.
Your choice of libraries is dependent on product licensing and whether you have access to
custom libraries.

In this section...

“Math Functions” on page 52-5
“Memory Functions” on page 52-10
“Operators” on page 52-10

Math Functions

When generating C/C++ code from MATLAB code, depending on code replacement
libraries available in your development environment, you can configure the code
generator to replace instances of the following math functions with application-specific
implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

abs1 Floating point Scalar Real

acos Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

acosd Floating point Scalar
Vector
Matrix

Real
Complex

acot Floating point Scalar
Vector
Matrix

Real
Complex

acotd Floating point Scalar
Vector
Matrix

Real
Complex

acoth Floating point Scalar Real

52-5

52 Code Replacement Customization for MATLAB Code

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

Vector
Matrix

Complex

acsc Floating point Scalar
Vector
Matrix

Real
Complex

acscd Floating point Scalar
Vector
Matrix

Real
Complex

acsch Floating point Scalar
Vector
Matrix

Real
Complex

asec Floating point Scalar
Vector
Matrix

Real
Complex

asecd Floating point Scalar
Vector
Matrix

Real
Complex

asech Floating point Scalar
Vector
Matrix

Real
Complex

asin Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

asind Floating point Scalar
Vector
Matrix

Real
Complex

atan Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

52-6

 Code You Can Replace from MATLAB Code

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

atan2 Floating point Scalar
Vector
Matrix

Real

atan2d Floating point Scalar
Vector
Matrix

Real

atand Floating point Scalar
Vector
Matrix

Real
Complex

cos Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

ceil • Floating-point
• Scalar

• Floating-point
• Scalar

• Floating-point
• Scalar

cosd Floating point Scalar
Vector
Matrix

Real
Complex

cosh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

cot Floating point Scalar
Vector
Matrix

Real
Complex

cotd Floating point Scalar
Vector
Matrix

Real
Complex

coth Floating point Scalar
Vector
Matrix

Real
Complex

52-7

52 Code Replacement Customization for MATLAB Code

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

csc Floating point Scalar
Vector
Matrix

Real
Complex

cscd Floating point Scalar
Vector
Matrix

Real
Complex

csch Floating point Scalar
Vector
Matrix

Real
Complex

exp Floating point Scalar Real
fix Floating point Scalar Real
floor • Floating-point

• Scalar
• Floating-point
• Scalar

• Floating-point
• Scalar

hypot Floating point Scalar
Vector
Matrix

Real

ldexp Floating point Scalar Real
log Floating point Scalar

Vector
Matrix

Real
Complex

log10 Floating point Scalar
Vector
Matrix

Real
Complex

log2 Floating point Scalar
Vector
Matrix

Real
Complex

max Integer
Floating point

Scalar Real

min Integer
Floating point

Scalar Real

pow Floating point Scalar Real

52-8

 Code You Can Replace from MATLAB Code

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

rem Floating point Scalar Real
round Floating point Scalar Real
sec Floating point Scalar

Vector
Matrix

Real
Complex

secd Floating point Scalar
Vector
Matrix

Real
Complex

sech Floating point Scalar
Vector
Matrix

Real
Complex

sign Floating point Scalar Real
sin Floating point Scalar

Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

sind Floating point Scalar
Vector
Matrix

Real
Complex

sinh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

sqrt Floating point Scalar Real
tan Floating point Scalar

Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

tand Floating point Scalar
Vector
Matrix

Real
Complex

52-9

52 Code Replacement Customization for MATLAB Code

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

tanh Floating point Scalar
Vector
Matrix

Real
Complex
Complex input/complex output
Real input/complex output

1 Wrap on integer overflow only

Memory Functions

Depending on code replacement libraries available in your development environment,
you can configure the code generator to replace instances of the following memory
functions with application-specific implementations.

Function Data Type Support Scalar, Vector, Matrix
Support

Real, Complex Support

memcmp Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memcpy Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

memset2zero Void pointer (void*) Scalar
Vector
Matrix

Real
Complex

Some target processors provide optimized functions to set memory to zero. Use the code
replacement library programming interface to replace the memset2zero function with
more efficient target-specific functions.

Operators

When generating C/C++ code from MATLAB code, depending on code replacement
libraries available in your development environment, you can configure the code

52-10

 Code You Can Replace from MATLAB Code

generator to replace instances of the following operators with application-specific
implementations.

Mixed data type support indicates you can specify different data types of different inputs.

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Addition (+)1 RTW_OP_ADD Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Subtraction (-)1 RTW_OP_MINUS Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Multiplication
(*)2

RTW_OP_MUL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Division (/) RTW_OP_DIV Integer
Floating point
Fixed-point
Mixed

Scalar Real
Complex

Data type
conversion (cast)

RTW_OP_CAST Integer
Floating
point3

Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Shift left (<<) RTW_OP_SL Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Shift right
arithmetic (>>)4

RTW_OP_SRA Integer
Fixed-point
Mixed

Scalar
Vector
Matrix

Real

Shift right logical
(>>)

RTW_OP_SRL Integer
Fixed-point

Scalar
Vector

Real

52-11

52 Code Replacement Customization for MATLAB Code

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Mixed Matrix
Element-
wise matrix
multiplication
(.*)5

RTW_OP_ELEM_MUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Complex
conjugation

RTW_OP_CONJUGATE Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Transposition
(.')

RTW_OP_TRANS Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Hermitian
(complex
conjugate)
transposition (')

RTW_OP_HERMITIAN Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with
transposition2

RTW_OP_TRMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
with Hermitian
transposition2

RTW_OP_HMMUL Integer
Floating point
Fixed-point
Mixed

Vector
Matrix

Real
Complex

Multiplication
followed by shift
right arithmetic
(u1*u2>>u3)6

RTW_OP_MUL_SRA Integer
Fixed-point

Scalar Real

Multiplication
followed by
division (u1*u2/
u3)7

RTW_OP_MULDIV Integer
Fixed-point

Scalar Real

52-12

 Code You Can Replace from MATLAB Code

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

Greater than (>) RTW_OP_GREATER_

THAN

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Greater than or
equal (>=)

RTW_OP_GREATER_

THAN_OR_EQUAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than (<) RTW_OP_LESS_THAN Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Less than or
equal (<=)

RTW_OP_LESS_THAN_

OR_EUQAL

Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Equal (==) RTW_OP_EUQAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

Not equal (!=) RTW_OP_NOT_EUQAL Integer
Floating point
Fixed-point
Mixed

Scalar
Vector
Matrix

Real
Complex

52-13

52 Code Replacement Customization for MATLAB Code

Operator Key Data Type
Support

Scalar, Vector,
Matrix Support

Real,
Complex
Support

1 See “Addition and Subtraction Operator Code Replacement” on page 52-122
for details to consider when defining mappings for addition and subtraction code
replacements.

2 Can map to Basic Linear Algebra Subroutine (BLAS) multiplication functions.

3 Scaled floating point is not supported.

4 Code replacement libraries that provide arithmetic shift right implementations should
also provide logical shift right implementations, because some arithmetic shift rights
are converted to logical shift rights during code generation.

5 Use the multiplication (*) operator (RTW_OP_MUL) for scalar multiplication.

6 Requires scalar, real, or fixed-point data types with zero bias; output type
of the multiplication operation to accommodate all possible output values;
shift operand is an unsigned integer; and net slope is equal to 1 (U1_slope
* U2_slope == Mul_output_slope and Mul_output_slope ==
output_slope_of_shift_operation).

7 Requires scalar, real, or fixed-point data types with zero bias; output type of the
multiplication operation to accommodate all possible output values; and net slope
is equal to 1 (U1_slope * U2_slope == Mul_output_slope == U3_slope *
Div_output_slope).

More About
• “Develop a Code Replacement Library” on page 52-15
• “Quick Start Library Development” on page 52-16
• “What Is Code Replacement?” (MATLAB Coder)

52-14

 Develop a Code Replacement Library

Develop a Code Replacement Library

Iterate through the following steps, as necessary, to develop a code replacement library:

1 “Identify Code Replacement Requirements” on page 52-26
2 “Prepare for Code Replacement Library Development” on page 52-29
3 “Define Code Replacement Mappings” on page 52-30
4 “Specify Build Information for Replacement Code” on page 52-47
5 “Register Code Replacement Mappings” on page 52-56
6 “Verify Code Replacements” on page 52-64
7 “Deploy Code Replacement Library” on page 52-81

To get started, see “Identify Code Replacement Requirements” on page 52-26.

To experiment with the process and tools, see “Quick Start Library Development” on
page 52-16.

More About
• “Identify Code Replacement Requirements” on page 52-26
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Quick Start Library Development” on page 52-16
• “What Is Code Replacement Customization?” on page 52-3

52-15

52 Code Replacement Customization for MATLAB Code

Quick Start Library Development

This example shows how to develop a code replacement library that includes an entry for
generating replacement code for the math function sin. You use the Code Replacement
Tool.

Prerequisites

To complete this example, install the following software:

• MATLAB
• MATLAB Coder
• Embedded Coder
• C compiler

For instructions on installing MathWorks products, see “Installation and Activation”
(Installation, Licensing, and Activation). If you have installed MATLAB and want to see
what other MathWorks products are installed, in the Command Window, enter ver.

For a list of supported compilers, see http://www.mathworks.com/support/compilers/
current_release/.

Open the Code Replacement Tool

1 Start a new MATLAB session.
2 Create or navigate (cd) to an empty folder.
3 At the command prompt, enter the crtool command. The Code Replacement Tool

window opens.

Create Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table crl_table_sinfcn and click Apply. Later, when

you save the table, the tool saves it with the file name crl_table_sinfcn.m.

52-16

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

 Quick Start Library Development

Create Table Entry

Create a table entry that maps a sin function with double input and double output to
a custom implementation function.

1 In the left pane, select table crl_table_sinfcn. Then, select File > New entry >
Function. The new entry appears in the middle pane, initially without a name.

2 In the middle pane, select the new entry.
3 In the right pane, on the Mapping Information tab, from the Function menu,

select sin.
4 Leave Algorithm set to Unspecified, and leave parameters in the Conceptual

function group set to default values.
5 In the Replacement function group, name the replacement function sin_dbl.
6 Leave the remaining parameters in the Replacement function group set to default

values.

52-17

52 Code Replacement Customization for MATLAB Code

7 Click Apply. The tool updates the Function signature preview to reflect the
specified replacement function name.

8 Scroll to the bottom of the Mapping Information tab and click Validate entry.
The tool validates your entry.

The following figure shows the completed mapping information.

52-18

 Quick Start Library Development

52-19

52 Code Replacement Customization for MATLAB Code

Specify Build Information for Replacement Code

1 On the Build Information tab, for the Implementation header file parameter,
enter sin_dbl.h.

2 Leave the remaining parameters set to default values.
3 Click Apply.

4 Optionally, you can revalidate the entry. Return to the Mapping Information tab
and click Validate entry.

Create Another Table Entry

Create an entry that maps a sin function with single input and double output to
a custom implementation function named sin_sgl. Create the entry by copying and
pasting the sin_dbl entry.

1 In the middle pane, select the sin_dbl entry.
2 Select Edit > Copy
3 Select Edit > Paste
4 On the Mapping Information tab, in the Conceptual function section, set the

data type of input argument u1 to single.
5 In the Replacement function section, name the function sin_sgl. Set the data

type of input argument u1 to single.
6 Click Apply. Note the changes that appear for the Function signature preview.
7 On the Build Information tab, for the Implementation header file parameter,

enter sin_sgl.h. Leave the remaining parameters set to default values and click
Apply.

Validate the Code Replacement Table

1 Select Actions > Validate table.

52-20

 Quick Start Library Development

2 If the tool reports errors, fix them, and rerun the validation. Repeat fixing and
validating errors until the tool does not report errors. The following figure shows a
validation report.

Save the Code Replacement Table

Save the code replacement table to a MATLAB file in your working folder. Select File >
Save table. By default, the tool uses the table name to name the file. For this example,
the tool saves the table in the file crl_table_sinfcn.m.

Review the Code Replacement Table Definition

Consider reviewing the MATLAB code for your code replacement table definition. After
using the tool to create an initial version of a table definition file, you can update,
enhance, or copy the file in a text editor.

To review it, in MATLAB or another text editor, open the file crl_table_sinfcn.m.

Generate a Registration File

Before you can use your code replacement table, you must register it as part of a code
replacement library. Use the Code Replacement Tool to generate a registration file.

1 In the Code Replacement Tool, select File > Generate registration file.
2 In the Generate registration file dialog box, edit the dialog box fields to match the

following figure, and then click OK.

52-21

52 Code Replacement Customization for MATLAB Code

3 In the Select location dialog box, specify a location for the registration file. The
location must be on the MATLAB path or in the current working folder. Save the file.
The tool saves the file as rtwTargetInfo.m.

Register the Code Replacement Table

At the command prompt, enter:

RTW.TargetRegistry.getInstance('reset');

Review and Test Code Replacements

Apply your code replacement library. Verify that the code generator makes code
replacements that you expect.

1 Check for errors. At the command line, invoke the table definition file . For example:

tbl = crl_table_sinfcn

tbl =

 TflTable with properties:

 Version: '1.0'

 ReservedSymbols: []

 StringResolutionMap: []

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 EnableTrace: 1

If an error exists in the definition file, the invocation triggers a message to appear.
Fix the error and try again.

2 Use the Code Replacement Viewer to check your code replacement entries. For
example:

crviewer('Sin Function Example')

In the viewer, select entries in your table and verify that the content is what you
expect. The viewer can help you detect issues such as:

• Incorrect argument order.
• Conceptual argument names that do not match what is expected by the code

generator.

52-22

 Quick Start Library Development

• Incorrect priority settings.
3 Identify existing or create new MATLAB code that calls the sin function. For

example:

function y = my_sin_fnc(x)

 y = sin(x);

end

4 Open the MATLAB Coder app.
5 Add the function that includes a call to the sin function as an entry-point file. For

example, add my_sin_func.m. The app creates a project named my_sin_func.prj.
6 Click Next to go to the Define Input Type step. Define the types for the entry-point

function inputs.
7 Click Next to go to the Check for Run-Time Issues step. This step is optional.

However, it is a best practice to perform this step. Provide a test file that calls your
entry-point function. The app generates a MEX function from your entry-point
function. Then, the app runs the test file, replacing calls to the MATLAB function
with calls to the generated MEX function.

8 Click Next to go to the Generate Code step. To open the Generate dialog box, click

the Generate arrow .
9 Set Build type to generate a library or executable.
10 Click More Settings.
11 Configure the code generator to use your code replacement library. On the Custom

Code tab, set the Code replacement library parameter to the name of your
library. For example, Sin Function Example.

12 Configure the code generation report. On the Debugging tab, set the Always
create a code generation report, Code replacements, and Automatically
launch a report if one is generated parameters.

13 Configure the code generator to generate code only. On the Generate dialog
box, select the Generate code only check box. You want to review your code
replacements in the generated code before building an executable.

14 Click Generate to generate C code and a report.
15 Review code replacement results in the Code Replacements Report section of the

code generation report.

52-23

52 Code Replacement Customization for MATLAB Code

The report indicates that the code generator found a match and applied the
replacement code for the function sin_dbl.

16 Review the code replacements. In the report, under Function replacements,
click the MATLAB function that triggered the replacement, my_sin_func.m.
The MATLAB Editor opens and highlights the function call that triggers the code
replacement.

52-24

 Quick Start Library Development

More About
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3

52-25

52 Code Replacement Customization for MATLAB Code

Identify Code Replacement Requirements

The first step to developing a code replacement library is to consider the following types
of requirements for your code replacement library.

Mapping Information Requirements

• Are you defining a code replacement mapping for the first time?
• Are you updating code replacement entries in an existing library? Or, are you creating

a new library?
• Are you rapid prototyping code replacements?
• Can you base your mappings on existing mappings?
• What type of code do you want to replace? Options include:

• Math operation
• Function
• BLAS operation
• CBLAS operation
• Net slope fixed-point operation
• Semaphore or mutex functions

• Do you want to change the inline or nonfinite behavior for functions?
• What specific functions and operations do you want to replace?
• What input and output arguments does the function or operator that you are

replacing take? For each argument, what is the data type, complexity, and
dimensionality?

• What does the prototype for your replacement code look like?

• What is the replacement function name?
• What are the input and output arguments?
• Are there return values?
• What is the data type, complexity, and dimensionality of each argument and

return value?

52-26

 Identify Code Replacement Requirements

Build Information Requirements

• Does your replacement function implementation require a header file? If yes, specify
the header file.

• If the replacement function implementation requires a header file, what is the path
for that file?

• Is the source file for the replacement function in your working folder? If not, you
can explicitly specify the source file name and extension. For example, if the file is
required in the generated makefile or specified in a build information object, specify
the source file.

• Does the replacement function use additional include files? If yes, what are they and
what are the paths for those files?

• Does the replacement function use additional source files? If yes, what are they and
what are the paths for those files?

• What compiler flags are required for compiling code that includes the replacement
code?

• What linker flags are required for building an executable that includes the
replacement code?

• Are the required header, source, and object files for building an executable that
includes your replacement code in the working folder for your project? If not, before
starting the build process, do you want the code generator to copy required files to the
build folder?

Registration Information Requirements

• What do you want to name your code replacement library?
• What code replacement tables do you want to include in the library? What are the file

names and paths for the tables?
• What is the purpose of the library? You can document the purpose as the library

description.
• Does the library apply to specific hardware devices? If yes, what devices?
• Are you developing a hierarchy of code replacement libraries? Is the library that you

are developing based (dependent) on another library? For example, you can specify a
general TI device library as the base library for a more specific TI C28x device
library.

52-27

52 Code Replacement Customization for MATLAB Code

• Do you need to specify data alignment for the library? What data alignments are
required? For each specification, what type of alignment is required and for what
programming language?

Next, prepare for developing a library by reviewing a code replacement library
development checklist.

Related Examples
• “Develop a Code Replacement Library” on page 52-15
• “Prepare for Code Replacement Library Development” on page 52-29
• “What Is Code Replacement Customization?” on page 52-3
• “Code You Can Replace from MATLAB Code” on page 52-5

52-28

 Prepare for Code Replacement Library Development

Prepare for Code Replacement Library Development

After you identify your code replacement requirements, prepare for library development
by reviewing this checklist:

• Get familiar with the library development process.
• Decide whether to define code replacement mappings and produce a registration file

interactively with the Code Replacement Tool or programmatically.
• Identify or develop MATLAB code and Simulink models to test your code replacement

library.
• Consider the hierarchy and organization of your library. A library can consist

of multiple tables and each table can include multiple entries. How do you want
to organize the library to optimize reuse of tables and entries? For example, a
registration file can define code replacement tables organized in a hierarchy of code
replacement libraries based on entries that increase in specificity:

• Common entries
• Entries for TI devices
• Entries for TI C6xx devices
• Entries specific to the TI C67x device

• If support files, such as header files, additional source files, and dynamically linked
libraries are not in your current working folder, note their location. You need to
specify the paths for such files.

Next, based on your requirements and preparation, define code replacement mappings.

More About
• “Identify Code Replacement Requirements” on page 52-26
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3

52-29

52 Code Replacement Customization for MATLAB Code

Define Code Replacement Mappings

After you prepare for library development, use your requirements to define code
replacement mappings. A code replacement mapping associates a conceptual
representation of a function or operator that is familiar to the code generator with a
custom implementation representation that specifies a C or C++ replacement function
prototype. You capture a mapping as an entry in a code replacement table:

• Interactively, by using the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

Choose an Approach for Defining Code Replacement Mappings

The following table lists situations to help you decide when to use the interactive or
programmatic approach.

Situation Approach

Defining mappings for the first
time.

Code Replacement Tool.

Rapid prototyping mappings. Code Replacement Tool to quickly generate, register,
and test mappings.

Developing a mapping as a
template or starting point for
defining similar mappings.

Code Replacement Tool to generate definition code
that you can copy and modify.

Modifying a registration file,
including copying and pasting
content.

MATLAB Editor to update the programming interface
directly.

Defining mappings that specify
attributes not available from
the Code Replacement Tool
(for example, sets of algorithm
parameters).

Programming interface.

Reusing existing code for new
mappings by copying, pasting,
and editing existing mappings.

Programming interface.

52-30

 Define Code Replacement Mappings

Define Mappings Interactively with the Code Replacement Tool

This example shows how to use the Code Replacement Tool to develop code replacement
mappings. The tool is ideal for getting started with developing mappings, rapid
prototyping, and developing a mapping to use as a starting point for defining similar
mappings.

Open the Code Replacement Tool

Do one of the following:

• In the Command Window, enter the command crtool.
• In the Configuration Parameters dialog box, navigate to All Parameters > Code

Generation > Code replacement library and click Custom.

An Embedded Coder license is not required to create a custom code replacement library.
However, you must have an Embedded Coder license to use a such a library.

By default, the tool displays, left to right, a root pane, a list pane, and a dialog pane. You
can manipulate the display:

• Drag boundaries to widen, narrow, shorten, or lengthen panes, and to resize table
columns.

• Select View > Show dialog pane to hide or display the right-most pane.
• Click a table column heading to sort the table based on contents of the selected

column.
• Right-click a table column heading and select Hide to remove the column from the

display. (You cannot hide the Name column.)

Create a Code Replacement Table

1 In the Code Replacement Tool window, select File > New table.
2 In the right pane, name the table and click Apply. Later, when you save the table,

the tool uses the table name that you specify to name the file. For example, if you
enter the name my_sinfcn, the tool names the file my_sinfcn.m.

Create Table Entries

Create one or more table entries. Each entry maps the conceptual representation of a
function or operator to your implementation representation. The information that you
enter depends on the type of entry you create. Enter the following information:

52-31

52 Code Replacement Customization for MATLAB Code

1 In the left pane, select the table to which you want to add the entry.
2 Select File > New entry > entry-type, where entry-type is one of:

• Math Operation
• Function
• BLAS Operation
• CBLAS Operation
• Net Slope Fixed-Point Operation
• Semaphore entry
• Customization entry

The new entry appears in the middle pane, initially without a name.
3 In the middle pane, select the new entry.
4 In the right pane, on the Mapping Information tab, from the Function or

Operation menu, select the function or operation that you want the code generator
to replace. Regardless of the entry type, make a selection from this menu. Your
selection determines what other information you specify.

Except for customization entries, you also specify information for your replacement
function prototype. You can also specify implementation attributes, such as the
rounding modes to apply.

5 If prompted, specify additional entry information that you want the code generator
to use when searching for a match. For example, when you select an addition or
subtraction operation, the tool prompts you to specify an algorithm (Cast before
operation or Cast after operation).

6 Review the conceptual argument information that the tool populates for the function
or operation. Conceptual input and output arguments represent arguments for
the function or operator being replaced. Conceptual arguments observe naming
conventions ('y1', 'u1', 'u2', ...) and data types familiar to the code generator.

If you do not want the data types for your implementation to be the same as the
conceptual argument types, clear the Make the conceptual and implementation
argument types the same check box. For example, most ANSI-C functions
operate on and return double data. Clear the check box if want to map a conceptual
representation of the function to an implementation representation that specifies an
argument and return value. For example, clear the check box to map the conceptual
representation of the function sin to an implementation representation that

52-32

 Define Code Replacement Mappings

specifies an argument and return value of type single (single sin(single)), of
type double (double sin(double). In this case, the code generator produces the
following code:

y = (single) sin(u1);

If you select Custom for a function entry, specify only conceptual argument
information.

7 Specify the name and argument information for your replacement function. As you
enter the information and click Apply, the tool updates the Function signature
preview.

8 Specify additional implementation attributes that apply. For example, depending on
the type and name of the entry that you specify, the tool prompts you to specify:

• Integer saturation mode
• Rounding modes
• Whether to allow inputs that include expressions
• Whether a function modifies internal or global state

9 Click Apply.

Validate Tables and Entries

The Code Replacement Tool provides a way to validate the syntax of code replacement
tables and table entries as you define them. If the tool finds validation errors, you can
address them and retry the validation. Repeat the process until the tool does not report
errors.

To Do

Validate table entries Select an entry, scroll to the bottom of the Mapping
Information tab, and click Validate entry.
Alternatively, select one or more entries, right-click,
and select Validate entries.

Validate a table Select the table. Then, select Actions > Validate
table.

Save a Table

When you save a table, the tool validates unvalidated content.

52-33

52 Code Replacement Customization for MATLAB Code

1 Select File > Save table.
2 In the Browse For Folder dialog box, specify a location and name for the file.

Typically, you select a location on the MATLAB path. By default, the tool names the
file using the name that you specify for the table with the extension .m.

3 Click Save.

Open and Modify Tables

After saving a code replacement table, to make changes in the table:

1 Select File > Open table.
2 In the Import file dialog box, browse to the MATLAB file that contains the table.

Repeat the sequence to open and work on multiple tables.

If you open multiple tables, you can manage the tables together. For example, use the
tool to:

• Create new table entries.
• Delete entries.
• Copy and paste or cut and paste information between tables.

Define Mappings Programmatically

This example shows how to define a code replacement mapping programmatically. The
programming interface for defining code replacement table mappings is ideal for

• Modifying tables that you create with the Code Replacement Tool.
• Defining mappings for specialized entries that you cannot create with the Code

Replacement Tool.
• Replicating and modifying similar entries and tables.

Steps for defining a mapping programmatically are:

Create Code Replacement Table

1 Create a table definition file that contains a function definition. For example:
function hTable = crl_table_sinfcn()

2 Within the function body, create the table by calling the function RTW.TflTable.

52-34

 Define Code Replacement Mappings

hTable = RTW.TflTable;

Create Table Entry

For each function or operator that you want the code generator to replace, map
a conceptual representation of the function or operator to an implementation
representation as a table entry.

1 Within the body of a table definition file, create a code replacement entry object. Call
one of the following functions.

Entry Type Function

Math operation RTW.TflCOperationEntry

Function RTW.TflCFunctionEntry

BLAS operation RTW.TflBlasEntryGenerator

CBLAS operation RTW.TflCBlasEntryGenerator

Fixed-point addition
and subtraction
operations (support for
SlopesMustBeTheSame and
ZeroNetBias parameters)

RTW.TflCOperationEntryGenerator

Net slope fixed-point
operation

RTW.TflCOperationEntryGenerator_NetSlope

Semaphore or mutex entry RTW.TflCSemaphoreEntry

Custom function entry MyCustomFunctionEntry (where
MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntryML)

Custom operation entry MyCustomOperationEntry (where
MyCustomOperationEntry is a class derived from
RTW.TflCOperationEntryML)

For example:

hEnt = RTW.TflCFunctionEntry;

You can combine steps of creating the entry, setting entry parameters, creating
conceptual and implementation arguments, and adding the entry to a table with a

52-35

52 Code Replacement Customization for MATLAB Code

single function call to registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry if you are creating an entry for a function and the
function implementation meets the following criteria:

• Implementation argument names and order match the names and order of
corresponding conceptual arguments.

• Input arguments are of the same type.
• The return and input argument names follow the code generator’s default naming

conventions:

• Return argument is y1.
• Input arguments are u1, u2, ..., un.

For example:

registerCFunctionEntry(hTable, 100, 1, 'sin', 'double', ...

 'sin_dbl', 'double', 'sin_dbl.h','','');

As another alternative, you can significantly reduce the amount of code that you write by
combining the steps of creating the entry and conceptual and implementation arguments
with a call to the createCRLEntry function. In this case, specify the conceptual and
implementation information as character vector specifications.

For example:

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

This approach does not support:

• C++ implementations
• Data alignment
• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, building

information)
• Semaphore and mutex function replacements

52-36

 Define Code Replacement Mappings

Set Entry Parameters

Set entry parameters, such as the priority, algorithm information, and implementation
(replacement) function name. Call the function listed in the following table for the entry
type that you created.

Entry Type Function

Math operation setTflCOperationEntryParameters

Function setTflCFunctionEntryParameters

BLAS operation setTflCOperationEntryParameters

CBLAS operation setTflCOperationEntryParameters

Fixed-point addition and subtraction
operations where there is a many-
to-one mapping, such as a mapping
for a range of fixed-point types to the
same replacement function (support
for SlopesMustBeTheSame and
ZeroNetBias parameters)

setTflCOperationEntryParameters

Net slope fixed-point operation setTflCOperationEntryParameters

Semaphore or mutex entry setTflCSemaphoreEntryParameters

Custom function entry setTflCFunctionEntryParameters

Custom operation entry setTflCOperationEntryParameters

To see a list of the parameters that you can set, at the command line, create a new entry
and omit the semicolon at the end of the command. For example:

hEnt = RTW.TflCFunctionEntry

hEnt =

 TflCFunctionEntry with properties:

 Implementation: [1x1 RTW.CImplementation]

 SlopesMustBeTheSame: 0

 BiasMustBeTheSame: 0

 AlgorithmParams: []

 ImplType: 'FCN_IMPL_FUNCT'

 AdditionalHeaderFiles: {0x1 cell}

 AdditionalSourceFiles: {0x1 cell}

52-37

52 Code Replacement Customization for MATLAB Code

 AdditionalIncludePaths: {0x1 cell}

 AdditionalSourcePaths: {0x1 cell}

 AdditionalLinkObjs: {0x1 cell}

 AdditionalLinkObjsPaths: {0x1 cell}

 AdditionalLinkFlags: {0x1 cell}

 AdditionalCompileFlags: {0x1 cell}

 SearchPaths: {0x1 cell}

 Key: ''

 Priority: 100

 ConceptualArgs: [0x1 handle]

 EntryInfo: []

 GenCallback: ''

 GenFileName: ''

 SaturationMode: 'RTW_SATURATE_UNSPECIFIED'

 RoundingModes: {'RTW_ROUND_UNSPECIFIED'}

 TypeConversionMode: 'RTW_EXPLICIT_CONVERSION'

 AcceptExprInput: 1

 SideEffects: 0

 UsageCount: 0

 RecordedUsageCount: 0

 Description: ''

 StoreFcnReturnInLocalVar: 0

 TraceManager: [1x1 RTW.TflTraceManager]

To see the implementation parameters, enter:

hEnt.Implemenation

ans =

 CImplementation with properties:

 HeaderFile: ''

 SourceFile: ''

 HeaderPath: ''

 SourcePath: ''

 Return: []

 StructFieldMap: []

 Name: ''

 Arguments: [0x1 handle]

 ArgumentDescriptor: []

For example, to set entry parameters for the sin function and name your replacement
function sin_dbl, use the following function call:

52-38

 Define Code Replacement Mappings

setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Create Conceptual Arguments

Create conceptual arguments and add them to the entry’s array of conceptual arguments.

• Specify output arguments before input arguments.
• Specify argument names that comply with code generator argument naming

conventions:

• y1 for a return argument
• u1, u2, ..., un for input arguments

• Specify data types that are familiar to the code generator.
• The function signature, including argument naming, order, and attributes, must

fulfill the signature match sought by function or operator callers.
• The code generator determines the size of the value for an argument with an unsized

type, such as integer, based on hardware implementation configuration settings.

For each argument:

1 Identify whether the argument is for input or output, the name, and data type. If you
do not know what arguments to specify for a supported function or operation, use the
Code Replacement Tool to find them. For example, to find the conceptual arguments
for the sin function, open the tool, create a table, create a function entry, and in the
Function menu select sin.

2 Create and add the conceptual argument to an entry. You can choose a method from
the methods listed in this table.

If Then

You want simpler code or
want to explicitly specify
whether the argument
is scalar or nonscalar
(vector or matrix).

Call the function createAndAddConceptualArg. For
example:

createAndAddConceptualArg(hEnt, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

52-39

52 Code Replacement Customization for MATLAB Code

If Then

The second argument specifies whether the argument is
scalar (RTW.TflArgNumeric orRTW.TflArgMatrix) .

You want to create an
argument based on
a built-in argument
definition (for example,
scalar or nonscalar).

Call getTflArgFromString to create the argument.
Then, call addConceptualArg to add the argument to
the entry.

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the second approach listed in the table for specifying the
conceptual output and input argument definitions for the sin function.

% Conceptual Args

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

arg = getTflArgFromString(hEnt, 'u1','double');

addConceptualArg(hEnt, arg);

Create Implementation Arguments

Create implementation arguments for the C or C++ replacement function and add them
to the entry.

• When replacing code, the code generator uses the argument names to determine how
it passes data to the implementation function.

52-40

 Define Code Replacement Mappings

• For function replacements, the order of implementation argument names must match
the order of the conceptual argument names.

• For operator replacements, the order of implementation argument names do not
have to match the order of the conceptual argument names. For example, for an
operator replacement for addition, y1=u1+u2, the conceptual arguments are y1, u1,
and u2, in that order. If the signature of your implementation function is t myAdd(t
u2, t u1), where t is a valid C type, based on the argument name matches, the
code generator passes the value of the first conceptual argument, u1, to the second
implementation argument of myAdd. The code generator passes the value of the
second conceptual argument, u2, to the first implementation argument of myAdd.

• For operator replacements, you can remap operator output arguments to
implementation function input arguments.

For each argument:

1 Identify whether the argument is for input or output, the name, and the data type.
2 Create and add the implementation argument to an entry. You can choose a method

from the methods listed in this table.

If Then

You want to populate
implementation
arguments as copies
of previously created
matching conceptual
arguments

Call the function
copyConceptualArgsToImplementation. For example:

copyConceptualArgsToImplementation(hEnt);

You want to create and
add implementation
arguments individually,
or vary argument
attributes, while
maintaining conceptual
argument order

Call functions createAndSetCImplementationReturn
andcreateAndAddImplementationArg . For example:

createAndSetCImplementationReturn(hEnt,

 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry,

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

52-41

52 Code Replacement Customization for MATLAB Code

If Then
 'IOType', 'RTW_IO_INPUT',...

 'IsSigned', true,...

 'WordLength', 32, ...

 'FractionLength', 0);

52-42

 Define Code Replacement Mappings

If Then

You want to minimize
the amount of code,
or specify constant
arguments to pass to
the implementation
function

Create the argument with a call to the function
getTflArgFromString. Then, use the convenience
method setReturn or addArgument to specify whether
an argument is a return value or argument and to add
the argument to the entry’s array of implementation
arguments. For example:

arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','double');

hEnt.Implementation.addArgument(arg);

The following call to getTflArgFromString passes the
constant 0 to argument u2:

arg = getTflArgFromString(hEnt, 'u2', 'int16', 0)

hEnt.Implementation.addArgument(arg);

For semaphore and mutex entries, use the functions
getTflDWorkFromString and addDWorkArg to
create and add a DWork argument to the entry. Then
create implementation arguments as shown above with
getTflArgFromString and the convenience methods
setReturn and addArgument. For example:

arg = getTflDWorkFromString('d1', 'void*')

hEnt.addDWorkArg(arg);

arg = hEnt.getTflArgFromString('y1', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setRetrurn(arg);

arg = hEnt.getTflArgFromString('u1', 'integer');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('d1', 'void**');

hEnt.Implementation.addArgument(arg);

52-43

52 Code Replacement Customization for MATLAB Code

If Then

You need to define
several similar
mappings, you want to
minimize the code to
write, and the entries
do not require data
alignment, use net slope
arguments, or involve
semaphore or mutex
replacements.

Call createCRLEntry to create the entry and specify
conceptual and implementation arguments in a single
function call.

hEnt = createCRLEntry(hTable, ...

 'double y1 = sin(double u1)', ...

 'mySin');

The following code shows the third approach listed in the table for specifying the
implementation output and input argument definitions for the sin function:

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

Add Entry to Table

Add an entry to a code replacement table by calling the function addEntry.

addEntry(hTable, hEnt);

Validate Entry

After you create or modify a code replacement table entry, validate it by invoking it at
the MATLAB command line. For example:

hTbl = crl_table_sinfcn

hTbl =

RTW.TflTable

 Version: '1.0'

 AllEntries: [2x1 RTW.TflCFunctionEntry]

 ReservedSymbols: []

52-44

 Define Code Replacement Mappings

 StringResolutionMap: []

If the table includes errors, MATLAB reports them. The following examples shows how
MATLAB reports a typo in a data type name:
hTbl = crl_table_sinfcn

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Save Table

Save the table definition file. Use the name of the table definition function to name the
file, for example, crl_table_sinfcn.m.

Next, from your requirements, determine whether you need to specify build information
for your replacement code.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Math Function Code Replacement” on page 52-82
• “Memory Function Code Replacement” on page 52-84
• “Specify In-Place Code Replacement” on page 52-86
• “Replace MATLAB Functions with Custom Code Using coder.replace” on page

52-105
• “Reserved Identifiers and Code Replacement” on page 52-111
• “Customize Match and Replacement Process” on page 52-112
• “Scalar Operator Code Replacement” on page 52-120
• “Addition and Subtraction Operator Code Replacement” on page 52-122
• “Small Matrix Operation to Processor Code Replacement” on page 52-126
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

52-130
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

52-137
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process for Operators” on page 52-113

52-45

52 Code Replacement Customization for MATLAB Code

• “Fixed-Point Operator Code Replacement” on page 52-146
• “Binary-Point-Only Scaling Code Replacement” on page 52-154
• “Slope Bias Scaling Code Replacement” on page 52-157
• “Net Slope Scaling Code Replacement” on page 52-160
• “Equal Slope and Zero Net Bias Code Replacement” on page 52-166
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Shift Left Operations and Code Replacement” on page 52-173
• Replacing Math Functions and Operators
• “Prepare for Code Replacement Library Development” on page 52-29
• “Specify Build Information for Replacement Code” on page 52-47
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3

52-46

 Specify Build Information for Replacement Code

Specify Build Information for Replacement Code

After you define code replacement mappings, determine whether you need to specify
build information for your replacement code. A code replacement table entry can specify
build information for the code generator to use when replacing code for a match. For
example, specify files for implementation replacement code if you are using a generated
makefile and the code generation software compiles the code.

Add build information to an entry:

• Interactively, by using the Build Information tab in the Code Replacement Tool.
• Programmatically, by using a MATLAB programming interface.

Build Information

The build information can include:

• Paths and file names for header files
• Paths and file names for source files
• Paths and file names for object files
• Compile flags
• Link flags

Choose an Approach for Specifying Build Information

The following table lists situations to help you decide when to use an interactive or
programmatic approach to specifying build information:

Situation Approach

Creating code replacement
entries for the first time.

Code Replacement Tool.

You used the Code Replacement
Tool to create the entries for
which the build information
applies.

Code Replacement Tool to specify the build
information quickly .

Rapid prototyping entries. Code Replacement Tool to generate, register, and test
entries quickly.

52-47

52 Code Replacement Customization for MATLAB Code

Situation Approach

Developing an entry to use as
a template or starting point for
defining similar entries.

Code Replacement Tool to generate entry code that
you can copy and modify.

Modifying existing mappings. MATLAB Editor to update the programming interface
directly.

• If an entry uses header, source, or object files, consider whether to make the files
accessible to the code generator. You can copy files to the build folder or you can
specify individual file names and paths explicitly.

• If you specify additional header files/include paths or source files/paths and you copy
files, the compiler and utilities such as packNGo might find duplicate instances of
files (an instance in the build folder and an instance in the original folder).

• If you choose to copy files to the build folder and you are using the packNGo function
to relocate static and generated code files to another development environment:

• In the call to packNGo, specify the property-value pair ‘minimalHeaders’ true
(the default). That setting instructs the function to include the minimal header
files required to build the code in the zip file.

• Do not collocate files that you copy with files that you do not copy. If the packNGo
function finds multiple instances of the same file, the function returns an error.

• If you use the programming interface, paths that you specify can include tokens. A
token is a variable defined as a character vector or cell array of character vectors
in the MATLAB workspace that you enclose with dollar signs ($variable$). The
code generator evaluates and replaces a token with the defined value. For example,
consider the path $myfolder$\folder1, where myfolder is a character vector
variable defined in the MATLAB workspace as 'd:\work\source\module1'. The
code generator generates the custom path as d:\work\source\module1\folder1.

Specify Build Information Interactively with the Code Replacement Tool

The Code Replacement Tool provides a quick, easy way for you to specify build
information for code replacement table entries. It is ideal for getting started with
defining a table entry, rapid prototyping, and developing table entries to use as a starting
point for defining similar mappings.

1 Determine the information that you must specify.

52-48

 Specify Build Information for Replacement Code

2 Open the Code Replacement Tool.
3 Select the code replacement table entry for which you want to specify the build

information. In the left pane, select the table that contains the entry. In the middle
pane, select the entry that you want to modify.

4 In the right pane, select the Build Information tab.
5 On the Build Information tab, specify your build information.

Parameter Specify

Implementation header file File name and extension for the header file
the code generator needs to generate the
replacement code. For example, sin_dbl.h.

Implementation source file File name and extension for the C or C++ source
file the code generator needs to generate the
replacement code. For example, sin_dbl.c.

Additional header files/include
paths

Paths and file names for additional header
files the code generator needs to generate
the replacement code. For example, C:\libs
\headerFiles and C:\libs\headerFiles
\common.h. This parameter adds -I to the
compile line in the generated makefile.

Additional source files/ paths Paths and file names for additional source
files the code generator needs to generate
the replacement code. For example, C:
\libs\srcFiles and C:\libs\srcFiles
\common.c. This parameter adds -I to the
compile line in the generated makefile.

Additional object files/ paths Paths and file names for additional object files
the linker needs to build the replacement code.
For example, C:\libs\objFiles and C:
\libs\objFiles\common.obj.

Additional link flags Flags the linker needs to generate an executable
file for the replacement code.

Additional compile flags Flags the compiler needs to generate object code
for the replacement code.

Copy files to build directory Whether to copy header, source, or object files,
which are required to generate replacement

52-49

52 Code Replacement Customization for MATLAB Code

Parameter Specify

code, to the build folder before code generation.
If you specify files with Additional header
files/include paths or Additional source
files/ paths and you copy files, the compiler
and utilities such as packNGo might find
duplicate instances of files.

6 Click Apply.
7 Select the Mapping Information tab. Scroll to the bottom of that table and click

Validate entry. The tool validates the changes that you made to the entry.
8 Save the table that includes the entry that you just modified.

Specify Build Information Programmatically

The programming interface for specifying build information for a code replacement entry
is ideal for:

• Modifying entries created with the Code Replacement Tool.
• Replicating and then modifying similar entries and tables.

The basic workflow for specifying build information programmatically is:

1 Identify or create the code replacement entry that you want to specify the build
information.

2 Determine what information to specify.
3 Specify your build information.

Specify Action

Implementation
header file

Use one of the following:

• Set properties ImplementationHeaderFile
and ImplementationHeaderPath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.h', ...

52-50

 Specify Build Information for Replacement Code

Specify Action
 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

• Set argument headerFile in a call to
registerCFunctionEntry, registerCPPFunctionEntry, or
registerCPromotableMacroEntry

Implementation
source file

Set properties ImplementationSourceFile
and ImplementationSourcePath in a call
to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.c', ...

 'ImplementationHeaderPath', 'D:/lib/sourceFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl');

Additional header
files/include paths

For each file, specify the file name and path in calls to the functions
addAdditionalHeaderFile and addAdditionalIncludePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalHeaderFile(hEnt, 'common.h');

addAdditionalIncludePath(hEnt, fullfile(libdir, 'include'));

These functions add -I to the compile line in the generated makefile.

52-51

52 Code Replacement Customization for MATLAB Code

Specify Action

Additional source
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalSourceFile and addAdditionalSourcePath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalSourceFile(hEnt, 'common.c');

addAdditionalSourcePath(hEnt, fullfile(libdir, 'src'));

These functions add -I to the compile line in the generated makefile.
Additional object
files/paths

For each file, specify the file name and path in calls to the functions
addAdditionalLinkObj and addAdditionalLinkObjPath. For
example:

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

hEnt = RTW.TflCFunctionEntry;

addAdditionalLinkObj(hEnt, 'sin.o');

addAdditionalLinkObjPath(hEnt, fullfile(libdir, 'bin'));

Compile flags Set the entry property AdditionalCompileFlags to a cell array of
character vectors representing the required compile flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-Zi -Wall', '-03'};

Link flags Set the entry property AdditionalLinkFlags to a cell array of character
vectors representing the required link flags. For example:

hEnt = RTW.TflCFunctionEntry;

hEnt.AdditionalCompileFlags = {'-MD -Gy', '-T'};

52-52

 Specify Build Information for Replacement Code

Specify Action

Whether to copy
header, source, or
object files, which
are required to
generate replacement
code, to the build
folder before code
generation

Use one of the following:

• Set property GenCallback to 'RTW.copyFileToBuildDir'
in a call to setTflCFunctionEntryParameters,
setTflCOperationEntryParameters, or
setTflCSemaphoreEntryParameters. For example:

setTflCFunctionEntryParameters(hEnt, ...

 'ImplementationHeaderFile', 'sin_dbl.h', ...

 'ImplementationHeaderPath', 'D:/lib/headerFiles'

 'Key', 'sin', ...

 'ImplementationName', 'sin_dbl'

 'GenCallback', 'RTW.copyFileToBuildDir');

• Set argument genCallback in a call to
registerCFunctionEntry, registerCPPFunctionEntry,
or registerCPromotableMacroEntry to
'RTW.copyFileToBuildDir'.

If a match occurs for a table entry, a call to the function
RTW.copyFileToBuildDir copies required files to the build folder.

If you specify additional header files/include paths or additional source
files/paths and you copy files, the compiler and utilities such as packNGo
might find duplicate instances of files.

4 Save the table that includes the entry that you added or modified.

The following example defines a table entry for an optimized multiplication function that
takes signed 32-bit integers and returns a signed 32-bit integer, taking saturation into
account. Multiplications in the generated code are replaced with calls to the optimized
function. The optimized function does not reside in the build folder. For the code
generator to access the files, copy them into the build folder to be compiled and linked
into the application.

The table entry specifies the source and header file names and paths. To
request the copy operation, the table entry sets the genCallback property to
'RTW.copyFileToBuildDir' in the call to the setTflCOperationEntryParameters
function. In this example, the header file s32_mul.h contains an inlined function that
invokes assembly functions contained in s32_mul.s. If a match occurs for the table

52-53

52 Code Replacement Customization for MATLAB Code

entry, the function RTW.copyFileToBuildDir copies the specified source and header
files to the build folder for use during the remainder of the build process.
function hTable = make_my_crl_table

hTable = RTW.TflTable;

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s32_s32_sat', ...

 'ImplementationHeaderFile', 's32_mul.h', ...

 'ImplementationSourceFile', 's32_mul.s', ...

 'ImplementationHeaderPath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'ImplementationSourcePath', {fullfile('$(MATLAB_ROOT)','crl')}, ...

 'GenCallback', 'RTW.copyFileToBuildDir');

.

.

.

addEntry(hTable, op_entry);

The following example uses the functions addAdditionalHeaderFile,
addAdditionalIncludePath, addAdditionalSourceFile,
addAdditionalSourcePath, addAdditionalLinkObj, and
addAdditionalLinkObjPath in addition to the code generation callback function
RTW.copyFileToBuildDir.
hTable = RTW.TflTable;

% Path to external source, header, and object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_UNSPECIFIED', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_add_s32_s32', ...

 'ImplementationHeaderFile', 's32_add_s32_s32.h', ...

 'ImplementationSourceFile', 's32_add_s32_s32.c'...

 'GenCallback', 'RTW.copyFileToBuildDir');

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

.

52-54

 Specify Build Information for Replacement Code

.

.

addEntry(hTable, op_entry);

Next, include your code replacement table in a code replacement library and register the
library with the code generator.

More About
• “Define Code Replacement Mappings” on page 52-30
• “Register Code Replacement Mappings” on page 52-56
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3
• “Code You Can Replace from MATLAB Code” on page 52-5

52-55

52 Code Replacement Customization for MATLAB Code

Register Code Replacement Mappings

After you define code replacement entries in a code replacement table, you can include
the table in a code replacement library that you register with the code generator. When
registered, a library appears in the list of available code replacement libraries that you
can choose from when configuring the code generator.

Register a code replacement table as a code replacement library:

• Interactively, by using the Code Replacement Tool
• Programmatically, by using a MATLAB programming interface

Choose an Approach for Creating the Registration File

The following table lists situations to help you decide when to use an interactive or
programmatic approach to creating a registration file:

If... Then...

Registering a code replacement
table for the first time

Use the Code Replacement Tool.

You used the Code Replacement
Tool to create the table

Use the Code Replacement Tool to quickly register the
table.

Rapid prototyping code
replacement

Use the Code Replacement Tool to quickly generate,
register, and test entries.

Creating registration file to use
as a template or starting point
for defining similar registration
files

Use the Code Replacement Tool to generate code that
you can copy and modify.

Modifying existing registration
files

Use the MATLAB Editor to update the registration
file.

Defining multiple code
replacement libraries in one
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

Defining code replacement
library hierarchy in a
registration file

Use the MATLAB Editor to create a new or extend an
existing registration file.

52-56

 Register Code Replacement Mappings

Create Registration File Interactively with the Code Replacement Tool

The Code Replacement tool provides a quick, easy way for you to create a registration
file for a code replacement table. It is ideal for getting started, rapid prototyping,
and generating a registration file that you want to use as a starting point for similar
registrations.

1 After you validate and save a code replacement table, select File > Generate
registration file to open the Generate registration file dialog box.

2 Enter the registration information. Minimally, specify:

For... Specify...

Registry name Text naming the code replacement library. For example, Sin
Function Example.

Table list Text naming one or more code replacement tables to include
in the library. Specify each table as one of the following:

• Name of a table file on the MATLAB search path
• Absolute path to a table file
• Path to a table file relative to $(MATLAB_ROOT)

52-57

52 Code Replacement Customization for MATLAB Code

For... Specify...

You can specify multiple tables. If you do, separate the table
specifications with a comma. For example:

crl_table_sinfcn, c:/work_crl/crl_table_muldiv

See “Registration Files That Define Multiple Code
Replacement Libraries” on page 52-61 for examples of
each type of table specification.

Optionally, you can specify:

For... Specify...

Description Text that describes the purpose and content of the library.
Target HW device Text naming one or more hardware devices the code

replacement library supports. Separate names with a
comma. To support all device types, enter an asterisk (*). For
example, TI C28x, TI C62x.

Base CRL Text naming a code replacement library that you want to
serve as a base library for the library you are registering.
Use this field to specify library hierarchies. For example,
you can specify a general TI device library as the base
library for a more specific TI C28x device library.

Generate data
alignment
specification

Flag that enables data alignment specification.

Create Registration File Programmatically

The programming interface for creating a registration file for a code replacement table is
ideal for:

• Modifying registration files created with the Code Replacement Tool
• Replicating and modifying similar registration files
• Defining multiple code replacement libraries in one registration file

52-58

 Register Code Replacement Mappings

The basic workflow for creating a registration file programmatically consists of the
following steps:

1 Define an rtwTargetInfo function. The code generator recognizes this function
as a customization file. The function definition must include at least the following
content:

function rtwTargetInfo(cm)

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'crl-name';

this(1).TableList = {'table',...};

For... Replace...

this(1).Name = 'crl-name'; crl-name with text naming the code
replacement library. For example, Sin
Function Example.

this(1).TableList =

{'table',...};

table with text that identifies the code
replacement table that contains your code
replacement entries. Specify a table as one of
the following:

• Name of a table file on the MATLAB search
path

• Absolute path to a table file
• Path to a table file relative to

$(MATLAB_ROOT)

You can specify multiple tables. If you do,
separate the table specifications with commas.

Optionally, you can specify:

52-59

52 Code Replacement Customization for MATLAB Code

For... Replace...

this(1).Description =

'text'

text with text that describes the purpose and
content of the library.

this(1).TargetHWDeviceType

= {'device-type',...}

device-type with text that names a hardware
device the code replacement library supports.
You can specify multiple device types. Separate
device types with a comma. For example, TI
C28x, TI C62x. To support all device types,
enter an asterisk (*).

this(1).BaseTfl = 'base-

lib'

base-lib with text that names a code
replacement library that you want to serve as a
base library for the library you are registering.
Use this field to specify library hierarchies.
For example, you can specify a general TI
device library as the base library for a TI
C28x device library.

See “Registration Files That Define Code
Replacement Library Hierarchies” on page
52-61 for an example.

For example:

function rtwTargetInfo(cm)

cm.registerTargetInfo(@loc_register_crl);

function this = loc_register_crl

this(1) = RTW.TflRegistry;

this(1).Name = 'Sin Function Example';

this(1).TableList = {'crl_table_sinfcn'};

this(1).TargetHWDeviceType = {'*'};

this(1).Description = 'Example - sin function replacement';

2 Save the file with the name rtwTargetInfo.m.
3 Place the file on the MATLAB path. When the file is on the MATLAB path, the code

generator reads the file after starting and applies the customizations during the
current MATLAB session.

52-60

 Register Code Replacement Mappings

Register a Code Replacement Library

Before you can use the code replacement tables defined in a registration file, you must
refresh Simulink customizations within the current MATLAB session. To initiate a
refresh, enter the following command:

sl_refresh_customizations

Registration Files That Define Multiple Code Replacement Libraries

Use the programming interface to create a registration file that defines a code
replacement library that includes multiple code replacement tables. The following
example defines a library that includes multiple tables. The TableList fields specify
tables that reside at different locations. The tables reside on the MATLAB search path or
at locations specified with a path.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library for use with model: rtwdemo_crladdsub

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Addition & Subtraction Examples';

 thisCrl(1).Description = 'Example of addition/subtraction op replacement';

 thisCrl(1).TableList = {'crl_table_addsub'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlmuldiv

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'Multiplication & Division Examples';

 thisCrl(2).Description = 'Example of mult/div op repl for built-in integers';

 thisCrl(2).TableList = {'c:/work_crl/crl_table_muldiv'};

 thisCrl(2).TargetHWDeviceType = {'*'};

 % Register a code replacement library for use with model: rtwdemo_crlfixpt

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'Fixed-Point Examples';

 thisCrl(3).Description = 'Example of fixed-point operator replacement';

 thisCrl(3).TableList = {fullfile('$(MATLAB_ROOT)', ...

 'toolbox','rtw','rtwdemos','crl_demo','crl_table_fixpt')};

 thisCrl(3).TargetHWDeviceType = {'*'};

Registration Files That Define Code Replacement Library Hierarchies

Using the programming interface, you can organize multiple code replacement libraries
in a hierarchy. The following example shows a registration file that defines four code

52-61

52 Code Replacement Customization for MATLAB Code

replacement tables organized in a hierarchy of four code replacement libraries. The
tables include entries that increase in specificity: common entries, entries for TI devices,
entries for TI C6xx devices, and entries specific to the TI C67x device.
function rtwTargetInfo(cm)

cm.registerTargetInfo(@locCrlRegFcn);

function thisCrl = locCrlRegFcn

 % Register a code replacement library that includes common entries

 thisCrl(1) = RTW.TflRegistry;

 thisCrl(1).Name = 'Common Replacements';

 thisCrl(1).Description = 'Common code replacement entries shared by other libraries';

 thisCrl(1).TableList = {'crl_table_general'};

 thisCrl(1).TargetHWDeviceType = {'*'};

 % Register a code replacement library for TI devices

 thisCrl(2) = RTW.TflRegistry;

 thisCrl(2).Name = 'TI Device Replacements';

 thisCrl(2).Description = 'Code replacement entries shared across TI devices';

 thisCrl(2).TableList = {'crl_table_TI_devices'};

 thisCrl(2).TargetHWDeviceType = {'TI C28x', 'TI C55x', 'TI C62x', 'TI C64x', 'TI 67x'};

 thisCrl(1).BaseTfl = 'Common Replacements'

 % Register a code replacement library for TI c6xx devices

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c6xx Device Replacements';

 thisCrl(3).Description = 'Code replacement entries shared across TI C6xx devices';

 thisCrl(3).TableList = {'crl_table_TIC6xx_devices'};

 thisCrl(3).TargetHWDeviceType = {'TI C62x', 'TI C64x', 'TI 67x'};

 % Register a code replacement library for the TI c67x device

 thisCrl(3) = RTW.TflRegistry;

 thisCrl(3).Name = 'TI c67x Device Replacements';

 thisCrl(3).Description = 'Code replacement entries for the TI C67x device';

 thisCrl(3).TableList = {'crl_table_TIC67x_device'};

 thisCrl(3).TargetHWDeviceType = {'TI 67x'};

After registering your code replacement mappings, verify that code replacements occur.

More About
• “Troubleshoot Code Replacement Library Registration” on page 52-63
• “Specify Build Information for Replacement Code” on page 52-47
• “Verify Code Replacements” on page 52-64
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3
• “Code You Can Replace from MATLAB Code” on page 52-5

52-62

 Troubleshoot Code Replacement Library Registration

Troubleshoot Code Replacement Library Registration

If a code replacement library is not listed as a configuration option or does not appear in
the Code Replacement Viewer:

• Refresh the library registration information within the current MATLAB
session (RTW.TargetRegistry.getInstance('reset'); or for the Simulink
environment,sl_refresh_customizations).

• See whether the registration file, rtwTargetInfo.m, contains an error.

More About
• “Register Code Replacement Mappings” on page 52-56

52-63

52 Code Replacement Customization for MATLAB Code

Verify Code Replacements
After you create or modify a code replacement table, use the following techniques to
examine and validate the table and its entries.

• Invoke the table definition file at the command prompt.
• Use the Code Replacement Viewer to examine libraries, tables, and entries.
• Trace code replacements from the source where you applied the code replacement

library.
• Examine code replacement hits and misses logged during code generation.

Code Replacement Hits and Misses

The code generator logs code replacement table entries for which it finds and does not
find matches in the hit cache and miss cache, respectively. When a code replacement
entry match fails and code is not replaced, the code generator logs the call site object
(CSO) for the miss in the miss cache. When an entry match succeeds, the code generator
logs the matched entry in the hit cache.

The code generator overwrites the hit and miss cache data each time it produces code.
The cache data reflects hits and misses for only the last application component (MATLAB
code or Simulink model) for which you generate code.

You can use the Code Replacement Viewer to review trace information based on logged
hit and miss trace data. The hit cache provides trace information that helps to verify code
replacements.

The miss cache and related miss data collected and stored in code replacement tables
provide trace information for misses. Use this information for misses to troubleshoot
expected code replacements that do not occur. Trace information for a miss:

• Identifies the call site object.
• Provides a link to the relevant source location for the miss.
• Includes information about the reason for the miss.

Validate a Table Definition File

After you create or modify a code replacement table definition file, validate it. At the
command prompt, specify the name of the table in a call to the isvalid function. For
example:

52-64

 Verify Code Replacements

isvalid(crl_table_sinfcn)

ans =

 1

MATLAB displays errors that occur. In the following example, MATLAB detects a typo in
a data type name.

isvalid(crl_table_sinfcn)

??? RTW_CORE:tfl:TflTable: Unsupported data type, 'dooble'.

Error in ==> crl_table_sinfcn at 7

hTable.registerCFunctionEntry(100, 1, 'sin', 'dooble', 'sin_dbl', ...

Review Library Content

After you create or modify a code replacement library, use the Code Replacement Viewer
to review and verify the list of tables in the library and the entries in each table.

1 Open the viewer to display the contents of your library. At the command prompt,
enter the following command:

crviewer('library')

For example:

crviewer('Addition & Subtraction Examples')

52-65

52 Code Replacement Customization for MATLAB Code

2 Review the list of tables in the left pane. Are tables missing? Are the tables listed in
the correct relative order? By default, the viewer displays tables in search order.

3 In the left pane, click each table and review the list of entries in the center pane. Are
entries missing? Does the list include extraneous or unexpected entries?

52-66

 Verify Code Replacements

Review Table Content

After you create or modify a code replacement table, use the Code Replacement Viewer to
review and verify table entries.

1 Open the viewer to display the contents of your table. At the command prompt, enter
the following command. table is a MATLAB file that defines code replacement
tables. The file must be in the current folder or on the MATLAB path.

crviewer(table)

For example:

crviewer(crl_table_addsub)

52-67

52 Code Replacement Customization for MATLAB Code

2 Review the list of entries in the center pane. Are entries missing? Does the list
include extraneous or unexpected entries? By default, the viewer displays entries in
search order.

3 In the center pane, click each entry and verify the entry information in the right
pane.

52-68

 Verify Code Replacements

• Argument order is correct.

52-69

52 Code Replacement Customization for MATLAB Code

• Conceptual argument names match code generator naming conventions.
• Implementation argument names are correct.
• Algorithm properties (for example, saturation and rounding mode) are set

correctly.
• Header or source file specification is not missing.
• I/O types are correct.
• Relative priority of entries is correct.

Review Code Replacements

After you review the content of your code replacement library and tables, generate code
and a code generation report. Verify that the code generator replaces code as you expect.

The Code Replacements Report details the code replacement library functions that the
code generator uses for code replacements. The report provides a mapping between each
replacement instance and the line of MATLAB code that triggered the replacement. The
Code Replacements report is not available for generated MEX functions.

The following example illustrates two complementary approaches for reviewing code
replacements:

• Check the Code Replacements Report section of the code generation report for
expected replacements.

• Trace code replacements.

1 Identify the MATLAB function where you anticipate that a function or operator
replacement occurs. This example uses the function matlabroot/toolbox/rtw/
rtwdemos/crl_demo/addsub_two_int16.m.

function [y1, y2] = addsub_two_int16(u1, u2)

y1 = int16(u1 + u2);

y2 = int16(u1 - u2);

2 Identify or create code or a script to exercise the function. For example, consider test
file addsub_to_int16_test.m, which includes the following code:

disp('Input')

u1 = int16(10)

52-70

 Verify Code Replacements

u2 = int16(10)

[y1, y2] = addsub_two_int16(u1, u2);

disp('Output')

disp('y1 =')

disp(y1);

disp('y2 =')

disp(y2);

3 Open the MATLAB Coder app.
4 On the Select Source Files page, add your function to the project. For this

example, add function addsub_two_int16. Click Next.
5 On the Define Input Types page, use the test file addsub_to_int16_test to

automatically define the input types. Click Next.
6 On the Check for Run-Time Issues page, specify the test file

addsub_to_int16_test. The app runs the test file, replacing calls to
addsub_to_int16_test with calls to a MEX version of addsub_to_int16_test.
Click Next.

7 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
8 Set Build type to generate source code. Before you build an executable, you want to

review your code replacements in the generated code.
9 In the Generate dialog box, click More Settings.
10 Configure the code generator to use your code replacement library. On the Custom

Code tab, set the Code replacement library parameter to the name of your
library. For this example, set the library to Addition & Subtraction Examples.

11 Configure the code generation report to include the Code Replacements Report. On
the Debugging tab, select:

• Always create a code generation report
• Code replacements
• Automatically launch a report if one is generated

12 To generate code and a report, click Generate.
13 Open the Code Replacements Report section of the code generation report.

52-71

52 Code Replacement Customization for MATLAB Code

That report lists the replacement functions that the code generator used. The report
provides a mapping between each replacement instance and the MATLAB code that
triggered the replacement.

Review the report:

• Check whether expected function and operator code replacements occurred.
• In the replacements sections, click each code link to see the source that triggered

the reported code replacement.

If a function or operator is not replaced as expected, the code generator used a higher-
priority (lower-priority value) match or did not find a match.

To analyze and troubleshoot code replacement misses, use the trace information that the
Code Replacement Viewer provides. See “Troubleshoot Code Replacement Misses” on
page 52-74.

52-72

 Verify Code Replacements

More About
• “Troubleshoot Code Replacement Misses” on page 52-74
• “Register Code Replacement Mappings” on page 52-56
• “Deploy Code Replacement Library” on page 52-81
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3

52-73

52 Code Replacement Customization for MATLAB Code

Troubleshoot Code Replacement Misses

Use miss reason messages that appear in the Code Replacement Viewer to analyze and
correct code replacement misses.

Miss Reason Messages

The Code Replacement Viewer displays miss reason messages in trace information for
code replacement misses. A legend listing each message that appears in the miss report
precedes the report details. A message consists of:

• Numeric identifier, which identifies the message in the report details.
• Message text, which in some cases includes placeholders for names of arguments, call

site object values, table entry values, and property names.

For example:

1. Mismatched data types (argument name, CSO value, table entry value)

The parenthetical information represents placeholders for actual values that appear in
the report details.

In the Miss Source Locations table that lists the miss details, the Reason column
includes:

• The message identifier, as listed in the legend.
• The placeholder values for that instance of the miss reason message.

The following Reason details indicate a data type mismatch because the call site object
specifies data type int8 for arguments y1, u1, and u2, while the code replacement table
entry specifies uint32.

1. y1, int8, uint32

 u1, int8, uint32

 u2, int8, uint32

Depending on your situation and the reported miss reason, troubleshoot reported misses
by looking for instances of the following:

• A typo in the code replacement table entry definition or a source parameter setting.
• Information missing from the code replacement table entry or a source parameter

setting.

52-74

 Troubleshoot Code Replacement Misses

• Invalid or incorrect information in the code replacement table entry definition or a
source parameter setting.

• Arguments incorrectly ordered in the code replacement table entry definition or the
source being replaced with replacement code.

• Failed algorithm classification for an addition or subtraction operation due to:

• An ideal accumulator not being calculated because the type of an input argument
is not fixed-point or the slope adjustment factors of the input arguments are not
equal.

• Input or output casts with a floating-point cast type.
• Input or output casts with cast types that have different slope adjustment factors

or biases.
• Output casts not being convertible to a single output cast.
• Input casts resulting in loss of bits.

Analyze and Correct Code Replacement Misses

The following example shows how to use Code Replacement Viewer trace information to
troubleshoot code replacement misses. You must have already reviewed and tested code
replacements for your MATLAB code.

1 Review the code generated for a specific code element, looking for expected
code replacement. Regenerate or reopen the code generation report for your
MATLAB code. If you already generated the code generation report that includes
the Code Replacements Report for matlabroot/toolbox/rtw/rtwdemos/crl_demo/
addsub_two_int16.m, open the file codegen/lib/addsub_two_int16/html/
index.html. For information on how to regenerate the report, see “Verify Code
Replacements” on page 52-64.

To examine the code generated for function, from the code generation report, open
the generated file addsub_two_int16.c.

52-75

52 Code Replacement Customization for MATLAB Code

The code generator replaced code, but the replacement is for the signed version of
the 16-bit addition and subtraction operations. You expected code replacements for
operations on unsigned data.

2 Open the Code Replacements Report for the MATLAB code.
3 Click the link to open the Code Replacement Viewer.
4 In the viewer left pane, select your code replacement table. The following display

shows entries for code replacement table crl_table_addsub.

5 In the middle pane, select table entry RTW_OP_ADD with implementation function
u16_add_u16_u16.

6 In the right pane, select the Trace Information tab.

52-76

 Troubleshoot Code Replacement Misses

The Trace Information is a table that lists the following information for each miss:

• Call site object preview. The call site object is the conceptual representation
of addition operator. The code generator uses this object to query the code
replacement library for a match.

52-77

52 Code Replacement Customization for MATLAB Code

• A link to the source location in the MATLAB function where the code generator
considered replacing code.

• The reasons that the miss occurred. See “Miss Reason Messages” on page
52-74.

For this example, the report shows misses for function addsub_two_int16.m.
7 Find that source in the trace information. Depending on your situation and the

reported miss reason, consider looking for a condition such as a typo in the code
replacement table entry definition or a source parameter setting. For a list of
conditions to consider, see“Miss Reason Messages” on page 52-74.

For this example, determine why code for function addsub_two_int16 is not
replaced with code for an unsigned 16-bit addition operation. The miss reasons for
the function indicate data type and algorithm mismatches. For the three arguments:

• The data type in the call site object is a signed 16-bit integer. The code
replacement entry specifies an unsigned 16-bit integer.

• The algorithm property in the call site object is RTW_SATURATE_ON_OVERFLOW
while the code replacement entry specifies RTW_WRAP_ON_OVERFLOW.

8 Correct the specified MATLAB code and relevant specifications or code replacement
table entry. If the issue concerns the MATLAB code, use the source location in the
trace information to find the code to correct. For this example, you expected an
unsigned addition operation to occur for the addsub_two_int16 function.

To fix the mismatches, in the test file addsub_to_int16_test, change the data
types definitions for u1 and u2 as follows:

u1 = uint16(10)

u2 = uint16(10)

In the MATLAB Coder app:

• Open the project that contains the addsub_to_int16 function.
• Use the updated test file addsub_to_int16_test to automatically redefine the

input types.
• Run the test file.
• In the project settings dialog box, on the Speed tab, clear the check box for the

Saturate on integer overflow parameter.

52-78

 Troubleshoot Code Replacement Misses

• Regenerate code and a report.
9 From the Code Replacements Report, open the Code Replacement Viewer. Use the

Code Replacement Viewer trace information to verify that your MATLAB code or
code replacement table entry corrects the code replacement issue. In the following
display, the trace information shows a hit for function addsub_two_int16.

52-79

52 Code Replacement Customization for MATLAB Code

More About
• “Verify Code Replacements” on page 52-64

52-80

 Deploy Code Replacement Library

Deploy Code Replacement Library

After you verify code replacements and are ready to package and deploy a code
replacement library for others to use:

1 Move your code replacement table files to an area that is on the MATLAB search
path and that is accessible to and shared by other users.

2 Move the rtwTargetInfo.m registration file, to an area that is on the MATLAB
search path and that is accessible to and shared by other users. If you are deploying
a library to a folder in a development environment that already contains a
rtwTargetInfo.m file, copy the registration code from your code replacement
library version of rtwTargetInfo.m and paste it into the shared version of that file.

3 Register the library customizations or restart MATLAB.
4 Verify that the libraries are available for configuring the code generator and that

code replacements occur as expected.
5 Inform users that the libraries are available and provide direction on when and how

to apply them.

More About
• “Verify Code Replacements” on page 52-64
• “Package Code for Other Development Environments” (MATLAB Coder)
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3

52-81

52 Code Replacement Customization for MATLAB Code

Math Function Code Replacement
This example shows how to define a code replacement mapping for a math function. The
example defines a mapping for the sin function programmatically. Alternatively, you can
use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_sinfcn2()

%CRL_TABLE_SINFCN2 - Define function entry for code replacement table.

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for sin function replacement

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'sin', ...

 'Priority', 30, ...

 'ImplementationName', 'mySin', ...

 'ImplementationHeaderFile', 'basicMath.h',...

 'ImplementationSourceFile', 'basicMath.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call.
createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'DataTypeMode', 'double');

createAndAddConceptualArg(fcn_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'DataTypeMode', 'double');

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call
to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.

52-82

 Math Function Code Replacement

copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Define Code Replacement Mappings” on page 52-30
• “Specify In-Place Code Replacement” on page 52-86
• “Reserved Identifiers and Code Replacement” on page 52-111
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-83

52 Code Replacement Customization for MATLAB Code

Memory Function Code Replacement

This example shows how to define a code replacement mapping for a memory
function. The example defines a mapping for the memcpy function programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_memcpy()

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

% Create entry for void* memcpy(void*, void*, size_t)

fcn_entry = RTW.TflCFunctionEntry;

4 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
% Set SideEffects to 'true' for function returning void to prevent it from

% being optimized away.

setTflCFunctionEntryParameters(fcn_entry, ...

 'Key', 'memcpy', ...

 'Priority', 90, ...

 'ImplementationName', 'memcpy_int', ...

 'ImplementationHeaderFile', 'memcpy_int.h',...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, u2, and u3. There are multiple ways to set up
the conceptual arguments. This example uses calls to the getTflArgFromString
and addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'void*');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'void*');

addConceptualArg(fcn_entry, arg);

arg = getTflArgFromString(hTable, 'u3', 'size_t');

addConceptualArg(fcn_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

52-84

 Memory Function Code Replacement

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(fcn_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, fcn_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Specify In-Place Code Replacement” on page 52-86
• “Reserved Identifiers and Code Replacement” on page 52-111
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-85

52 Code Replacement Customization for MATLAB Code

Specify In-Place Code Replacement

In-place code replacement is an optimization technique that uses a single buffer, that is,
the same memory, to store function input and output data, as in x=foo(x).

When you generate C or C++ code from MATLAB code, the code generator supports
in-place function argument code replacement. When you interactively create a code
replacement table entry with the Code Replacement Tool, you can specify in-place
function argument replacement. You can also specify in-place function argument
replacement programmatically with the Code Replacement Library API.

Argument Specification Requirements

• The argument must be a pointer.
• An argument can be in-place with only one other argument.
• Specify an input argument as in-place (shares memory) with an output argument or

an output argument as in-place with an input argument.

Interactive Argument Replacement Specification with Code Replacement
Tool

This example shows how to specify in-place function argument replacement when
replacing code for a MATLAB function with the Code Replacement Tool. The tool
enforces in-place argument specification requirements as you add arguments and modify
argument properties.

1 Create the following MATLAB function, customFunction.m.

function x = customFunction(x)

% Function that updates the input and returns it as an output

coder.replace('-errorifnoreplacement');

x = sin(x);

2 In the Code Replacement Tool, add a new table, select that table, and add a new
function entry. For more information, see “Define Code Replacement Mappings” on
page 52-30.

3 On the Mapping Information tab, select Custom for the Function parameter.
4 In the function-name text box, name the custom function. For this example, type

the name customFunction.

52-86

 Specify In-Place Code Replacement

5 Under the Conceptual arguments list box, click + to add two arguments. By
default, the tool creates an output argument y1 and an input argument u1, both of
type double.

6 In the Replacement function > Function prototype section, type the name
custom_function_inplace_impl in the Name text box.

7 Under the Function arguments list box, click + to add two function
implementation arguments. By default, the tool creates an output argument y1 and
an input argument u1, both of type double.

8 For each input argument that you want to specify as in-place with a corresponding
output argument, in the Argument properties box, select the Pointer check box.
The Argument properties section of the dialog box expands to include an In-place
argument drop-down list. For this example, in the Function arguments list, select
input argument u1, and then select the Pointer check box.

9 From the In-place argument list, select y1, the output argument for the code
replacement mapping. The Function arguments list box is updated to show
possible in-place argument mappings.

52-87

52 Code Replacement Customization for MATLAB Code

10 Select and delete one of the two possible argument mappings. For this example,
delete the mapping y1<-->u1.

11 In the Function signature preview box, if the function signature appears as
expected, click Apply. Otherwise, make adjustments, and then click Apply. The
function signature for this example, appears as

void custom_function_inplace_impl(double* u1);

12 Click Validate entry.
13 Save the code replacement table in the same folder as customFunction.m. Name

the file htfl_inplace_table.m.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use a code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate the replacement code and a code generation report.
4 Review the code replacements.

52-88

 Specify In-Place Code Replacement

Programmatic Argument Replacement Specification

This example shows how to specify in-place function argument replacement when
replacing code for a MATLAB function programmatically. For the input implementation
argument that shares the memory buffer, the example:

• Sets the name of the implementation argument to the same name as the
corresponding conceptual argument.

• Associates the corresponding implementation argument with the argument property
ArgumentForInPlaceUse.

1 Create the following MATLAB function, customFunction.m.

function y = customFunction(x)

% Function that updates the input and returns it as an output

coder.replace('-errorifnoreplacement');

x = sin(x);

2 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_inplace()

3 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

4 Create an entry for the function mapping with a call to the
RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

5 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.
setTflCFunctionEntryParameters(hEnt, ...

 'Key', 'customFunction', ...

 'Priority', 100, ...

 'ImplementationName', 'custom_function_inplace_impl', ...

 'SideEffects', true);

6 Create conceptual arguments y1 and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.
arg = getTflArgFromString(hEnt, 'y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(hEnt, arg);

52-89

52 Code Replacement Customization for MATLAB Code

arg = getTflArgFromString(hEnt, 'u1','double');

addConceptualArg(hEnt, arg);

7 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments
that map to arguments in the replacement function prototype: output argument
y1 and input argument u1. For each argument, the example uses the convenience
method setReturn or addArgument to specify whether an argument is a return
value or argument. For each argument, this example adds the argument to the entry
array of implementation arguments.

arg = getTflArgFromString(hEnt, 'y2','void');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = getTflArgFromString(hEnt, 'u1','double*');

arg.ArgumentForInPlaceUse = 'y1';

hEnt.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hLib, hEnt);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use a code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate the replacement code and a code generation report.
4 Review the code replacements.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Develop a Code Replacement Library” on page 52-15

52-90

 Data Alignment for Code Replacement

Data Alignment for Code Replacement

Code replacement libraries can align data objects passed into a replacement function to a
specified boundary.

Code Replacement Data Alignment

You can take advantage of function implementations that require aligned data to
optimize application performance when using MATLAB Coder. To configure data
alignment for a function implementation:

1 Specify the data alignment requirements in a code replacement entry. Specify
alignment separately for each implementation function argument or collectively for
all function arguments. See “Specify Data Alignment Requirements for Function
Arguments” on page 51-133.

2 Specify the data alignment capabilities and syntax for one or more compilers.
Include the alignment specifications in a library registration entry in the
rtwTargetInfo.m file. See “Provide Data Alignment Specifications for Compilers”
on page 51-135.

3 Register the library containing the table entry and alignment specification object.
4 Configure the code generator to use the code replacement library and generate code.

Observe the results.

For examples, see “Basic Example of Code Replacement Data Alignment” on page
51-139 and the “Data Alignment for Function Implementations” section of the “Optimize
Generated Code By Developing and Using Code Replacement Libraries - Simulink®”
example page.

Note If replacement that requires alignment uses imported data (for example, I/
O of an entry-point function or exported function), specify the data alignment with
coder.dataAlignment statements in the MATLAB code. Specify alignment separately
for each instance of imported data. See “Specify Data Alignment in MATLAB Code for
Imported Data” on page 52-98.

Specify Data Alignment Requirements for Function Arguments

To specify the data alignment requirement for an argument in a code replacement entry:

52-91

52 Code Replacement Customization for MATLAB Code

• If you are defining a replacement function in a code replacement table registration
file, create an argument descriptor object (RTW.ArgumentDescriptor). Use its
AlignmentBoundary property to specify the required alignment boundary and
assign the object to the argument Descriptor property.

• If you are defining a replacement function using the Code Replacement Tool, on
the Mapping Information tab, in the Argument properties section for the
replacement function, enter a value for the Alignment value parameter.

The AlignmentBoundary property (or Alignment value parameter) specifies the
alignment boundary for data passed to a function argument, in number of bytes. The
AlignmentBoundary property is valid only for addressable objects, including matrix and
pointer arguments. It is not applicable for value arguments. Valid values are:

• -1 (default) — If the data is a Simulink.Bus, Simulink.Signal, or
Simulink.Parameter object, specifies that the code generator determines an
optimal alignment based on usage. Otherwise, specifies that there is not an alignment
requirement for this argument.

• Positive integer that is a power of 2, not exceeding 128 — Specifies number of bytes
in the boundary. The starting memory address for the data allocated for the function
argument is a multiple of the specified value. If you specify an alignment boundary
that is less than the natural alignment of the argument data type, the alignment
directive is emitted in the generated code. However, the target compiler ignores the
directive.

The following code specifies the AlignmentBoundary for an argument as 16 bytes.

52-92

 Data Alignment for Code Replacement

hLib = RTW.TflTable;

entry = RTW.TflCOperationEntry;

arg = getTflArgFromString(hLib, 'u1','single*');

desc = RTW.ArgumentDescriptor;

desc.AlignmentBoundary = 16;

arg.Descriptor = desc;

entry.Implementation.addArgument(arg);

The equivalent alignment boundary specification in the Code Replacement Tool dialog
box is in this figure.

Note: If your model imports Simulink.Bus, Simulink.Parameter, or
Simulink.Signal objects, specify an alignment boundary in the object properties,
using the Alignment property. For more information, see Simulink.Bus,
Simulink.Parameter, and Simulink.Signal.

Provide Data Alignment Specifications for Compilers

To support data alignment in generated code, describe the data alignment capabilities
and syntax for your compilers in the code replacement library registration. Provide one or
more alignment specifications for each compiler in a library registry entry.

To describe the data alignment capabilities and syntax for a compiler:

• If you are defining a code replacement library registration entry in a
rtwTargetInfo.m customization file, add one or more AlignmentSpecification
objects to an RTW.DataAlignment object. Attach the RTW.DataAlignment object to
the TargetCharacteristics object of the registry entry.

The RTW.DataAlignment object also has the property DefaultMallocAlignment,
which specifies the default alignment boundary, in bytes, that the compiler uses for
dynamically allocated memory. If the code generator uses dynamic memory allocation

52-93

52 Code Replacement Customization for MATLAB Code

for a data object involved in a code replacement, this value determines if the memory
satisfies the alignment requirement of the replacement. If not, the code generator
does not use the replacement. The default value for DefaultMallocAlignment is
-1, indicating that the default alignment boundary used for dynamically allocated
memory is unknown. In this case, the code generator uses the natural alignment of
the data type to determine whether to allow a replacement.

Additionally, you can specify the alignment boundary for complex types by using the
addComplexTypeAlignment function.

• If you are generating a customization file function using the Code Replacement Tool,
fill out the following fields for each compiler.

Click the plus (+) symbol to add additional compiler specifications.

For each data alignment specification, provide the following information.

Alignment-

Specification

Property

Dialog Box
Parameter

Description

AlignmentType Alignment
type

Cell array of predefined enumerated strings, specifying
which types of alignment this specification supports.

• DATA_ALIGNMENT_LOCAL_VAR — Local variables.

52-94

 Data Alignment for Code Replacement

Alignment-

Specification

Property

Dialog Box
Parameter

Description

• DATA_ALIGNMENT_GLOBAL_VAR — Global variables.
• DATA_ALIGNMENT_STRUCT_FIELD — Individual

structure fields.
• DATA_ALIGNMENT_WHOLE_STRUCT — Whole structure,

with padding (individual structure field alignment, if
specified, is favored and takes precedence over whole
structure alignment).

Each alignment specification must specify at
least DATA_ALIGNMENT_GLOBAL_VAR and
DATA_ALIGNMENT_STRUCT_FIELD.

52-95

52 Code Replacement Customization for MATLAB Code

Alignment-

Specification

Property

Dialog Box
Parameter

Description

AlignmentPosition Alignment
position

Predefined enumerated string specifying the position in
which you must place the compiler alignment directive for
alignment type DATA_ALIGNMENT_WHOLE_STRUCT:

• DATA_ALIGNMENT_PREDIRECTIVE — The alignment
directive is emitted before struct st_tag{…}, as part
of the type definition statement (for example, MSVC).

• DATA_ALIGNMENT_POSTDIRECTIVE — The alignment
directive is emitted after struct st_tag{…}, as part of
the type definition statement (for example, gcc).

• DATA_ALIGNMENT_PRECEDING_STATEMENT —
The alignment directive is emitted as a standalone
statement immediately preceding the definition of the
structure type. A semicolon (;) must terminate the
registered alignment syntax.

• DATA_ALIGNMENT_FOLLOWING_STATEMENT —
The alignment directive is emitted as a standalone
statement immediately following the definition of the
structure type. A semicolon (;) must terminate the
registered alignment syntax.

For alignment types other than
DATA_ALIGNMENT_WHOLE_STRUCT, code generation uses
alignment position DATA_ALIGNMENT_PREDIRECTIVE.

52-96

 Data Alignment for Code Replacement

Alignment-

Specification

Property

Dialog Box
Parameter

Description

AlignmentSyntax-

Template

Alignment
syntax

Specifies the alignment directive string that the compiler
supports. The string is registered as a syntax template that
has placeholders in it. These placeholders are supported:

• %n — Replaced by the alignment boundary for the
replacement function argument.

• %s — Replaced by the aligned symbol, usually the
identifier of a variable.

For example, for the gcc compiler, you can specify
__attribute__((aligned(%n))), or for the MSVC
compiler, __declspec(align(%n)).

SupportedLanguagesSupported
languages

Cell array specifying the languages to which this alignment
specification applies, among c and c++. Sometimes
alignment syntax and position differ between languages for
a compiler.
.

Here is a data alignment specification for the GCC compiler:

da = RTW.DataAlignment;

as = RTW.AlignmentSpecification;

as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...

 'DATA_ALIGNMENT_STRUCT_FIELD', ...

 'DATA_ALIGNMENT_GLOBAL_VAR'};

as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';

as.AlignmentPosition = 'DATA_ALIGNMENT_PREDIRECTIVE';

as.SupportedLanguages = {'c', 'c++'};

da.addAlignmentSpecification(as);

tc = RTW.TargetCharacteristics;

tc.DataAlignment = da;

Here is the corresponding specification in the Generate customization dialog box of
the Code Replacement Tool.

52-97

52 Code Replacement Customization for MATLAB Code

Specify Data Alignment in MATLAB Code for Imported Data

If MATLAB Coder code replacements that require data alignment use imported data,
such as an entry-point or exported function I/O, specify data alignment to external code
with coder.dataAlignment statements in the MATLAB code.

If MATLAB Coder code replacements occur that require data alignment (uses imported
data), such as an entry-point or exported function with I/O, specify code replacement data
alignment with coder.DataAlignment statements in the MATLAB code.

To specify the data alignment requirements for imported data in a MATLAB code:

• For each instance of imported data that requires data alignment, specify the
alignment in the function with a coder.dataAlignment statement of the form:

coder.dataAlignment('varName', align_value)

• The varName is a character array of the variable name that requires alignment
information specification. The align_value is an integer number which should be a
power of 2, from 2 through 128. This number specifies the power-of-2 byte alignment
boundary.

• An example function that specifies data alignment is:

function y = testFunction(x1,x2)

coder.dataAlignment('x1',16); % Specifies information

52-98

 Data Alignment for Code Replacement

coder.dataAlignment('x2',16); % Specifies information

coder.dataAlignment('y',16); % Specifies information

y = x1 + x2;

end

If testFunction is an entry-point or exported function, imported data x1, x2, and
y are not aligned automatically by the code generator. The coder.DataAlignment
statements for these variables are only meant as information for the code generator.
The call sites allocating memory for the data need to ensure that the data is aligned as
specified.

You also can specify code replacement data alignment for exported data, such as a
global variable or an ExportedGlobal custom storage class. For more information, see
“Introduction to Custom Storage Classes” on page 23-2.

Replacing Math Functions and Operators with Implementations that
require Data Alignment - MATLAB®

This example shows how to develop and use code replacement library entries for target-
specific function implementations that require data to be aligned to optimize application
performance. To configure data alignment for a function implementation:

• Specify the data alignment requirements in a table entry. You can specify alignment
for implementation function arguments individually or collectively.

• Specify the data alignment capabilities and syntax for your compiler. Attach an
AlignmentSpecification object to the TargetCharacteristics object of the registry entry
specified in your rtwTargetInfo.m file.

If externally allocated data (e.g. entry-point function arguments) are used in an
operation that can be replaced with an implementation that requires alignment, use the
coder.dataAlignment directive to specify alignment so that replacement occurs.

This example is configured to use either the GCC, Clang, or MSVC compilewhosrs.

Create a New Folder and Copy Relevant Files

The following code creates a folder in your current working folder (pwd). The new folder
will contain the files that are relevant for this example. If you do not want to affect the

52-99

52 Code Replacement Customization for MATLAB Code

current folder (or if you cannot generate files in this folder), you should change your
working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_crlalign');

cleanupObj = {};

mlpath = addpath(fullfile(matlabroot,'toolbox','coder','codegendemos','coderdemo_crlalign'));

cleanupObj{end+1} = onCleanup(@()path(mlpath));

Check selected compiler

This example is configured to use either GCC, Clang, or MSVC to compile the generated
code.

cc = rtwprivate('getMexCompilerInfo');

isDaDemoSupported = strcmpi(cc.comp.Manufacturer,'GNU') || ...

 strcmpi(cc.comp.Manufacturer,'Apple') || ...

 strcmpi(cc.comp.Manufacturer,'Microsoft');

if ~isDaDemoSupported

 recMsg = ['Use "mex -setup" to select either GCC, Clang, or MSVC and restart this ' ...

 'example'];

 warning(['Example %s is configured to use either GCC, Clang, or MSVC to compile ' ...

 'the generated code. %s.'], mfilename,recMsg);

end

Set MATLAB Coder options

Set up the configuration object and define the function input types.

cfg = coder.config('lib','ecoder',true);

cfg.GenerateReport = false;

cfg.LaunchReport = false;

cfg.VerificationMode = 'SIL';

cfg.CodeExecutionProfiling = true;

len = 400000;

args = {coder.typeof(single(0),[len,1]), ...

 coder.typeof(single(0))};

global g1;

g1 = single(zeros([len,1]));

Generate code using the SIMD Examples Code Replacement Library

To see the code replacement table definition file, look here.

52-100

 Data Alignment for Code Replacement

RTW.TargetRegistry.getInstance('reset');

mcode_da16 = 'biased_sum_of_square_differences_da16';

cfg.CodeReplacementLibrary = 'SIMD Examples';

codegen('-config',cfg, mcode_da16,'-args',args,'-global',{'g1',g1});

Inspect the MATLAB Coder Generated Code

After compiling, you may want to explore the generated source code.
matlab:edit(fullfile(pwd,'codegen','lib','biased_sum_of_square_differences_da16','sum_of_square_differences.c'))

Performance Gain from Data Alignment

Compare performance of normal ANSI code against the earlier generated code that used
SIMD intrinsics.

% Generate ansi code

mcode_noda = 'biased_sum_of_square_differences';

cfg.CodeReplacementLibrary = 'None';

codegen('-config',cfg, mcode_noda,'-args',args,'-global',{'g1',g1});

% Run SIMD executable and collect execution profile information

coder.runTest('run_biased_ssd_da16',[mcode_da16,'_sil.',mexext])

pause(120);

clear([mcode_da16,'_sil']); % stop simulation

executionProfile_simd = getCoderExecutionProfile(mcode_da16);

idx_section = find(strcmp(mcode_da16,{executionProfile_simd.Sections.Name}),1);

avg_selftime_simd = executionProfile_simd.Sections(idx_section).TotalSelfTimeInTicks/executionProfile_simd.Sections(idx_section).NumCalls;

% Run ANSI executable and collect execution profile information

coder.runTest('run_biased_ssd',[mcode_noda,'_sil.',mexext])

pause(120);

clear([mcode_noda,'_sil']); % stop simulation

executionProfile_ansi = getCoderExecutionProfile(mcode_noda);

idx_section = find(strcmp(mcode_noda,{executionProfile_ansi.Sections.Name}),1);

avg_selftime_ansi = executionProfile_ansi.Sections(idx_section).TotalSelfTimeInTicks/executionProfile_ansi.Sections(idx_section).NumCalls;

% Compare execution profile results

barObj = bar([avg_selftime_ansi; ...

 avg_selftime_simd]);

axesObj = barObj.Parent;

figObj = axesObj.Parent;

axesObj.XTickLabel = {'ANSI SSD', 'SIMD SSD'};

axesObj.YLabel.String = 'Average Execution Time (Timer Ticks)';

52-101

52 Code Replacement Customization for MATLAB Code

axesObj.YLim = [min([0,avg_selftime_ansi,avg_selftime_simd]), ...

 max(avg_selftime_ansi,avg_selftime_simd)*1.3];

percent_perf_gain = 100 * (avg_selftime_ansi-avg_selftime_simd)/avg_selftime_ansi;

annotation(figObj, 'textbox',axesObj.Position, ...

 'String',sprintf('Execution speed increased by %d%% on average',percent_perf_gain), ...

 'FontWeight', 'bold', 'FontSize', 12, 'HorizontalAlignment', 'center', ...

 'FitBoxToText','On');

Starting SIL execution for 'biased_sum_of_square_differences_da16'

 To terminate execution: clear biased_sum_of_square_differences_da16_sil

 Execution profiling data is available for viewing. Open Simulation Data Inspector.

 Execution profiling report available after termination.

Stopping SIL execution for 'biased_sum_of_square_differences_da16'

 Execution profiling report: report(getCoderExecutionProfile('biased_sum_of_square_differences_da16'))

Starting SIL execution for 'biased_sum_of_square_differences'

 To terminate execution: clear biased_sum_of_square_differences_sil

 Execution profiling data is available for viewing. Open Simulation Data Inspector.

 Execution profiling report available after termination.

Stopping SIL execution for 'biased_sum_of_square_differences'

 Execution profiling report: report(getCoderExecutionProfile('biased_sum_of_square_differences'))

52-102

 Data Alignment for Code Replacement

Cleanup

Remove files and return to original folder

Run Command: Cleanup

RTW.TargetRegistry.getInstance('reset');

cleanup

More About
• “Code You Can Replace From Simulink Models” on page 51-7

52-103

52 Code Replacement Customization for MATLAB Code

• “Define Code Replacement Mappings” on page 51-42
• “Develop a Code Replacement Library” on page 51-27

52-104

 Replace MATLAB Functions with Custom Code Using coder.replace

Replace MATLAB Functions with Custom Code Using
coder.replace

The coder.replace function provides the ability to replace a specified MATLAB
function with a code replacement function in generated code. Use coder.replace in
MATLAB code from which you want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

You can replace MATLAB functions that have:

• Single or multiple inputs
• Single or multiple outputs
• Scalar and matrix inputs and outputs

Supported types include:

• single, double (complex and noncomplex)
• int8, uint8 (complex and noncomplex)
• int16, uint16 (complex and noncomplex)
• int32, uint32 (complex and noncomplex)
• Fixed-point integers
• Mixed types (different type on each input)

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Develop a Code Replacement Library” on page 52-15

52-105

52 Code Replacement Customization for MATLAB Code

Replace coder.ceval Calls to External Functions
The coder.ceval function calls external C/C++ functions from code generated from
MATLAB code. The code replacement software supports replacement of the function
that you specify in a call to coder.ceval. An application of this code replacement
scenario is to write generic MATLAB code that you can customize for different platforms
with code replacements. A code replacement library can define hardware-specific code
replacements for the function call. Use coder.ceval in MATLAB code from which you
want to generate C code using:

• MATLAB Coder
• MATLAB code in a Simulink MATLAB Function block

Example Files

For the examples in “Interactive External Function Call Replacement Specification with
Code Replacement Tool” on page 52-107 and “Programmatic External Function Call
Replacement Specification” on page 52-108 you must have set up the following:

• Custom C function my_add.c.

/* my_add.c */

#include "my_add.h"

double my_add(double in1, double in2)

{

 return in1 + in2;

}

• Custom C header file my_add.h.

/* my_add.h */

double my_add(double in1, double in2);

• MATLAB function call_my_add.m, which uses coder.ceval to invoke my_add.c.

function y = call_my_add(in1, in2) %#codegen

y=0.0;

if ~coder.target('Rtw')

% Executing in MATLAB, call MATLAB equivalent of C function my_add

52-106

 Replace coder.ceval Calls to External Functions

 y= in1+in2;

else

% Executing in generated code, call C function my_add

 y = coder.ceval('my_add', in1, in2);

end

• MATLAB test function call_my_add_test.m, which calls call_my_add.m.

in1=10;

in2=20;

y = call_my_add(in1, in2);

disp('Output')

disp('y =')

disp(y);

• Replacement C function my_add_replacement.c.

/* my_add_replacement.c */

#include "my_add_replacement.h"

double my_add_replacement(double in1, double in2)

{

 return in1 + in2;

}

• Replacement C header file my_add_replacement.h.

/* my_add_replacement.h */

double my_add_replacement(double in1, double in2);

Interactive External Function Call Replacement Specification with Code
Replacement Tool

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry interactively with the Code Replacement Tool.

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval, a MATLAB test function, and the source and header
files for your replacement code. To follow along with this example, set up the files
identified in “Example Files” on page 52-106.

52-107

52 Code Replacement Customization for MATLAB Code

2 In the Code Replacement Tool, add a table, select that table, and add a function
entry. For more information, see “Define Code Replacement Mappings” on page
52-30.

3 On the Mapping Information tab, select Custom for the Function parameter.
4 In the function-name text box, type the custom function name. For this example,

type the name my_add.
5 Under the Conceptual arguments list box, click + to add three arguments. By

default, the tool creates an output argument y1 and input arguments u1 and u2 of
type double.

6 In the Replacement function > Function prototype section, type the name
my_add_replacement in the Name text box.

7 Under the Function arguments list box, click + to add three function
implementation arguments. By default, the tool creates an output argument y1 and
input arguments u1 and u2 of type double. Use the default settings.

8 In the Function signature preview box, if you see the expected function
signature, click Apply. The function signature for this example, appears as:

double my_add_replacement(double u1, double u2);

9 On the Build Information tab, specify my_add_replacement.h for the
Implementation header file parameter and my_add_replacement.c for the
Implementation source file.

10 Click Validate entry.
11 Save the code replacement table in the same folder as my_add_replacement.c.

Name the file crl_table_my_add.m.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

Programmatic External Function Call Replacement Specification

This example shows how to define a code replacement table entry for a MATLAB function
that calls coder.ceval to invoke an external C function. The example shows how to
define the entry programmatically.

52-108

 Replace coder.ceval Calls to External Functions

1 Identify or create the C/C++ code and relevant header files, the MATLAB function
that calls coder.ceval to invoke the C/C++ function, a MATLAB test function,
and the source and header files for your replacement code. To follow along with this
example, set up the files identified in “Example Files” on page 52-106.

2 Create a table definition file that contains a function definition. For example:

function hLib = crl_table_my_add

3 Within the function body, create the table by calling the function RTW.TflTable.
4 Create an entry for the function mapping with a call to the

RTW.TflCFunctionEntry function.

hEnt = RTW.TflCFunctionEntry;

5 Set function entry parameters with a call to the
setTflCFunctionEntryParameters function.

hEnt.setTflCFunctionEntryParameters(...

 'Key', 'my_add', ...

 'Priority', 100, ...

 'ImplementationName', 'my_add_replacement', ...

 'ImplementationHeaderFile', 'my_add_replacement.h', ...

 'ImplementationSourceFile', 'my_add_replacement.c');

6 Create conceptual arguments y1, u1, and u1. This example uses calls to the
getTflArgFromString and addConceptualArg functions to create and add the
arguments.

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.addConceptualArg(arg);

7 Create the implementation arguments and add them to the entry. This example uses
calls to the getTflArgFromString function to create implementation arguments.
These functions map to arguments in the replacement function prototype: output
argument y1 and input arguments u1 and u2. For each argument, the example
uses the convenience method setReturn or addArgument to specify whether an
argument is a return value or argument. For each argument, this example adds the
argument to the entry array of implementation arguments.

52-109

52 Code Replacement Customization for MATLAB Code

arg = hEnt.getTflArgFromString('y1','double');

arg.IOType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');

hEnt.Implementation.addArgument(arg);

arg = hEnt.getTflArgFromString('u2','double');

hEnt.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

hLib.addEntry(hEnt);

9 Save the table definition file. Use the name of the table definition function to name
the file.

To test the example:

1 Register the table that contains the entry in a code replacement library.
2 Configure the code generator to use the code replacement library and to include the

Code Replacements Report in the code generation report.
3 Generate code and the report.
4 Review the code replacements.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Develop a Code Replacement Library” on page 52-15

52-110

 Reserved Identifiers and Code Replacement

Reserved Identifiers and Code Replacement

The code generator and C programming language use, internally, reserved keywords for
code generation. Do not use reserved keywords as identifiers or function names. Reserved
keywords for code generation include many code replacement library identifiers, the
majority of which are function names, such as acos.

To view a list of reserved identifiers for the code replacement library that you
use to generate code, specify the name of the library in a call to the function
RTW.TargetRegistry.getInstance.getTflReservedIdentifiers. For example:
crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

In a code replacement table, the code generator registers each function implementation
name defined by a table entry as a reserved identifier. You can register additional
reserved identifiers for the table on a per-header-file basis. Providing additional reserved
identifiers can help prevent duplicate symbols and other identifier-related compile and
link issues.

To register additional code replacement reserved identifiers, use the
setReservedIdentifiers function. This function registers specified reserved
identifiers to be associated with a code replacement table.

You can register up to four reserved identifier structures in a code replacement table.
You can associate one set of reserved identifiers with a code replacement library, while
the other three (if present) must be associated with ANSI C. The following example
shows a reserved identifier structure that specifies two identifiers and the associated
header file.
d{1}.LibraryName = 'ANSI_C';

d{1}.HeaderInfos{1}.HeaderName = 'math.h';

d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

The code generator adds the identifiers to the list of reserved identifiers and honors them
during the build procedure.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Customize Match and Replacement Process” on page 52-112
• “Define Code Replacement Mappings” on page 52-30
• “Develop a Code Replacement Library” on page 52-15

52-111

52 Code Replacement Customization for MATLAB Code

Customize Match and Replacement Process

During the build process, the code generator uses:

• Preset match criteria to identify functions and operators for which application-specific
implementations replace default implementations.

• Preset replacement function signatures.

It is possible that preset match criteria and preset replacement function signatures do
not completely meet your function and operator replacement needs. For example:

• You want to replace an operator with a particular fixed-point implementation
function only when fraction lengths are within a particular range.

• When a match occurs, you want to modify your replacement function signature based
on compile-time information, such as passing fraction-length values into the function.

To add extra logic into the code replacement match and replacement process, create
custom code replacement table entries. With custom entries, you can specify additional
match criteria and modify the replacement function signature to meet application needs.

To create a custom code replacement entry:

1 Create a custom code replacement entry class, derived from
RTW.TflCFunctionEntryML (for function replacement) or

RTW.TflCOperationEntryML (for operator replacement).
2 In your derived class, implement a do_match method with a fixed preset signature

as a MATLAB function. In your do_match method, provide either or both of the
following customizations that instantiate the class:

• Add match criteria that the base class does not provide. The base class provides a
match based on:

• Argument number
• Argument name
• Signedness
• Word size
• Slope (if not specified with wildcards)
• Bias (if not specified with wildcards)
• Math modes, such as saturation and rounding

52-112

 Customize Match and Replacement Process

• Operator or function key
• Modify the implementation signature by adding additional arguments or setting

constant input argument values. You can inject a constant value, such as an
input scaling value, as an additional argument to the replacement function.

3 Create code replacement entries that instantiate the custom entry class.
4 Register a library containing the code replacement table that includes your entries.

During code generation, the code replacement match process tries to match function or
operator call sites with the base class of your derived entry class. If the process finds a
match, the software calls your do_match method to execute your additional match logic
(if any) and your replacement function customizations (if any).

Customize Match and Replacement Process for Operators

This example shows how to create custom code replacement entries that add logic
to the code match and replacement process for a scalar operation. Custom entries
specify additional match criteria or modify the replacement function signature to meet
application needs.

For example:

• When fraction lengths are within a specific range, replace an operator with a fixed-
point implementation function.

• When a match occurs, modify the replacement function signature based on compile-
time information, such as passing fraction-length values into the function.

This example modifies a fixed-point addition replacement such that the implementation
function passes in the fraction lengths of the input and output data types as arguments.

To create custom code replacement entries that add logic to the code replacement match
and replacement process:

1 Create a class, for example TflCustomOperationEntry, that is derived from the
base class RTW.TflCOperationEntryML. The derived class defines a do_match
method with the following signature:

function ent = do_match(hThis, ...

 hCSO, ...

 targetBitPerChar, ...

 targetBitPerShort, ...

 targetBitPerInt, ...

52-113

52 Code Replacement Customization for MATLAB Code

 targetBitPerLong, ...

 targetBitPerLongLong)

In the do_match signature:

• ent is the return handle, which is returned as empty (indicating that the match
failed) or as a TflCOperationEntry handle.

• hThis is the handle to the class instance.
• hCSO is a handle to an object that the code generator creates for querying the

library for a replacement.
• Remaining arguments are the number of bits for various data types of the current

target.

The do_match method adds match criteria that the base class does not provide.
The method makes modifications to the implementation signature. In this case, the
do_match method relies on the base class for checking word size and signedness.
do_match must match only the number of conceptual arguments to the value 3
(two inputs and one output) and the bias for each argument to value 0. If the code
generator finds a match, do_match:

• Sets the return handle.
• Removes slope and bias wild cards from the conceptual arguments (the match is

for specific slope and bias values).
• Writes fraction-length values for the inputs and output into replacement function

arguments 3, 4, and 5.

You can create and add three additional implementation function arguments for
passing fraction lengths in the class definition or in each code replacement entry
definition that instantiates this class. This example creates the arguments, adds
them to a code replacement table definition file, and sets them to specific values in
the class definition code.

classdef TflCustomOperationEntry < RTW.TflCOperationEntryML

 methods

 function ent = do_match(hThis, ...

 hCSO, ... %#ok

 targetBitPerChar, ... %#ok

 targetBitPerShort, ... %#ok

 targetBitPerInt, ... %#ok

 targetBitPerLong, ... %#ok

 targetBitPerLongLong) %#ok

 % DO_MATCH - Create a custom match function. The base class

52-114

 Customize Match and Replacement Process

 % checks the types of the arguments prior to calling this

 % method. This class will check additional data and can

 % modify the implementation function.

 % The base class checks word size and signedness. Slopes and biases

 % have been wildcarded, so the only additional checking to do is

 % to check that the biases are zero and that there are only three

 % conceptual arguments (one output, two inputs)

 ent = []; % default the return to empty, indicating the match failed

 if length(hCSO.ConceptualArgs) == 3 && ...

 hCSO.ConceptualArgs(1).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(2).Type.Bias == 0 && ...

 hCSO.ConceptualArgs(3).Type.Bias == 0

 % Modify the default implementation. Since this is a

 % generator entry, a concrete entry is created using this entry

 % as a template. The type of entry being created is a standard

 % TflCOperationEntry. Using the standard operation entry

 % provides required information, and you do not need

 % a custom match function.

 ent = RTW.TflCOperationEntry(hThis);

 % Since this entry is modifying the implementation for specific

 % fraction-length values (arguments 3, 4, and 5), the conceptual argument

 % wild cards must be removed (the wildcards were inherited from the

 % generator when it was used as a template for the concrete entry).

 % This concrete entry is now for a specific slope and bias.

 % hCSO holds the slope and bias values (created by the code generator).

 for idx=1:3

 ent.ConceptualArgs(idx).CheckSlope = true;

 ent.ConceptualArgs(idx).CheckBias = true;

 % Set the specific Slope and Biases

 ent.ConceptualArgs(idx).Type.Slope = hCSO.ConceptualArgs(idx).Type.Slope;

 ent.ConceptualArgs(idx).Type.Bias = 0;

 end

 % Set the fraction-length values in the implementation function.

 ent.Implementation.Arguments(3).Value = ...

 -1.0*hCSO.ConceptualArgs(2).Type.FixedExponent;

 ent.Implementation.Arguments(4).Value = ...

 -1.0*hCSO.ConceptualArgs(3).Type.FixedExponent;

 ent.Implementation.Arguments(5).Value = ...

 -1.0*hCSO.ConceptualArgs(1).Type.FixedExponent;

 end

 end

 end

end

Exit the class folder and return to the previous working folder.
2 Create and save the following code replacement table definition file,

crl_table_custom_sinfcn_double.m. This file defines a code replacement table

52-115

52 Code Replacement Customization for MATLAB Code

that contains a single operator entry, an entry generator for unsigned 32-bit fixed-
point addition operations, with arbitrary fraction-length values on the inputs and the
output. The table entry:

• Instantiates the derived class TflCustomOperationEntry from the previous
step. If you want to replace word sizes and signedness attributes, you can use the
same derived class, but not the same entry, because you cannot use a wild card
with the WordLength and IsSigned arguments. For example, to support uint8,
int8, uint16, int16, and int32, add five other distinct entries. To use different
implementation functions for saturation and rounding modes other than overflow
and round to floor, add entries for those match permutations.

• Sets operator entry parameters with the call to
the setTflCOperationEntryParameters function.

• Calls the createAndAddConceptualArg function to create conceptual
arguments y1, u1, and u2.

• Calls createAndSetCImplementationReturn and
createAndAddImplementationArg to define the signature for the replacement
function. Three of the calls to createAndAddImplementationArg create
implementation arguments to hold the fraction-length values for the inputs and
output. Alternatively, the entry can omit those argument definitions. Instead, the
do_match method of the derived class TflCustomOperationEntry can create
and add the three implementation arguments. When the number of additional
implementation arguments required can vary based on compile-time information,
use the alternative approach.

• Calls addEntry to add the entry to a code replacement table.

function hTable = crl_table_custom_add_ufix32

hTable = RTW.TflTable;

%% Add TflCustomOperationEntry

op_entry = TflCustomOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationName', 'myFixptAdd', ...

 'ImplementationHeaderFile', 'myFixptAdd.h', ...

52-116

 Customize Match and Replacement Process

 'ImplementationSourceFile', 'myFixptAdd.c');

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'Scaling', 'BinaryPoint', ...

 'IsSigned', false, ...

 'WordLength', 32);

% Specify replacement function signature

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

52-117

52 Code Replacement Customization for MATLAB Code

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0);

% Add 3 fraction-length args. Actual values are set during code generation.

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_in2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumericConstant', ...

 'Name', 'fl_out', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 32, ...

 'FractionLength', 0, ...

 'Value', 0);

addEntry(hTable, op_entry);

3 Check the validity of the operator entry.

• At the command prompt, invoke the table definition file.

tbl = crl_table_custom_sinfcn_double

• In the Code Replacement Viewer, view the table definition file.

crviewer(crl_table_custom_sinfcn_double)

52-118

 Customize Match and Replacement Process

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Develop a Code Replacement Library” on page 52-15

52-119

52 Code Replacement Customization for MATLAB Code

Scalar Operator Code Replacement

This example shows how to define a code replacement mapping for a scalar operator. The
example defines a mapping for the + (addition) operator programmatically. Alternatively,
you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set function entry parameters with a call to the
setTflCOperationEntryParameters function.
% Define addition operation of built-in uint8 data type

% Saturation on, Rounding unspecified

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Copy the conceptual arguments to the implementation arguments. There are
multiple ways to set up the implementation arguments. This example uses a call

52-120

 Scalar Operator Code Replacement

to the copyConceptualArgsToImplementation function to create and add
implementation arguments to the entry by copying matching conceptual arguments.
copyConceptualArgsToImplementation(op_entry);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15
• “What Is Code Replacement Customization?” on page 52-3

52-121

52 Code Replacement Customization for MATLAB Code

Addition and Subtraction Operator Code Replacement

Consider the following when defining mappings for addition and subtraction operator
code replacements.

Algorithm Options

When creating a code replacement table entry for an addition or subtraction operator,
first determine the type of algorithm that your library function implements.

• Cast-before-operation (CBO), default — Prior to performing the addition or
subtraction operation, the algorithm type casts input values to the output type. If
the output data type cannot exactly represent the input values, losses can occur as a
result of the cast to the output type. Additional loss can occur when the result of the
operation is cast to the final output type.

• Cast-after-operation (CAO) — The algorithm computes the ideal result of the addition
or subtraction operation of the two inputs. The algorithm then type casts the result
to the output data type. Loss occurs during the type cast. This algorithm behaves
similarly to the C language except when the signedness of the operands does not
match. For example, when you add a signed long operand to an unsigned long
operand, standard C language rules convert the signed long operand to an unsigned
long operand. The result is a value that is not ideal.

Interactive Specification with Code Replacement Tool

When you use the Code Replacement Tool to create a code replacement table entry for an
addition or subtraction operation, the tool displays an Algorithm menu. Use that menu
to specify the Cast before operation or Cast after operation algorithm for that
entry.

52-122

 Addition and Subtraction Operator Code Replacement

Programmatic Specification

Create a code replacement table file, as a MATLAB function, that describes
the addition or subtraction code replacement table entry. In the call to
setTflCOperationEntryParameters, set at least these parameters:

• Key to RTW_OP_ADD or RTW_OP_MINUS
• ImplementationName to the name of your replacement function
• EntryInfoAlgorithm to RTW_CAST_BFORE_OP (cast-before-operation) or

RTW_CAST_AFTER_OP (cast-after-operation)

This example sets parameters for a code replacement operator entry for a cast-after-
operation implementation of a uint8 addition.
op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'EntryInfoAlgorithm', 'RTW_CAST_AFTER_OP', ...

 'ImplementationName', 'u8_add_u8_u8');

For more information, see setTflCOperationEntryParameters.

Algorithm Classification

During code generation, the code generator examines addition and subtraction
operations, including adjacent type cast operations, to determine the type of algorithm
to compute the expression result. Based on the data types in the expression and the type
of the accumulator (type used to hold the result of the addition or subtraction operation),
the code generator uses these rules.

• Floating-point types only

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double double double double CBO, CAO
double double double single —
double double single double —
double double single single CBO
double single double double CBO, CAO

52-123

52 Code Replacement Customization for MATLAB Code

Input 1 Data
Type

Input 2 Data
Type

Accumulator Data
Type

Output Data Type Classification

double single double single —
double single single double —
double single single single CBO
single single single single CBO, CAO
single single single double —
single single double single —
single single double double CBO, CAO

• Floating-point and fixed-point types on the immediate addition or subtraction
operation

Algorithm Conditions

CBO One of the following is true:

• Operation type is double.
• Operation type is single and input types are single or fixed-point.

CAO Operation type is a superset of input types—that is, output type can
represent values of input types without loss of data.

• Fixed-point types only

Algorithm Conditions

CBO At least one of the following is true:

• Accumulator type equals output type (Tacc == Tout).
• Output type is a superset of input types (Tacc >= {Tin1, Tin2})

and accumulator type is a superset of output type (Tacc >= Tout).
• Operation does not incur range or precision loss.

CAO Net bias is zero and the data types in the expression have equal slope
adjustment factors. For more information on net bias, see “Addition”
or “Subtraction” in “Fixed-Point Operator Code Replacement” on
page 52-146 (for MATLAB code) or “Fixed-Point Operator Code
Replacement” on page 51-195 (for Simulink models).

52-124

 Addition and Subtraction Operator Code Replacement

In many cases, the numerical result of a CBO operation is equal to that of a CAO
operation. For example, if the input and output types are such that the operation
produces the ideal result, as in the case of int8 + int8 —> int16. To maximize the
probability of code replacement occurring in such cases, set the algorithm to cast-after-
operation.

Limitations

• The code generator does not replace operations with nonzero net bias.
• When classifying an operation as a CAO operation, the code generator includes the

adjacent casts in the expression when the expression involves only fixed-point types.
Otherwise, the code generator classifies and replaces only the immediate addition or
subtraction operation. Casts that the code generator excludes from the classification
appear in the generated code.

• To enable the code generator to include multiple cast operations, which follow an
addition or subtraction of fixed-point data, in the classification of an expression, the
rounding mode must be simplest or floor. Consider the expression y=(cast A)
(cast B)(u1+u2). If the rounding mode of (cast A), (cast B), and the addition
operator (+) are set to simplest or floor, the code generator takes into account
(cast A) and (cast B) when classifying the expression and performing the
replacement only.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Develop a Code Replacement Library” on page 52-15

52-125

52 Code Replacement Customization for MATLAB Code

Small Matrix Operation to Processor Code Replacement
This example shows how to define code replacement mappings that replace nonscalar
small matrix operations with processor-specific intrinsic functions. The example defines
a table containing two matrix operator replacement entries for the + (addition) operator
and the double data type. The example defines the function mapping programmatically.
Alternatively, you can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_matrix_add_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the first operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create table entry for matrix_sum_2x2_double

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The code generator
ignores saturation and rounding modes for floating-point nonscalar addition
and subtraction. For code replacement entries for nonscalar addition and
subtraction operations that do not involve fixed-point data, in the call to
setTflCOperationEntryParameters, specify 'RTW_SATURATE_UNSPECIFIED'
for the SaturationMode property and {'RTW_ROUND_UNSPECIFIED'} for
RoundingModes.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_2x2_double', ...

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. To specify a matrix argument in the function call, use the argument

52-126

 Small Matrix Operation to Processor Code Replacement

class RTW.TflArgMatrix. Specify the base type and the dimensions for which the
argument is valid. The first table entry specifies [2 2] and the second table entry
specifies [3 3].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [2 2]);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
to create the arguments. The convenience methods setReturn and addArgument
specify whether an argument is a return value or argument and adds the argument
to the entry’s array of implementation arguments.
arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Create the entry for the second operator mapping.

% Create table entry for matrix_sum_3x3_double

op_entry = RTW.TflCOperationEntry;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 30, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'ImplementationName', 'matrix_sum_3x3_double', ...

52-127

52 Code Replacement Customization for MATLAB Code

 'ImplementationHeaderFile', 'MatrixMath.h', ...

 'ImplementationSourceFile', 'MatrixMath.c', ...

 'ImplementationHeaderPath', LibPath, ...

 'ImplementationSourcePath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [3 3]);

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30

52-128

 Small Matrix Operation to Processor Code Replacement

• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page
52-130

• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page
52-137

• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-129

52 Code Replacement Customization for MATLAB Code

Matrix Multiplication Operation to MathWorks BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with Basic Linear Algebra Subroutine (BLAS) multiplication
functions xgemm and xgemv. The example defines code replacement entries that map
floating-point matrix/matrix and matrix/vector multiplication operations to MathWorks
BLAS library multiplication functions dgemm and dgemv. The example defines the
function mappings programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_tmwblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the BLAS function library. If your replacement functions are on
the MATLAB search path or are in your working folder, you can skip this step.
% Define library path for Windows or UNIX

arch = computer('arch');

if ~ispc

 LibPath = fullfile('$(MATLAB_ROOT)', 'bin', arch);

else

 % Use Stateflow to get the compiler info

 compilerInfo = sf('Private','compilerman','get_compiler_info');

 compilerName = compilerInfo.compilerName;

 if strcmp(compilerName, 'msvc90') || ...

 strcmp(compilerName, 'msvc80') || ...

 strcmp(compilerName, 'msvc71') || ...

 strcmp(compilerName, 'msvc60'), ...

 compilerName = 'microsoft';

 end

 LibPath = fullfile('$(MATLAB_ROOT)', 'extern', 'lib', arch, compilerName);

end

52-130

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for dgemm32

op_entry = RTW.TflBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCFunctionEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation
and rounding modes for floating-point nonscalar addition and subtraction. For
code replacement entries for nonscalar addition and subtraction operations that do
not involve fixed-point data, in the call to setTflCFunctionEntryParameters,
specify 'RTW_SATURATE_UNSPECIFIED' for the SaturationMode property and
{'RTW_ROUND_UNSPECIFIED'} for RoundingModes.
if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemm32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath}, ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf], while the conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].
% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

52-131

52 Code Replacement Customization for MATLAB Code

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
and RTW.TflArgCharConstant functions to create the arguments. The example
code configures special implementation arguments that are required for dgemm
and dgemv function replacements. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.

% Using RTW.TflBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(char* TRANSA, char* TRANSB, int* M, int* N, int* K,

% type* ALPHA, type* u1, int* LDA, type* u2, int* LDB,

% type* BETA, type* y, int* LDC)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and inserts them into the

% generated code. TRANSA and TRANSB are set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANSA');

% Possible values for PassByType property are

% RTW_PASSBY_AUTO, RTW_PASSBY_POINTER,

% RTW_PASSBY_VOID_POINTER, RTW_PASSBY_BASE_POINTER

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = RTW.TflArgCharConstant('TRANSB');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

52-132

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.

52-133

52 Code Replacement Customization for MATLAB Code

% Create table entry for dgemv32

op_entry = RTW.TflBlasEntryGenerator;

if ispc

 libExt = 'lib';

elseif ismac

 libExt = 'dylib';

else

 libExt = 'so';

end

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'dgemv32', ...

 'ImplementationHeaderFile', 'blascompat32_crl.h', ...

 'ImplementationHeaderPath', fullfile('$(MATLAB_ROOT)','extern','include'), ...

 'AdditionalLinkObjs', {['libmwblascompat32.' libExt]}, ...

 'AdditionalLinkObjsPaths', {LibPath},...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(char* TRANS, int* M, int* N,

% type* ALPHA, type* u1, int* LDA, type* u2, int* INCX,

% type* BETA, type* y, int* INCY)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY, and insert them into the

% generated code. TRANS will be set to 'N'.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = RTW.TflArgCharConstant('TRANS');

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

52-134

 Matrix Multiplication Operation to MathWorks BLAS Code Replacement

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX','integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

arg.PassByType = 'RTW_PASSBY_POINTER';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

arg.PassByType = 'RTW_PASSBY_POINTER';

arg.Type.ReadOnly = true;

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

52-135

52 Code Replacement Customization for MATLAB Code

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Small Matrix Operation to Processor Code Replacement” on page 52-126
• “Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement” on page

52-137
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-136

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

Matrix Multiplication Operation to ANSI/ISO C BLAS Code
Replacement

This example shows how to define code replacement mappings that replace nonscalar
multiplication operations with ANSI/ISO C BLAS multiplication functions xgemm
and xgemv. The example defines code replacement entries that map floating-point
matrix/matrix and matrix/vector multiplication operations to ANSI/ISO C BLAS library
multiplication functions dgemm and dgemv. The example defines the function mappings
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mappings.

BLAS libraries support matrix/matrix multiplication in the form of
C = a(op(A) * op(B)) + bC . op(X) means X, transposition of X, or Hermitian
transposition of X. However, code replacement libraries support only the limited case of
C = op(A) * op(B) (a = 1.0, b = 0.0) . Correspondingly, although BLAS libraries support
matrix/vector multiplication in the form of y = a(op(A) * x) + by , code replacement
libraries support only the limited case of y = op(A) * x (a = 1.0, b = 0.0) .

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cblas_mmult_double

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Define the path for the CBLAS function library. For example:
LibPath = fullfile(matlabroot, 'toolbox', 'rtw', 'rtwdemos', 'crl_demo');

4 Create an entry for the first mapping with a call to the
RTW.TflBlasEntryGenerator function.

% Create table entry for cblas_dgemm

op_entry = RTW.TflCBlasEntryGenerator;

5 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The function call sets matrix
multiplication operator entry properties. The code generator ignores saturation and
rounding modes for floating-point nonscalar addition and subtraction.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

52-137

52 Code Replacement Customization for MATLAB Code

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemm', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

6 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. To specify a matrix argument in the function call, use the
argument class RTW.TflArgMatrix and specify the base type and the dimensions
for which the argument is valid. This type of table entry supports a range of
dimensions specified in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a two-dimensional
matrix of size 2x2 or larger. The conceptual output argument for the dgemm32 entry
for matrix/matrix multiplication replacement specifies dimensions [2 2; inf
inf]. The conceptual output argument for the dgemv32 entry for matrix/vector
multiplication replacement specifies dimensions [2 1; inf 1].

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf inf]);

7 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. The example code configures special
implementation arguments that are required for dgemm and dgemv function
replacements. The convenience methods setReturn and addArgument specify
whether an argument is a return value or argument and adds the argument to the
entry’s array of implementation arguments.

% Using RTW.TflCBlasEntryGenerator for xgemm requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, enum TRANSB, int M, int N, int K,

% type ALPHA, type* u1, int LDA, type* u2, int LDB,

52-138

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

% type BETA, type* y, int LDC)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% When a match occurs, the code generator computes the

% values for M, N, K, LDA, LDB, and LDC and insert them into the

% generated code.

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSB', 'integer', 111);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'K', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDB', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

52-139

52 Code Replacement Customization for MATLAB Code

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDC', 'integer', 0);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

9 Create the entry for the second mapping.
% Create table entry for cblas_dgemv

op_entry = RTW.TflCBlasEntryGenerator;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 100, ...

 'ImplementationName', 'cblas_dgemv', ...

 'ImplementationHeaderFile', 'cblas.h', ...

 'ImplementationHeaderPath', LibPath, ...

 'AdditionalIncludePaths', {LibPath}, ...

 'GenCallback', 'RTW.copyFileToBuildDir', ...

 'SideEffects', true);

% Specify operands and result

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'BaseType', 'double', ...

 'DimRange', [2 1; inf 1]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix', ...

 'Name', 'u1', ...

 'BaseType', 'double', ...

 'DimRange', [2 2; inf inf]);

createAndAddConceptualArg(op_entry, 'RTW.TflArgMatrix',...

 'Name', 'u2', ...

 'BaseType', 'double', ...

 'DimRange', [1 1; inf 1]);

% Using RTW.TflCBlasEntryGenerator for xgemv requires the following

% implementation signature:

%

% void f(enum ORDER, enum TRANSA, int M, int N,

% type ALPHA, type* u1, int LDA, type* u2, int INCX,

% type BETA, type* y, int INCY)

%

% Since CRLs do not have the ability to specify enums, you must

% use integer. (This will cause problems with C++ code generation,

% so for C++, use a wrapper function to cast each int to the

% corresponding enumeration type.)

%

% Upon a match, the CRL entry will compute the

% values for M, N, LDA, INCX, and INCY and insert them into the

% generated code.

52-140

 Matrix Multiplication Operation to ANSI/ISO C BLAS Code Replacement

% Specify replacement function signature

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'ORDER', 'integer', 102);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'TRANSA', 'integer', 111);

% arg.Type.ReadOnly=true;

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'M','integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'N', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'ALPHA', 'double', 1);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u1', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'LDA', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2', ['double' '*']);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCX', 'integer', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'BETA', 'double', 0);

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'y1', ['double' '*']);

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'INCY', 'integer', 0);

op_entry.Implementation.addArgument(arg);

addEntry(hTable, op_entry);

10 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example, create a model that uses two Product blocks. For example:

1 Create a model that includes two Product blocks, such as the following:

52-141

52 Code Replacement Customization for MATLAB Code

2 Configure the model with the following settings:

• On the Solver pane, select a fixed-step, discrete solver with a fixed-step size such
as 0.1.

• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
3 For each Product block, set the block parameter Multiplication to the value

Matrix(*).
4 In the Model Explorer, configure the Signal Attributes for the In1, In2, and In3

source blocks. For In1 and In2, set Port dimensions to [3 3] and set the Data
type to double. For In3, set Port dimensions to [3 1] and set the Data type to
double.

5 Generate code and a code generation report.
6 Review the code replacements.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Small Matrix Operation to Processor Code Replacement” on page 52-126
• “Matrix Multiplication Operation to MathWorks BLAS Code Replacement” on page

52-130
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-142

 Remap Operator Output to Function Input

Remap Operator Output to Function Input

If your generated code must meet a specific coding pattern or you want more flexibility,
for example, to further improve performance, you can remap operator outputs to input
positions in an implementation function argument list.

Note: Remapping outputs to implementation function inputs is supported only for
operator replacement.

For example, for a sum operation, the code generator produces code similar to:

add8_Y.Out1 = u8_add_u8_u8(add8_U.In1, add8_U.In2);

If you remap the output to the first input, the code generator produces code similar to:

u8_add_u8_u8(&add8_Y.Out1;, add8_U.In1, add8_U.In2);

The following table definition file for a sum operation remaps operator output y1 as the
first function input argument.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_add_uint8

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create an entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

% Create operation entry

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. In the function call, set the
property SideEffects to true.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'ImplementationName', 'u8_add_u8_u8', ...

 'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

 'ImplementationSourceFile', 'u8_add_u8_u8.c', ...

 'SideEffects', true);

52-143

52 Code Replacement Customization for MATLAB Code

5 Create conceptual arguments y1, u1, and u2. There are multiple ways to set up the
conceptual arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create and add the arguments.
arg = getTflArgFromString(hTable, 'y1', 'uint8');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u1', 'uint8');

addConceptualArg(op_entry, arg);

arg = getTflArgFromString(hTable, 'u2', 'uint8');

addConceptualArg(op_entry, arg);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. When defining the implementation function return
argument, create a new void output argument, for example, y2. When defining the
implementation function argument for the conceptual output argument (y1), set
the operator output argument as an additional input argument. Mark its IOType
as output. Make its type a pointer type. The convenience methods setReturn and
addArgument specify whether an argument is a return value or argument and adds
the argument to the entry’s array of implementation arguments.
% Create new void output y2

arg = getTflArgFromString(hTable, 'y2', 'void');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.setReturn(arg);

% Set y1 as first input arg, mark IOType as output, and use pointer type

arg=getTflArgFromString(hTable, 'y1', 'uint8*');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u1', 'uint8');

op_entry.Implementation.addArgument(arg);

arg=getTflArgFromString(hTable, 'u2', 'uint8');

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

To test this example, create a model that uses an Add block. For example:

1 Create a model that includes an Add block, such as the following:

52-144

 Remap Operator Output to Function Input

2 Configure the model with the following settings:

• On the Solver pane, select a fixed-step solver.
• On the Code Generation pane, select an ERT-based system target file.
• On the Code Generation > Interface pane, select the code replacement library

that contains your addition operation entry.
• On the All Parameters tab, set the Optimize global data access parameter

to Use global to hold temporary results. This reduces data copies in the
generated code.

3 Generate code and a code generation report.
4 Review the code replacements.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Develop a Code Replacement Library” on page 52-15

52-145

52 Code Replacement Customization for MATLAB Code

Fixed-Point Operator Code Replacement

If you have a Fixed-Point Designer license, you can define fixed-point operator code
replacement entries to match:

• A binary-point-only scaling combination on the operator inputs and output.
• A slope bias scaling combination on the operator inputs and output.
• Relative scaling or net slope between multiplication or division operator inputs

and output. Use one of these methods to map a range of slope and bias values to a
replacement function for multiplication or division.

• Equal slope and zero net bias across addition or subtraction operator inputs and
output. Use this method to disregard specific slope and bias values and map relative
slope and bias values to a replacement function for addition or subtraction.

Common Ways to Match Fixed-Point Operator Entries

The following table maps common ways to match fixed-point operator code replacement
entries with the associated fixed-point parameters that you specify in a code replacement
table definition file.

Match Create entry Minimally specify parameters

A specific binary-point-
only scaling combination
on the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

• CheckSlope: Specify the value
true.

• CheckBias: Specify the value true.
• DataTypeMode (or

DataType/Scaling equivalent):
Specify fixed-point binary-point-only
scaling.

• FractionLength: Specify a
fraction length (for example, 3).

A specific slope bias
scaling combination on
the operator inputs and
output.

RTW.TflCOperationEntry createAndAddConceptualArg

function:

52-146

 Fixed-Point Operator Code Replacement

Match Create entry Minimally specify parameters

• CheckSlope: Specify the value
true.

• CheckBias: Specify the value true.
• DataTypeMode (or DataType/

Scaling equivalent): Specify fixed-
point [slope bias] scaling.

• Slope (or
SlopeAdjustmentFactor/
FixedExponent equivalent):
Specify a slope value (for example,
15).

• Bias: Specify a bias value (for
example, 2).

Net slope between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator_NetSlope

setTflCOperationEntryParameters

function:

• NetSlopeAdjustmentFactor:
Specify the slope adjustment factor
(F) part of the net slope, F2E (for
example, 1.0).

• NetFixedExponent: Specify the
fixed exponent (E) part of the net
slope, F2E (for example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

52-147

52 Code Replacement Customization for MATLAB Code

Match Create entry Minimally specify parameters

Relative scaling between
operator inputs and
output (multiplication and
division).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• RelativeScalingFactorF:
Specify the slope adjustment factor
(F) part of the relative scaling factor,
F2

E (for example, 1.0).
• RelativeScalingFactorE:

Specify the fixed exponent (E) part
of the relative scaling factor, F2E (for
example, -3.0).

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

• DataType: Specify the value
'Fixed'.

Equal slope and zero net
bias across operator inputs
and output (addition and
subtraction).

RTW.TflCOperationEntry-

Generator

setTflCOperationEntryParameters

function:

• SlopesMustBeTheSame: Specify
the value true.

• MustHaveZeroNetBias: Specify
the value true.

createAndAddConceptualArg

function:

• CheckSlope: Specify the value
false.

• CheckBias: Specify the value
false.

52-148

 Fixed-Point Operator Code Replacement

Fixed-Point Numbers and Arithmetic

Fixed-point numbers use integers and integer arithmetic to represent real numbers and
arithmetic with the following encoding scheme:

V V SQ B= = +%

• V is an arbitrarily precise real-world value.

• %V is the approximate real-world value that results from fixed-point representation.

• Q is an integer that encodes %V , referred to as the quantized integer.

•
S is a coefficient of Q , referred to as the slope.

• B is an additive correction, referred to as the bias.

The general equation for an operation between fixed-point operands is:

S Q B S Q B op S Q BO O O+() = +() < > +
1 1 1 2 2 2

()

The objective of fixed-point operator replacement is to replace an operator that accepts
and returns fixed-point or integer inputs and output with a function that accepts
and returns built-in C numeric data types. The following sections provide additional
programming information for each supported operator.

Addition

The operation V0 = V1 + V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ +

Ê

Ë
Á

ˆ

¯
˜ +

+ -Ê

Ë
Á

ˆ

¯
˜

If an addition replacement function is defined such that the scaling on the operands and
sum are equal and the net bias

52-149

52 Code Replacement Customization for MATLAB Code

B B B

S

1 2 0

0

+ -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_add_s8_s8 that adds two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Subtraction

The operation V0 = V1 − V2 implies that

Q
S

S
Q

S

S
Q

B B B

S
0

1

0

1

2

0

2

1 2 0

0

=
Ê

Ë
Á

ˆ

¯
˜ -

Ê

Ë
Á

ˆ

¯
˜ +

- -Ê

Ë
Á

ˆ

¯
˜

If a subtraction replacement function is defined such that the scaling on the operands
and difference are equal and the net bias

B B B

S

1 2 0

0

- -Ê

Ë
Á

ˆ

¯
˜

is zero (for example, a function s8_sub_s8_s8 that subtracts two signed 8-bit
values and produces a signed 8-bit result), then the operator entry must set the
operator entry parameters SlopesMustBeTheSame and MustHaveZeroNetBias
to true. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.)

Multiplication

There are different ways to specify multiplication replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. Use the TflCOperationEntry class

52-150

 Fixed-Point Operator Code Replacement

and specify the exact values of slope and bias on each argument. For scenarios where
there are numerous slope/bias combinations, it is not feasible to specify each value with a
different entry. Use a net slope entry or create a custom entry.

The operation V0 = V1 * V2 implies, for binary-point-only scaling, that

S Q S Q S Q

Q
S S

S
Q Q

Q S Q Q
n

0 0 1 1 2 2

0

1 2

0

1 2

0 1 2

= () ()

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

It is common to replace all multiplication operations that have a net slope of 1.0 with
a function that performs C-style multiplication. For example, to replace all signed 8-
bit multiplications that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the
function setTflCOperationEntryParameters.) For the s8_mul_s8_u8 function, set
NetSlopeAdjustmentFactor to 1 and NetFixedExponent to 0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Division

There are different ways to specify division replacements. The most direct way is to
specify an exact match of the input and output types. This is feasible if a model contains
only a few (known) slope and bias combinations. For this, use the TflCOperationEntry
class and specify the exact values of slope and bias on each argument. For scenarios
where there are numerous slope/bias combinations, it is not feasible to specify each
value with a different entry. For this, use a net slope entry or create a custom entry (see
“Customize Match and Replacement Process” on page 51-153).

The operation V0 = (V1 / V2) implies, for binary-point-only scaling, that

52-151

52 Code Replacement Customization for MATLAB Code

S Q
S Q

S Q

Q S
Q

Q
n

0 0

1 1

2 2

0

1

2

=
Ê

Ë
Á

ˆ

¯
˜

=
Ê

Ë
Á

ˆ

¯
˜

where Sn is the net slope.

It is common to replace all division operations that have a net slope of 1.0 with
a function that performs C-style division. For example, to replace all signed 8-
bit divisions that have a net scaling of 1.0 with the s8_mul_s8_u8_ replacement
function, the operator entry must define a net slope factor, F2E. You specify the values
for F and E using operator entry parameters NetSlopeAdjustmentFactor and
NetFixedExponent. (For parameter descriptions, see the reference page for the function
setTflCOperationEntryParameters.) For the s16_netslope0p5_div_s16_s16
function, you would set NetSlopeAdjustmentFactor to 1 and NetFixedExponent to
0.0.

Note: When an operator entry specifies NetSlopeAdjustmentFactor and
NetFixedExponent, matching entries must have arguments with zero bias.

Data Type Conversion (Cast)

The data type conversion operation V0 = V1 implies, for binary-point-only scaling, that

Q
S

S
Q

Q S Q
n

0

1

0

1

0 1

=
Ê

Ë
Á

ˆ

¯
˜

=

where Sn is the net slope.

Shift

The shift left or shift right operation V0 = (V1 / 2n) implies, for binary-point-only scaling,
that

52-152

 Fixed-Point Operator Code Replacement

S Q
S Q

Q
S

S

Q

Q S
Q

n

n

n n

0 0

1 1

0

1

0

1

0

1

2

2

2

= Ê
Ë
Á

ˆ
¯
˜

=
Ê

Ë
Á

ˆ

¯
˜ + Ê

Ë
Á

ˆ
¯
˜

= Ê
Ë
Á

ˆ
¯
˜

where Sn is the net slope.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Binary-Point-Only Scaling Code Replacement” on page 52-154
• “Slope Bias Scaling Code Replacement” on page 52-157
• “Net Slope Scaling Code Replacement” on page 52-160
• “Equal Slope and Zero Net Bias Code Replacement” on page 52-166
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Shift Left Operations and Code Replacement” on page 52-173
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-153

52 Code Replacement Customization for MATLAB Code

Binary-Point-Only Scaling Code Replacement
You can define code replacement entries for operations on fixed-point data types such
that they match a binary-point-only scaling combination on operator inputs and output.
These binary-point-only scaling entries can map the specified binary-point-scaling
combination to a replacement function for addition, subtraction, multiplication, or
division.

This example creates a code replacement entry for multiplication of fixed-point data
types. You specify arguments using binary-point-only scaling. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_binptscale

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as multiplication, the saturation mode as saturate on integer
overflow, rounding modes as unspecified, and the name of the replacement function
as s32_mul_s16_s16_binarypoint.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_MUL', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'ImplementationName', 's32_mul_s16_s16_binarypoint', ...

 'ImplementationHeaderFile', 's32_mul_s16_s16_binarypoint.h', ...

 'ImplementationSourceFile', 's32_mul_s16_s16_binarypoint.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode is
binary-point-only scaling, and its derived slope and bias values must exactly match
the call-site slope and bias values. The output argument is 32 bits, signed, with a

52-154

 Binary-Point-Only Scaling Code Replacement

fraction length of 28. The input arguments are 16 bits, signed, with fraction lengths
of 15 and 13.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 28);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 15);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 13);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output argument is
32 bits and signed (int32). The input arguments are 16 bits and signed (int16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 32, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

52-155

52 Code Replacement Customization for MATLAB Code

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Shift Left Operations and Code Replacement” on page 52-173
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-156

 Slope Bias Scaling Code Replacement

Slope Bias Scaling Code Replacement
You can define code replacement for operations on fixed-point data types as matching
a slope bias scaling combination on the operator inputs and output. The slope bias
scaling entries can map the specified slope bias combination to a replacement function for
addition, subtraction, multiplication, or division.

This example creates a code replacement entry for division of fixed-point data types. You
specify arguments using slope bias scaling. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_s16divslopebias

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as saturate on integer overflow,
rounding modes as round to ceiling, and the name of the replacement function as
s16_div_s16_s16_slopebias.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'ImplementationName', 's16_div_s16_s16_slopebias', ...

 'ImplementationHeaderFile', 's16_div_s16_s16_slopebias.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16_slopebias.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument specifies that the data type is fixed-point, the mode
is slope bias scaling, and its specified slope and bias values must exactly match the
call-site slope and bias values. The output argument and input arguments are 16
bits, signed, each with specific slope bias specifications.

52-157

52 Code Replacement Customization for MATLAB Code

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 15, ...

 'Bias', 2);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', true, ...

 'CheckBias', true, ...

 'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'Slope', 13, ...

 'Bias', 5);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

52-158

 Slope Bias Scaling Code Replacement

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Shift Left Operations and Code Replacement” on page 52-173
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-159

52 Code Replacement Customization for MATLAB Code

Net Slope Scaling Code Replacement

Multiplication and Division with Saturation

You can define code replacement entries for operations on fixed-point data types as
matching net slope between operator inputs and output. The net slope entries can map a
range of slope and bias values to a replacement function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using wrap on overflow saturation mode and a net slope. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netslopesaturate

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.
wv = [16,32];

for iy = 1:2

 for inum = 1:2

 for iden = 1:2

 hTable = getDivOpEntry(hTable, ...

 fixdt(1,wv(iy)),fixdt(1,wv(inum)),fixdt(1,wv(iden)));

 end

 end

end

%---

function hTable = getDivOpEntry(hTable,dty,dtnum,dtden)

%---

% Create an entry for division of fixed-point data types where

% arguments are specified using Slope and Bias scaling

% Saturation on, Rounding unspecified

funcStr = sprintf('user_div_%s_%s_%s',...

 typeStrFunc(dty),...

 typeStrFunc(dtnum),...

 typeStrFunc(dtden));

52-160

 Net Slope Scaling Code Replacement

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the
type of operation as division, the saturation mode as wrap on overflow, rounding
modes as unspecified, and the name of the replacement function as user_div_*.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the net slope F2E.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW',...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'},...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

 'ImplementationName', funcStr, ...

 'ImplementationHeaderFile', [funcStr,'.h'], ...

 'ImplementationSourceFile', [funcStr,'.c']);

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with
one function call. Specify each argument as fixed-point and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'y1',...

 'IOType', 'RTW_IO_OUTPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dty.Signed,...

 'WordLength', dty.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtnum.Signed,...

 'WordLength', dtnum.WordLength,...

 'Bias', 0);

createAndAddConceptualArg(op_entry, ...

 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

52-161

52 Code Replacement Customization for MATLAB Code

 'IOType', 'RTW_IO_INPUT',...

 'CheckSlope', false,...

 'CheckBias', false,...

 'DataTypeMode', 'Fixed-point: slope and bias scaling',...

 'IsSigned', dtden.Signed,...

 'WordLength', dtden.WordLength,...

 'Bias', 0);

6 Create the implementation arguments. There are multiple ways to set up the
implementation arguments. This example uses calls to the getTflArgFromString
function to create the arguments. Implementation arguments must describe
fundamental numeric data types (not fixed-point data types). The convenience
methods setReturn and addArgument specify whether an argument is a return
value or argument. These methods add the argument to the entry array of
implementation arguments.

arg = getTflArgFromString(hTable, 'y1', typeStrBase(dty));

op_entry.Implementation.setReturn(arg);

arg = getTflArgFromString(hTable, 'u1', typeStrBase(dtnum));

op_entry.Implementation.addArgument(arg);

arg = getTflArgFromString(hTable, 'u2',typeStrBase(dtden));

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Define functions that determine the data type word length.

%---

function str = typeStrFunc(dt)

%---

if dt.Signed

 sstr = 's';

else

 sstr = 'u';

end

str = sprintf('%s%d',sstr,dt.WordLength);

%---

function str = typeStrBase(dt)

%---

if dt.Signed

 sstr = ;

else

 sstr = 'u';

end

str = sprintf('%sint%d',sstr,dt.WordLength);

52-162

 Net Slope Scaling Code Replacement

9 Save the table definition file. Use the name of the table definition function to name
the file.

Multiplication and Division with Rounding Mode and Additional
Implementation Arguments

You can define code replacement entries for multiplication and division operations on
fixed-point data types such that they match the net slope between operator inputs and
output. The net slope entries can map a range of slope and bias values to a replacement
function for multiplication or division.

This example creates a code replacement entry for division of fixed-point data types,
using the ceiling rounding mode and a net slope scaling factor. The example defines the
function mapping programmatically. Alternatively, you can use the Code Replacement
Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_netsloperound

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as division, the saturation mode as saturation off, rounding modes as
round to ceiling, and the name of the replacement function as s16_div_s16_s16.
NetSlopeAdjustmentFactor and NetFixedExponent specify the F and E parts of
the relative scaling factor F2E.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_DIV', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_CEILING'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', 0.0, ...

52-163

52 Code Replacement Customization for MATLAB Code

 'ImplementationName', 's16_div_s16_s16', ...

 'ImplementationHeaderFile', 's16_div_s16_s16.h', ...

 'ImplementationSourceFile', 's16_div_s16_s16.c');

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Specify each argument as fixed-point, 16 bits, and signed. Also, for each
argument, specify that code replacement request processing does not check for an
exact match to the call-site slope and bias values.
createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataType', 'Fixed', ...

 'IsSigned', true, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and signed (int16).
createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

52-164

 Net Slope Scaling Code Replacement

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', true, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Shift Left Operations and Code Replacement” on page 52-173
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-165

52 Code Replacement Customization for MATLAB Code

Equal Slope and Zero Net Bias Code Replacement

You can define code replacement entries for addition or subtraction of fixed-point data
types such that they match relative slope and bias values (equal slope and zero net bias)
across operator inputs and output. These entries allow you to disregard slope and bias
values. Map relative slope and bias values to a replacement function for addition or
subtraction.

This example creates a code replacement entry for addition of fixed-point data types.
Slopes must be equal and net bias must be zero across the operator inputs and output.
The example defines the function mapping programmatically. Alternatively, you can use
the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_fixed_slopeseq_netbiaszero

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator function, which provides access to the fixed-
point parameters SlopesMustBeTheSame and MustHaveZeroNetBias.

op_entry = RTW.TflCOperationEntryGenerator;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify
the type of operation as addition, the saturation mode as saturation
off, rounding modes as unspecified, and the name of the replacement
function as u16_add_SameSlopeZeroBias. SlopesMustBeTheSame and
MustHaveZeroNetBias are set to true, indicating that slopes must be equal and
net bias must be zero across the addition inputs and output.

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_ADD', ...

 'Priority', 90, ...

 'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

 'SlopesMustBeTheSame', true, ...

 'MustHaveZeroNetBias', true, ...

 'ImplementationName', 'u16_add_SameSlopeZeroBias', ...

 'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h', ...

 'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');

52-166

 Equal Slope and Zero Net Bias Code Replacement

5 Create conceptual arguments y1, u1, and u2. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as 16 bits and unsigned. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'IsSigned', false, ...

 'WordLength', 16);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types). In this case, the output and input
arguments are 16 bits and unsigned (uint16).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

52-167

52 Code Replacement Customization for MATLAB Code

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u2', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', false, ...

 'WordLength', 16, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Shift Left Operations and Code Replacement” on page 52-173
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-168

 Data Type Conversions (Casts) and Operator Code Replacement

Data Type Conversions (Casts) and Operator Code Replacement

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

This example creates a code replacement entry that replaces int32 to int16
data type conversion (cast) operations. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_int32_to_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_sat_cast.
setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'ImplementationName', 'my_sat_cast', ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.
arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

52-169

52 Code Replacement Customization for MATLAB Code

op_entry.Implementation.setReturn(arg);

6 Create the int32 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as implementation input argument.
arg = getTflArgFromString(hTable, 'u1', 'int32');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hLib, hEnt);

8 Save the table definition file. Use the name of the table definition function to name
the file.

You can use code replacement entries to replace code that the code generator produces for
data type conversion (cast) operations.

This example creates a code replacement entry to replace data type conversions (casts)
of fixed-point data types by using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_cast_fixpt_net_slope

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function, which provides
access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type
of operation as cast, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_cast. NetSlopeAdjustmentFactor and NetFixedExponent specify the
F and E parts of the net slope F2E.

52-170

 Data Type Conversions (Casts) and Operator Code Replacement

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_CAST', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL), ...

 'ImplementationName', 'my_fxp_cast', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).

52-171

52 Code Replacement Customization for MATLAB Code

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

8 Save the table definition file. Use the name of the table definition function to name
the file.

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Shift Left Operations and Code Replacement” on page 52-173
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-172

 Shift Left Operations and Code Replacement

Shift Left Operations and Code Replacement

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

This example creates a code replacement entry to replace shift left operations for int16
data. The example defines the function mapping programmatically. Alternatively, you
can use the Code Replacement Tool to define the same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_int16

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntry function.

op_entry = RTW.TflCOperationEntry;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left and the name of the replacement function as my_shift_left.

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'ImplementationName', 'my_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create the int16 argument as conceptual argument y1 and the implementation
return value. There are multiple ways to set up the conceptual and implementation
arguments. This example uses calls to the getTflArgFromString and
addConceptualArg functions to create the conceptual argument and add it
to the entry. Convenience method setReturn specifies the argument as the
implementation return value.

arg = getTflArgFromString(hTable, 'y1', 'int16');

arg.IOType = 'RTW_IO_OUTPUT';

addConceptualArg(op_entry, arg);

op_entry.Implementation.setReturn(arg);

6 Create the int16 argument as conceptual and implementation argument u1.
This example uses calls to the getTflArgFromString and addConceptualArg

52-173

52 Code Replacement Customization for MATLAB Code

functions to create the conceptual argument and add it to the entry. Convenience
method addArgument specifies the argument as an implementation input argument.

arg = getTflArgFromString(hTable, 'u1', 'int16');

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, the example disables type checking by setting the
CheckType property to false. Convenience method addArgument specifies the
argument as implementation input argument.

arg = getTflArgFromString(hTable, 'u2', 'int8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

• The function getTflArgFromString is called to create an int8 input argument.
This argument is added to the operator entry both as the third conceptual argument
and the second implementation input argument.

• Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

• Save the table definition file. Use the name of the table definition function to name
the file.

You can use code replacement entries to replace code that the code generator produces for
shift (<<) operations.

This example creates a code replacement entry to replace shift left operations
for fixed-point data using a net slope. The example defines the function mapping
programmatically. Alternatively, you can use the Code Replacement Tool to define the
same mapping.

1 Create a table definition file that contains a function definition. For example:

function hTable = crl_table_shift_left_fixpt_net_slope

2 Within the function body, create the table by calling the function RTW.TflTable.

hTable = RTW.TflTable;

52-174

 Shift Left Operations and Code Replacement

3 Create the entry for the operator mapping with a call to the
RTW.TflCOperationEntryGenerator_Netslope function. This function
provides access to the fixed-point parameters NetSlopeAdjustmentFactor and
NetFixedExponent.

op_entry = RTW.TflCOperationEntryGenerator_NetSlope;

4 Set operator entry parameters with a call to the
setTflCOperationEntryParameters function. The parameters specify the type of
operation as shift left, the saturation mode as saturate on integer overflow, rounding
modes as toward negative infinity, and the name of the replacement function as
my_fxp_shift_left. NetSlopeAdjustmentFactor and NetFixedExponent
specify the F and E parts of the net slope F2E.

InFL = 2;

InWL = 16;

InSgn = true;

OutFL = 4;

OutWL = 32;

OutSgn = true;

setTflCOperationEntryParameters(op_entry, ...

 'Key', 'RTW_OP_SL', ...

 'Priority', 50, ...

 'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

 'RoundingModes', {'RTW_ROUND_FLOOR'}, ...

 'NetSlopeAdjustmentFactor', 1.0, ...

 'NetFixedExponent', (OutFL - InFL),...

 'ImplementationName', 'my_fxp_shift_left', ...

 'ImplementationHeaderFile', 'some_hdr.h', ...

 'ImplementationSourceFile', 'some_hdr.c');

5 Create conceptual arguments y1 and u1. There are multiple ways
to set up the conceptual arguments. This example uses calls to the
createAndAddConceptualArg function to create and add an argument with one
function call. Each argument is specified as fixed-point and signed. Each argument
specifies that code replacement request processing does not check for an exact match
to the call-site slope and bias values.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength',OutFL);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

52-175

52 Code Replacement Customization for MATLAB Code

 'IOType', 'RTW_IO_INPUT', ...

 'CheckSlope', false, ...

 'CheckBias', false, ...

 'DataTypeMode', 'Fixed-point: binary point scaling', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength',InFL);

6 Create the implementation arguments. There are multiple ways
to set up the implementation arguments. This example uses
calls to the createAndSetCImplementationReturn and
createAndAddImplementationArg functions to create and add implementation
arguments to the entry. Implementation arguments must describe fundamental
numeric data types (not fixed-point data types).

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'y1', ...

 'IOType', 'RTW_IO_OUTPUT', ...

 'IsSigned', OutSgn, ...

 'WordLength', OutWL, ...

 'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric', ...

 'Name', 'u1', ...

 'IOType', 'RTW_IO_INPUT', ...

 'IsSigned', InSgn, ...

 'WordLength', InWL, ...

 'FractionLength', 0);

7 Create the int8 argument as conceptual and implementation argument u2. This
example uses calls to the getTflArgFromString and addConceptualArg
functions to create the conceptual argument and add it to the entry. This argument
specifies the number of bits to shift the previous input argument. Because the
argument type is not relevant, type checking is disabled by setting the CheckType
property to false. Convenience method addArgument specifies the argument as
implementation input argument.

arg = getTflArgFromString(hTable, 'u2', 'uint8');

arg.CheckType = false;

addConceptualArg(op_entry, arg);

op_entry.Implementation.addArgument(arg);

8 Add the entry to a code replacement table with a call to the addEntry function.

addEntry(hTable, op_entry);

9 Save the table definition file. Use the name of the table definition function to name
the file.

52-176

 Shift Left Operations and Code Replacement

More About
• “Code You Can Replace from MATLAB Code” on page 52-5
• “Define Code Replacement Mappings” on page 52-30
• “Fixed-Point Operator Code Replacement” on page 52-146
• “Data Type Conversions (Casts) and Operator Code Replacement” on page 52-169
• “Remap Operator Output to Function Input” on page 52-143
• “Customize Match and Replacement Process” on page 52-112
• “Develop a Code Replacement Library” on page 52-15

52-177

Performance

53

Optimizations for Generated Code in
Simulink Coder

• “Increase Code Generation Speed” on page 53-3
• “Control Compiler Optimizations” on page 53-6
• “Optimization Tools and Techniques” on page 53-7
• “Control Memory Allocation for Time Counters” on page 53-11
• “Execution Profiling for Generated Code” on page 53-12
• “Optimize Generated Code by Combining Multiple for Constructs” on page 53-15
• “Subnormal Number Performance” on page 53-18
• “Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-Range

Values” on page 53-23
• “Remove Code That Maps NaN to Integer Zero” on page 53-26
• “Disable Nonfinite Checks or Inlining for Math Functions” on page 53-30
• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on

page 53-36
• “Inline Invariant Signals” on page 53-39
• “Inline Numeric Values of Block Parameters” on page 53-43
• “Configure Loop Unrolling Threshold” on page 53-49
• “Use memcpy Function to Optimize Generated Code for Vector Assignments” on page

53-52
• “Generate Target Optimizations Within Algorithm Code” on page 53-56
• “Remove Code for Blocks That Have No Effect on Computational Results” on page

53-58
• “Eliminate Dead Code Paths in Generated Code” on page 53-61
• “Floating-Point Multiplication to Handle a Net Slope Correction” on page 53-64
• “Use Conditional Input Branch Execution” on page 53-67

53 Optimizations for Generated Code in Simulink Coder

• “Optimize Generated Code for Complex Signals” on page 53-73
• “Speed Up Linear Algebra in Code Generated from a MATLAB Function Block” on

page 53-75
• “Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block”

on page 53-79
• “Optimize Memory Usage for Time Counters” on page 53-81
• “Minimize Memory Requirements During Code Generation” on page 53-86
• “Optimize Generated Code Using Boolean Data for Logical Signals” on page 53-87
• “Reduce Memory Usage for Boolean and State Configuration Variables” on page

53-90
• “Customize Stack Space Allocation” on page 53-91
• “Optimize Generated Code Using memset Function” on page 53-93
• “Vector Operation Optimization” on page 53-97
• “Enable and Reuse Local Block Outputs in Generated Code” on page 53-100

53-2

 Increase Code Generation Speed

Increase Code Generation Speed

In this section...

“Build a Model in Increments” on page 53-3
“Build Large Model Reference Hierarchies in Parallel” on page 53-3
“Minimize Memory Requirements During Code Generation” on page 53-4
“Generate Only Code” on page 53-5
“No Creation of a Code Generation Report” on page 53-5

The amount of time it takes to generate code for a model depends on the size and
configuration settings of the model. For instance, if you are working with a large model,
it can take awhile to generate code. To decrease the amount of time for code generation of
a model, try one or more of the following methods:

• Build a model in increments
• Build large model reference hierarchies in parallel
• Minimize memory requirements during code generation
• Generate only code
• Disable the creation of a code generation report

Build a Model in Increments

You can use the rtwbuild (Simulink Coder) command to build a model and generate
code. By default, when rebuilding a model, rtwbuild provides an incremental model
build, which only rebuilds a model or submodels that have changed since the most recent
model build. Incremental model build saves code generation time. Use the Rebuild
parameter on the Model Referencing pane to change the method that Simulink uses
to determine when to rebuild code for referenced models. For more information on the
Rebuild parameter, see “Rebuild” (Simulink).

Build Large Model Reference Hierarchies in Parallel

In a parallel computing environment, whenever conditions allow, you can increase
the speed of code generation and compilation by building models containing large
model reference hierarchies in parallel. For example, if you have Parallel Computing
Toolbox software, you can distribute code generation and compilation for each referenced

53-3

53 Optimizations for Generated Code in Simulink Coder

model across the cores of a multicore host computer. If you have MATLAB Distributed
Computing Server software, you can distribute code generation and compilation for each
referenced model across remote workers in your MATLAB Distributed Computing Server
configuration.

The performance gain realized by using parallel builds for referenced models depends on
several factors, including:

• How many models can be built in parallel for a given model referencing hierarchy
• The size of the referenced models
• Parallel computing resources such as the number of local and remote workers

available
• The hardware attributes of the local and remote machines (amount of RAM, number

of cores, and so on)

For more information, see “Reduce Build Time for Referenced Models” (Simulink Coder).

Minimize Memory Requirements During Code Generation

Models that have large amounts of parameter and constant data (such as lookup tables)
can tax memory resources and slow code generation. The code generator copies this data
to the model.rtw file. The model.rtw file is a partial representation of the model that
the Target Language Compiler parses to transform block computations, parameters,
signals, and constant data into a high-level language (for example, C). The Target
Language Compiler (TLC) is an integral part of the code generator. The code generator
copies parameters and data into model.rtw, whether they originate in the model or
come from variables or objects in a workspace.

You can improve code generation speed by specifying the maximum number of elements
that data vectors can have for the code generator to copy this data to model.rtw. When
a data vector exceeds the specified size, the code generator places a reference key in
model.rtw. The TLC uses this key to access the data from Simulink and format it into
the generated code. Reference keys result in maintaining only one copy of large data
vectors in memory.

The default value above which the code generator uses reference keys in place of actual
data values is 10 elements. You can verify this value. In the Command Window, type the
following command:

get_param(0, 'RTWDataReferencesMinSize')

53-4

 Increase Code Generation Speed

To set the threshold to a different value, in the Command Window, type the following
set_param function:

set_param(0, 'RTWDataReferencesMinSize', <size>)

Provide an integer value for size that specifies the number of data elements above
which the code generator uses reference keys in place of actual data values.

Generate Only Code

You can increase code generation speed by specifying that the build process generate
code and a makefile, but not invoke the make command. When the code generator
invokes the make command, the build process takes longer because the code generator
generates code, compiles code, and creates an executable file.

On the Code Generation pane in the Model Configuration Parameters dialog box, you
can specify that the build process generate only code by selecting the Generate code
only parameter. You can specify that the code generation process build a makefile by
selecting the Generate makefile parameter on the All Parameters tab.

No Creation of a Code Generation Report

You can speed up code generation by not generating a code generation report as a part
of the build process. To disable the creation of a code generation report, on the Code
Generation > Report pane, clear the Create code generation report parameter.
After the build process, you can generate a code generation report by doing this
procedure, “Generate Code Generation Report After Build Process” (Simulink Coder).

Related Examples
• “Enable parallel model reference builds” (Simulink)
• “MATLAB worker initialization for builds” (Simulink)
• “Reduce Build Time for Referenced Models” on page 40-50

53-5

53 Optimizations for Generated Code in Simulink Coder

Control Compiler Optimizations

To control compiler optimizations for a makefile build at the GUI level, use the
Compiler optimization level parameter. The Compiler optimization level
parameter provides

• Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds), which allow you to easily toggle compiler
optimizations on and off during code development

• The value Custom for entering custom compiler optimization flags at the Simulink
GUI level, rather than editing compiler flags into template makefiles (TMFs) or
supplying compiler flags to build process make commands

The default setting is Optimizations off (faster builds). Selecting the value
Custom enables the Custom compiler optimization flags field, in which you can enter
custom compiler optimization flags (for example, -O2).

Note: If you specify compiler options for your makefile build using OPT_OPTS, MEX_OPTS
(except MEX_OPTS="-v"), or MEX_OPT_FILE, the value of Compiler optimization
level is ignored and a warning is issued about the ignored parameter.

For more information about the Compiler optimization level parameter and its
values, see “Compiler optimization level” (Simulink Coder) and “Custom compiler
optimization flags” (Simulink Coder).

Related Examples
• “Template Makefiles and Make Options” on page 40-24
• “Select a System Target File” on page 30-2
• “Support Compiler Optimization Level Control” on page 71-95

53-6

 Optimization Tools and Techniques

Optimization Tools and Techniques

Use the Model Advisor to Optimize a Model for Code Generation

You can use the Model Advisor to analyze a model for code generation and identify
aspects of your model that impede production deployment or limit code efficiency. You
can select from a set of checks to run on a model's current configuration. The Model
Advisor analyzes the model and generates check results providing suggestions for
improvements in each area. Most Model Advisor diagnostics do not require the model to
be in a compiled state; those that do are noted.

Before running the Model Advisor, select the target you plan to use for code generation.
The Model Advisor works most effectively with ERT and ERT-based system target files.

Use the following examples to investigate optimizing models for code generation using
the Model Advisor:

• rtwdemo_advisor1

• rtwdemo_advisor2

• rtwdemo_advisor3

Note: Example models rtwdemo_advisor2 and rtwdemo_advisor3 require Stateflow
and Fixed-Point Designer software.

For more information on using the Model Advisor, see “Run Model Checks” (Simulink).
For more information about the checks, see “Simulink Coder Checks” (Simulink Coder).

Design Tips for Optimizing Generated Code for Stateflow Objects

Do Not Access Machine-Parented Data In a Graphical Function

This restriction prevents long parameter lists from appearing in the code generated for
a graphical function. You can access local data that resides in the same chart as the
graphical function.

For more information, see “Reuse Logic Patterns Using Graphical Functions” (Stateflow).

53-7

53 Optimizations for Generated Code in Simulink Coder

Be Explicit About the Inline Option of a Graphical Function

When you use a graphical function in a Stateflow chart, select Inline or Function for
the property Function Inline Option. Otherwise, the code generated for a graphical
function may not appear as you want.

For more information, see “Specify Graphical Function Properties” (Stateflow).

Avoid Using Multiple Edge-Triggered Events in Stateflow Charts

When you use a bus object, you reduce the number of parameters in the parameter list of
a generated function. This guideline also applies to output signals of a chart.

For more information, see “Define Stateflow Structures” (Stateflow).

Combine Input Signals of a Chart Into a Single Bus Object

When you use a bus object, you reduce the number of parameters in the parameter list of
a generated function. This guideline also applies to output signals of a chart.

For more information, see “Define Stateflow Structures” (Stateflow).

Use Charts with Discrete Sample Times

The code generated for discrete charts that are not inside a triggered or enabled
subsystem uses integer counters to track time instead of Simulink provided time. This
allows for more efficient code generation in terms of overhead and memory, as well as
enabling this code for use in Software-in-the-Loop(SIL) and Processor-in-the-Loop(PIL)
simulation modes.

Additional Optimization Techniques

You can apply the following techniques to optimize a model for code generation:

• Use the Upgrade Advisor to upgrade older models (saved by prior versions or the
current version) to use current features. For details, see “Model Upgrades” (Simulink).

• Before building, set optimization flags for the compiler (for example, -O2 for gcc, -Ot
for the Microsoft Visual C++ compiler).

• Directly inline C/C++ S-functions into the generated code by writing a TLC file for the
S-function. For more information, see “Accelerate Simulation, Reuse Code, or Protect
Intellectual Property by Using S-Function Target” (Simulink Coder) and see “Inline C
MEX S-Functions” (Simulink Coder).

53-8

 Optimization Tools and Techniques

• Use a Simulink data type other than double when possible. The available data types
are Boolean, signed and unsigned 8-, 16-, and 32-bit integers, and 32- and 64-bit
floats (a double is a 64-bit float). For more information, see “About Data Types in
Simulink” (Simulink). For a block-by-block summary, click showblockdatatypetable or
type the command in the Command Window.

• For tunable block parameters that you configure to store in memory in the generated
code, you can match parameter data types with signal data types to eliminate
unnecessary typecasts and C shifts. Where possible, store parameter values in small
integer data types. See “Parameter Data Types in the Generated Code” on page 19-79.

• Remove repeated values in lookup table data.
• Use the Merge block to merge the output of signals wherever possible. This block

is particularly helpful when you need to control the execution of function-call
subsystems with a Stateflow chart. The following model shows an example of how to
use the Merge block.

When more than one signal connected to a Merge block has a non-Auto storage class,
all non-Auto signals connected to that block must be identically labeled and have the
same storage class. When Merge blocks connect directly to one another, these rules
apply to the signals connected to any of the Merge blocks in the group.

Related Examples
• “Increase Code Generation Speed” on page 53-3
• “Execution Profiling for Generated Code” on page 53-12

53-9

53 Optimizations for Generated Code in Simulink Coder

• “Optimization Pane: General” (Simulink)
• “Optimization Pane: Signals and Parameters” (Simulink)
• “Model Configuration Parameters: Advanced Parameters” (Simulink Coder)

53-10

 Control Memory Allocation for Time Counters

Control Memory Allocation for Time Counters

The Application lifespan (days) parameter lets you control the allocation of memory
for absolute and elapsed time counters. Such counters exist in the code for blocks that
use absolute or elapsed time. For a list of such blocks, see “Absolute Time Limitations”
(Simulink Coder).

The size of the time counters in generated code is 8, 16, 32, or 64 bits. The size is set
automatically to the minimum that can accommodate the duration value specified
by Application lifespan (days) given the step size specified in the Configuration
Parameters Solver pane. To minimize the amount of RAM used by time counters, specify
the smallest lifespan possible and the largest step size possible.

An application runs to its specified lifespan. It may be able to run longer. For example,
running a model with a step size of one millisecond (0.001 seconds) for one day requires a
32-bit timer, which could continue running without overflow for 49 days more.

To maximize application lifespan, specify Application lifespan (days) as inf. This
value allocates 64 bits (two uint32 words) for each timer. Using 64 bits to store timing
data would allow a model with a step size of 0.001 microsecond (10E-09 seconds) to run
for more than 500 years, which would rarely be required. 64-bit counters do not violate
the usual code generator length limitation of 32 bits because the value of a time counter
does not provide the value of a signal, state, or parameter.

See Also
“Application lifespan (days)” (Simulink)

Related Examples
• “Absolute and Elapsed Time Computation” (Simulink Coder)
• “Timers in Asynchronous Tasks” (Simulink Coder)

53-11

53 Optimizations for Generated Code in Simulink Coder

Execution Profiling for Generated Code

Use code execution profiling to:

• Determine whether the generated code meets execution time requirements for real-
time deployment on your target hardware.

• Identify code sections that require performance improvements.

The following tasks represent a general workflow that uses code execution profiling:

1 With the Simulink model, design and optimize your algorithm.
2 Configure the model for code execution profiling, and generate code.
3 Execute generated code on target. For example, you can:

• Run a software-in-the-loop (SIL) simulation on your development computer.
• Run a processor-in-the-loop (PIL) simulation using a target support package or

custom PIL target.
• Perform real-time execution with Simulink Real-Time or a target support

package.
4 Analyze performance through code execution profiling plots and reports. For

example, check that the algorithm code satisfies execution time requirements for
real-time deployment:

• If the algorithm code easily meets the requirements, consider enhancing your
algorithm to exploit available processing power.

• If the code cannot be executed in real time, look for ways to reduce execution
time.

Identify the tasks that require the most time. For these tasks, investigate
whether trade-offs between functionality and speed are possible.

If your target is a multicore processor, distribute the execution of algorithm code
across available cores.

5 If required, refine the model and return to step 2.

To find information about code execution profiling with Simulink products, use the
following table.

53-12

 Execution Profiling for Generated Code

Target Execution Feature Type of
Profiling

Relevant Products See

Development
computer

Model configured
for concurrent
execution

Execution
time

Simulink Coder • “Optimize and Deploy on a
Multicore Target” (Simulink)

• “Concurrent Execution
Models” (Simulink)

Development
computer

Software-in-the-
loop (SIL)

Execution
time

Embedded
Coder

• “Code Execution Profiling
with SIL and PIL” on page
58-2

• “View and Compare Code
Execution Times” on page
58-7

• “Analyze Code Execution
Data” on page 58-18

Embedded
hardware or
instruction set
simulator

Processor-in-the-
loop (PIL)

Execution
time

Embedded
Coder

• “Code Execution Profiling
with SIL and PIL” on page
58-2

• “View and Compare Code
Execution Times” on page
58-7

• “Analyze Code Execution
Data” on page 58-18

Target support
packages

Real-time
execution, PIL

Execution
time

Embedded
Coder

• “Code Execution Profiling for
IDE and Toolchain Targets”
on page 73-13

• “Perform Execution-Time
Profiling for IDE and
Toolchain Targets” on page
73-16

Target support
packages

Real-time
execution

Stack Embedded
Coder

• “Code Execution Profiling for
IDE and Toolchain Targets”
on page 73-13

• “Perform Stack Profiling with
IDE and Toolchain Targets”
on page 73-22

53-13

53 Optimizations for Generated Code in Simulink Coder

Target Execution Feature Type of
Profiling

Relevant Products See

Simulink Real-
Time

Real-time
execution

Execution
time

Simulink Coder,
Simulink Real-
Time

• “Execution Profiling for Real-
Time Applications” (Simulink
Real-Time)

• “Configure Real-Time
Application for Profiling”
(Simulink Real-Time)

• “Generate Real-Time
Application Execution
Profile” (Simulink Real-Time)

Simulink Real-
Time

Real-time
execution, model
configured for
concurrent
execution

Execution
time

Simulink Coder,
Simulink Real-
Time

• “Execution Profiling for Real-
Time Applications” (Simulink
Real-Time)

• “Concurrent Execution on
Simulink® Real-Time™”
(Simulink Real-Time)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “SIL and PIL Simulations” on page 64-2

53-14

 Optimize Generated Code by Combining Multiple for Constructs

Optimize Generated Code by Combining Multiple for Constructs
This example shows how the code generator combines for loops. The generated code
uses for constructs to represent a variety of modeling patterns, such as a matrix signal
or Iterator blocks. Using data dependency analysis, the code generator combines for
constructs to reduce static code size and runtime branching.

The benefits of optimizing for loops are:

• Reducing ROM and RAM consumption.
• Increasing execution speed.

for Loop Modeling Patterns

In the model, rtwdemo_forloop, the Switch block and MATLAB Function block represent
for constructs. In the In1 Block Parameters dialog box, the Port dimensions
parameter is set to 10 .

53-15

53 Optimizations for Generated Code in Simulink Coder

Generate Code

In the model, there are no data dependencies across the for loop iterations. Therefore,
the code generator combines all for loops into one loop. Build the model and view the
generated code.

Starting build procedure for model: rtwdemo_forloop

Successful completion of build procedure for model: rtwdemo_forloop

The generated file, rtwdemo_forloop.c, contains the code for the single for loop.

/* Model step function */

void rtwdemo_forloop_step(void)

{

 int32_T k;

 /* MATLAB Function: '<Root>/Accum' */

 /* MATLAB Function 'Accum': '<S1>:1' */

 /* '<S1>:1:3' */

 /* '<S1>:1:4' */

 rtwdemo_forloop_Y.Out1 = 0.0;

 /* '<S1>:1:5' */

 for (k = 0; k < 10; k++) {

 /* Switch: '<Root>/Switch' incorporates:

 * Gain: '<Root>/G1'

 * Gain: '<Root>/G3'

 * Inport: '<Root>/In1'

 * Sum: '<Root>/Sum1'

 * Sum: '<Root>/Sum2'

 * UnitDelay: '<Root>/Delay'

 */

 if (3.0 * rtwdemo_forloop_U.In1[k] >= 0.0) {

 rtwdemo_forloop_DW.Delay_DSTATE[k] = rtwdemo_forloop_U.In1[k] -

 rtwdemo_forloop_DW.Delay_DSTATE[k];

 } else {

 rtwdemo_forloop_DW.Delay_DSTATE[k] = (rtwdemo_forloop_DW.Delay_DSTATE[k] -

 rtwdemo_forloop_U.In1[k]) * 5.0;

 }

 /* End of Switch: '<Root>/Switch' */

 /* MATLAB Function: '<Root>/Accum' */

 /* '<S1>:1:5' */

53-16

 Optimize Generated Code by Combining Multiple for Constructs

 /* '<S1>:1:6' */

 rtwdemo_forloop_Y.Out1 += (1.0 + (real_T)k) +

 rtwdemo_forloop_DW.Delay_DSTATE[k];

 }

}

Close the model.

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Configure Loop Unrolling Threshold” on page 53-49
• “For Loop” on page 13-40

53-17

53 Optimizations for Generated Code in Simulink Coder

Subnormal Number Performance

Subnormal numbers, formerly known as denormal numbers in floating-point literature,
fill the underflow gap around zero in floating-point arithmetic. Subnormal values are
a special category of floating-point values that are too close to 0.0 to be represented
as a normalized value. The leading significand (mantissa) of a subnormal number is
zero. When adding and subtracting floating-point numbers, subnormal numbers prevent
underflow.

Using subnormal numbers provides precision beyond the normal representation by using
leading zeros in the significand to represent smaller values after the representation
reaches the minimum exponent. As the value approaches 0.0, you trade off precision for
extended range. Subnormal numbers are useful if your application requires extra range.

However, in a real-time system, using subnormal numbers can dramatically increase
execution latency, resulting in excessive design margins and real-time overruns. If the
simulation or generated code performs calculations that produce or consume subnormal
numbers, the execution of these calculations can be up to 50 times slower than similar
calculations on normal numbers. The actual simulation or code execution time for
subnormal number calculations depends on your computer operating environment.
Typically, for desktop processors, the execution time for subnormal number calculations
is five times slower than similar calculations on normal numbers.

To minimize the possibility of execution slowdowns or overruns due to subnormal
number calculation latency, do one of the following:

• In your model, manually flush to zero any incoming or computed subnormal values at
inputs and key operations, such as washouts and filters. For an example, see “Flush
Subnormal Numbers to Zero” on page 53-20.

To detect a subnormal value for a single precision, 32-bit floating-point number:

1 Find the smallest normalized number on a MATLAB host. In the Command
Window, type:

>> SmallestNormalSingle = realmin('single')

In the C language, FLT_MIN , defined in float.h, is equivalent to
realmin('single').

2 Look for values in range:

 0 < fabsf(x) < SmallestNormalSingle

53-18

 Subnormal Number Performance

To detect a subnormal value for a double precision, 64-bit floating-point number:

1 Find the smallest normalized number on a MATLAB host. In the Command
Window, type:

>> SmallestNormalDouble = realmin('double')

In the C language, DBL_MIN , defined in float.h, is equivalent to
realmin('double').

2 To detect a subnormal value, look for values in this range:

0 < fabs(x) < SmallestNormalDouble

• On your processor, set flush-to-zero mode or, with your compiler, specify an option
to disable subnormal numbers. Flush-to-zero modes treat a subnormal number as 0
when it is an input to a floating-point operation. Underflow exceptions do not occur in
flush-to-zero mode.

For example, in Intel® processors, the flush-to-zero (FTZ) and denormals-are-zero
(DAZ) flags in the MXCSR register control floating-point calculations. For the gcc
compiler on Linux, -ffast-math sets abrupt underflow (FTZ), flush-to-zero, while –
O3 -ffast-math reverts to gradual underflow, using subnormal numbers.

For more information, see the IEEE Standard 754, IEEE Standard for Floating-Point
Arithmetic.

Simulation Time With and Without Subnormal Numbers

This model shows how using subnormal numbers increases simulation time by ~5 times.

1 Open the model ex_subnormal. The Gain is set to subnormal value
realmin('double')/2.

53-19

53 Optimizations for Generated Code in Simulink Coder

2 To run a simulation, in the Command Window, type for k=1:5, tic;
sim('ex_subnormal'); toc,end. Observe the elapsed times for simulation using
subnormals, similar to the following:

>> for k=1:5, tic; sim('ex_subnormal'); toc,end

Elapsed time is 9.909326 seconds.

Elapsed time is 9.617966 seconds.

Elapsed time is 9.797183 seconds.

Elapsed time is 9.702397 seconds.

Elapsed time is 9.893946 seconds.

3 Set the Gain to a number, 2, that is not a subnormal value:

>> set_param('ex_subnormal/Gain', 'Gain', '2');

4 To run a simulation, in the Command Window, type for k=1:5, tic;
sim('ex_subnormal'); toc,end. Observe elapsed times for simulations that do
not use subnormal values, similar to the following:

>> for k=1:5, tic; sim('ex_subnormal'); toc,end

Elapsed time is 2.045123 seconds.

Elapsed time is 1.796598 seconds.

Elapsed time is 1.758458 seconds.

Elapsed time is 1.721721 seconds.

Elapsed time is 1.780569 seconds.

Flush Subnormal Numbers to Zero

This example shows how to flush single precision subnormal numbers to zero.

1 Open the model ex_flush_to_zero:

53-20

 Subnormal Number Performance

• Repeating Sequence Stair generates a sequence of numbers from two
raised to the power of 0 through two raised to the power of -165. The sequence
approaches zero.

• ConditionRealScalar flushes subnormal single precision values that are less
than realmin('single') to zero.

• MATLAB function block log2 generates the base 2 logarithm of the Repeating
Sequence Stair output. Specifically, log2 generates the numbers 0 through
-165.

2 On the Simulation > Stepping Options pane:

• Select Enable stepping back.

53-21

53 Optimizations for Generated Code in Simulink Coder

• Select Pause simulation when time reaches and enter 121.
3 In the model window, run the simulation. The simulation pauses at T=121. The

displayed values:

• ConditionRealScalar output approaches zero.
• Repeating Sequence Stair output approaches zero.

4 Step the simulation forward to T=127. ConditionRealScalar flushes the
subnormal value output from Repeating Sequence Stair to zero.

5 Continue stepping the simulation forward. ConditionRealScalar flushes the
subnormal single precision values output from Repeating Sequence Stair to
zero. When T=150, the output of Repeating Squence Stair is itself zero.

Related Examples
• “Data Types Supported by Simulink” (Simulink)
• “Numerical Consistency of Model and Generated Code Simulation Results”

(Simulink Coder)
• “Specify Single-Precision Data Type for Embedded Application” on page 19-43

53-22

 Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-Range Values

Remove Code From Floating-Point to Integer Conversions That
Wraps Out-of-Range Values

In this section...

“Example Model” on page 53-23
“Generate Code Without Optimization” on page 53-24
“Generate Code with Optimization” on page 53-25

This example shows how to remove code for out-of-range floating-point to integer
conversions. Without this code, there might be a mismatch between simulation and code
generation results. Standard C does not define the behavior of out-of-range floating-point
to integer conversions, while these conversions are well-defined during simulation. In
Standard C and during simulation, floating-point to integer conversions are well-defined
for input values in the range of the output type.

If the input values in your application are in the range of the output type, remove code
for out-of-range floating-point to integer conversions. Removing this code reduces the size
and increases the speed of the generated code.

Example Model

In this model, a Data Type Conversion block converts an input signal from a double to a
uint8. A uint8 can support values from 0 to 255. If the input signal has a value outside
of this range, an out-of-range conversion occurs. In this example, the model is named
conversion_ex.

1 Use Inport, Outport, and Data Type Conversion blocks to create the example model.

53-23

53 Optimizations for Generated Code in Simulink Coder

2 Open the Inport Block Parameters dialog box and select the Signal Attributes tab.
For the Data Type parameter, select double.

3 Open the Data Type Conversion dialog box. For the Output data type parameter,
select uint8.

4 For the signal feeding into the Data Type Conversion block, open the Signal
Properties dialog box. Enter the name U. On the Code Generation tab, for the
Storage Class parameter, select ImportedExtern.

5 For the signal leaving the Data Type Conversion block, open the Signal Properties
dialog box. Enter the name Y. On the Code Generation tab, for the Storage Class
parameter, select ImportedExtern.

Generate Code Without Optimization

1 Open the Model Configuration Parameters dialog box. On the Solver pane, for the
Type parameter, select Fixed-step.

2 On the Code Generation > Report pane, select Create code generation report.
3 On the Code Generation pane, select Generate code only, and then, in the model

window, press Ctrl+B. When code generation is complete, an HTML code generation
report opens.

4 In the Code Generation report, select the conversion_ex.c file and view the model
step function. The code generator applies the fmod function to handle out-of range-
results.

/* Model step function */

void conversion_ex_step(void)

{

 real_T tmp;

 /* DataTypeConversion: '<Root>/Data Type Conversion' incorporates:

 * Inport: '<>/In1'

 */

 tmp = floor(U);

 if (rtIsNaN(tmp) || rtIsInf(tmp)) {

 tmp = 0.0;

 } else {

 tmp = fmod(tmp, 256.0);

 }

 Y = (uint8_T)(tmp < 0.0 ? (int32_T)(uint8_T)-(int8_T)(uint8_T)-tmp : (int32_T)

 (uint8_T)tmp);

53-24

 Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-Range Values

Generate Code with Optimization

1 Open the Configuration Parameters dialog box. On the Optimization pane, select
Remove code from floating-point to integer conversions that wraps out-of-
range values. Generate code.

2 In the code generation report, select the conversion_ex.c file and view the model
step function. The generated code does not contain code that protects against out-of-
range values.

/* Model step function */

void conversion_ex_step(void)

{

 /* DataTypeConversion: '<Root>/Data Type Conversion' incorporates:

 * Inport: '<Root>/In1'

 */

 Y = (uint8_T)U;

The generated code is more efficient without this protective code, but it is possible that
the execution of generated code does not produce the same results as simulation for
values not in the range of 0 to 255.

See Also
“Remove code from floating-point to integer conversions that wraps out-of-range values”
(Simulink)

Related Examples
• “hisl_0053: Configuration Parameters > Optimization > Remove code from floating-

point to integer conversions that wraps out-of-range values” (Simulink)
• “Optimization Tools and Techniques” on page 53-7
• “Remove Code That Maps NaN to Integer Zero” on page 53-26

53-25

53 Optimizations for Generated Code in Simulink Coder

Remove Code That Maps NaN to Integer Zero

In this section...

“Example Model” on page 53-26
“Generate Code” on page 53-27
“Generate Code with Optimization” on page 53-28

This example shows how to remove code that maps NaN to integer zero. For floating-point
to integer conversions involving saturation, Simulink converts NaN to integer zero during
simulation. If your model contains an input value of NaN, you can specify that the code
generator produce code that maps NaN to zero. Without this code, there is a mismatch
between simulation and code generation results because in Standard C, every condition
involving NaN evaluates to false.

If there are no input values of NaN in your application, you can remove code that maps
NaN to integer zero. Removing this code reduces the size and increases the speed of the
generated code.

Example Model

In this model, a Data Type Conversion block converts an input signal from a double to a
uint8. In this example, the model is named conversion_ex.

1 Use Inport, Outport, and Data Type Conversion blocks to create the example model.
2 Open the Inport Block Parameters dialog box and click the Signal Attributes tab.

For the Data Type parameter, select double.
3 Open the Data Type Conversion dialog box. For the Output data type parameter,

select uint8.

53-26

 Remove Code That Maps NaN to Integer Zero

4 Select Saturate on integer overflow. Selecting this parameter specifies that an
out-of-range signal value equals either the minimum or maximum value that the
data type can represent.

5 For the signal feeding into the Data Type Conversion block, open the Signal
Properties dialog box. Enter a name of U. On the Code Generation tab, for the
Storage Class parameter, select ImportedExtern.

6 For the signal leaving the Data Type Conversion block, open the Signal Properties
dialog box. Enter a name of Y. On the Code Generation tab, for the Storage Class
parameter, select ImportedExtern.

Generate Code

1 Open the Model Configuration Parameters dialog box. On the Solver pane, for the
Type parameter, select Fixed-step .

2 Open the Model Configuration Parameters dialog box. On the All Parameters
tab, clear Remove code from floating-point to integer conversions with
saturation that maps NaN to zero.

3 On the Code Generation > Report pane, select Create code generation report.

4 On the Code Generation pane, select Generate code only and then, in the model
window, press Ctrl+B. When code generation is complete, an HTML code generation
report opens.

5 In the Code Generation report, select the nan_int_ex.c file and view the model
step function. For an input value of NaN, there is agreement between the generated
code and simulation because NaN maps to integer zero.

/* Model step function */

void nan_int_ex_step(void)

{

 /* DataTypeConversion: '<Root>/Data Type Conversion' incorporates:

 * Inport: '<Root>/In1'

 */

 if (U < 256.0) {

 if (U >= 0.0) {

 Y = (uint8_T)U;

 } else {

 Y = 0U;

 }

 } else if (U >= 256.0) {

53-27

53 Optimizations for Generated Code in Simulink Coder

 Y = MAX_uint8_T;

 } else {

 Y = 0U;

 }

Generate Code with Optimization

1 Open the Configuration Parameters dialog box. On the All Parameters tab, select
Remove code from floating-point to integer conversions that wraps out-of-
range values. Generate code.

2 In the Code Generation report, select the nan_int_ex.c section and view the
model step function. The generated code maps NaN to 255 and not integer zero. The
generated code is more efficient without the extra code that maps NaN to integer
zero, but the execution of the generated code does not produce the same results as
simulation for NaN values.

/* Model step function */

void nan_int_ex_step(void)

{

 /* DataTypeConversion: '<Root>/Data Type Conversion' incorporates:

 * Inport: '<Root>/In1'

 */

 if (U < 256.0) {

 if (U >= 0.0) {

 Y = (uint8_T)U;

 } else {

 Y = 0U;

 }

 } else {

 Y = MAX_uint8_T;

 }

 /* End of DataTypeConversion: '<Root>/Data Type Conversion' */

See Also
“Remove code from floating-point to integer conversions with saturation that maps NaN
to zero” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7

53-28

 Remove Code That Maps NaN to Integer Zero

• “Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-
Range Values” on page 53-23

53-29

53 Optimizations for Generated Code in Simulink Coder

Disable Nonfinite Checks or Inlining for Math Functions
When the code generator produces code for math functions:

• If the model option Support non-finite numbers is selected, nonfinite number
checking is generated uniformly for math functions, without the ability to specify that
nonfinite number checking should be generated for some functions, but not for others.

• By default, inlining is applied uniformly for math functions, without the ability to
specify that inlining should be generated for some functions, while invocations should
be generated for others.

You can use code replacement library (CRL) customization entries to:

• Selectively disable nonfinite checks for math functions. This can improve the
execution speed of the generated code.

• Selectively disable inlining of math functions. This can increase code readability and
decrease code size.

The functions for which these customizations are supported include the following:

• Floating-point only: atan2, copysign, fix, hypot, log, log10, round, sincos, and
sqrt

• Floating-point and integer: abs, max, min, mod, rem, saturate, and sign

The general workflow for disabling nonfinite number checking and/or inlining is as
follows:

1 If you can disable nonfinite number checking for a particular math function,
or if you want to disable inlining for a particular math function and instead
generate a function invocation, you can copy the following MATLAB function
code into a MATLAB file with an .m file name extension, for example,
crl_table_customization.m.
function hTable = crl_table_customization

% Create an instance of the Code Replacement Library table for controlling

% function intrinsic inlining and nonfinite support

hTable = RTW.TflTable;

% Inline - true (if function needs to be inline)

% false (if function should not be inlined)

% SNF (support nonfinite) - ENABLE (if non-finite checking should be performed)

% DISABLE (if non-finite checking should NOT be performed)

% UNSPECIFIED (Default behavior)

53-30

 Disable Nonfinite Checks or Inlining for Math Functions

% registerCustomizationEntry(hTable, ...

% Priority, numInputs, key, inType, outType, Inline, SNF);

registerCustomizationEntry(hTable, ...

 100, 2, 'atan2', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'atan2', 'single', 'single', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sincos', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sincos', 'single', 'single', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'double', 'double', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'single', 'single', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'int32', 'int32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'int16', 'int16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'int8', 'int8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'integer','integer',true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'uint32', 'uint32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'uint16', 'uint16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'abs', 'uint8', 'uint8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'hypot', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'hypot', 'single', 'single', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'log', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'log', 'single', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'log10', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'log10', 'single', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'double', 'double', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'single', 'single', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'int32', 'int32', true, 'UNSPECIFIED');

53-31

53 Optimizations for Generated Code in Simulink Coder

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'int16', 'int16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'int8', 'int8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'uint32', 'uint32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'uint16', 'uint16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'uint8', 'uint8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'min', 'integer','integer',true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'double', 'double', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'single', 'single', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'int32', 'int32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'int16', 'int16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'int8', 'int8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'uint32', 'uint32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'uint16', 'uint16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'uint8', 'uint8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'max', 'integer','integer',true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'single', 'single', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'int32', 'int32', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'int16', 'int16', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'int8', 'int8', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'uint32', 'uint32', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'uint16', 'uint16', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'mod', 'uint8', 'uint8', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'single', 'single', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'int32', 'int32', false, 'UNSPECIFIED');

53-32

 Disable Nonfinite Checks or Inlining for Math Functions

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'int16', 'int16', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'int8', 'int8', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'uint32', 'uint32', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'uint16', 'uint16', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 2, 'rem', 'uint8', 'uint8', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'round', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'round', 'single', 'single', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'double', 'double', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'single', 'single', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'int32', 'int32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'int16', 'int16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'int8', 'int8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'uint32', 'uint32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'uint16', 'uint16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'uint8', 'uint8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 3, 'saturate', 'integer','integer',true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'double', 'double', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'single', 'single', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'int32', 'integer', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'int16', 'integer', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'int8', 'integer', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'uint32', 'uint32', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'uint16', 'uint16', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'uint8', 'uint8', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sign', 'integer','integer', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

53-33

53 Optimizations for Generated Code in Simulink Coder

 100, 1, 'sqrt', 'double', 'double', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'sqrt', 'single', 'single', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'fix', 'double', 'double', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'fix', 'single', 'single', false, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'copysign', 'double', 'double', true, 'UNSPECIFIED');

registerCustomizationEntry(hTable, ...

 100, 1, 'copysign', 'single', 'single', true, 'UNSPECIFIED');

2 To reduce the size of the file, you can delete the registerCustomizationEntry
lines for functions for which the default nonfinite number checking and inlining
behavior is acceptable.

3 For each remaining entry,

• Set the Inline argument to true if the function should be inlined or false if it
should not be inlined.

• Set the SNF argument to ENABLE if nonfinite checking should be generated,
DISABLE if nonfinite checking should not be generated, or UNSPECIFIED to
accept the default behavior based on the model option settings.

Save the file.
4 Optionally, perform a quick check of the syntactic validity of the customization table

entries by invoking the table definition file at the MATLAB command line (>> tbl
= crl_table_customization). Fix syntax errors that are flagged.

5 Optionally, view the customization table entries in the Code Replacement Viewer (>>
crviewer(crl_table_customization)). For more information about viewing
code replacement tables, see “Choose a Code Replacement Library” (Simulink
Coder).

6 To register these changes and make them appear in the Code replacement
library drop-down list located on the Code Generation > Interface pane of the
Configuration Parameters dialog box, first copy the following MATLAB function code
into an instance of the file rtwTargetInfo.m.

Note: For the example below, specify the argument 'RTW' if a GRT target is selected
for your model, otherwise omit the argument.

function rtwTargetInfo(cm)

53-34

 Disable Nonfinite Checks or Inlining for Math Functions

% rtwTargetInfo function to register a code replacement library (CRL)

 % Register the CRL defined in local function locCrlRegFcn

 cm.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

% Local function to define a CRL containing crl_table_customization

function thisCrl = locCrlRegFcn

 % Instantiate a CRL registry entry - specify 'RTW' for GRT

 thisCrl = RTW.TflRegistry('RTW');

 % Define the CRL properties

 thisCrl.Name = 'CRL Customization Example';

 thisCrl.Description = 'Example of CRL Customization';

 thisCrl.TableList = {'crl_table_customization'};

 thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

You can edit the Name field to specify the library name that appears in the Code
replacement library drop-down list. Also, the file name in the TableList field
must match the name of the file you created in step 1.

To register your changes, with both of the MATLAB files you created present in the
MATLAB path, enter the following command at the MATLAB command line:

sl_refresh_customizations

7 Create or open a model that generates function code corresponding to one of the
math functions for which you specified a change in nonfinite number checking or
inlining behavior.

8 Open the Configuration Parameters dialog box, go to the Code Generation
> Interface pane, and use the Code replacement library drop-down list
to select the code replacement entry you registered in step 6, for example, CRL
Customization Example.

9 Generate code for the model and examine the generated code to verify that the math
functions are generated as expected.

53-35

53 Optimizations for Generated Code in Simulink Coder

Minimize Computations and Storage for Intermediate Results at
Block Outputs

In this section...

“Expression Folding” on page 53-36
“Example Model” on page 53-36
“Generate Code” on page 53-37
“Enable Optimization” on page 53-37
“Generate Code with Optimization” on page 53-38

Expression Folding

Expression folding optimizes code to minimize the computation of intermediate results
at block outputs and the storage of such results in temporary buffers or variables.
When expression folding is on, the code generator collapses (folds) block computations
into a single expression, instead of generating separate code statements and storage
declarations for each block in the model. Most Simulink blocks support expression
folding.

Expression folding improves the efficiency of generated code, frequently achieving results
that compare favorably to hand-optimized code. In many cases, entire groups of model
computations fold into a single, highly optimized line of code.

You can use expression folding in your own inlined S-function blocks. For more
information, see “S-Functions That Support Expression Folding” (Simulink Coder).

Example Model

53-36

 Minimize Computations and Storage for Intermediate Results at Block Outputs

Generate Code

With expression folding off, in the explfld.c file, the code generator generates this
code.

/* Model step function */

void exprfld_step(void)

{

 /* Gain: '<Root>/Gain' incorporates:

 * Inport: '<Root>/In1'

 */

 exprfld_B.S1 = exprfld_P.Gain_Gain * exprfld_U.i1;

 /* Gain: '<Root>/Gain1' incorporates:

 * Inport: '<Root>/In2'

 */

 exprfld_B.S2 = exprfld_P.Gain1_Gain * exprfld_U.i2;

 /* Outport: '<Root>/Out1' incorporates:

 * Product: '<Root>/Product'

 */

 exprfld_Y.Out1 = exprfld_B.S1 * exprfld_B.S2;

}

There are separate code statements for both Gain blocks. Before final output, these code
statements compute temporary results for the Gain blocks.

Enable Optimization

Expression folding is on by default. To see if expression folding is on for an existing
model:

1 Open the Configuration Parameters dialog box and select the All Parameters tab.
2 Expression folding is available only when the Signal storage reuse parameter is

set to on because expression folding operates only on expressions involving local
variables. On the All Parameters tab, select Signal storage reuse.

3 When you select Signal storage reuse, the Enable local block outputs, Reuse
local block outputs, and Eliminate superfluous local variables (expression
folding) parameters are all on by default.

53-37

53 Optimizations for Generated Code in Simulink Coder

Generate Code with Optimization

With expression folding, the code generator generates a single-line output computation,
as shown in the expfld.c file. The generated comments document the block parameters
that appear in the expression.

/* Model step function */

void exprfld_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 * Gain: '<Root>/Gain1'

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 * Product: '<Root>/Product'

 */

 exprfld_Y.Out1 = exprfld_P.Gain_Gain * exprfld_U.i1 * (exprfld_P.Gain1_Gain *

 exprfld_U.i2);

}

For an example of expression folding in the context of a more complex model, click
rtwdemo_slexprfold , or at the command prompt, type:

rtwdemo_slexprfold

For more information, see “Enable and Reuse Local Block Outputs in Generated Code”
(Simulink Coder)

See Also
“Signal storage reuse” (Simulink) | “Reuse local block outputs” (Simulink) | “Enable
local block outputs” (Simulink) | “Eliminate superfluous local variables (Expression
folding)” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Control Signals and States in Code by Applying Storage Classes” on page 19-123

53-38

 Inline Invariant Signals

Inline Invariant Signals

You can optimize the generated code by selecting Inline invariant signals on the
Optimization > Signals and Parameters pane. The generated code uses the
numerical values of the invariant signals instead of their symbolic names.

An invariant signal is a block output signal that does not change during Simulink
simulation. For example, the signal S3 is an invariant signal. An invariant signal is
not the same as an invariant constant. The two constants (1 and 2) and the gain value
of 3 are invariant constants. To inline invariant constants, set Default parameter
behavior to Inlined.

Optimize Generated Code Using Inline Invariant Signals

This example shows how to use inline invariant signals to optimize the generated code.
This optimization transforms symbolic names of invariant signals into constant values.

The InlineInvariantSignals optimization:

• Reduces ROM and RAM consumption.
• Improves execution speed.

Example Model

Consider the model matlab:rtwdemo_inline_invariant_signals.

model = 'rtwdemo_inline_invariant_signals';

open_system(model);

53-39

53 Optimizations for Generated Code in Simulink Coder

Generate Code

Create a temporary folder (in your system temporary folder) for the build and inspection
process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model using Simulink Coder.

rtwbuild(model)

Starting build procedure for model: rtwdemo_inline_invariant_signals

Successful completion of build procedure for model: rtwdemo_inline_invariant_signals

View the generated code without the optimization. These lines of code are in
rtwdemo_inline_invariant_signals.c.

cfile = fullfile(cgDir,'rtwdemo_inline_invariant_signals_grt_rtw',...

 'rtwdemo_inline_invariant_signals.c');

rtwdemodbtype(cfile,'/* Output and update for atomic system',...

 '/* Model output', 1, 0);

/* Output and update for atomic system: '<Root>/InlinedConstFcn' */

void rtwdemo_inline__InlinedConstFcn(int32_T rtu_In1,

 B_InlinedConstFcn_rtwdemo_inl_T *localB, const ConstB_InlinedConstFcn_rtwdem_T

 *localC)

{

 /* Product: '<S1>/Product' */

 localB->Product = rtu_In1 * localC->Sum_p;

}

53-40

 Inline Invariant Signals

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization->Signals and Parameters pane, select Inline Invariant

Signals.

Alternatively, you can use the command-line API to enable the optimization:

set_param(model, 'InlineInvariantSignals', 'on');

Generate Code with Optimization

The generated code uses the numerical values of the folded constants instead of creating
an additional structure (rtwdemo_inline_invariant_ConstB).

Build the model using Simulink Coder.

rtwbuild(model)

Starting build procedure for model: rtwdemo_inline_invariant_signals

Successful completion of build procedure for model: rtwdemo_inline_invariant_signals

View the generated code with the optimization. These lines of code are in
rtwdemo_minmax.c.

rtwdemodbtype(cfile,'/* Output and update for atomic system', '/* Model output', 1, 0);

/* Output and update for atomic system: '<Root>/InlinedConstFcn' */

void rtwdemo_inline__InlinedConstFcn(int32_T rtu_In1,

 B_InlinedConstFcn_rtwdemo_inl_T *localB)

{

 /* Product: '<S1>/Product' */

 localB->Product = rtu_In1 << 5;

}

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Inline invariant signals” (Simulink)

53-41

53 Optimizations for Generated Code in Simulink Coder

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Inline Numeric Values of Block Parameters” on page 53-43

53-42

 Inline Numeric Values of Block Parameters

Inline Numeric Values of Block Parameters

This example shows how to optimize the generated code by inlining the numeric values of
block parameters. Block parameters include the Gain parameter of a Gain block and the
table data and breakpoint sets of an n-D Lookup Table block.

This optimization determines whether numeric block parameters occupy global memory
in the generated code. The optimization can:

• Improve execution speed.
• Reduce RAM and ROM consumption.

Explore Example Model

Open the example model rtwdemo_paraminline.

open_system('rtwdemo_paraminline')

The model contains blocks that have these numeric parameters:

• The Gain parameters of the Gain blocks

53-43

53 Optimizations for Generated Code in Simulink Coder

• The Constant value parameters of the Constant blocks
• The table data and breakpoint sets of the n-D Lookup Table blocks

The output of the block G2, and the outputs of blocks upstream of G2, change only if
you tune the values of the block parameters during simulation or during code execution.
When you update the model diagram, these blocks and signal lines appear magenta in
color.

Several blocks use Simulink.Parameter objects in the base workspace to set the values
of their parameters. The parameter objects all use the storage class Auto, which means
that you can configure the generated code to inline the parameter values.

Generate Code Without Optimization

Create a temporary folder for the build and inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Disable the optimization by setting Configuration Parameters > Optimization >
Signals and Parameters > Default parameter behavior to Tunable.

set_param('rtwdemo_paraminline','DefaultParameterBehavior','Tunable')

Generate code from the model.

rtwbuild('rtwdemo_paraminline')

Starting build procedure for model: rtwdemo_paraminline

Successful completion of build procedure for model: rtwdemo_paraminline

In the code generation report, view the source file rtwdemo_paraminline_data.c.
The code defines a global structure that contains the block parameter values. Each block
parameter in the model, such as a lookup table array, breakpoint set, or gain, appears as
a field of the structure.

cfile = fullfile(cgDir,'rtwdemo_paraminline_grt_rtw','rtwdemo_paraminline_data.c');

rtwdemodbtype(cfile,'/* Block parameters (auto storage) */', '};', 1, 1);

/* Block parameters (auto storage) */

P_rtwdemo_paraminline_T rtwdemo_paraminline_P = {

 10.0, /* Variable: MAX_LIFT

 * Referenced by: '<Root>/Constant'

 */

53-44

 Inline Numeric Values of Block Parameters

 0.0, /* Variable: SLIDER_POS

 * Referenced by: '<Root>/Constant1'

 */

 /* Variable: T1Break

 * Referenced by: '<Root>/1D Lookup'

 */

 { -5.0, -4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 },

 /* Variable: T1Data

 * Referenced by: '<Root>/1D Lookup'

 */

 { -1.0, -0.99, -0.98, -0.96, -0.76, 0.0, 0.76, 0.96, 0.98, 0.99, 1.0 },

 /* Variable: T2Break

 * Referenced by: '<Root>/2D Lookup'

 */

 { 1.0, 2.0, 3.0 },

 /* Variable: T2Data

 * Referenced by: '<Root>/2D Lookup'

 */

 { 4.0, 16.0, 10.0, 5.0, 19.0, 18.0, 6.0, 20.0, 23.0 },

 2.0, /* Expression: 2

 * Referenced by: '<Root>/G1'

 */

 -2.0, /* Expression: -2

 * Referenced by: '<Root>/G2'

 */

 /* Computed Parameter: uDLookup_maxIndex

 * Referenced by: '<Root>/2D Lookup'

 */

 { 2U, 2U }

};

You can tune the structure fields during code execution because they occupy global
memory. However, at each step of the generated algorithm, the code must calculate the
output of each block, including the outputs of the block G2 and the upstream blocks. View
the algorithm in the model step function in the file rtwdemo_paraminline.c.

cfile = fullfile(cgDir,'rtwdemo_paraminline_grt_rtw','rtwdemo_paraminline.c');

rtwdemodbtype(cfile,'/* Model step function */','/* Model initialize function */',1,0);

53-45

53 Optimizations for Generated Code in Simulink Coder

/* Model step function */

void rtwdemo_paraminline_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant'

 * Constant: '<Root>/Constant1'

 * Gain: '<Root>/G1'

 * Gain: '<Root>/G2'

 * Inport: '<Root>/In1'

 * Lookup_n-D: '<Root>/1D Lookup'

 * Lookup_n-D: '<Root>/2D Lookup'

 * Sum: '<Root>/Sum'

 */

 rtwdemo_paraminline_Y.Out1 = rtwdemo_paraminline_P.G1_Gain *

 rtwdemo_paraminline_U.In1 + rtwdemo_paraminline_P.G2_Gain * look2_binlx

 (rtwdemo_paraminline_P.MAX_LIFT, look1_binlx

 (rtwdemo_paraminline_P.SLIDER_POS, rtwdemo_paraminline_P.T1Break,

 rtwdemo_paraminline_P.T1Data, 10U), rtwdemo_paraminline_P.T2Break,

 rtwdemo_paraminline_P.T2Break, rtwdemo_paraminline_P.T2Data,

 rtwdemo_paraminline_P.uDLookup_maxIndex, 3U);

}

Generate Code with Optimization

Set Default parameter behavior to Inlined.

set_param('rtwdemo_paraminline','DefaultParameterBehavior','Inlined')

Generate code from the model.

rtwbuild('rtwdemo_paraminline')

Starting build procedure for model: rtwdemo_paraminline

Successful completion of build procedure for model: rtwdemo_paraminline

In the code generation report, view the algorithm in the file rtwdemo_paraminline.c.

rtwdemodbtype(cfile,'/* Model step function */','/* Model initialize function */',1,0);

/* Model step function */

void rtwdemo_paraminline_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/G1'

53-46

 Inline Numeric Values of Block Parameters

 * Inport: '<Root>/In1'

 * Sum: '<Root>/Sum'

 */

 rtwdemo_paraminline_Y.Out1 = 2.0 * rtwdemo_paraminline_U.In1 + 150.0;

}

The code does not allocate memory for block parameters or for parameter objects that use
the storage class Auto. Instead, the code generator uses the parameter values from the
model, and from the parameter objects, to calculate and inline the constant output of the
block G2, 150.0. The generator also inlines the value of the Gain parameter of the Gain
block G1, 2.0.

With the optimization, the generated code leaves out computationally expensive
algorithmic code for blocks such as the lookup tables. The optimized code calculates the
output of a block only if the output can change during execution. For this model, only the
outputs of the Inport block In1, the Gain block G1, and the Sum block can change.

Close the model and the code generation report.

bdclose('rtwdemo_paraminline')

rtwdemoclean;

cd(currentDir)

Preserve Block Parameter Tunability

When you set Default parameter behavior to Inlined, you can preserve block
parameter tunability by creating Simulink.Parameter objects for individual
parameters. You can configure each object to appear in the code as a tunable field of
the global parameter structure or as an individual global variable. You can change
parameter values during code execution and interface the generated code with your own
handwritten code. For more information, see “Block Parameter Representation in the
Generated Code” (Simulink Coder).

Inline Invariant Signals

You can select the Inline invariant signals code generation option (which also places
constant values in the generated code) only when you set Default parameter behavior
to Inlined. See “Inline Invariant Signals” (Simulink Coder).

See Also
“Default parameter behavior” (Simulink)

53-47

53 Optimizations for Generated Code in Simulink Coder

Related Examples
• “Block Parameter Representation in the Generated Code” (Simulink Coder)

53-48

 Configure Loop Unrolling Threshold

Configure Loop Unrolling Threshold

The Loop unrolling threshold parameter on the Optimization > Signals and
Parameters pane determines when a wide signal or parameter should be wrapped into
a for loop and when it should be generated as a separate statement for each element of
the signal. The default threshold value is 5.

For example, consider the model below:

The gain parameter of the Gain block is the vector myGainVec.

Assume that the loop unrolling threshold value is set to the default, 5.

If myGainVec is declared as

myGainVec = [1:10];

an array of 10 elements, myGainVec_P.Gain_Gain[], is declared within the
Parameters_model data structure. The size of the gain array exceeds the loop unrolling
threshold. Therefore, the code generated for the Gain block iterates over the array in a
for loop, as shown in the following code:

53-49

53 Optimizations for Generated Code in Simulink Coder

{

 int32_T i1;

 /* Gain: '<Root>/Gain' */

 for(i1=0; i1<10; i1++) {

 myGainVec_B.Gain_f[i1] = rtb_foo *

 myGainVec_P.Gain_Gain[i1];

 }

 }

If myGainVec is declared as

myGainVec = [1:3];

an array of three elements, myGainVec_P.Gain_Gain[], is declared within the
Parameters data structure. The size of the gain array is below the loop unrolling
threshold. The generated code consists of inline references to each element of the array,
as in the code below.

/* Gain: '<Root>/Gain' */

 myGainVec_B.Gain_f[0] = rtb_foo * myGainVec_P.Gain_Gain[0];

 myGainVec_B.Gain_f[1] = rtb_foo * myGainVec_P.Gain_Gain[1];

 myGainVec_B.Gain_f[2] = rtb_foo * myGainVec_P.Gain_Gain[2];

See “Explore Variable Names and Loop Rolling” (Simulink Coder) for more information
on loop rolling.

Note When a model includes Stateflow charts or MATLAB Function blocks, you can
apply a set of Stateflow optimizations on the Optimization > Stateflow pane. The
settings you select for the Stateflow options also apply to MATLAB Function blocks in
the model. This is because the MATLAB Function blocks and Stateflow charts are built
on top of the same technology and share a code base. You do not need a Stateflow license
to use MATLAB Function blocks.

See Also
“Loop unrolling threshold” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Optimize Generated Code by Combining Multiple for Constructs” on page 53-15

53-50

 Configure Loop Unrolling Threshold

• “For Loop” on page 13-40

53-51

53 Optimizations for Generated Code in Simulink Coder

Use memcpy Function to Optimize Generated Code for Vector
Assignments

In this section...

“Example Model” on page 53-53
“Generate Code” on page 53-54
“Generate Code with Optimization” on page 53-54

You can use the Use memcpy for vector assignment parameter to optimize generated
code for vector assignments by replacing for loops with memcpy function calls. The
memcpy function is more efficient than for-loop controlled element assignment for large
data sets. This optimization improves execution speed.

Selecting the Use memcpy for vector assignment parameter enables the associated
parameter Memcpy threshold (bytes), which allows you to specify the minimum array
size in bytes for which memcpy function calls should replace for loops in the generated
code. For more information, see “Use memcpy for vector assignment” (Simulink) and
“Memcpy threshold (bytes)” (Simulink). In considering whether to use this optimization,

• Verify that your target supports the memcpy function.
• Determine whether your model uses signal vector assignments (such as

Y=expression) to move large amounts of data, for example, using the Selector block.

To apply this optimization,

1 Consider first generating code without this optimization and measuring its execution
speed, to establish a baseline for evaluating the optimized assignment.

2 Select Use memcpy for vector assignment and examine the setting of Memcpy
threshold (bytes), which by default specifies 64 bytes as the minimum array size
for which memcpy function calls replace for loops. Based on the array sizes used in
your application's signal vector assignments, and target environment considerations
that might bear on the threshold selection, accept the default or specify another
array size.

3 Generate code, and measure its execution speed against your baseline or previous
iterations. Iterate on steps 2 and 3 until you achieve an optimal result.

Note: The memcpy optimization may not occur under certain conditions, including when
other optimizations have a higher precedence than the memcpy optimization, or when the

53-52

 Use memcpy Function to Optimize Generated Code for Vector Assignments

generated code is originating from Target Language Compiler (TLC) code, such as a TLC
file associated with an S-function block.

Note: If you are licensed for Embedded Coder software, you can use a code replacement
library (CRL) to provide your own custom implementation of the memcpy function to
be used in generated model code. For more information, see “Memory Function Code
Replacement” on page 51-96.

Example Model

To examine the result of using the Use memcpy for vector assignment parameter
on the generated vector assignment code, create a model that generates signal vector
assignments. For example,

1 Use In, Out, and Selector blocks to create the following model.

2 Open Model Explorer and configure the Signal Attributes for the In1 and In2
source blocks. For each, set Port dimensions to [1,100], and set Data type to
int32. Apply the changes and save the model. In this example, the model has the
name vectorassign.

3 For each Selector block, set the Index parameter to 1:50. Set the Input port size
parameter to 100.

53-53

53 Optimizations for Generated Code in Simulink Coder

Generate Code

1 The Use memcpy for vector assignment parameter is on by default. To turn off
the parameter, go to the Optimization > Signals and Parameters pane and clear
the Use memcpy for vector assignment parameter.

2 Go to the Code Generation > Report pane of the Configuration Parameters
dialog box and select the Create code generation report. Then go to the Code
Generation pane, select the Generate code only option, and generate code for
the model. When code generation completes, the HTML code generation report is
displayed.

3 In the HTML code generation report, click the vectorassign.c section and inspect
the model step function. Notice that the vector assignments are implemented using
for loops.
/* Model step function */

void vectorassign_step(void)

{

 int32_T i;

 for (i = 0; i < 50; i++) {

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 */

 vectorassign_Y.Out1[i] = vectorassign_U.In1[i];

 /* Outport: '<Root>/Out2' incorporates:

 * Inport: '<Root>/In2'

 */

 vectorassign_Y.Out2[i] = vectorassign_U.In2[i];

 }

}

Generate Code with Optimization

1 Go to the Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box and select the Use memcpy for vector assignment option.
Leave the Memcpy threshold (bytes) option at its default setting of 64. Apply the
changes and regenerate code for the model. When code generation completes, the
HTML code generation report again is displayed.

2 In the HTML code generation report, click the vectorassign.c section and inspect
the model output function. Notice that the vector assignments now are implemented
using memcpy function calls.
/* Model step function */

void vectorassign_step(void)

{

53-54

 Use memcpy Function to Optimize Generated Code for Vector Assignments

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 */

 memcpy(&vectorassign_Y.Out1[0], &vectorassign_U.In1[0], 50U * sizeof(real_T));

 /* Outport: '<Root>/Out2' incorporates:

 * Inport: '<Root>/In2'

 */

 memcpy(&vectorassign_Y.Out2[0], &vectorassign_U.In2[0], 50U * sizeof(real_T));

}

See Also
“Use memcpy for vector assignment” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Vector Operation Optimization” on page 53-97
• “Convert Data Copies to Pointer Assignments” on page 57-23

53-55

53 Optimizations for Generated Code in Simulink Coder

Generate Target Optimizations Within Algorithm Code

Some application components are hardware-specific and cannot simulate on a host
system. For example, consider a component that includes pragmas and assembly code
for enabling hardware instructions for saturate on add operations or a Fast Fourier
Transform (FFT) function.

The following table lists integration options to customize generated algorithm code with
target-specific optimizations.

Note: Solutions marked with EC only require an Embedded Coder license.

If... Then... For More Information, See

You want to optimize
the execution speed
and memory of the
model code by replacing
default math functions
and operators with
target-specific code

EC only—Implement
function and operator
replacements by using
the Code Replacement
Tool, code replacement
library (CRL) API, and
Code Replacement
Viewer to create,
examine, validate, and
register hardware-
specific replacement
tables

“Optimize Generated Code By Developing and
Using Code Replacement Libraries - Simulink®”

You want to control
how code generation
technology declares,
stores, and represents
signals, tunable
parameters, block
states, and data objects
in generated code

EC only—Design
(create) and apply
custom storage classes

• rtwdemo_cscpredef

• rtwdemo_importstruct

• rtwdemo_advsc

• “Custom Storage Classes”

53-56

 Generate Target Optimizations Within Algorithm Code

Note: To simulate an algorithm that includes target-specific elements in a host
environment, you must create code that is equivalent to the target code and can run in
the host environment.

53-57

53 Optimizations for Generated Code in Simulink Coder

Remove Code for Blocks That Have No Effect on Computational
Results

This example shows how the code generator optimizes generated code by removing code
that has no effect on computational results. This optimization:

• Increases execution speed.
• Reduces ROM consumption.

Example

In the model rtwdemo_blockreduction, a Gain block of value 1.0 is in between Inport and
Outport blocks.

model = 'rtwdemo_blockreduction';

open_system(model);

Generate Code

Create a temporary folder for the build and inspection process.

currentDir=pwd;

[~,cgDir]=rtwdemodir();

Build the model.

set_param(model,'BlockReduction','off');

rtwbuild(model)

Starting build procedure for model: rtwdemo_blockreduction

Successful completion of build procedure for model: rtwdemo_blockreduction

53-58

 Remove Code for Blocks That Have No Effect on Computational Results

Here is the code from rtwdemo_blockreduction.c.

cfile = fullfile(cgDir,'rtwdemo_blockreduction_ert_rtw','rtwdemo_blockreduction.c');

rtwdemodbtype(cfile, '/* Model step function */',...

 '/* Model initialize function */', 1, 0);

/* Model step function */

void rtwdemo_blockreduction_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 * Inport: '<Root>/In1'

 */

 rtwdemo_blockreduction_Y.Out1 = 1.0 * rtwdemo_blockreduction_U.In1;

}

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the All Parameters tab, select Block reduction. This optimization is on by

default.

Alternately, use the command-line API to enable the optimization.

set_param(model,'BlockReduction','on');

Generate Code with Optimization

rtwbuild(model)

Starting build procedure for model: rtwdemo_blockreduction

Successful completion of build procedure for model: rtwdemo_blockreduction

Here is the optimized code from rtwdemo_blockreduction.c.

cfile = fullfile(cgDir,'rtwdemo_blockreduction_ert_rtw','rtwdemo_blockreduction.c');

rtwdemodbtype(cfile, '/* Model step function */',...

 '/* Model initialize function */', 1, 0);

/* Model step function */

void rtwdemo_blockreduction_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

53-59

53 Optimizations for Generated Code in Simulink Coder

 * Inport: '<Root>/In1'

 */

 rtwdemo_blockreduction_Y.Out1 = rtwdemo_blockreduction_U.In1;

}

Because multiplying the input signal by a value of 1.0 does not impact computational
results, the code generator excludes the Gain block from the generated code. Close the
model and clean up.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Block reduction” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Inline Numeric Values of Block Parameters” on page 53-43
• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on

page 53-36

53-60

 Eliminate Dead Code Paths in Generated Code

Eliminate Dead Code Paths in Generated Code

This example shows how the code generator eliminates dead (that is, unused) code paths
from generated code. This optimization increases execution speed and conserves ROM
and RAM consumption.

Example

In the model rtwdemo_deadpathElim, the signal leaving the Sum block divides into
two separate code paths. The top path is not a dead code path. If the user disables the
Assertion block, the bottom path becomes a dead code path.

model = 'rtwdemo_deadpathElim';

open_system(model);

Generate Code with an Enabled Assertion Block

1 For the Assertion block, open the block parameters dialog box.
2 Select the Enable assertion box. Alternatively, use the command-line API to enable

the Assertion block.

set_param([model '/Assert1'], 'Enabled', 'on');

Create a temporary folder for the build and inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_deadpathElim

53-61

53 Optimizations for Generated Code in Simulink Coder

Successful completion of build procedure for model: rtwdemo_deadpathElim

Because the Assertion block is enabled, these lines of rtwdemo_deadpathElim.c
include code for the Gain and Assertion blocks.

cfile = fullfile(cgDir,'rtwdemo_deadpathElim_grt_rtw','rtwdemo_deadpathElim.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize function */', 0, 1);

void rtwdemo_deadpathElim_step(void)

{

 /* Sum: '<Root>/Sum1' incorporates:

 * Constant: '<Root>/Constant1'

 * Inport: '<Root>/In1'

 */

 rtwdemo_deadpathElim_Y.Out1 = rtwdemo_deadpathElim_U.In1 + 1.0;

 /* Assertion: '<Root>/Assert1' incorporates:

 * Gain: '<Root>/G1'

 */

 utAssert(2.0 * rtwdemo_deadpathElim_Y.Out1 != 0.0);

}

Generate Code with a Disabled Assertion Block

Disable the Assertion block to generate a dead code path. The code generator detects the
dead code path and eliminates it from the generated code.

1 For the Assertion block, open the Block Parameters dialog box.
2 Deselect the Enable assertion box.

Alternatively, use the command-line API to disable the Assertion block.

set_param([model '/Assert1'], 'Enabled', 'off');

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_deadpathElim

Successful completion of build procedure for model: rtwdemo_deadpathElim

Because the Assertion block is disabled, these lines of rtwdemo_deadpathElim.c do not
include code for the Gain and Assertion blocks.

53-62

 Eliminate Dead Code Paths in Generated Code

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize function */', 0, 1);

void rtwdemo_deadpathElim_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant1'

 * Inport: '<Root>/In1'

 * Sum: '<Root>/Sum1'

 */

 rtwdemo_deadpathElim_Y.Out1 = rtwdemo_deadpathElim_U.In1 + 1.0;

}

Close the model and clean-up.

bdclose(model)

rtwdemoclean;

cd(currentDir)

For another example of how the code generator eliminates dead code paths in the
generated code, see rtwdemo_deadpath.

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Remove Code for Blocks That Have No Effect on Computational Results” on page

53-58

53-63

53 Optimizations for Generated Code in Simulink Coder

Floating-Point Multiplication to Handle a Net Slope Correction

This example shows how to use floating-point multiplication to handle a net slope
correction. When converting floating-point data types to fixed-point data types in the
generated code, a net slope correction is one method of scaling fixed-point data types.
Scaling the fixed-point data types avoids overflow conditions and minimizes quantization
errors.

For processors that support efficient multiplication, using floating-point multiplication
to handle a net slope correction improves code efficiency. If the net slope correction has a
value that is not a power of two, using division improves precision.

Note: This example requires a Fixed-Point Designer™ license.

Example

In the model rtwdemo_float_mul_for_net_slope_correction, a Convert block converts
an input signal from a floating-point data type to a fixed-point data type. The net slope
correction has a value of 3.

model = 'rtwdemo_float_mul_for_net_slope_correction';

open_system(model);

Generate Code

Create a temporary folder for the build and inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

53-64

 Floating-Point Multiplication to Handle a Net Slope Correction

rtwbuild(model)

Starting build procedure for model: rtwdemo_float_mul_for_net_slope_correction

Successful completion of build procedure for model: rtwdemo_float_mul_for_net_slope_correction

In these lines of rtwdemo_float_mul_for_net_slope_correction.c code, the code
generator divides the input signal by 3.0F .

cfile = fullfile(cgDir,'rtwdemo_float_mul_for_net_slope_correction_ert_rtw',...

 'rtwdemo_float_mul_for_net_slope_correction.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_float_mul_for_net_slope_correction_step(void)

{

 /* Outport: '<Root>/Output' incorporates:

 * DataTypeConversion: '<Root>/Data Type Conversion'

 * Inport: '<Root>/Input'

 */

 rtY.Output = (int16_T)(real32_T)floor((real_T)(rtU.Input / 3.0F));

}

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization pane, select Use floating-point multiplication to handle

net slope corrections. This optimization is on by default.

Alternatively, you can use the command-line API to enable the optimization.

set_param(model, 'UseFloatMulNetSlope', 'on');

Generate Code with Optimization

rtwbuild(model)

Starting build procedure for model: rtwdemo_float_mul_for_net_slope_correction

Successful completion of build procedure for model: rtwdemo_float_mul_for_net_slope_correction

In the optimized code, the code generator multiplies the input signal by the reciprocal of
3.0F , that is 0.333333343F .

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

53-65

53 Optimizations for Generated Code in Simulink Coder

/* Model step function */

void rtwdemo_float_mul_for_net_slope_correction_step(void)

{

 /* Outport: '<Root>/Output' incorporates:

 * DataTypeConversion: '<Root>/Data Type Conversion'

 * Inport: '<Root>/Input'

 */

 rtY.Output = (int16_T)(real32_T)floor((real_T)(rtU.Input * 0.333333343F));

}

Close the model and the code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Use floating-point multiplication to handle net slope corrections” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-

Range Values” on page 53-23
• “Subnormal Number Performance” on page 53-18

53-66

 Use Conditional Input Branch Execution

Use Conditional Input Branch Execution

This example shows how to optimize the generated code for a model that contains
Switch and Multiport Switch blocks. When you select the model configuration parameter
Conditional input branch execution, Simulink executes only blocks that compute the
control input and data input that the control input selects. This optimization improves
execution speed.

Example Model

In this example, switch paths are conditionally executed. If Switch1 control input is
true, Switch1 executes blocks grouped in the Switch1:Path1 branch. If Switch1
control input is false, Switch1 executes blocks grouped in the Switch1:Path2 branch.
If Switch1 executes blocks in the Switch1:Path2 branch and Switch2 control input is
true, Switch2 executes blocks in the Switch2:Path1 branch. If Switch2 control input
is false, Switch2 executes blocks in the Switch2:Path2 branch. The pseudo code shows
this logic.

model='rtwdemo_condinput';

open_system(model);

53-67

53 Optimizations for Generated Code in Simulink Coder

53-68

 Use Conditional Input Branch Execution

Generate Code

The Conditional input branch execution parameter is on by default. Enter the
following command-line API to turn off the parameter.

set_param(model, 'ConditionallyExecuteInputs', 'off');

Create a temporary folder for the build and inspection process.

currentDir=pwd;

[~,cgDir]=rtwdemodir();

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_condinput

Successful completion of build procedure for model: rtwdemo_condinput

View the generated code without the optimization. These lines of code are in the
rtwdemo_condinput.c file.

cfile = fullfile(cgDir,'rtwdemo_condinput_grt_rtw','rtwdemo_condinput.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_condinput_step(void)

{

 /* Switch: '<Root>/ Switch2' incorporates:

 * Constant: '<Root>/ C_10'

 * Constant: '<Root>/C_5'

 * Gain: '<Root>/ G3'

 * Inport: '<Root>/input'

 * RelationalOperator: '<Root>/Relational Operator'

 * Sum: '<Root>/ Sum'

 */

 if (rtwdemo_condinput_U.input >= -5.0) {

 rtwdemo_condinput_Y.output = 3.0 * rtwdemo_condinput_U.input;

 } else {

 rtwdemo_condinput_Y.output = rtwdemo_condinput_U.input + -10.0;

 }

 /* End of Switch: '<Root>/ Switch2' */

53-69

53 Optimizations for Generated Code in Simulink Coder

 /* Switch: '<Root>/Switch1' incorporates:

 * Constant: '<Root>/C5'

 * Inport: '<Root>/input'

 * RelationalOperator: '<Root>/Relational Operator1'

 */

 if (rtwdemo_condinput_U.input >= 5.0) {

 /* Outport: '<Root>/output' incorporates:

 * Constant: '<Root>/ C10'

 * Sum: '<Root>/ Sum1'

 */

 rtwdemo_condinput_Y.output = rtwdemo_condinput_U.input + 10.0;

 }

 /* End of Switch: '<Root>/Switch1' */

}

The generated code contains an if-else statement for the Switch1 block and an if
statement for the Switch2 block. Therefore, the generated code for Switch1:Path2
executes even if the if statement for Switch1:Path1 evaluates to true.

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the All Parameters tab, select Conditional input branch execution.

Alternatively, you can use the command-line API to enable the optimization.

set_param(model, 'ConditionallyExecuteInputs','on');

Generate Code with Optimization

rtwbuild(model)

cfile = fullfile(cgDir,'rtwdemo_condinput_grt_rtw','rtwdemo_condinput.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

Starting build procedure for model: rtwdemo_condinput

Successful completion of build procedure for model: rtwdemo_condinput

/* Model step function */

void rtwdemo_condinput_step(void)

{

 /* Switch: '<Root>/Switch1' incorporates:

 * Constant: '<Root>/C5'

 * Constant: '<Root>/C_5'

 * Inport: '<Root>/input'

53-70

 Use Conditional Input Branch Execution

 * RelationalOperator: '<Root>/Relational Operator'

 * RelationalOperator: '<Root>/Relational Operator1'

 * Switch: '<Root>/ Switch2'

 */

 if (rtwdemo_condinput_U.input >= 5.0) {

 /* Outport: '<Root>/output' incorporates:

 * Constant: '<Root>/ C10'

 * Sum: '<Root>/ Sum1'

 */

 rtwdemo_condinput_Y.output = rtwdemo_condinput_U.input + 10.0;

 } else if (rtwdemo_condinput_U.input >= -5.0) {

 /* Outport: '<Root>/output' incorporates:

 * Gain: '<Root>/ G3'

 * Switch: '<Root>/ Switch2'

 */

 rtwdemo_condinput_Y.output = 3.0 * rtwdemo_condinput_U.input;

 } else {

 /* Outport: '<Root>/output' incorporates:

 * Constant: '<Root>/ C_10'

 * Sum: '<Root>/ Sum'

 * Switch: '<Root>/ Switch2'

 */

 rtwdemo_condinput_Y.output = rtwdemo_condinput_U.input + -10.0;

 }

 /* End of Switch: '<Root>/Switch1' */

}

The generated code contains one if statement. The generated code for Switch1:Path2
only executes if the if statement evaluates to false.

Close Model and Code Generation Report

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Conditional input branch execution” (Simulink) | Multiport Switch | Switch

Related Examples
• “Optimization Tools and Techniques” on page 53-7

53-71

53 Optimizations for Generated Code in Simulink Coder

• “Eliminate Dead Code Paths in Generated Code” on page 53-61

53-72

 Optimize Generated Code for Complex Signals

Optimize Generated Code for Complex Signals

This example shows how Simulink Coder handles complex signals efficiently. To view
the data types of the signals, update the model using Simulation > Update Diagram.
Complex signals are represented as structures in generated code. Simulink Coder
performs various optimizations on these structures. For example:

• Expression Folding: Gain and Sum operations on the complex signal are folded into a
single expression.

• For-loop fusion: Two separate for-loops, one for the complex signal and one for
noncomplex signal, are combined into a single for-loop.

• Inlined block parameters: The value of Gain block "pi" is inlined in the expression of
the complex Gain-Sum.

Because of optimizations such as these, the code generated for complex and noncomplex
signals is equally efficient.

Example Model

model='rtwdemo_complex';

open_system(model);

53-73

53 Optimizations for Generated Code in Simulink Coder

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on

page 53-36
• “Disable Nonfinite Checks or Inlining for Math Functions” on page 53-30

53-74

 Speed Up Linear Algebra in Code Generated from a MATLAB Function Block

Speed Up Linear Algebra in Code Generated from a MATLAB
Function Block

To improve the execution speed of code generated for certain linear algebra functions
in a MATLAB Function block, specify that the code generator produce LAPACK calls.
LAPACK is a software library for numerical linear algebra. The code generator uses the
LAPACKE C interface to LAPACK. If you specify that you want to generate LAPACK
calls, and the input arrays for the linear algebra functions meet certain criteria, the code
generator produces the LAPACK calls. Otherwise, the code generator produces code for
the linear algebra functions.

The code generator uses the LAPACK library that you specify. Specify a LAPACK
library that is optimized for your execution environment. See www.netlib.org/lapack/
faq.html#_what_and_where_are_the_lapack_vendors_implementations.

Specify LAPACK Library

To generate LAPACK calls, you must have access to a LAPACK callback class. A
LAPACK callback class specifies the LAPACK library and LAPACKE header file for the
LAPACK calls. To indicate that you want to generate LAPACK calls and that you want
to use a specific LAPACK library, specify the name of the LAPACK callback class. In
the Configuration Parameters dialog box, in the Code Generation category, on the All
Parameters tab, set Custom LAPACK library callback to the name of the callback
class, for example, useMyLAPACK.

Write LAPACK Callback Class

To specify the locations of a particular LAPACK library and LAPACKE header file, write
a LAPACK callback class. Share the callback class with others who want to use this
LAPACK library for LAPACK calls in generated code.

The callback class must derive from the abstract class coder.LAPACKCallback. Use the
following example callback class as a template.

classdef useMyLAPACK < coder.LAPACKCallback

 methods (Static)

 function hn = getHeaderFilename()

 hn = 'mylapacke_custom.h';

 end

53-75

http://www.netlib.org/lapack
http://www.netlib.org/lapack/lapacke.html
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

53 Optimizations for Generated Code in Simulink Coder

 function updateBuildInfo(buildInfo, buildctx)

 buildInfo.addIncludePaths(fullfile(pwd,'include'));

 libName = 'mylapack';

 libPath = fullfile(pwd,'lib');

 [~,linkLibExt] = buildctx.getStdLibInfo();

 buildInfo.addLinkObjects([libName linkLibExt], libPath, ...

 '', true, true);

 buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');

 buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');

 end

 end

end

You must provide the getHeaderFilename and updateBuildInfo methods. The
getHeaderFilename method returns the LAPACKE header file name. In the example
callback class, replace mylapacke_custom.h with the name of your LAPACKE header
file. The updateBuildInfo method provides the information required for the build
process to link to the LAPACK library. Use code like the code in the template to specify
the location of header files and the full path name of the LAPACK library. In the
example callback class, replace mylapack with the name of your LAPACK library.

If your compiler supports only complex data types that are represented as structures,
include these lines in the updateBuildInfo method.

buildInfo.addDefines('HAVE_LAPACK_CONFIG_H');

buildInfo.addDefines('LAPACK_COMPLEX_STRUCTURE');

Generate LAPACK Calls by Specifying a LAPACK Callback Class

This example shows how to generate code that calls LAPACK functions in a specific
LAPACK library. For this example, assume that the LAPACK callback class
useMyLAPACK specifies the LAPACK library that you want.

1 Create a Simulink model.
2 Add a MATLAB Function block to the model.
3 In the MATLAB Function block, add code that calls a linear algebra function. For

example, add the function mysvd that calls the MATLAB function svd.

function s = mysvd(A)

 %#codegen

 s = svd(A);

end

53-76

 Speed Up Linear Algebra in Code Generated from a MATLAB Function Block

4 Add a Constant block to the left of the MATLAB Function block. Set the value to
zeros(500).

5 Add an Outport block to the right of the MATLAB Function block.
6 Connect the blocks.

7 In the Configuration Parameters dialog box, in the Code Generation category, on
the All Parameters tab, set Custom LAPACK library callback to useMyLAPACK.

The callback class must be on the MATLAB path.
8 Build the model.

If the input to mysvd is large enough, the code generator produces a LAPACK call for
svd. Here is an example of a call to the LAPACK library function for svd.

info_t = LAPACKE_dgesvd(LAPACK_COL_MAJOR, 'N', 'N', (lapack_int)500,

 (lapack_int)500, &A[0], (lapack_int)500, &S[0], NULL, (lapack_int)1, NULL,

 (lapack_int)1, &superb[0]);

Locate LAPACK Library in Execution Environment

The LAPACK library must be available in your execution environment. If your LAPACK
library is shared, use environment variables or linker options to specify the location of
the LAPACK library.

• On a Windows platform, modify the PATH environment variable.
• On a Linux platform, modify the LD_LIBRARY_PATH environment variable or use

the rpath linker option.
• On a Mac OS X, modify the DYLD_LIBRARY_PATH environment variable or use the

rpath linker option.

To specify the rpath linker option, you can use the build information addLinkFlags
method in the updateBuildInfo method of your coder.LAPACKCallback class. For
example, for a GCC compiler:

buildInfo.addLinkFlags(sprintf('-Wl,-rpath,"%s"',libPath));

53-77

53 Optimizations for Generated Code in Simulink Coder

See Also
coder.LAPACKCallback

More About
• “LAPACK Calls for Linear Algebra in a MATLAB Function Block” (Simulink)

External Websites
• www.netlib.org/lapack
• www.netlib.org/lapack/

faq.html#_what_and_where_are_the_lapack_vendors_implementations

53-78

http://www.netlib.org/lapack
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations
http://www.netlib.org/lapack/faq.html#_what_and_where_are_the_lapack_vendors_implementations

 Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block

Control Memory Allocation for Variable-Size Arrays in a MATLAB
Function Block

Dynamic memory allocation allocates memory on the heap as needed at run time, instead
of allocating memory statically on the stack. You can use dynamic memory allocation for
arrays inside a MATLAB Function block.

You cannot use dynamic memory allocation for:

• Input and output signals. Variable-size input and output signals must have an upper
bound.

• Parameters or global variables. Parameters and global variables must be fixed-size.
• Fields of bus arrays. Bus arrays cannot have variable-size fields.
• Discrete state properties of System objects associated with a MATLAB System block.

Dynamic memory allocation is beneficial when:

• You do not know the upper bound of an array.
• You do not want to allocate memory on the stack for large arrays.

Dynamic memory allocation and the freeing of this memory can result in slower
execution of the generated code. To control the use of dynamic memory allocation for
variable-size arrays in a MATLAB Function block, you can:

• Provide upper bounds for variable-size arrays.
• Disable dynamic memory allocation for MATLAB Function blocks.
• Modify the dynamic memory allocation threshold.

Provide Upper Bounds for Variable-Size Arrays

For an unbounded variable-size array, the code generator allocates memory dynamically
on the heap. For a bounded variable-size array, if the size, in bytes, is less than the
dynamic memory allocation threshold, the code generator allocates memory statically
on the stack. To avoid dynamic memory allocation, provide upper bounds for the array
dimensions so that the size of the array, in bytes, is less than the dynamic memory
allocation threshold. See “Specify Upper Bounds for Variable-Size Arrays” (Simulink).

53-79

53 Optimizations for Generated Code in Simulink Coder

Disable Dynamic Memory Allocation for MATLAB Function Blocks

By default, dynamic memory allocation for MATLAB Function blocks is enabled for
GRT-based targets and disabled for ERT-based targets. To change the setting, in the
Configuration Parameters dialog box, on the All Parameters tab, in the Simulation
Target > Advanced parameters category, clear or select the Dynamic memory
allocation in MATLAB Function blocks check box.

If you disable dynamic memory allocation, you must provide upper bounds for variable-
size arrays.

Modify the Dynamic Memory Allocation Threshold

Instead of disabling dynamic memory allocation for all variable-size arrays, you can
use the dynamic memory allocation threshold to specify when the code generator uses
dynamic memory allocation.

Use the dynamic memory allocation threshold to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static
memory allocation can speed up generated code. However, static memory allocation
can lead to unused storage space. You can decide that the unused storage space is not
a significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use
dynamic memory allocation, you can significantly reduce storage requirements.

The default value of the dynamic memory allocation threshold is 64 kilobytes. To change
the threshold, in the Configuration Parameters dialog box, on the All Parameters
tab, in the Simulation Target > Advanced parameters category, set the Dynamic
memory allocation threshold in MATLAB Function blocks parameter.

To use dynamic memory allocation for all variable-size arrays, set the threshold to 0.

More About
• “Code Generation for Variable-Size Arrays” (Simulink)
• “Specify Upper Bounds for Variable-Size Arrays” (Simulink)
• “Use Dynamic Memory Allocation for Variable-Size Arrays in a MATLAB Function

Block” (Simulink)

53-80

 Optimize Memory Usage for Time Counters

Optimize Memory Usage for Time Counters

This example shows how to optimize the amount of memory that the code generator
allocates for time counters. The example optimizes the memory that stores elapsed time,
the interval of time between two events.

The code generator represents time counters as unsigned integers. The word size of
time counters is based on the setting of the model configuration parameter Application
lifespan (days), which specifies the expected maximum duration of time the application
runs. You can use this parameter to prevent time counter overflows. The default size is
64 bits.

The number of bits that a time counter uses depends on the setting of the Application
lifespan (days) parameter. For example, if a time counter increments at a rate of 1 kHz,
to avoid an overflow, the counter has the following number of bits:

• Lifespan < 0.25 sec: 8 bits
• Lifespan < 1 min: 16 bits
• Lifespan < 49 days: 32 bits
• Lifespan > 50 days: 64 bits

A 64-bit time counter does not overflow for 590 million years.

Open Example Model

Open the example model rtwdemo_abstime.

53-81

53 Optimizations for Generated Code in Simulink Coder

The model consists of three subsystems SS1, SS2, and SS3. On the Optimization tab,
the Application lifespan (days) parameter is set to the default, which is auto.

The three subsystems contain a discrete-time integrator that requires elapsed time as
input to compute its output value. The subsystems vary as follows:

53-82

 Optimize Memory Usage for Time Counters

• SS1 - Clocked at 1 kHz. Does not require a time counter. Sample time type
parameter for trigger port is set to periodic. Elapsed time is inlined as 0.001.

• SS2 - Clocked at 100 Hz. Requires a time counter. Based on a lifespan of 1 day, a 32-
bit counter stores the elapsed time.

• SS3 - Clocked at 0.5 Hz. Requires a time counter. Based on a lifespan of 1 day, a 16-
bit counter stores the elapsed time.

Simulate the Model

Simulate the model. By default, the model is configured to show sample times in different
colors. Discrete sample times for the three subsystems appear red, green, and blue.
Triggered subsystems are blue-green.

Generate Code and Report

1. Create a temporary folder for the build and inspection process.

2. Configure the model for the code generator to use the GRT system target file and a
lifespan of inf days.

3. Build the model.

Starting build procedure for model: rtwdemo_abstime

Successful completion of build procedure for model: rtwdemo_abstime

Review Generated Code

Open the generated source file rtwdemo_abstime.c.

struct tag_RTM_rtwdemo_abstime_T {

 const char_T *errorStatus;

 /*

 * Timing:

 * The following substructure contains information regarding

 * the timing information for the model.

 */

 struct {

 uint32_T clockTick1;

 uint32_T clockTickH1;

 uint32_T clockTick2;

 uint32_T clockTickH2;

 struct {

53-83

53 Optimizations for Generated Code in Simulink Coder

 uint16_T TID[3];

 uint16_T cLimit[3];

 } TaskCounters;

 } Timing;

};

Four 32-bit unsigned integers, clockTick1 , clockTickH1 , clockTick2 , and
clockTickH2 are counters for storing the elapsed time of subsystems SS2 and SS3.

Enable Optimization and Regenerate Code

1. Reconfigure the model to set the lifespan to 1 day.

2. Build the model.

Starting build procedure for model: rtwdemo_abstime

Successful completion of build procedure for model: rtwdemo_abstime

Review the Regenerated Code

struct tag_RTM_rtwdemo_abstime_T {

 const char_T *errorStatus;

 /*

 * Timing:

 * The following substructure contains information regarding

 * the timing information for the model.

 */

 struct {

 uint32_T clockTick1;

 uint16_T clockTick2;

 struct {

 uint16_T TID[3];

 uint16_T cLimit[3];

 } TaskCounters;

 } Timing;

};

The new setting for the Application lifespan (days) parameter instructs the code
generator to set aside less memory for the time counters. The regenerated code includes:

• 32-bit unsigned integer, clockTick1, for storing the elapsed time of the task for SS2

53-84

 Optimize Memory Usage for Time Counters

• 16-bit unsigned integer, clockTick2, for storing the elapsed time of the task for SS3

Related Information

• “Optimization Pane: General” (Simulink)
• “Timers in Asynchronous Tasks” (Simulink Coder)
• “Time-Based Scheduling and Code Generation” (Simulink Coder)

More About
• “Optimization Tools and Techniques” on page 53-7
• “Control Memory Allocation for Time Counters” on page 53-11
• “Access Timers Programmatically” (Simulink Coder)
• “Generate Code for an Elapsed Time Counter” (Simulink Coder)
• “Absolute Time Limitations” (Simulink Coder)

53-85

53 Optimizations for Generated Code in Simulink Coder

Minimize Memory Requirements During Code Generation

When the code generator produces code, it creates an partial representation of your
model (called model.rtw), which the Target Language Compiler parses to transform
block computations, parameters, signals, and constant data into a high-level language,
(for example, C). Parameters and data are normally copied into the model.rtw file,
whether they originate in the model itself or come from variables or objects in a
workspace.

Models which have large amounts of parameter and constant data (such as lookup tables)
can tax memory resources and slow down code generation because of the need to copy
their data to model.rtw. You can improve code generation speed by limiting the size of
data that is copied by using a set_param command, described below.

Data vectors such as those for parameters, lookup tables, and constant blocks whose
sizes exceed a specified value are not copied into the model.rtw file. In place of the data
vectors, the code generator places a special reference key in the model.rtw file that
enables the Target Language Compiler to access the data directly from the Simulink
software and format it directly into the generated code. This results in maintaining only
one copy of large data vectors in memory.

You can specify the maximum number of elements that a parameter or other data
source can have for the code generator to represent it literally in the model.rtw file.
Whenever this threshold size is exceeded, the product writes a reference to the data to
the model.rtw file, rather than its values. The default threshold value is 10 elements,
which you can verify with

get_param(0, 'RTWDataReferencesMinSize')

To set the threshold to a different value, type the following set_param function in the
MATLAB Command Window:

set_param(0, 'RTWDataReferencesMinSize', <size>)

Provide an integer value for size that specifies the number of data elements above
which reference keys are to be used in place of actual data values.

Related Examples
• “Increase Code Generation Speed” on page 53-3

53-86

 Optimize Generated Code Using Boolean Data for Logical Signals

Optimize Generated Code Using Boolean Data for Logical Signals

Optimize generated code by storing logical signals as Boolean data. When you select
the model configuration parameter Implement logic signals as Boolean data (vs.
double), blocks that generate logic signals output Boolean signals.

The optimization:

• Reduces the ROM and RAM consumption.
• Improves execution speed.

Example Model

Consider the model rtwdemo_logicalAsBoolean. The outputs of the Relational
Operator, Logical Operator and HitCrossing blocks are double, even though they
represent logical data.

model = 'rtwdemo_logicalAsBoolean';

open_system(model);

53-87

53 Optimizations for Generated Code in Simulink Coder

Generate Code

Create a temporary folder (in your system temporary folder) for the build and inspection
process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_logicalAsBoolean

Successful completion of build procedure for model: rtwdemo_logicalAsBoolean

View the generated code without the optimization. These lines of code are in
rtwdemo_logicalAsBoolean.h.

hfile = fullfile(cgDir,'rtwdemo_logicalAsBoolean_ert_rtw',...

 'rtwdemo_logicalAsBoolean.h');

rtwdemodbtype(hfile,'/* External outputs','/* Parameters (auto storage) */',1,0);

/* External outputs (root outports fed by signals with auto storage) */

typedef struct {

 real_T Out1; /* '<Root>/Out1' */

 real_T Out2; /* '<Root>/Out2' */

 real_T Out3; /* '<Root>/Out3' */

} ExtY_rtwdemo_logicalAsBoolean_T;

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the All Parameters tab, select Implement logic signals as Boolean data (vs.

double).

Alternatively, you can use the command-line API to enable the optimization:

set_param(model,'BooleanDataType','on');

Generate Code with Optimization

The generated code stores the logical signal output as Boolean data.

Build the model.

53-88

 Optimize Generated Code Using Boolean Data for Logical Signals

rtwbuild(model)

Starting build procedure for model: rtwdemo_logicalAsBoolean

Successful completion of build procedure for model: rtwdemo_logicalAsBoolean

View the generated code with the optimization. These lines of code are in
rtwdemo_logicalAsBoolean.h.

rtwdemodbtype(hfile,'/* External outputs','/* Parameters (auto storage) */',1,0);

/* External outputs (root outports fed by signals with auto storage) */

typedef struct {

 boolean_T Out1; /* '<Root>/Out1' */

 boolean_T Out2; /* '<Root>/Out2' */

 boolean_T Out3; /* '<Root>/Out3' */

} ExtY_rtwdemo_logicalAsBoolean_T;

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Implement logic signals as Boolean data (vs. double)” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Data Types Supported by Simulink” (Simulink)
• “Use Conditional Input Branch Execution” on page 53-67
• “Bitfields” on page 13-95

53-89

53 Optimizations for Generated Code in Simulink Coder

Reduce Memory Usage for Boolean and State Configuration
Variables

1 Open the Model Configuration Parameters dialog box.
2 In the Model Configuration Parameters dialog box, select the Optimization >

Stateflow pane.
3 Choose from these options:

• Use bitsets for storing state configuration — Reduces the amount of
memory that stores state configuration variables. However, it can increase the
amount of memory that stores target code if the target processor does not include
instructions for manipulating bitsets.

• Use bitsets for storing Boolean data — Reduces the amount of memory
that stores Boolean variables. However, it can increase the amount of memory
that stores target code if the target processor does not include instructions for
manipulating bitsets.

Note: You cannot use bitsets when you generate code for these cases:

• An external mode simulation
• A target that specifies an explicit structure alignment

See Also
“Use bitsets for storing state configuration” (Simulink) | “Use bitsets for storing Boolean
data” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Optimize Generated Code Using Boolean Data for Logical Signals” on page 53-87
• “Bitfields” on page 13-95

53-90

 Customize Stack Space Allocation

Customize Stack Space Allocation

Your application might be constrained by limited memory. Controlling the maximum
allowable size for the stack is one way to modify whether data is defined as local or
global in the generated code. You can limit the use of stack space by specifying a positive
integer value for the “Maximum stack size (bytes)” (Simulink) parameter, on the
Optimization > Signals and Parameters pane of the Configuration parameter dialog
box. Specifying the maximum allowable stack size provides control over the number of
local and global variables in the generated code. Specifically, lowering the maximum
stack size might generate more variables into global structures. The number of local and
global variables help determine the required amount of stack space for execution of the
generated code.

The default setting for “Maximum stack size (bytes)” (Simulink) is Inherit from
target. In this case, the value of the maximum stack size is the smaller value of the
following: the default value set by the code generator (200,000 bytes) or the value of the
TLC variable MaxStackSize found in the system target file (ert.tlc).

To specify a smaller stack size for your application, select the Specify a value option
of the Maximum stack size (bytes) parameter and enter a positive integer value. To
specify a smaller stack size at the command line, use:

set_param(model_name, 'MaxStackSize', 65000);

Note: For overall executable stack usage metrics, you might want to do a target-specific
measurement, such as using runtime (empirical) analysis or static (code path) analysis
with object code.

It is recommended that you use the Maximum stack size (bytes) parameter to
control stack space allocation instead of modifying the TLC variable, MaxStackSize,
in the system target file. However, a target author might want to set the TLC variable,
MaxStackSize, for a target. To set MaxStackSize, use assign statements in the
system target file (ert.tlc), as in the following example.

%assign MaxStackSize = 4096

Write your %assign statements in the Configure RTW code generation settings
section of the system target file. The %assign statement is described in “Target
Language Compiler” (Simulink Coder).

53-91

53 Optimizations for Generated Code in Simulink Coder

See Also
“Maximum stack size (bytes)” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Enable and Reuse Local Block Outputs in Generated Code” on page 53-100
• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on

page 53-36
• “Inline Numeric Values of Block Parameters” on page 53-43

53-92

 Optimize Generated Code Using memset Function

Optimize Generated Code Using memset Function

This example shows how to optimize the generated code by using the memset function
to clear the internal storage. When you select the model configuration parameter Use
memset to initialize floats and doubles to 0.0, the memset function clears internal
storage, regardless of type, to the integer bit pattern 0 (that is, all bits are off).

If your compiler and target CPU both represent floating-point zero with the integer bit
pattern 0, consider setting this parameter to gain execution and ROM efficiency.

NOTE: The command-line values are the reverse of the settings values. 'on' in
the command line corresponds to clearing the setting. 'off' in the command line
corresponds to selecting the setting.

This optimization:

• Reduces ROM consumption.
• Improves execution speed.

Example Model

Consider the model matlab:rtwdemo_memset.

model = 'rtwdemo_memset';

open_system(model);

Generate Code

The code generator uses a loop to initialize the Constant block values.

Create a temporary folder (in your system temporary folder) for the build and inspection
process.

53-93

53 Optimizations for Generated Code in Simulink Coder

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_memset

Successful completion of build procedure for model: rtwdemo_memset

View the generated code without the optimization. These lines of code are in
rtwdemo_memset.c.

cfile = fullfile(cgDir,'rtwdemo_memset_grt_rtw','rtwdemo_memset.c');

rtwdemodbtype(cfile,'/* Model initialize function */',...

 '/* Model terminate function */',1,0);

/* Model initialize function */

void rtwdemo_memset_initialize(void)

{

 /* Registration code */

 /* initialize error status */

 rtmSetErrorStatus(rtwdemo_memset_M, (NULL));

 /* external outputs */

 {

 int32_T i;

 for (i = 0; i < 50; i++) {

 rtwdemo_memset_Y.Out1[i] = 0.0;

 }

 }

 {

 int32_T i;

 /* ConstCode for Outport: '<Root>/Out1' */

 for (i = 0; i < 50; i++) {

 rtwdemo_memset_Y.Out1[i] = 56.0;

 }

 /* End of ConstCode for Outport: '<Root>/Out1' */

 }

}

53-94

 Optimize Generated Code Using memset Function

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the All Parameters tab, select Use memset to initialize floats and doubles

to 0.0.

Alternatively, you can use the command-line API to enable the optimization:

set_param(model,'InitFltsAndDblsToZero','off');

Generate Code with Optimization

The code generator uses the memset function to initialize the Constant block values.

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_memset

Successful completion of build procedure for model: rtwdemo_memset

View the generated code with the optimization. These lines of code are in
rtwdemo_memset.c.

rtwdemodbtype(cfile,'/* Model initialize function */',...

 '/* Model terminate function */',1,0);

/* Model initialize function */

void rtwdemo_memset_initialize(void)

{

 /* Registration code */

 /* initialize error status */

 rtmSetErrorStatus(rtwdemo_memset_M, (NULL));

 /* external outputs */

 (void) memset(&rtwdemo_memset_Y.Out1[0], 0,

 50U*sizeof(real_T));

 {

 int32_T i;

 /* ConstCode for Outport: '<Root>/Out1' */

 for (i = 0; i < 50; i++) {

53-95

53 Optimizations for Generated Code in Simulink Coder

 rtwdemo_memset_Y.Out1[i] = 56.0;

 }

 /* End of ConstCode for Outport: '<Root>/Out1' */

 }

}

Close the model and the code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Use memset to initialize floats and doubles to 0.0” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Use memcpy Function to Optimize Generated Code for Vector Assignments” on

page 53-52
• “Vector Operation Optimization” on page 53-97
• “Remove Initialization Code” on page 56-3

53-96

 Vector Operation Optimization

Vector Operation Optimization

This example shows how Simulink® Coder™ optimizes generated code by setting block
output that generates vectors to scalars, for blocks such as the Mux, Sum, Gain, and Bus.
This optimization reduces stack memory by replacing temporary local arrays with local
variables.

Example Model

In the model, rtwdemo_VectorOptimization, the output of Gain blocks G1 and G2 are the
vector signals tmp1 and tmp2. These vectors have a width of 10.

model = 'rtwdemo_VectorOptimization';

open_system(model);

set_param(model, 'SimulationCommand', 'update')

Generate Code

Create a temporary folder (in your system temporary folder) for the build and inspection
process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model)

53-97

53 Optimizations for Generated Code in Simulink Coder

Starting build procedure for model: rtwdemo_VectorOptimization

Successful completion of build procedure for model: rtwdemo_VectorOptimization

The optimized code is in rtwdemo_VectorOptimization.c. The signals tmp1 and
tmp2 are the local variables rtb_tmp1 and rtb_tmp2.

cfile = fullfile(cgDir,'rtwdemo_VectorOptimization_grt_rtw',...

 'rtwdemo_VectorOptimization.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_VectorOptimization_step(void)

{

 int32_T i;

 real_T rtb_tmp2;

 real_T rtb_tmp1;

 real_T rtb_Sum3;

 for (i = 0; i < 10; i++) {

 /* Gain: '<Root>/G2' incorporates:

 * UnitDelay: '<Root>/X2'

 */

 rtb_tmp2 = 0.3 * rtwdemo_VectorOptimization_DW.X2_DSTATE[i];

 /* Gain: '<Root>/G1' incorporates:

 * UnitDelay: '<Root>/X1'

 */

 rtb_tmp1 = 0.2 * rtwdemo_VectorOptimization_DW.X1_DSTATE[i];

 /* Sum: '<Root>/Sum3' incorporates:

 * Gain: '<Root>/G3'

 * Inport: '<Root>/In2'

 * Sum: '<Root>/Sum1'

 * Sum: '<Root>/Sum2'

 * UnitDelay: '<Root>/X3'

 */

 rtb_Sum3 = ((rtwdemo_VectorOptimization_U.In2[i] - 0.4 *

 rtwdemo_VectorOptimization_DW.X3_DSTATE[i]) - rtb_tmp2) -

 rtb_tmp1;

 /* Outport: '<Root>/Out2' */

 rtwdemo_VectorOptimization_Y.Out2[i] = rtb_Sum3;

 /* Update for UnitDelay: '<Root>/X3' */

 rtwdemo_VectorOptimization_DW.X3_DSTATE[i] = rtb_tmp2;

53-98

 Vector Operation Optimization

 /* Update for UnitDelay: '<Root>/X2' */

 rtwdemo_VectorOptimization_DW.X2_DSTATE[i] = rtb_tmp1;

 /* Update for UnitDelay: '<Root>/X1' */

 rtwdemo_VectorOptimization_DW.X1_DSTATE[i] = rtb_Sum3;

 }

}

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on

page 53-36
• “Use memcpy Function to Optimize Generated Code for Vector Assignments” on

page 53-52

53-99

53 Optimizations for Generated Code in Simulink Coder

Enable and Reuse Local Block Outputs in Generated Code

In this section...

“Example Model” on page 53-100
“Generate Code Without Optimization” on page 53-101
“Enable Local Block Outputs and Generate Code” on page 53-101
“Reuse Local Block Outputs and Generate Code” on page 53-102

This example shows how to specify block output as local variables. The code generator
can potentially reuse these local variables in the generated code. Declaring block output
as local variables conserves ROM consumption. Reusing local variables conserves RAM
consumption, reduces data copies, and increases execution speed.

Example Model

1 Use Inport, Outport, Gain, and Switch blocks to create the following model. In this
example, the model is named local_variable_ex.

2 For G2, open the Gain Block Parameters dialog box. Enter a value of 2.
3 For G1, enter a value of 3.
4 For the Switch block, open the Block Parameters dialog box. For the Criteria for

passing first input parameter, select u2>=Threshold.

53-100

 Enable and Reuse Local Block Outputs in Generated Code

Generate Code Without Optimization

1 Open the Model Configuration Parameters dialog box. Select the Solver pane. For
the Type parameter, select Fixed-step.

2 Select the All Parameters tab and clear Signal Storage Reuse.
3 Select the Code Generation > Report pane and select Create code generation

report.
4 Select the Code Generation pane. Select Generate code only, and then, in the

model window, press Ctrl+B. When code generation is complete, an HTML code
generation report appears.

5 In the code generation report, select the local_variable_ex.c section and
view the model step function. The Gain block outputs are the global variables
local_variable_ex_B.G2 and local_variable_ex_B.G1.

/* Model step function */

void local_variable_ex_step(void)

{

 /* Switch: '<Root>/Switch' incorporates:

 * Inport: '<Root>/In1'

 */

 if (local_variable_ex_U.In1 >= 0.0) {

 /* Gain: '<Root>/G2' */

 local_variable_ex_B.G2 = 2.0 * local_variable_ex_U.In1;

 /* Outport: '<Root>/Out1' */

 local_variable_ex_Y.Out1 = local_variable_ex_B.G2;

 } else {

 /* Gain: '<Root>/G1' */

 local_variable_ex_B.G1 = 3.0 * local_variable_ex_U.In1;

 /* Outport: '<Root>/Out1' */

 local_variable_ex_Y.Out1 = local_variable_ex_B.G1;

 }

 /* End of Switch: '<Root>/Switch' */

Enable Local Block Outputs and Generate Code

1 Open the Model Configuration Parameters dialog box. On the All Parameters
tab, select Signal Storage Reuse. Signal Storage Reuse enables the following
optimization parameters:

53-101

53 Optimizations for Generated Code in Simulink Coder

• Enable local block outputs
• Reuse local block outputs
• Eliminate superfluous local variables (expression folding)

2 Clear Reuse local block outputs and Eliminate superfluous local variables
(expression folding).

3 Generate code and view the model step function. There are three local variables in
the model step function because you selected the optimization parameter Enable
Local Block Outputs. The local variables rtb_G2 and rtb_G1 hold the outputs
of the Gain blocks. The local variable rtb_Switch holds the output of the Switch
block.

/* Model step function */

void local_variable_ex_step(void)

{

 real_T rtb_Switch;

 real_T rtb_G2;

 real_T rtb_G1;

 /* Switch: '<Root>/Switch' incorporates:

 * Inport: '<Root>/In1'

 */

 if (local_variable_ex_U.In1 >= 0.0) {

 /* Gain: '<Root>/G2' */

 rtb_G2 = 2.0 * local_variable_ex_U.In1;

 rtb_Switch = rtb_G2;

 } else {

 /* Gain: '<Root>/G1' */

 rtb_G1 = 3.0 * local_variable_ex_U.In1;

 rtb_Switch = rtb_G1;

 }

 /* End of Switch: '<Root>/Switch' */

 /* Outport: '<Root>/Out1' */

 local_variable_ex_Y.Out1 = rtb_Switch;

Reuse Local Block Outputs and Generate Code

1 Open the Model Configuration Parameters dialog box. On the All Parameters tab,
select Reuse local block outputs.

53-102

 Enable and Reuse Local Block Outputs in Generated Code

2 Generate code. In the local_variable_ex.c section, view the model step function.
There is one local variable, rtb_G2, that the code generator uses three times.

/* Model step function */

void local_variable_ex_step(void)

{

 real_T rtb_G2;

 /* Switch: '<Root>/Switch' incorporates:

 * Inport: '<Root>/In1'

 */

 if (local_variable_ex_U.In1 >= 0.0) {

 /* Gain: '<Root>/G2' */

 rtb_G2 = 2.0 * local_variable_ex_U.In1;

 } else {

 /* Gain: '<Root>/G1' */

 rtb_G2 = 3.0 * local_variable_ex_U.In1;

 }

 /* End of Switch: '<Root>/Switch' */

 /* Outport: '<Root>/Out1' */

 local_variable_ex_Y.Out1 = rtb_G2;

The extra temporary variable rtb_Switch and the associated data copy is not in the
generated code.

See Also
“Enable local block outputs” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Customize Stack Space Allocation” on page 53-91
• “Signal Representation in Generated Code” (Simulink Coder)

53-103

54

Configuration in Embedded Coder

• “Specify Global Variable Localization” on page 54-2
• “Set Hardware Implementation Parameters” on page 54-4
• “Use External Mode with the ERT Target” on page 54-5

54 Configuration in Embedded Coder

Specify Global Variable Localization

When you generate code for a model, the code generator can optimize variable references
by replacing global variables with local variables. Replacing global variables with
local variables improves execution speed and reduces RAM/ROM. Creating more local
variables can increase stack usage.

Some of the global variables that the code generator can localize include:

• Global signals that cross subsystem boundaries.
• Global signals across Simulink and Stateflow domains.
• Unused global state variables.
• Redundant local Data Store Memory block signals.

To enable the global variable localization analysis:

1 In the Configuration Parameters dialog box, on the Code Generation pane, in the
System target file box, specify an ERT target.

2 Verify that the OptimizeBlockIOStorage parameter is set to ‘on’:

>> get_param(gcs,'OptimizeBlockIOStorage')

ans =

 on

3 Verify that AdvancedOptControl is not set to ‘-SLCI’:

>> get_param(gcs,'AdvancedOptControl')

ans =

 ''

4 Set the storage class for signals to Auto.

The code generator does not localize global variables for MATLAB system objects or
AUTOSAR.

See Also
“Enable local block outputs” (Simulink)

Related Examples
• “Enable and Reuse Local Block Outputs in Generated Code” on page 53-100

54-2

 Specify Global Variable Localization

• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on
page 53-36

54-3

54 Configuration in Embedded Coder

Set Hardware Implementation Parameters

Specification of target hardware device characteristics (such as word sizes for char,
short, int, and long data types, or desired rounding behaviors in integer operations)
for generated code can be critical in embedded systems development. The Hardware
Implementation category of parameters in a configuration set provides a way to control
such characteristics in simulation and code generation.

By configuring the Hardware Implementation parameters of the active configuration
set for a model to match the behaviors of your compiler and hardware, you can generate
more efficient code. For example, if you specify the Byte ordering parameter, you can
avoid generation of extra code that tests the byte ordering of the target CPU.

Before generating and deploying code, get familiar with the Hardware
Implementation pane of the Configuration Parameters dialog box. By default, target
hardware microprocessor device details are hidden. To view the details, click the Device
details arrow. See “Hardware Implementation Pane” (Simulink) in the Simulink
documentation and “Configure Run-Time Environment Options” (Simulink Coder) in the
Simulink Coder documentation for more information.

You can use the example “Configure Target Hardware Characteristics” (Simulink Coder)
to determine characteristics of your C or C++ compiler and target hardware. By using
the example model with your target development system and debugger, you can observe
the behavior of the code as it executes on the target hardware. You can then use the
information to refine hardware target device parameters for your model.

54-4

 Use External Mode with the ERT Target

Use External Mode with the ERT Target

Selecting the External mode option turns on generation of code to support external
mode communication between host (Simulink) and target systems. The Embedded Coder
software supports Simulink external mode simulation, as described in the Simulink
Coder topic “Set Up and Use Host/Target Communication Channel” (Simulink Coder).

This section discusses external mode options that may be of special interest to embedded
systems designers. The next figure shows the External mode configuration subpane
of the Configuration Parameters dialog box, Code Generation > Interface pane, with
External mode selected.

Memory Management

Consider the memory management option Static memory allocation before generating
external mode code for an embedded target. Static memory allocation is generally
desirable, as it reduces overhead and promotes deterministic performance.

When you select the Static memory allocation option, static external mode
communication buffers are allocated in the target application. When Static memory
allocation is deselected, communication buffers are allocated dynamically (with
malloc) at run time.

54-5

54 Configuration in Embedded Coder

Generation of Pure Integer Code with External Mode

The Embedded Coder software supports generation of pure integer code when external
mode code is generated. To do this, select the External mode option and deselect the
Support: floating-point numbers option on the Code Generation > Interface pane.

This selection lets you generate external mode code that is free of storage definitions of
double or float data type, and allows your code to run on integer-only processors.

If you intend to generate pure integer code with External mode on, note the following
requirements:

• All trigger signals must be of data type int32. Use a Data Type Conversion block if
needed.

• When pure integer code is generated, the simulation stop time specified in the Solver
options is ignored. To specify a stop time, run your target application from the
MATLAB command line and use the -tf option. (See “Run the External Program”
(Simulink Coder) in the Simulink Coder documentation.) If you do not specify this
option, the application executes indefinitely (as if the stop time were inf).

When executing pure integer target applications, the stop time specified by the -tf
command line option is interpreted as the number of base rate ticks to execute, rather
than as an elapsed time in seconds. The number of ticks is computed as

stop time in seconds / base rate step size in seconds

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Set Up and Use Host/Target Communication Channel” on page 41-2

54-6

55

Data Copy Reduction in Embedded
Coder

• “Optimize Global Variable Usage” on page 55-2
• “Reuse Global Block Outputs in the Generated Code” on page 55-14
• “Virtualized Output Ports Optimization” on page 55-17
• “Specify Buffer Reuse for Multiple Signals in a Path” on page 55-19
• “Specify Buffer Reuse for MATLAB Function Blocks in a Path” on page 55-24
• “Remove Data Copies by Reordering Block Operations in the Generated Code” on page

55-26

55 Data Copy Reduction in Embedded Coder

Optimize Global Variable Usage

In this section...

“Use Global to Hold Temporary Results” on page 55-2
“Minimize Global Data Access” on page 55-7

To tune your application and choose tradeoffs for execution speed and memory usage, you
can choose a global variable reference optimization for the generated code.

In the Configuration Parameters dialog box, on the All Parameters tab, in the
Optimize global data access drop-down list, three parameter options control global
variable usage optimizations.

• None. Use default optimizations. This choice works well for most models. The code
generator balances the use of local and global variables. It generates code which
balances RAM and ROM consumption and execution speed.

• Use global to hold temporary results. Reusing global variables improves
code efficiency and readability. This optimization reuses global variables, which
results in the code generator defining fewer variables. It reduces RAM and ROM
consumption and data copies.

• Minimize global data access. Using local variables to cache global data reduces
ROM consumption by reducing code size in certain cases, such as when the global
variables are scalars. This optimization improves execution speed because the
code uses fewer instructions for local variable references than for global variable
references.

Minimizing the use of global variables by using local variables interacts with stack
usage control. For example, stack size can determine the number of local and global
variables that the code generator can allocate in the generated code. For more
information, see “Customize Stack Space Allocation” (Simulink Coder).

Use Global to Hold Temporary Results

The code generator uses global and local variables when you select None versus when you
select Use global to hold temporary results.

55-2

 Optimize Global Variable Usage

Example Model

In the model matlab:rtwdemo_optimize_global_ebf, an Assignment block assigns values
coming from the Inport and Constant blocks to an output signal. The output signal feeds
into a Gain block.

model = 'rtwdemo_optimize_global_ebf';

load_system('rtwdemo_optimize_global_ebf')

Generate Code without Optimization

1 In the Configuration Parameters dialog box, on the All Parameters tab, verify that
the Signal storage reuse parameter is selected.

2 In the Configuration Parameters dialog box, for the Optimize global access
parameter, select None or enter the following command in the MATLAB Command
Window:

set_param('rtwdemo_optimize_global_ebf','GlobalVariableUsage','None');

In your system's temporary folder, create a folder for the build and inspection process:

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model);

Starting build procedure for model: rtwdemo_optimize_global_ebf

Successful completion of build procedure for model: rtwdemo_optimize_global_ebf

View the generated code without the optimization. Here is a portion of
rtwdemo_optimize_global_ebf.c.

55-3

55 Data Copy Reduction in Embedded Coder

cfile = fullfile(cgDir,'rtwdemo_optimize_global_ebf_ert_rtw',...

 'rtwdemo_optimize_global_ebf.c');

rtwdemodbtype(cfile,'/* Model step','/* Model initialize',1, 0);

/* Model step function */

void rtwdemo_optimize_global_ebf_step(void)

{

 real_T rtb_Assignment[5];

 int32_T i;

 /* Assignment: '<Root>/Assignment' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Root>/In1'

 */

 for (i = 0; i < 5; i++) {

 rtb_Assignment[i] = rtCP_Constant_Value[i];

 }

 rtb_Assignment[1] = rtU.In1;

 /* End of Assignment: '<Root>/Assignment' */

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 */

 for (i = 0; i < 5; i++) {

 rtY.Out1[i] = 2.0 * rtb_Assignment[i];

 }

 /* End of Outport: '<Root>/Out1' */

}

The code assigns values to the local vector rtb_Assignment. The last statement copies
the values in the local vector rtb_Assignment to the global vector rtY.Out1. Fewer
global variable references result in improved execution speed. The code uses more
instructions for global variable references than for local variable references.

In the Static Code Metrics Report, examine the Global Variables section.

1 In the Code Generation Report window, select Static Code Metrics Report.
2 Scroll down to the Global Variables section.
3 Select the [+] sign before each variable to expand it.

55-4

 Optimize Global Variable Usage

The total number of reads and writes for global variables is 2.

Generate Code with Optimization

In the Configuration Parameters dialog box, for the Optimize global access
parameter, select Use global to hold temporary results, or enter the following
command in the MATLAB Command Window:

set_param('rtwdemo_optimize_global_ebf',...

 'GlobalVariableUsage','Use global to hold temporary results');

Build the model.

rtwbuild(model);

Starting build procedure for model: rtwdemo_optimize_global_ebf

Successful completion of build procedure for model: rtwdemo_optimize_global_ebf

View the generated code with the optimization. Here is a portion of
rtwdemo_optimize_global_ebf.c.

cfile = fullfile(cgDir,'rtwdemo_optimize_global_ebf_ert_rtw',...

 'rtwdemo_optimize_global_ebf.c');

rtwdemodbtype(cfile,'/* Model step','/* Model initialize',1, 0);

/* Model step function */

void rtwdemo_optimize_global_ebf_step(void)

{

55-5

55 Data Copy Reduction in Embedded Coder

 int32_T i;

 /* Assignment: '<Root>/Assignment' incorporates:

 * Constant: '<Root>/Constant'

 * Inport: '<Root>/In1'

 */

 for (i = 0; i < 5; i++) {

 rtY.Out1[i] = rtCP_Constant_Value[i];

 }

 rtY.Out1[1] = rtU.In1;

 /* End of Assignment: '<Root>/Assignment' */

 /* Outport: '<Root>/Out1' incorporates:

 * Gain: '<Root>/Gain'

 */

 for (i = 0; i < 5; i++) {

 rtY.Out1[i] *= 2.0;

 }

 /* End of Outport: '<Root>/Out1' */

}

The code assigns values to the global vector rtY.Out1 without using a local variable.
This assignment improves ROM and RAM consumption and reduces data copies. The
code places the value in the destination variable for each assignment instead of copying
the value at the end. In the Static Code Metrics Report, examine the Global Variables
section.

55-6

 Optimize Global Variable Usage

As a result of using global variables to hold local results, the total number of reads and
writes for global variables has increased from 2 to 5. This optimization reduces data
copies by reusing global variables.

Close the code generation report.

rtwdemoclean;

cd(currentDir)

Minimize Global Data Access

Generate optimized code that reads from and writes to global variables less frequently.

Example Model

In the model matlab:rtwdemo_optimize_global, five signals feed into a Multiport Switch
block.

model = 'rtwdemo_optimize_global';

load_system('rtwdemo_optimize_global')

55-7

55 Data Copy Reduction in Embedded Coder

Generate Code without Optimization

1 In the Configuration Parameters dialog box, on the All Parameters tab, verify that
the Signal storage reuse parameter is selected.

2 In the Configuration Parameters dialog box, on the All Parameters tab, for the
Optimize global access parameter, select None or enter the following command in
the MATLAB Command Window:

set_param('rtwdemo_optimize_global','GlobalVariableUsage','None');

In your system's temporary folder, create a folder for the build and inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

55-8

 Optimize Global Variable Usage

rtwbuild(model);

Starting build procedure for model: rtwdemo_optimize_global

Successful completion of build procedure for model: rtwdemo_optimize_global

View the generated code without the optimization. Here is a portion of
rtwdemo_optimize_global.c.

cfile = fullfile(cgDir,'rtwdemo_optimize_global_ert_rtw',...

 'rtwdemo_optimize_global.c');

rtwdemodbtype(cfile,'/* Model step','/* Model initialize',1, 0);

/* Model step function */

void rtwdemo_optimize_global_step(void)

{

 /* MultiPortSwitch: '<Root>/Multiport Switch' incorporates:

 * Inport: '<Root>/In1'

 */

 switch ((int32_T)rtU.In1) {

 case 1:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant'

 */

 rtY.Out1 = 1.0;

 break;

 case 2:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant1'

 */

 rtY.Out1 = 2.0;

 break;

 case 3:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant2'

 */

 rtY.Out1 = 3.0;

 break;

 default:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant3'

 */

55-9

55 Data Copy Reduction in Embedded Coder

 rtY.Out1 = 4.0;

 break;

 }

 /* End of MultiPortSwitch: '<Root>/Multiport Switch' */

}

In the Static Code Metrics Report, examine the Global Variables section.

1 In the Code Generation Report window, select Static Code Metrics Report.
2 Scroll down to the Global Variables section.
3 Select the [+] sign before each variable to expand it.

The total number of reads and writes for global variables is 5.

Enable Optimization and Generate Code

On the All Parameters tab, for the Optimize global data access parameter, select
Minimize global data access or enter the following command in the MATLAB
Command Window:

set_param('rtwdemo_optimize_global',...

 'GlobalVariableUsage','Minimize global data access');

Build the model.

55-10

 Optimize Global Variable Usage

rtwbuild(model);

Starting build procedure for model: rtwdemo_optimize_global

Successful completion of build procedure for model: rtwdemo_optimize_global

View the generated code with the optimization. Here is a portion of
rtwdemo_optimize_global.c.

cfile = fullfile(cgDir,'rtwdemo_optimize_global_ert_rtw',...

 'rtwdemo_optimize_global.c');

rtwdemodbtype(cfile,'/* Model step','/* Model initialize',1, 0);

/* Model step function */

void rtwdemo_optimize_global_step(void)

{

 real_T tmp_Out1;

 /* MultiPortSwitch: '<Root>/Multiport Switch' incorporates:

 * Inport: '<Root>/In1'

 */

 switch ((int32_T)rtU.In1) {

 case 1:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant'

 */

 tmp_Out1 = 1.0;

 break;

 case 2:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant1'

 */

 tmp_Out1 = 2.0;

 break;

 case 3:

 /* Outport: '<Root>/Out1' incorporates:

 * Constant: '<Root>/Constant2'

 */

 tmp_Out1 = 3.0;

 break;

 default:

 /* Outport: '<Root>/Out1' incorporates:

55-11

55 Data Copy Reduction in Embedded Coder

 * Constant: '<Root>/Constant3'

 */

 tmp_Out1 = 4.0;

 break;

 }

 /* End of MultiPortSwitch: '<Root>/Multiport Switch' */

 /* Outport: '<Root>/Out1' */

 rtY.Out1 = tmp_Out1;

}

In rtwdemo_optimize_global.c, the code assigns a constant value to the local
variable tmp_Out1 in each case statement. The last statement in the code copies the
value of tmp_Out1 to the global variable rtY.Out1. Fewer global variable references
result in fewer instructions and improved execution speed.

In the Static Code Metrics Report, examine the Global Variables section. As a
result of minimizing global data accesses, the total number of reads and writes for global
variables has decreased from 5 to 2.

Close the code generation report.

rtwdemoclean;

cd(currentDir)

See Also
“Optimize global data access” (Simulink)

55-12

 Optimize Global Variable Usage

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on

page 53-36
• “Customize Stack Space Allocation” on page 53-91
• “Reuse Global Block Outputs in the Generated Code” on page 55-14

55-13

55 Data Copy Reduction in Embedded Coder

Reuse Global Block Outputs in the Generated Code

Reduce ROM and RAM consumption and data copies and increase execution speed of
generated code. Configure the code generator to reuse global variables by selecting the
model configuration parameter Reuse global block outputs.

Example

In the Command Window, type rtwdemo_reuse_global.

Generate Code without Optimization

1 In the Configuration Parameters dialog box, on the All Parameters tab, verify that
Signal storage reuse is selected.

2 Clear Reuse global block outputs and click Apply.
3 On the Code Generation > Report pane, select Static code metrics.
4 In your system's temporary folder, create a folder for the build and inspection

process.

Press Ctrl+B to generate code.

Starting build procedure for model: rtwdemo_reuse_global

55-14

 Reuse Global Block Outputs in the Generated Code

Successful completion of build procedure for model: rtwdemo_reuse_global

View the generated code without the optimization. Here is a portion of
rtwdemo_reuse_global.c.

/* Model step function */

void rtwdemo_reuse_global_step(void)

{

 /* Sum: '<Root>/Sum' incorporates:

 * Inport: '<Root>/In1'

 */

 rtDW.Delay_DSTATE += rtU.In1;

 /* Outport: '<Root>/Out1' */

 rtY.Out1 = rtDW.Delay_DSTATE;

}

The generated code contains a data copy to the global variable rtDW.Delay_DSTATE.
Open the Static Code Metrics Report. The total number of reads and writes for global
variables is 8. The total size is 32 bytes.

Enable Optimization and Generate Code

1 On the All Parameters tab, select Reuse global block outputs and click Apply.
2 Generate code.
3 View the generated code with the optimization. Here is a portion of

rtwdemo_reuse_global.c.

Starting build procedure for model: rtwdemo_reuse_global

Successful completion of build procedure for model: rtwdemo_reuse_global

/* Model step function */

void rtwdemo_reuse_global_step(void)

{

 /* Sum: '<Root>/Sum' incorporates:

 * Inport: '<Root>/In1'

 */

 rtY.Out1 += rtU.In1;

}

The code generator eliminates a data copy, reduces two statements to one statement and
three global variables to two global variables.

55-15

55 Data Copy Reduction in Embedded Coder

Open the Static Code Metrics Report. For global variables, this optimization reduces the
total number of reads and writes for global variables from 8 to 5 and the total size from
32 bytes to 24 bytes.

See Also
“Reuse global block outputs” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Minimize Computations and Storage for Intermediate Results at Block Outputs” on

page 53-36
• “Optimize Global Variable Usage” on page 55-2

55-16

 Virtualized Output Ports Optimization

Virtualized Output Ports Optimization

The virtualized output ports optimization lets you store the signal entering the root
output port as a global variable. Clearing the MAT-file logging option and setting
the TLC variable FullRootOutputVector to 0, both defaults for Embedded Coder,
eliminate code and data storage associated with root output ports.

Consider the model in the following block diagram. The signal exportedSig has
exportedGlobal storage class.

In the default case, the output of the Gain block is written to the signal storage location,
exportedSig. The code generator does not generate code or data for the Out1 block,
which has become a virtual block.

/* Gain Block: <Root>/Gain */

 exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where you enable MAT-file logging or set FullRootOutputVector = 1, the
generated code represents root output ports as members of an external outputs vector.

The following code fragment was generated with MAT-file logging enabled. The output
port is represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to exportedSig and to the external outputs
vector.

/* Gain Block: <Root>/Gain */

 exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Out1 */

 VirtOutPortLogON_Y.Out1 = exportedSig;

Data maintenance in the external outputs vector can be significant for smaller models
that perform benchmarks.

You can force root output ports to be stored in the external outputs vector (regardless of
the setting of MAT-file logging) by setting the TLC variable FullRootOutputVector
to 1. Add the statement

55-17

55 Data Copy Reduction in Embedded Coder

%assign FullRootOutputVector = 1

to the Embedded Coder system target file. Alternatively, you can enter the assignment
from the MATLAB command line using the set_param command, the model parameter
TLCOptions, and the TLC option -a. For more information, see “Specify TLC for Code
Generation” (Simulink Coder) and “Configure TLC” (Simulink Coder).

For more information on how to control signal storage in generated code, see “Signal
Representation in Generated Code” (Simulink Coder).

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Specify Buffer Reuse for Multiple Signals in a Path” on page 55-19
• “Optimize Global Variable Usage” on page 55-2

55-18

 Specify Buffer Reuse for Multiple Signals in a Path

Specify Buffer Reuse for Multiple Signals in a Path
If your model has the optimal parameter settings for removing data copies, you may be
able to remove additional data copies by using Simulink.Signal objects to specify buffer
reuse. You specify signal objects on signal lines after studying the generated code and
the Static Code Metrics Report and identifying areas where you think buffer reuse is
possible.

You can specify buffer reuse for multiple signals in a path that can include the root
inport and outport signals. You can also specify reuse on just a pair of root inport and
outport signals. This optimization reduces ROM and RAM consumption because there
are less global variables and data copies in the generated code. Code execution speed also
increases.

Example Model

The model rtwdemo_reusable_csc_scheduling contains the nonreusable subsystems
LPSub and HPSub and the reusable subsystems MaxSub1 and MaxSub2.

model ='rtwdemo_reusable_csc_scheduling';

open_system(model);

set_param(model,'IncludeMdlTerminateFcn', 'on');

55-19

55 Data Copy Reduction in Embedded Coder

Specify a Simulink Signal Object for Reuse

1 Open the base workspace. The Simulink signal object reuse is for specifying which
buffers to reuse in the generated code. To use a Simulink signal object for buffer
reuse, the object must have a Storage class of Reusable (Custom).

2 Right-click one of the signal lines that has the signal name reuse.
3 Specify a name for the Signal name parameter and select the checkbox Signal

name must resolve to Simulink signal object.

Generate Code

Build the model.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

rtwbuild(model);

Starting build procedure for model: rtwdemo_reusable_csc_scheduling

Successful completion of build procedure for model: rtwdemo_reusable_csc_scheduling

The rtwdemo_reusable_csc_rescheduling.c file contains this global variable for
buffer reuse.

/* Definition for custom storage class: Reusable */

real_T reuse[256];

The rtwdemo_reusable_csc_scheduling_step function contains this code.

cfile = fullfile(cgDir,'rtwdemo_reusable_csc_scheduling_ert_rtw','rtwdemo_reusable_csc_scheduling.c');

rtwdemodbtype(cfile,'/* Model step function', '/* Model initialize function ', 1, 0);

/* Model step function */

void rtwdemo_reusable_csc_scheduling_step(void)

{

 /* FunctionCaller: '<Root>/Function Caller' incorporates:

 * Inport: '<Root>/SigIn'

 */

 f(rtU.SigIn, (&(reuse[0])));

 /* Outputs for Atomic SubSystem: '<Root>/MaxSub1' */

55-20

 Specify Buffer Reuse for Multiple Signals in a Path

 /* Constant: '<Root>/Constant' incorporates:

 * Outport: '<Root>/AvgOut'

 */

 MaxSub1((&(reuse[0])), 0.0, rtY.AvgOut);

 /* End of Outputs for SubSystem: '<Root>/MaxSub1' */

 /* Outputs for Atomic SubSystem: '<Root>/LPSub' */

 LPSub();

 /* End of Outputs for SubSystem: '<Root>/LPSub' */

 /* Outputs for Atomic SubSystem: '<Root>/MaxSub2' */

 /* Outport: '<Root>/AvgOut' */

 MaxSub2((&(reuse[0])), rtY.AvgOut, rtY.AvgOut);

 /* End of Outputs for SubSystem: '<Root>/MaxSub2' */

 /* Outputs for Atomic SubSystem: '<Root>/HPSub' */

 HPSub();

 /* End of Outputs for SubSystem: '<Root>/HPSub' */

}

All five functions in the rtwdemo_reusable_csc_scheduling_step function can
reuse the variable reuse because calls to functions MaxSub1 and MaxSub2 happen
before calls to function LPSub and HPSub, respectively.

bdclose(model)

rtwdemoclean;

cd(currentDir)

Buffer Reuse for Unit Delay and Delay Blocks

To reuse the signal of a Unit Delay or Delay block

1 Use the same reusable custom storage class specification for a pair of input and state
arguments or a pair of output and state arguments of a Unit Delay block or a Delay
block.

2 Open the Unit Delay or Delay block parameters dialog box.
3 On the State Attributes tab, set the State name parameter to the name of the

Simulink.signal that you want to reuse.

55-21

55 Data Copy Reduction in Embedded Coder

4 On the State Attributes tab, select Signal name must resolve to Simulink
signal object.

5 On the Main tab, the Delay length parameter must have a value of 1. The Initial
condition > Source parameter must be set to Dialog.

Limitations for Root Inport and Outport Signals

The following limitations apply to a model in which you specify buffer reuse for a pair of
root inport and outport signals.

• The output ports cannot be conditional.
• If the code generator cannot reuse the same buffer in a top model, the generated code

contains additional buffers. If the same model is a reference model, the code generator
reports an error. To resolve the error, remove the Simulink.signal specification from
the signal that connects to the outport port.

• When you run an executable produced by code generation, and you reuse a pair of root
inport and outport signals, when the root input value is zero, the root output value
must also be zero. If the output value is nonzero and you reuse the signals, then the
results from the simulation can differ from the results produced by the executable.

Limitations for the Model

The following limitations apply to a model in which you specify buffer reuse for signals.

• Signals that you specify for reuse must have the same data types and sampling rates.
• For user-specified buffer reuse, blocks that modify a signal specified for reuse must

execute before blocks that use the original signal value. Sometimes the code generator
has to change the block operation order so that buffer reuse can occur. For models in
which the code generator is unable to reorder block operations, buffer reuse does not
occur.

• For models in which the code generator reorders block operations so that
Simulink.Signal reuse can occur, you can observe the difference in the sorted
order. In the model window, select Display > Blocks > Sorted Execution Order.
To display the sorted execution order during simulation, select Simulation > Update
Diagram. To display the execution order in the generated code, select Code > C/C++
Code > Build Model.

Related Examples
• “Optimization Tools and Techniques” on page 53-7

55-22

 Specify Buffer Reuse for Multiple Signals in a Path

• “Control Signals and States in Code by Applying Storage Classes” (Simulink Coder)
• “Simulink Package Custom Storage Classes” on page 23-5
• “Virtualized Output Ports Optimization” on page 55-17
• “Design Data Interface by Configuring Inport and Outport Blocks” on page 19-134

55-23

55 Data Copy Reduction in Embedded Coder

Specify Buffer Reuse for MATLAB Function Blocks in a Path

In this section...

“Example Model” on page 55-24
“Generate Code with Optimization” on page 55-24

You can specify buffer reuse across MATLAB Function blocks by using the same variable
name for the input and output arguments. The code generator tries to reuse the output
of one MATLAB Function block as the input to the next MATLAB Function block. This
optimization conserves RAM and ROM consumption and reduces data copies.

Example Model

1 Use Inport, Outport, and MATLAB Function blocks to create the model
mf_inplace.

2 Open each MATLAB Function block and copy the following code:

function y = fcn(y)

%#codegen

y=y+4;

3 Open the Configuration Parameters dialog box. On the Code Generation tab,
change the System target file to ert.tlc.

4 On the Solver tab, change the Type parameter to Fixed-step.

Generate Code with Optimization

Generate code for the model. The mf_inplace.c file contains this code:

void mf_inplace_MATLABFunction(real_T *rty_y)

55-24

 Specify Buffer Reuse for MATLAB Function Blocks in a Path

{

 *rty_y += 4.0;

}

void mf_inplace_step(void)

{

 real_T rtb_y_p5;

 rtb_y_p5 = mf_inplace_U.In1;

 mf_inplace_MATLABFunction(&rtb_y_p5);

 mf_inplace_MATLABFunction(&rtb_y_p5);

 mf_inplace_MATLABFunction(&rtb_y_p5);

 mf_inplace_Y.Out1 = rtb_y_p5;

 mf_inplace_MATLABFunction(&mf_inplace_Y.Out1);

}

The code generator reuses the variable rtb_y_p5 for the input and output arguments of
each MATLAB Function block.

Note: On the Code Generation tab in the Subsystem Block Parameters dialog box,
if the Function packaging parameter is set to Nonreusable function and the
Function interface parameter is set to Allow arguments, the code generator cannot
reuse the input and output arguments.

Related Examples
• “What Is a MATLAB Function Block?” (Simulink)
• “Specify Buffer Reuse for Multiple Signals in a Path” on page 55-19

55-25

55 Data Copy Reduction in Embedded Coder

Remove Data Copies by Reordering Block Operations in the
Generated Code

This example shows how to remove data copies by reordering block operations in the
generated code. This optimization conserves RAM and ROM consumption and improves
code execution speed.

Example Model

In the model matlab:rtwdemo_optimizeblockorder, the signal that leaves the Sum block
enters a Subtract block and a Concatenate block. The signal that leaves the Subtract
block enters a Product block and a Sum of Elements block.

Generate Code without Optimization

In your system's temporary folder, create a folder for the build and inspection process
and build the model.

Starting build procedure for model: rtwdemo_optimizeblockorder

Successful completion of build procedure for model: rtwdemo_optimizeblockorder

The image shows the default block order in the generated code. The Subtract block
executes before the Concatenate block. The Product block executes before the Sum of
Elements block.

55-26

 Remove Data Copies by Reordering Block Operations in the Generated Code

View the generated code without the optimization. Here is
rtwdemo_optimizeblockorder.c.

/* Model step function */

void rtwdemo_optimizeblockorder_step(void)

{

 real_T rtb_Sum2x3[6];

 int32_T i;

 real_T rtb_Sum2x3_d;

 real_T rtb_Subtract;

 /* Sum: '<Root>/SumOfElements' */

 rtY.Out2 = -0.0;

 for (i = 0; i < 6; i++) {

 /* Sum: '<Root>/Sum2x3' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 */

 rtb_Sum2x3_d = rtU.In1[i] + rtU.In2;

55-27

55 Data Copy Reduction in Embedded Coder

 /* Sum: '<Root>/Subtract' incorporates:

 * Inport: '<Root>/In3'

 */

 rtb_Subtract = rtb_Sum2x3_d - rtU.In3;

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In4'

 * Product: '<Root>/Product'

 */

 rtY.Out1[i] = rtU.In4[i] * rtb_Subtract;

 /* Sum: '<Root>/Sum2x3' */

 rtb_Sum2x3[i] = rtb_Sum2x3_d;

 /* Sum: '<Root>/SumOfElements' */

 rtY.Out2 += rtb_Subtract;

 }

 /* Concatenate: '<Root>/MatrixConcat ' */

 for (i = 0; i < 3; i++) {

 /* Outport: '<Root>/Out3' incorporates:

 * Inport: '<Root>/In5'

 */

 rtY.Out3[i << 2] = rtb_Sum2x3[i << 1];

 rtY.Out3[2 + (i << 2)] = rtU.In5[i << 1];

 rtY.Out3[1 + (i << 2)] = rtb_Sum2x3[(i << 1) + 1];

 rtY.Out3[3 + (i << 2)] = rtU.In5[(i << 1) + 1];

 }

 /* End of Concatenate: '<Root>/MatrixConcat ' */

}

With the default order, the generated code contains three buffers, rtb_Sum2x3[6],
rtb_Sum2x3_d, and rtb_Subtract. The generated code contains these temporary
variables and associated data copies because the Matrix Concatenate block must use the
output from the Sum block and the Sum of Elements block must use the output from the
Subtract block.

Generate Code with Optimization

1 In the Configuration Parameters dialog box, change the Optimize block order in
the generated code parameter to Improved Execution Speed.

2 Generate code for the model.

55-28

 Remove Data Copies by Reordering Block Operations in the Generated Code

Starting build procedure for model: rtwdemo_optimizeblockorder

Successful completion of build procedure for model: rtwdemo_optimizeblockorder

The image shows the optimized block order in the generated code. The Subtract block
executes after the Concatenate block. The Product block executes after the Sum of
Elements block.

View the generated code with the optimization. Here is
rtwdemo_optimizeblockorder.c.

/* Model step function */

void rtwdemo_optimizeblockorder_step(void)

{

 int32_T i;

 /* Sum: '<Root>/Sum2x3' incorporates:

 * Inport: '<Root>/In1'

 * Inport: '<Root>/In2'

 */

55-29

55 Data Copy Reduction in Embedded Coder

 for (i = 0; i < 6; i++) {

 rtY.Out1[i] = rtU.In1[i] + rtU.In2;

 }

 /* End of Sum: '<Root>/Sum2x3' */

 /* Concatenate: '<Root>/MatrixConcat ' */

 for (i = 0; i < 3; i++) {

 /* Outport: '<Root>/Out3' incorporates:

 * Inport: '<Root>/In5'

 */

 rtY.Out3[i << 2] = rtY.Out1[i << 1];

 rtY.Out3[2 + (i << 2)] = rtU.In5[i << 1];

 rtY.Out3[1 + (i << 2)] = rtY.Out1[(i << 1) + 1];

 rtY.Out3[3 + (i << 2)] = rtU.In5[(i << 1) + 1];

 }

 /* End of Concatenate: '<Root>/MatrixConcat ' */

 /* Sum: '<Root>/SumOfElements' */

 rtY.Out2 = -0.0;

 for (i = 0; i < 6; i++) {

 /* Sum: '<Root>/Subtract' incorporates:

 * Inport: '<Root>/In3'

 */

 rtY.Out1[i] -= rtU.In3;

 /* Sum: '<Root>/SumOfElements' */

 rtY.Out2 += rtY.Out1[i];

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In4'

 * Product: '<Root>/Product'

 */

 rtY.Out1[i] *= rtU.In4[i];

 }

}

In the optimized code, the three buffers rtb_Sum2x3[6], rtb_Sum2x3_d, and
rtb_Subtract and their associated data copies are gone. The generated code does not
require these temporary variables to hold the outputs of the Sum and Subtract blocks
because the Subtract block executes after the Concatenate block and the Product block
executes after the Sum of Elements block.

55-30

 Remove Data Copies by Reordering Block Operations in the Generated Code

To implement buffer reuse, the code generator does not violate user-specified block
priorities.

See Also
“Optimize block operation order in the generated code” (Simulink)

Related Examples
• “Data Copy Reduction”

55-31

56

Execution Speed in Embedded Coder

• “Reduce Memory Requirements for Signals” on page 56-2
• “Remove Initialization Code” on page 56-3
• “Eliminate Zero Initialization Code for Internal Data” on page 56-5
• “Generate Pure Integer Code If Possible” on page 56-8
• “Disable MAT-File Logging” on page 56-9
• “Simplify Multiply Operations in Array Indexing” on page 56-10
• “Replace boolean with Specific Integer Data Type” on page 56-14
• “Remove Code That Guards Against Division Exceptions for Integers and Fixed-Point

Data” on page 56-17
• “Division Arithmetic Exceptions in Generated Code” on page 56-21
• “Optimize Generated Code by Consolidating Redundant If-Else Statements” on page

56-23
• “Remove Initialization Code for Root-Level Inports and Outports Set to Zero” on page

56-28
• “Optimize Generated Code for Fixed-Point Data Operations” on page 56-32

56 Execution Speed in Embedded Coder

Reduce Memory Requirements for Signals

To reduce the memory requirements of your real-time program, select the configuration
parameter Signal storage reuse. Selecting Signal storage reuse enables parameters
that provide the capability to reuse memory allocated for signals: Reuse local block
outputs, Reuse global block outputs, and Optimize global data access. Clearing
Signal storage reuse makes all block outputs global and unique, which often
significantly increases RAM and ROM usage.

When you select Reuse local block outputs, the code generator reuses local (function)
variables for block outputs wherever possible. When you select Reuse global block
outputs, the code generator reuses global (function) variables wherever possible.

The Optimize global data access parameter has the following settings None, Use
global to hold temporary results, and Minimize global data access. When
you select None, the code generator uses the default optimizations. The setting Use
global to hold temporary results maximizes the use of global variables. The
setting Minimize global data access minimizes the use of global variables by using
local variables to hold intermediate values.

Related Examples
• “Enable and Reuse Local Block Outputs in Generated Code” (Simulink Coder)
• “Reuse Global Block Outputs in the Generated Code” on page 55-14
• “Optimize Global Variable Usage” on page 55-2

56-2

 Remove Initialization Code

Remove Initialization Code

Consider selecting the “Remove root level I/O zero initialization” (Simulink) and “Remove
internal data zero initialization” (Simulink) options on the Optimization > General
pane.

These options (both off by default) control whether internal data (block states and block
outputs) and external data (root inports and outports whose value is zero) are initialized.
Initializing the internal and external data whose value is zero is a precaution and your
application might not require it. Many embedded application environments initialize
RAM to zero at startup, making generation of initialization code redundant.

However, be aware that if you select Remove internal data zero initialization,
memory might not be in a known state each time the generated code begins execution. If
you turn the option on, running a model (or a generated S-function) multiple times can
result in different answers for each run.

This behavior is sometimes desirable. For example, you can turn on Remove internal
data zero initialization if you want to test the behavior of your design during a warm
boot (that is, a restart without full system reinitialization).

In cases where you have turned on Remove internal data zero initialization but
still want to get the same answer on every run from an S-function produced by the code
generator, you can use either of the following MATLAB commands before each run:

clear SFcnName

where SFcnName is the name of the S-function, or

clear mex

A related option, Use memset to initialize floats and doubles, lets you control the
representation of zero used during initialization. See “Use memset to initialize floats and
doubles to 0.0” (Simulink).

Note that the code still initializes data structures whose value is not zero when Remove
internal data zero initialization and Remove root level I/O zero initialization are
selected.

Note also that data of ImportedExtern or ImportedExternPointer storage classes
are not initialized, regardless of the settings of these options.

56-3

56 Execution Speed in Embedded Coder

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Eliminate Zero Initialization Code for Internal Data” on page 56-5
• “Remove Initialization Code for Root-Level Inports and Outports Set to Zero” on

page 56-28
• “Optimize Generated Code Using memset Function” on page 53-93

56-4

 Eliminate Zero Initialization Code for Internal Data

Eliminate Zero Initialization Code for Internal Data

This example shows how to eliminate generated code that initializes internal data with
zeroes, for example global DWork vectors, to reduce the size of the code and to accelerate
model initialization.

Overview

During model initialization, generated code can initialize internal data by using
assignments to zero. DWork vectors are an example of internal data.

If the data are global variables in the generated code, and if the target environment
already initializes global variables with zeroes, you can remove the corresponding lines of
model initialization code.

This optimization removes unnecessary zero initialization code, providing these benefits:

• Reduction in size of generated code
• Increased execution speed of generated code

Open Example Model

Open the model rtwdemo_internal_init. The model contains an enabled subsystem whose
initial output is zero. The subsystem contains a Unit Delay block whose initial condition
is 0.

Generate Code Without Optimization

Build the model using Embedded Coder.

56-5

56 Execution Speed in Embedded Coder

Starting build procedure for model: rtwdemo_internal_init

Successful completion of build procedure for model: rtwdemo_internal_init

View the following code from the generated file rtwdemo_internal_init.c.

/* Model initialize function */

void rtwdemo_internal_init_initialize(void)

{

 /* Registration code */

 /* initialize error status */

 rtmSetErrorStatus(rtM, (NULL));

 /* states (dwork) */

 (void) memset((void *)&rtDWork, 0,

 sizeof(D_Work));

 /* SystemInitialize for Enabled SubSystem: '<Root>/Enabled Subsystem' */

 /* InitializeConditions for UnitDelay: '<S1>/Unit Delay' */

 rtDWork.UnitDelay_DSTATE = 0.0;

 /* End of SystemInitialize for SubSystem: '<Root>/Enabled Subsystem' */

}

/*

Enable Optimization

Open the Configuration Parameters dialog box. On the Optimization pane, select
Remove internal data zero initialization.

Alternatively, you can use the command prompt to enable the optimization. To enable the
optimization, set the model parameter ZeroInternalMemoryAtStartup to 'off'.

set_param(model, 'ZeroInternalMemoryAtStartup', 'off');

Generate Code with Optimization

Build the model using Embedded Coder.

Starting build procedure for model: rtwdemo_internal_init

Successful completion of build procedure for model: rtwdemo_internal_init

View the following code from the file rtwdemo_internal_init.c. The generated code
does not initialize internal data by assignment to zero.

56-6

 Eliminate Zero Initialization Code for Internal Data

/* Model initialize function */

void rtwdemo_internal_init_initialize(void)

{

 /* (no initialization code required) */

}

/*

See Also
“Remove internal data zero initialization” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Remove Initialization Code” on page 56-3

56-7

56 Execution Speed in Embedded Coder

Generate Pure Integer Code If Possible

If your application uses only integer arithmetic, clear the Support floating-point
numbers option in the Software environment section of the Interface pane so that
the generated code contains no floating-point data or operations. When this option is
cleared, an error is raised if noninteger data or expressions are encountered during code
generation. The error message reports the offending blocks and parameters.

See Also
“Support: floating-point numbers” (Simulink Coder)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Data Types Supported by Simulink” (Simulink)

56-8

 Disable MAT-File Logging

Disable MAT-File Logging

Disable MAT-file logging by clearing Configuration Parameters > All Parameters
> MAT-file logging. This setting is the default, and is recommended for embedded
applications because it eliminates the extra code and memory usage required to
initialize, update, and clean up logging variables. In addition to these efficiencies,
clearing the MAT-file logging parameter lets you exploit further efficiencies under
certain conditions. See “Virtualized Output Ports Optimization” on page 55-17 for
information.

Note also that code generated to support MAT-file logging invokes malloc, which can be
undesirable for your application.

See Also
“MAT-file logging” (Simulink Coder)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Virtualized Output Ports Optimization” on page 55-17

56-9

56 Execution Speed in Embedded Coder

Simplify Multiply Operations in Array Indexing

In this section...

“Example Model” on page 56-10
“Generate Code” on page 56-11
“Generate Code with Optimization” on page 56-11

The generated code might have multiply operations when indexing an element of an
array. You can select the optimization parameter “Simplify array indexing” (Simulink)
to replace multiply operations in the array index with a temporary variable. This
optimization can improve execution speed by reducing the number of times the multiply
operation executes.

Example Model

If you have the following model:

The Constant blocks have the following Constant value:

• Const1: reshape(1:30,[1 5 3 2])
• Const2: reshape(1:20,[1 5 2 2])
• Const3: reshape(1:90,[1 5 9 2])

56-10

 Simplify Multiply Operations in Array Indexing

The Concatenate block parameter Mode is set to Multidimensional array. The
Constant blocks Sample time parameter is set to –1.

Generate Code

Building the model with the Simplify array indexing parameter turned off generates
the following code:

int32_T i;

int32_T i_0;

int32_T i_1;

for (i = 0; i < 2; i++) {

 for (i_1 = 0; i_1 < 3; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + 5 * i_1) + 70 * i] =

 ex_arrayindex_P.Constant1_Value[(5 * i_1 + i_0) + 15 * i];

 }

 }

}

for (i = 0; i < 2; i++) {

 for (i_1 = 0; i_1 < 2; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + 5 * (i_1 + 3)) + 70 * i] =

 ex_arrayindex_P.Constant2_Value[(5 * i_1 + i_0) + 10 * i];

 }

 }

}

for (i = 0; i < 2; i++) {

 for (i_1 = 0; i_1 < 9; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + 5 * (i_1 + 5)) + 70 * i] =

 ex_arrayindex_P.Constant3_Value[(5 * i_1 + i_0) + 45 * i];

 }

 }

}

Generate Code with Optimization

Open the Configuration Parameters dialog box and select the Simplify array indexing
parameter on the All Parameters tab. Build the model again. In the generated code,

56-11

56 Execution Speed in Embedded Coder

[(i_0 + tmp_1) + tmp] replaces a multiply operation in the array index, [(i_0 + 5
* i_1) + 70 * i]. The generated code is now:

int32_T i;

int32_T i_0;

int32_T i_1;

int32_T tmp;

int32_T tmp_0;

int32_T tmp_1;

tmp = 0;

tmp_0 = 0;

for (i = 0; i < 2; i++) {

 tmp_1 = 0;

 for (i_1 = 0; i_1 < 3; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[(i_0 + tmp_1) + tmp] =

 ex_arrayindex_P.Constant1_Value[(i_0 + tmp_1) + tmp_0];

 }

 tmp_1 += 5;

 }

 tmp += 70;

 tmp_0 += 15;

}

tmp = 0;

tmp_0 = 0;

for (i = 0; i < 2; i++) {

 tmp_1 = 0;

 for (i_1 = 0; i_1 < 2; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[((i_0 + tmp_1) + tmp) + 15] =

 ex_arrayindex_P.Constant2_Value[(i_0 + tmp_1) + tmp_0];

 }

 tmp_1 += 5;

 }

 tmp += 70;

 tmp_0 += 10;

}

56-12

 Simplify Multiply Operations in Array Indexing

tmp = 0;

tmp_0 = 0;

for (i = 0; i < 2; i++) {

 tmp_1 = 0;

 for (i_1 = 0; i_1 < 9; i_1++) {

 for (i_0 = 0; i_0 < 5; i_0++) {

 ex_arrayindex_Y.Out[((i_0 + tmp_1) + tmp) + 25] =

 ex_arrayindex_P.Constant3_Value[(i_0 + tmp_1) + tmp_0];

 }

 tmp_1 += 5;

 }

 tmp += 70;

 tmp_0 += 45;

}

See Also
“Simplify array indexing” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Use memcpy Function to Optimize Generated Code for Vector Assignments” on

page 53-52
• “Vector Operation Optimization” on page 53-97

56-13

56 Execution Speed in Embedded Coder

Replace boolean with Specific Integer Data Type

Depending on the architecture of the processor that your production hardware uses, you
can improve the execution speed of generated code. Select a specific integer data type to
use for the built-in type boolean. Using data type replacement, in the generated code
you can replace the boolean built-in data type with one of these integer types:

• int8

• uint8

• intn

Replace n with 8, 16, or 32 to match the integer word size for the production hardware.

This example shows how to replace the data type boolean with the integer data type
int32 in the code generated for a 32-bit hardware target.

1 Define a Simulink.AliasType object with a base type of int32. Name the object
using the replacement name that you want to appear in the generated code.

mybool = Simulink.AliasType;

mybool.BaseType = 'int32';

2 Open an ERT-based model. In the Configuration Parameters dialog box Data
Type Replacement pane, specify the Replacement Name field for the data type
boolean as mybool.

56-14

 Replace boolean with Specific Integer Data Type

View the generated file rtwtypes.h. The code maps the identifier mybool to the native
integer type of the target hardware by creating typedef statements.

/* Generic type definitions ... */

...

typedef int boolean_T;

 ...

/* Define Simulink Coder replacement data types. */

typedef boolean_T mybool; /* User defined replacement datatype for boolean_T */

View the generated file model.c. The code declares Boolean variables using the type
mybool. For example, if the model has a Boolean output Out1, the generated code
declares the corresponding variable using mybool.

 mybool Out1; /* '<Root>/Out1' */

See Also
Simulink.AliasType

Related Examples
• “Data Type Replacement” on page 21-36

56-15

56 Execution Speed in Embedded Coder

More About
• “What Are User-Defined Data Types?” on page 21-2

56-16

 Remove Code That Guards Against Division Exceptions for Integers and Fixed-Point Data

Remove Code That Guards Against Division Exceptions for Integers
and Fixed-Point Data

Optimize generated code by removing code that protects against division by zero and
overflows in division INT_MIN/-1 operations for integers and fixed-point data. If you are
sure that these arithmetic exceptions do not occur during program execution, enable this
optimization.

This optimization:

• Increases execution speed.
• Reduces ROM consumption.

NOTE: If you enable this optimization, it is possible that simulation results and
results from generated code are not in bit-for-bit agreement. This example requires an
Embedded Coder® license.

Example Model

In the model rtwdemo_nzcheck, two signals of type int8 feed into a divide block.

model = 'rtwdemo_nzcheck';

open_system(model);

56-17

56 Execution Speed in Embedded Coder

Generate Code

In your system's temporary folder, create a temporary folder for the build and inspection
process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

set_param(model, 'NoFixptDivByZeroProtection', 'off');

rtwbuild(model);

Starting build procedure for model: rtwdemo_nzcheck

Successful completion of code generation for model: rtwdemo_nzcheck

View the generated code without the optimization. Here is a portion of
rtwdemo_nzcheck.c.

cfile = fullfile(cgDir,'rtwdemo_nzcheck_ert_rtw','rtwdemo_nzcheck.c');

rtwdemodbtype(cfile,'/* Real-time model','/* Model step function',1, 1);

56-18

 Remove Code That Guards Against Division Exceptions for Integers and Fixed-Point Data

/* Real-time model */

RT_MODEL_rtwdemo_nzcheck rtwdemo_nzcheck_M_;

RT_MODEL_rtwdemo_nzcheck *const rtwdemo_nzcheck_M = &rtwdemo_nzcheck_M_;

int32_T div_s32(int32_T numerator, int32_T denominator)

{

 int32_T quotient;

 uint32_T tempAbsQuotient;

 if (denominator == 0) {

 quotient = numerator >= 0 ? MAX_int32_T : MIN_int32_T;

 /* Divide by zero handler */

 } else {

 tempAbsQuotient = (numerator < 0 ? ~(uint32_T)numerator + 1U : (uint32_T)

 numerator) / (denominator < 0 ? ~(uint32_T)denominator +

 1U : (uint32_T)denominator);

 quotient = (numerator < 0) != (denominator < 0) ? -(int32_T)tempAbsQuotient :

 (int32_T)tempAbsQuotient;

 }

 return quotient;

}

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization pane, select Remove code that protects against division

arithmetic exceptions.

Alternatively, you may use the command-line API to enable the optimization:

set_param(model, 'NoFixptDivByZeroProtection', 'on');

Generate Code with Optimization

The optimized code does not contain code that checks for whether or not the divisor has a
value of zero.

Build the model.

rtwbuild(model);

Starting build procedure for model: rtwdemo_nzcheck

Successful completion of code generation for model: rtwdemo_nzcheck

56-19

56 Execution Speed in Embedded Coder

The following is a portion of rtwdemo_nzcheck.c. The code that protects against
division arithmetic exceptions is not in the generated code.

rtwdemodbtype(cfile,'/* Real-time model','/* Model step function',1, 1);

/* Real-time model */

RT_MODEL_rtwdemo_nzcheck rtwdemo_nzcheck_M_;

RT_MODEL_rtwdemo_nzcheck *const rtwdemo_nzcheck_M = &rtwdemo_nzcheck_M_;

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Remove code that protects against division arithmetic exceptions” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-

Range Values” on page 53-23
• “Remove Code That Maps NaN to Integer Zero” on page 53-26
• “Division Arithmetic Exceptions in Generated Code” on page 56-21

56-20

 Division Arithmetic Exceptions in Generated Code

Division Arithmetic Exceptions in Generated Code

The Remove code that protects against division arithmetic exceptions parameter
in the Optimization pane of the Configuration Parameters dialog box controls the
generation of code that protects against division arithmetic exceptions in integer and
fixed-point operations. Division arithmetic exceptions include division by zero and
INT_MIN/-1, which results in a quotient that cannot be represented.

When the parameter is selected, the generated code does not contain code that guards
against these types of exceptions. This produces smaller, more efficient code, however it
can affect numerical results. Select the parameter if you are sure that your model would
not encounter these exceptions to optimize the efficiency of the generated code.

When the parameter is not selected, the generated code does not contain code that guards
against division arithmetic exceptions. The added protection code checks that there is
a numerical match between simulation and code generation for division operations at a
cost of code size and performance.

Division by Zero

Division by zero is undefined and results in a runtime error in the generated code. When
the Remove code that protects against division arithmetic exceptions parameter
is selected, the code generator does not produce code that protects against division by
zero. Select this option only when you are sure that your model will not produce such a
division operation.

INT_MIN/-1

When you divide the minimum representable value of a signed integer by negative one,
the ideal result is equal to the maximum representable value plus one (INT_MAX + 1),
which is not representable. This exception may cause the application to unexpectedly
halt or crash at run-time. When the Remove code that protects against division
arithmetic exceptions parameter is selected, the code generator does not produce code
that protects against this situation. Select this option only when you are sure that your
model will not produce such a division operation.

The following illustrates an example of this type of exception:

a = int32(-2147483648);

b = a/-1

56-21

56 Execution Speed in Embedded Coder

The ideal quotient of this operation is 2147483648, but this is not representable in an
int32 data type, resulting in an exception at runtime.

Other Factors Affecting Generated Code of Division Operations

In addition to the Remove code that protects against division arithmetic
exceptions parameter, there are several other factors that can affect the appearance
of code generated for division operations. The manner in which this parameter controls
code generated from blocks containing MATLAB code with integer or fixed-point division
operations differs from the built-in Divide block in Simulink. Blocks containing MATLAB
code include MATLAB Function blocks and Stateflow charts using MATLAB action
language. To balance the efficiency and semantics of fixed-point and integer divisions in
these blocks, use fi objects and set the fimath properties to fit your needs. Usage of fi
and fimath objects requires a Fixed-Point Designer license.

Rounding and overflow modes also affect the size and efficiency of the generated code.
For more information, see “Optimize Generated Code with the Model Advisor” (Fixed-
Point Designer).

See Also
“Remove code that protects against division arithmetic exceptions” (Simulink)

Related Examples
• “Remove Code That Guards Against Division Exceptions for Integers and Fixed-

Point Data” on page 56-17
• “Optimization Tools and Techniques” on page 53-7

56-22

 Optimize Generated Code by Consolidating Redundant If-Else Statements

Optimize Generated Code by Consolidating Redundant If-Else
Statements

This example shows how to optimize generated code by combining if-else statements
that share the same condition. This optimization:

• Improves control flow.
• Reduces code size.
• Reduces RAM consumption.
• Increases execution speed.

Example

The model rtwdemo_controlflow_opt contains three Switch blocks. The Constant block
provides the control input to the Switch blocks. The variable named Cond determines the
value of the Constant block.

model = 'rtwdemo_controlflow_opt';

open_system(model);

56-23

56 Execution Speed in Embedded Coder

Generate Code

Create a temporary folder for the build and inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_controlflow_opt

Successful completion of build procedure for model: rtwdemo_controlflow_opt

These lines of rtwdemo_controlflow_opt.c code show that in the generated code, two
if-else statements and one else-if statement represent the three Switch blocks.

56-24

 Optimize Generated Code by Consolidating Redundant If-Else Statements

cfile = fullfile(cgDir,'rtwdemo_controlflow_opt_ert_rtw',...

 'rtwdemo_controlflow_opt.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_controlflow_opt_step(void)

{

 /* Switch: '<Root>/Switch3' incorporates:

 * Constant: '<Root>/Const'

 * Switch: '<Root>/Switch2'

 */

 if (Cond) {

 /* Switch: '<Root>/Switch1' */

 if (Cond) {

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 */

 rtY.Out1 = rtU.In1;

 } else {

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In2'

 */

 rtY.Out1 = rtU.In2;

 }

 /* End of Switch: '<Root>/Switch1' */

 } else if (Cond) {

 /* Switch: '<Root>/Switch2' incorporates:

 * Inport: '<Root>/In1'

 * Outport: '<Root>/Out1'

 */

 rtY.Out1 = rtU.In1;

 } else {

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In2'

 */

 rtY.Out1 = rtU.In2;

 }

 /* End of Switch: '<Root>/Switch3' */

}

56-25

56 Execution Speed in Embedded Coder

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Code generation-> Code Style pane, clear Preserve condition

expression in if statement. This parameter is on by default.

Alternatively, use the command-line API to turn off the parameter:

set_param(model, 'PreserveIfCondition', 'off');

Generate Code with Optimization

In the optimized code, the code generator consolidates the two if-else statements and
one else-if statement into one if-else statement. The code generator consolidates
these statements because they all share the same condition. There is no intervening code
that affects the outcomes of these statements.

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_controlflow_opt

Successful completion of build procedure for model: rtwdemo_controlflow_opt

Here is the rtwdemo_controlflow_opt.c optimized code.

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_controlflow_opt_step(void)

{

 /* Switch: '<Root>/Switch1' incorporates:

 * Constant: '<Root>/Const'

 * Switch: '<Root>/Switch3'

 */

 if (Cond) {

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 */

 rtY.Out1 = rtU.In1;

 } else {

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In2'

56-26

 Optimize Generated Code by Consolidating Redundant If-Else Statements

 */

 rtY.Out1 = rtU.In2;

 }

 /* End of Switch: '<Root>/Switch1' */

}

Close the model and clean up.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Preserve condition expression in if statement”

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Eliminate Dead Code Paths in Generated Code” on page 53-61

56-27

56 Execution Speed in Embedded Coder

Remove Initialization Code for Root-Level Inports and Outports Set
to Zero

This example shows how to optimize generated code by removing initialization code for
root-level inports and outports set to zero. If your embedded application does not require
generating initialization code for external data whose value is zero, you can enable this
optimization. For example, many embedded application environments initialize RAM to
zero at startup, making generation of initialization code redundant. This optimization:

• Increases execution speed.
• Reduces ROM consumption.

Note: This example requires an Embedded Coder® license.

Example

In the model rtwdemo_rootlevel_zero_initialization, all of the input and output signals
have a numeric value of zero. Because signals sig1 and sig2 have data types int16
and Boolean, respectively, and all of the output signals have data type double, these
signals also have initial values of bitwise zero. The signals have an integer bit pattern of
0, meaning that all bits are off. Signals sig1_b and sig2_b have a fixed-point data type
with bias, so their initial value is not bitwise zero.

model = 'rtwdemo_rootlevel_zero_initialization';

open_system(model);

Generate Code

In your system temporary folder, create a temporary folder for the build and inspection
process.

56-28

 Remove Initialization Code for Root-Level Inports and Outports Set to Zero

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

set_param(model, 'ZeroExternalMemoryAtStartup','on');

rtwbuild(model)

Starting build procedure for model: rtwdemo_rootlevel_zero_initialization

Successful completion of build procedure for model: rtwdemo_rootlevel_zero_initialization

These lines of rtwdemo_rootlevel_zero_initialization.c code show the
initialization of root-level inports and outports without the optimization. The four input
signals are individually initialized as global variables. The four output signals are
members of a global structure that the memset function initializes to bitwise zero.

cfile = fullfile(cgDir,'rtwdemo_rootlevel_zero_initialization_ert_rtw',...

 'rtwdemo_rootlevel_zero_initialization.c');

rtwdemodbtype(cfile, 'rtwdemo_rootlevel_zero_initialization_initialize',...

 'trailer for generated code', 1, 0);

void rtwdemo_rootlevel_zero_initialization_initialize(void)

{

 /* Registration code */

 /* external inputs */

 sig1 = 0;

 sig2 = false;

 sig1_b = -3;

 sig2_b = -3;

 /* external outputs */

 (void) memset((void *)&rtY, 0,

 sizeof(ExternalOutputs));

}

/*

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization pane, select Remove root level I/O zero initialization.

Alternatively, use the command-line API to enable the optimization:

56-29

56 Execution Speed in Embedded Coder

 set_param(model, 'ZeroExternalMemoryAtStartup','off');

Generate Code with Optimization

The optimized code does not contain initialization code for the input signals sig1, sig2,
and the four output signals, because their initial values are bitwise zero.

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_rootlevel_zero_initialization

Successful completion of build procedure for model: rtwdemo_rootlevel_zero_initialization

Here is the rtwdemo_rootlevel_zero_initialization.c optimized code in the
initialization function.

cfile = fullfile(cgDir,'rtwdemo_rootlevel_zero_initialization_ert_rtw',...

 'rtwdemo_rootlevel_zero_initialization.c');

rtwdemodbtype(cfile, 'rtwdemo_rootlevel_zero_initialization_initialize',...

 'trailer for generated code', 1, 0);

void rtwdemo_rootlevel_zero_initialization_initialize(void)

{

 /* Registration code */

 /* external inputs */

 sig1_b = -3;

 sig2_b = -3;

}

/*

Close the model and the code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Remove root level I/O zero initialization” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7

56-30

 Remove Initialization Code for Root-Level Inports and Outports Set to Zero

• “Remove Initialization Code” on page 56-3

56-31

56 Execution Speed in Embedded Coder

Optimize Generated Code for Fixed-Point Data Operations

This example shows how the code generater optimizes fixed-point operations by replacing
expensive division operations with highly efficient product operations. This optimization
improves execution speed.

Example Model

In the model rtwdemo_fixptdiv, two fixed point signals connect to a Product block. The
Number of inputs parameter has the value /*.

model='rtwdemo_fixptdiv';

open(model);

56-32

 Optimize Generated Code for Fixed-Point Data Operations

Generate Code

Create a temporary folder for the build and inspection process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Build the model.

set_param(model,'GenCodeOnly','on');

rtwbuild(model);

56-33

56 Execution Speed in Embedded Coder

Starting build procedure for model: rtwdemo_fixptdiv

Successful completion of code generation for model: rtwdemo_fixptdiv

View the generated code. Here is a portion of rtwdemo_fixptdiv.c.

cfile = fullfile(cgDir,'rtwdemo_fixptdiv_ert_rtw','rtwdemo_fixptdiv.c');

rtwdemodbtype(cfile,'/* Model step','/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_fixptdiv_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/In1'

 * Product: '<Root>/Divide'

 */

 rtY.Out1 = (int16_T)(rtU.In1 >> 3);

}

The generated code contains a highly efficient right shift operation instead of an
expensive division operation. The generated code also contains the precomputed value for
the constant input to the Product block.

Note that the resulting operation also includes the adjustment in signal scaling from
2^-3 to 2^-5.

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Fixed Point” (Simulink)

56-34

57

Memory Usage in Embedded Coder

• “Optimize Generated Code Using Minimum and Maximum Values” on page 57-2
• “Flat Structures for Reusable Subsystem Parameters” on page 57-9
• “Reduce Global Variables in Nonreusable Subsystem Functions” on page 57-11
• “Optimize Generated Code By Packing Boolean Data Into Bitfields” on page 57-14
• “Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual

Arguments” on page 57-18
• “Convert Data Copies to Pointer Assignments” on page 57-23
• “Remove Reset and Disable Functions from the Generated Code” on page 57-28

57 Memory Usage in Embedded Coder

Optimize Generated Code Using Minimum and Maximum Values

To optimize the generated code for your model, you can choose an option to use input
range information, also known as design minimum and maximum, that you specify
on signals and parameters. These minimum and maximum values usually represent
environmental limits, such as temperature, or mechanical and electrical limits, such as
output ranges of sensors.

In the Configuration Parameters dialog box, on the Optimization tab, when you
select the Optimize using specified minimum and maximum values check box,
the software uses the minimum and maximum values to derive range information
for downstream signals in the model. It then uses this derived range information to
determine if it is possible to streamline the generated code by:

• Reducing expressions to constants
• Removing dead branches of conditional statements
• Eliminating unnecessary mathematical operations

This optimization results in:

• Reduced ROM and RAM consumption
• Improved execution speed

Configure Your Model

To make optimization more likely:

• Provide as much design minimum and maximum information as possible. Specify
minimum and maximum values for signals and parameters in the model for:

• Inport and Outport blocks
• Block outputs
• Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks
• Simulink.Signal objects

• Before generating code, test the minimum and maximum values for signals and
parameters. Otherwise, optimization might result in numerical mismatch with
simulation. You can simulate your model with simulation range checking enabled. If
errors or warnings occur, fix these issues before generating code.

57-2

 Optimize Generated Code Using Minimum and Maximum Values

Enable Simulation Range Checking

1 In your model, select Simulation > Model Configuration Parameters to open
the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Diagnostics > Data
Validity.

3 On the Data Validity pane, under Signals, set Simulation range checking to
warning or error.

• Provide design minimum and maximum information upstream of blocks as close to
the inputs of the blocks as possible. If you specify minimum and maximum values
for a block output, these values are most likely to affect the outputs of the blocks
immediately downstream.

Optimize Generated Code Using Specified Minimum and Maximum
Values

This example shows how the minimum and maximum values specified on signals and
parameters in a model are used to optimize the generated code.

Overview

The specified minimum and maximum values usually represent environmental limits,
such as temperature, or mechanical and electrical limits, such as output ranges of
sensors.

This optimization uses these values to streamline the generated code. For example, it
reduces expressions to constants or removes dead branches of conditional statements.

NOTE: Make sure the minimum and maximum values that you specify are valid limits.
Otherwise, this optimization might result in numerical mismatch with simulation.

The benefits of optimizing the generated code are:

• Reducing the ROM and RAM consumption.
• Improving the execution speed.

Review Minimum and Maximum Information

Consider the model rtwdemo_minmax. In this model, there are minimum and maximum
values specified on Inports and on the gain parameter of the Gain block.

57-3

57 Memory Usage in Embedded Coder

model = 'rtwdemo_minmax';

open_system(model);

Generate Code Without This Optimization

First, generate code for this model without considering the min and max values.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

rtwconfiguredemo(model,'ERT')

rtwbuild(model)

57-4

 Optimize Generated Code Using Minimum and Maximum Values

Starting build procedure for model: rtwdemo_minmax

Successful completion of build procedure for model: rtwdemo_minmax

A portion of rtwdemo_minmax.c is listed below.

cfile = fullfile(cgDir,'rtwdemo_minmax_ert_rtw','rtwdemo_minmax.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_minmax_step(void)

{

 /* Switch: '<Root>/Switch' incorporates:

 * Gain: '<Root>/Gain'

 * Inport: '<Root>/U1'

 * Inport: '<Root>/U2'

 * Inport: '<Root>/U3'

 * RelationalOperator: '<Root>/Relational Operator'

 * Sum: '<Root>/Sum'

 */

 if (U1 + U2 <= k * U3) {

 /* Outport: '<Root>/Out1' incorporates:

 * Sum: '<Root>/Sum2'

 */

 rtY.Out1 = (U1 + U2) + U3;

 } else {

 /* Outport: '<Root>/Out1' incorporates:

 * Product: '<Root>/Product'

 */

 rtY.Out1 = U1 * U2 * U3;

 }

 /* End of Switch: '<Root>/Switch' */

}

Enable This Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization pane, select Optimize using the specified minimum and

maximum values.

Alternatively, you can enable this optimization by setting the command-line parameter.

set_param(model, 'UseSpecifiedMinMax', 'on');

57-5

57 Memory Usage in Embedded Coder

Generate Code With This Optimization

In the model, with the specified minimum and maximum values for U1 and U2, the sum
of U1 and U2 has a minimum value of 50. Considering the range of U3 and the specified
minimum and maximum values for the Gain block parameter, the maximum value of the
Gain block's output is 40.

The output of the Relational Operator block remains false, and the output of the Switch
block remains the product of the three inputs.

Configure and build the model using Embedded Coder.

rtwconfiguredemo(model,'ERT')

rtwbuild(model)

Starting build procedure for model: rtwdemo_minmax

Successful completion of build procedure for model: rtwdemo_minmax

View the optimized code from rtwdemo_minmax.c.

cfile = fullfile(cgDir,'rtwdemo_minmax_ert_rtw','rtwdemo_minmax.c');

rtwdemodbtype(cfile,'/* Model step', '/* Model initialize', 1, 0);

/* Model step function */

void rtwdemo_minmax_step(void)

{

 /* Outport: '<Root>/Out1' incorporates:

 * Inport: '<Root>/U1'

 * Inport: '<Root>/U2'

 * Inport: '<Root>/U3'

 * Product: '<Root>/Product'

 * Switch: '<Root>/Switch'

 */

 rtY.Out1 = U1 * U2 * U3;

}

Close the model and cleanup.

bdclose(model)

rtwdemoclean;

57-6

 Optimize Generated Code Using Minimum and Maximum Values

cd(currentDir)

Limitations

• This optimization does not take into account minimum and maximum values for:

• Merge block inputs. To work around this issue, use a Simulink.Signal object on
the Merge block output and specify the range on this object.

• Bus elements.
• Conditionally-executed subsystem (such as a triggered subsystem) block outputs

that are directly connected to an Outport block.

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this case, the
optimization cannot use the range of the block output because the range might not
cover the initial value of the block.

• If you use Polyspace software to verify code generated using this optimization, it
might mark code that was previously green as orange. For example, if your model
contains a division where the range of the denominator does not include zero, the
generated code does not include protection against division by zero. Polyspace might
mark this code orange because it does not have information about the minimum and
maximum values for the inputs to the division.

Polyspace Code Prover automatically captures some minimum and maximum values
specified in the MATLAB workspace, for example, for Simulink.Signal and
Simulink.Parameter objects. In this example, to provide range information to the
Polyspace software, use a Simulink.Signal object on the input of the division and
specify a range that does not include zero.

Polyspace Code Prover stores these values in a Data Range Specification (DRS) file.
However, they do not capture all minimum and maximum values in your Simulink
model. To provide additional minimum and maximum information to Polyspace, you
can manually define a DRS file.

• If you are using double-precision data types and the Code Generation > Interface
> Support non-finite numbers configuration parameter is selected, this
optimization does not occur.

• If your model contains multiple instances of a reusable subsystem and each instance
uses input signals with different minimum and maximum values, this optimization
might result in different generated code for each subsystem so code reuse does not

57-7

57 Memory Usage in Embedded Coder

occur. Without this optimization, code is generated once for the subsystem and shares
this code among the multiple instances of the subsystem.

• The Model Advisor DO-178C/DO-331 check Check safety-related optimization
settings generates a warning if this option is selected. For many safety-critical
applications, removing dead code automatically is unacceptable because doing so
might make code untraceable. For more information about using the check to comply
with DO-178C/DO-331, see Check safety-related optimization settings (Simulink
Verification and Validation).

See Also
“Optimize using the specified minimum and maximum values” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Signal Ranges” (Simulink)

57-8

 Flat Structures for Reusable Subsystem Parameters

Flat Structures for Reusable Subsystem Parameters

This example shows how to increase the efficiency of code generated for reusable
subsystems by generating a single flat parameter structure instead of a hierarchy of
nested parameter structures.

By default, the code generated for reusable subsystems contains separate structures to
define the parameters that each subsystem uses. If you use nested reusable subsystems,
the generated code creates a hierarchy of nested parameter structures. Hierarchies of
structures can reduce code efficiency due to compiler padding between word boundaries
in memory.

This optimization is for only ERT-based targets. You must set the configuration
parameter Default parameter behavior to Inlined.

Explore Example Model

Open the example model rtwdemo_paramstruct.

model = 'rtwdemo_paramstruct';

open_system(model);

The model contains two nested reusable subsystems. Each subsystem uses two of the
parameters A, B, C, and D that are defined in the base workspace.

Generate Code with Hierarchical Parameter Structures

Create a temporary folder to contain the model build files. Generate code for the model
using the default hierarchical data structure for reusable subsystems.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

rtwbuild(model)

In the code generation report, view the parameter structure definitions in the file
rtwdemo_paramstruct.h.

cfile = fullfile(cgDir,'rtwdemo_paramstruct_ert_rtw','rtwdemo_paramstruct.h');

rtwdemodbtype(cfile,'/* Parameters for system: ''<S1>/SubsysZ''',...

 '/* Parameters (auto storage)', 1, 0);

The code defines a parameter structure for each reusable subsystem and nests the
structures.

57-9

57 Memory Usage in Embedded Coder

Enable Optimization

Open the Configuration Parameters dialog box. On the Optimization > Signals and
Parameters pane, select Nonhierarchical in the Parameter structure drop-down
list.

Alternatively, enable the optimization at the command prompt.

set_param(model, 'InlinedParameterPlacement', 'NonHierarchical');

Generate Code with Flat Parameter Structure

Generate code for the model using a flat parameter structure for reusable subsystems.

rtwbuild(model)

In the code generation report, view the parameter structure definition in the file
rtwdemo_paramstruct.h.

rtwdemodbtype(cfile,'/* Parameters (auto storage) */',...

 '/* Real-time Model Data Structure */', 1, 0);

The code stores all of the parameters for the reusable subsystems in a single flat
structure.

Close the model and delete build files.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Parameter structure” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual

Arguments” on page 57-18
• “Reduce Global Variables in Nonreusable Subsystem Functions” on page 57-11
• “Default Data Structures in the Generated Code” on page 19-16

57-10

 Reduce Global Variables in Nonreusable Subsystem Functions

Reduce Global Variables in Nonreusable Subsystem Functions

In this section...

“Generate void-void Function” on page 57-11
“Generate Function with Arguments” on page 57-12

Global variables can increase memory requirements and reduce execution speed. To
reduce global RAM for a nonreusable subsystem, you can generate a function interface
that passes data through arguments instead of global variables. The Subsystem block
parameter “Function interface” (Simulink) provides this option. To compare the outputs
for the Function interface options, first generate a function for a subsystem with a
void-void interface, and then generate a function with arguments.

Generate void-void Function

By default, when you configure a Subsystem block as a nonreusable function, it generates
a void-void interface.

1 Open the example model rtwdemo_roll.
2 Right-click the subsystem RollAngleReference. From the list select Block

Parameter (Subsystem).
3 In the Block Parameter dialog box, confirm that the Treat as atomic unit check

box is selected.
4 Click the Code Generation tab and set the Function packaging parameter to

Nonreusable function.
5 The Function interface parameter is already set to void_void.
6 Click Apply and OK.
7 Repeat steps 2–6, for the other subsystems HeadingMode and BasicRollMode.
8 Generate code and the static code metrics report for rtwdemo_roll. This model is

configured to generate a code generation report and to open the report automatically.
For more information, see “Generate Static Code Metrics Report for Simulink Model”
on page 35-38.

In the code generation report, in rtwdemo_roll.c, the generated code for subsystem
RollAngleReference contains a void-void function definition:

 void rtwdemo_roll_RollAngleReference(void)

57-11

57 Memory Usage in Embedded Coder

 {

 ...

 }

In the static code metrics report, navigate to Global Variables. With the void_void
option, the number of bytes for global variables is 59.

Next, generate the same function with the Allow arguments option to compare the
results.

Generate Function with Arguments

To reduce global RAM, improve ROM usage and execution speed, generate a function
that allows arguments:

1 Open the Subsystem Block Parameter dialog box for RollAngleReference.
2 Click the Code Generation tab. Set the Function interface parameter to Allow

arguments.
3 Click Apply and OK.
4 Repeat steps 2 and 3, for the other subsystems HeadingMode and BasicRollMode.
5 Generate code and the static code metrics report for rtwdemo_roll.

In the code generation report, in rtwdemo_roll.c, the generated code for subsystem
RollAngleReference now has arguments:

57-12

 Reduce Global Variables in Nonreusable Subsystem Functions

real32_T rtwdemo_roll_RollAngleReference(real32_T rtu_Turn_Knob,...

 boolean_T rtu_AP_Eng,...

 real32_T rtu_Phi)

 {

 ...

 }

In the static code metrics report, navigate to Global Variables. With the Allow
arguments option set, the total number of bytes for global variables is now 47 bytes.

See Also
“Function interface” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Generate Subsystem Code as Separate Function and Files” on page 3-10
• “Flat Structures for Reusable Subsystem Parameters” on page 57-9
• “Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual

Arguments” on page 57-18

57-13

57 Memory Usage in Embedded Coder

Optimize Generated Code By Packing Boolean Data Into Bitfields

This example shows how to optimize the generated code by packing Boolean data into
bitfields. When you select the model configuration parameter Pack Boolean data into
bitfields, Embedded Coder® packs the Boolean signals into 1-bit bitfields, reducing
RAM consumption. By default, the optimization is enabled. This optimization reduces
the RAM consumption. Be aware that this optimization can potentially increase code size
and execution speed.

Example Model

Consider the model rtwdemo_pack_boolean.

model = 'rtwdemo_pack_boolean';

open_system(model);

Disable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization > Signals and Parameters pane, clear Pack Boolean data

into bitfields.

57-14

 Optimize Generated Code By Packing Boolean Data Into Bitfields

Alternatively, you can use the command-line API to disable the optimization:

set_param(model,'BooleansAsBitfields','off');

Create a temporary folder (in your system temporary folder) for the build and inspection
process.

currentDir = pwd;

[~,cgDir] = rtwdemodir();

Generate Code Without Optimization

Build the model using Embedded Coder®.

rtwbuild(model)

Starting build procedure for model: rtwdemo_pack_boolean

Successful completion of build procedure for model: rtwdemo_pack_boolean

View the generated code without the optimization. These lines of code are in
rtwdemo_pack_boolean.h.

hfile = fullfile(cgDir,'rtwdemo_pack_boolean_ert_rtw','rtwdemo_pack_boolean.h');

rtwdemodbtype(hfile,'/* Block signals and states','/* External inputs',1,0);

/* Block signals and states (auto storage) for system '<Root>' */

typedef struct {

 boolean_T LogicalOp1; /* '<Root>/Logical Op1' */

 boolean_T LogicalOp2; /* '<Root>/Logical Op2' */

 boolean_T LogicalOp5; /* '<Root>/Logical Op5' */

 boolean_T LogicalOp3; /* '<Root>/Logical Op3' */

 boolean_T LogicalOp4; /* '<Root>/Logical Op4' */

 boolean_T RelationalOperator; /* '<Root>/Relational Operator' */

 boolean_T UnitDelay_DSTATE; /* '<Root>/Unit Delay' */

} DW;

Enable Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization > Signals and Parameters pane, select Pack Boolean

data into bitfields.

Alternatively, you can use the command-line API to enable the optimization:

57-15

57 Memory Usage in Embedded Coder

set_param(model,'BooleansAsBitfields','on');

Generate Code with Optimization

Build the model using Embedded Coder®.

rtwbuild(model)

Starting build procedure for model: rtwdemo_pack_boolean

Successful completion of build procedure for model: rtwdemo_pack_boolean

View the generated code with the optimization. These lines of code are in
rtwdemo_pack_boolean.h.

hfile = fullfile(cgDir,'rtwdemo_pack_boolean_ert_rtw','rtwdemo_pack_boolean.h');

rtwdemodbtype(hfile,'/* Block signals and states','/* External inputs',1,0);

/* Block signals and states (auto storage) for system '<Root>' */

typedef struct {

 struct {

 uint_T LogicalOp1:1; /* '<Root>/Logical Op1' */

 uint_T LogicalOp2:1; /* '<Root>/Logical Op2' */

 uint_T LogicalOp5:1; /* '<Root>/Logical Op5' */

 uint_T LogicalOp3:1; /* '<Root>/Logical Op3' */

 uint_T LogicalOp4:1; /* '<Root>/Logical Op4' */

 uint_T RelationalOperator:1; /* '<Root>/Relational Operator' */

 uint_T UnitDelay_DSTATE:1; /* '<Root>/Unit Delay' */

 } bitsForTID0;

} DW;

Selecting Pack Boolean data into bitfields enables model configuration parameter
Bitfield declarator type specifier. To optimize your code further, select uchar_t.
However, the optimization benefit of the Bitfield declarator type specifier setting
depends on your choice of target.

Close the model and code generation report.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Pack Boolean data into bitfields” (Simulink)

57-16

 Optimize Generated Code By Packing Boolean Data Into Bitfields

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Optimize Generated Code Using Boolean Data for Logical Signals” on page 53-87
• “Replace boolean with Specific Integer Data Type” on page 56-14
• “Data Types Supported by Simulink” (Simulink)

57-17

57 Memory Usage in Embedded Coder

Optimize Generated Code By Passing Reusable Subsystem Outputs
as Individual Arguments

This example shows how passing reusable subsystem outputs as individual arguments
instead of as a pointer to a structure stored in global memory optimizes the generated
code. This optimization conserves RAM consumption and increases code execution speed
by reducing global memory usage and eliminating data copies from local variables back
to global block I/O structures.

Example Model

Consider the model rtwdemo_reusable_sys_outputs. In this model, the reusable
subsystem outputs feed the root outputs of the model.

model = 'rtwdemo_reusable_sys_outputs';

open_system(model);

Generate Code Without This Optimization

Generate code for this model while passing subsystem outputs as a structure reference.
Create a temporary folder for the build and inspection process.

currentDir = pwd;

57-18

 Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual Arguments

[~,cgDir] = rtwdemodir();

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_reusable_sys_outputs

Successful completion of build procedure for model: rtwdemo_reusable_sys_outputs

The code snippet shows portions of rtwdemo_reusable_sys_outputs.c. Notice the
global block I/O structure and in the model step function a data copy from this structure.

cfile = fullfile(cgDir,'rtwdemo_reusable_sys_outputs_ert_rtw',...

'rtwdemo_reusable_sys_outputs.c');

rtwdemodbtype(cfile,'/* Output and update for atomic system',...

'/* Model initialize', 1, 0);

/* Output and update for atomic system: '<Root>/ReusableSubsystem' */

void ReusableSubsystem(real_T rtu_In1, real_T rtu_In2, real_T rtu_In3,

 DW_ReusableSubsystem *localDW)

{

 /* Gain: '<S1>/Gain' */

 localDW->Gain = 5.0 * rtu_In1;

 /* Gain: '<S1>/Gain1' */

 localDW->Gain1 = 6.0 * rtu_In2;

 /* Gain: '<S1>/Gain2' */

 localDW->Gain2 = 7.0 * rtu_In3;

}

/* Model step function */

void rtwdemo_reusable_sys_outputs_step(void)

{

 /* Outputs for Atomic SubSystem: '<Root>/ReusableSubsystem' */

 /* Inport: '<Root>/In1' incorporates:

 * Inport: '<Root>/In2'

 * Inport: '<Root>/In3'

 */

 ReusableSubsystem(rtU.In1, rtU.In2, rtU.In3, &rtDW.ReusableSubsystem_d);

 /* End of Outputs for SubSystem: '<Root>/ReusableSubsystem' */

57-19

57 Memory Usage in Embedded Coder

 /* Outport: '<Root>/Out1' */

 rtY.Out1 = rtDW.ReusableSubsystem_d.Gain;

 /* Outport: '<Root>/Out2' */

 rtY.Out2 = rtDW.ReusableSubsystem_d.Gain1;

 /* Outport: '<Root>/Out3' */

 rtY.Out3 = rtDW.ReusableSubsystem_d.Gain2;

}

Enable This Optimization

1 Open the Configuration Parameters dialog box.
2 On the Optimization > Signals and Parameters pane, set Pass reusable

subsystem outputs as to Individual arguments.

Alternatively, you can use the command-line API to enable the optimization:

set_param(model, 'PassReuseOutputArgsAs', 'Individual arguments');

Generate Code With This Optimization

With this optimization, the ReusableSubsystem function has three output arguments,
which are direct references to the external outputs. The rtDW global structure no longer
exists, and the data copies from this structure to the rtY (external outputs) structure are
not in the generated code.

Build the model.

rtwbuild(model)

Starting build procedure for model: rtwdemo_reusable_sys_outputs

Successful completion of build procedure for model: rtwdemo_reusable_sys_outputs

The code snippet below is a portion of rtwdemo_reusable_sys_outputs.c. Observe
the optimized code.

rtwdemodbtype(cfile,'/* Output and update for atomic system',...

'/* Model initialize', 1, 0);

/* Output and update for atomic system: '<Root>/ReusableSubsystem' */

void ReusableSubsystem(real_T rtu_In1, real_T rtu_In2, real_T rtu_In3, real_T

 *rty_Out1, real_T *rty_Out2, real_T *rty_Out3)

{

57-20

 Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual Arguments

 /* Gain: '<S1>/Gain' */

 *rty_Out1 = 5.0 * rtu_In1;

 /* Gain: '<S1>/Gain1' */

 *rty_Out2 = 6.0 * rtu_In2;

 /* Gain: '<S1>/Gain2' */

 *rty_Out3 = 7.0 * rtu_In3;

}

/* Model step function */

void rtwdemo_reusable_sys_outputs_step(void)

{

 /* Outputs for Atomic SubSystem: '<Root>/ReusableSubsystem' */

 /* Inport: '<Root>/In1' incorporates:

 * Inport: '<Root>/In2'

 * Inport: '<Root>/In3'

 * Outport: '<Root>/Out1'

 * Outport: '<Root>/Out2'

 * Outport: '<Root>/Out3'

 */

 ReusableSubsystem(rtU.In1, rtU.In2, rtU.In3, &rtY.Out1, &rtY.Out2, &rtY.Out3);

 /* End of Outputs for SubSystem: '<Root>/ReusableSubsystem' */

}

Close the model and cleanup.

bdclose(model)

rtwdemoclean;

cd(currentDir)

See Also
“Pass reusable subsystem outputs as” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Flat Structures for Reusable Subsystem Parameters” on page 57-9
• “Virtualized Output Ports Optimization” on page 55-17
• “Reduce Global Variables in Nonreusable Subsystem Functions” on page 57-11

57-21

57 Memory Usage in Embedded Coder

• “Default Data Structures in the Generated Code” on page 19-16

57-22

 Convert Data Copies to Pointer Assignments

Convert Data Copies to Pointer Assignments

The code generator optimizes generated code for vector signal assignments by trying
to replace for loop controlled element assignments and memcpy function calls with
pointer assignments. Pointer assignments avoid expensive data copies. Therefore, they
use less stack space and offer faster execution speed than for loop controlled element
assignments and memcpy function calls. If you assign large data sets to vector signals,
this optimization can result in significant improvements to code efficiency.

Configure Model to Optimize Generated Code for Vector Signal Assignments

To apply this optimization:

1 Verify that your target supports the memcpy function.
2 Determine whether your model uses vector signal assignments (such as

Y=expression) to move large amounts of data. For example, your model could use
a Selector block to select input elements from a vector, matrix, or multidimension
signal.

3 On the Optimization > Signals and Parameters pane, the Use memcpy for
vector assignment parameter, which is on by default, enables the associated
Memcpy threshold (bytes) parameter.

4 Examine the setting of Memcpy threshold (bytes). By default, it specifies 64 bytes
as the minimum array size for which memcpy function calls or pointer assignments
can replace for loops in the generated code. Based on the array sizes in your
application's vector signal assignments, and target environment considerations on
the threshold selection, accept the default value or specify another array size.

Example Model

Consider the following model named rtwdemo_pointer_conversion. This model uses a
Switch block to assign data to a vector signal. This signal then feeds into a Bus Selector
block.

57-23

57 Memory Usage in Embedded Coder

Generate Code without Optimization

1 In the Configuration Parameters dialog box, on the All Parameters tab, clear the
Use memcpy for vector assignment parameter.

2 Create a temporary folder for the build and inspection process.
3 Press Ctrl+B to generate code.

Starting build procedure for model: rtwdemo_pointer_conversion

Successful completion of build procedure for model: rtwdemo_pointer_conversion

View the generated code without the optimization. Here is a portion of
rtwdemo_pointer_conversion.c .

/* Model step function */

void rtwdemo_pointer_conversion_step(void)

{

 int16_T rtb_dataX[100];

 int16_T rtb_dataY[100];

 int32_T i;

 /* Switch: '<Root>/Switch' incorporates:

 * Constant: '<Root>/Constant'

 * Constant: '<Root>/Constant1'

 * Constant: '<Root>/Constant2'

 * Constant: '<Root>/Constant3'

57-24

 Convert Data Copies to Pointer Assignments

 * Inport: '<Root>/In1'

 */

 for (i = 0; i < 100; i++) {

 if (rtU.In1) {

 rtb_dataX[i] = rtCP_Constant_Value[i];

 rtb_dataY[i] = rtCP_Constant1_Value[i];

 } else {

 rtb_dataX[i] = rtCP_Constant2_Value[i];

 rtb_dataY[i] = rtCP_Constant3_Value[i];

 }

 }

 /* End of Switch: '<Root>/Switch' */

 /* S-Function (sfix_look1_dyn): '<Root>/Lookup Table Dynamic' incorporates:

 * Inport: '<Root>/In2'

 * Outport: '<Root>/Out1'

 */

 /* Dynamic Look-Up Table Block: '<Root>/Lookup Table Dynamic'

 * Input0 Data Type: Integer S16

 * Input1 Data Type: Integer S16

 * Input2 Data Type: Integer S16

 * Output0 Data Type: Integer S16

 * Lookup Method: Linear_Endpoint

 *

 */

 LookUp_S16_S16(&(rtY.Out1), &rtb_dataY[0], rtU.In2, &rtb_dataX[0], 99U);

}

Without the optimization, the generated code contains for loop controlled element
assignments.

Enable Optimization and Generate Code

1 In the Configuration Parameter dialog box, on the All Parameters tab, select the
Use memcpy for vector assignment parameter.

2 Generate code.

Starting build procedure for model: rtwdemo_pointer_conversion

Successful completion of build procedure for model: rtwdemo_pointer_conversion

View the generated code without the optimization. Here is a portion of
rtwdemo_pointer_conversion.c.

57-25

57 Memory Usage in Embedded Coder

/* Model step function */

void rtwdemo_pointer_conversion_step(void)

{

 const int16_T *rtb_dataX_0;

 const int16_T *rtb_dataY_0;

 /* Switch: '<Root>/Switch' incorporates:

 * Inport: '<Root>/In1'

 */

 if (rtU.In1) {

 /* Switch: '<Root>/Switch' incorporates:

 * Constant: '<Root>/Constant'

 * Constant: '<Root>/Constant1'

 */

 rtb_dataX_0 = &rtCP_Constant_Value[0];

 rtb_dataY_0 = &rtCP_Constant1_Value[0];

 } else {

 /* Switch: '<Root>/Switch' incorporates:

 * Constant: '<Root>/Constant2'

 * Constant: '<Root>/Constant3'

 */

 rtb_dataX_0 = &rtCP_Constant2_Value[0];

 rtb_dataY_0 = &rtCP_Constant3_Value[0];

 }

 /* S-Function (sfix_look1_dyn): '<Root>/Lookup Table Dynamic' incorporates:

 * Inport: '<Root>/In2'

 * Outport: '<Root>/Out1'

 */

 /* Dynamic Look-Up Table Block: '<Root>/Lookup Table Dynamic'

 * Input0 Data Type: Integer S16

 * Input1 Data Type: Integer S16

 * Input2 Data Type: Integer S16

 * Output0 Data Type: Integer S16

 * Lookup Method: Linear_Endpoint

 *

 */

 LookUp_S16_S16(&(rtY.Out1), &rtb_dataY_0[0], rtU.In2, &rtb_dataX_0[0], 99U);

}

57-26

 Convert Data Copies to Pointer Assignments

Because the setting of the Memcpy threshold (bytes) parameter is below the array
sizes in the generated code, the optimized code contains pointer assignments for the
vector signal assignments.

See Also
“Use memcpy for vector assignment” (Simulink) | “Memcpy threshold (bytes)” (Simulink)

Related Examples
• “Optimization Tools and Techniques” on page 53-7
• “Use memcpy Function to Optimize Generated Code for Vector Assignments” on

page 53-52
• “Vector Operation Optimization” on page 53-97

57-27

57 Memory Usage in Embedded Coder

Remove Reset and Disable Functions from the Generated Code

In this section...

“Example Model” on page 57-28
“Generate Code” on page 57-29
“Enable Optimization” on page 57-30

This example shows how the code generator removes unreachable (dead code) instances
of the reset and disable functions from the generated code for ERT-based systems
that include model referencing hierarchies. Optimizing the generated code to remove
unreachable code is a requirement for safety-critical systems. This optimization also
improves execution speed and reduces ROM consumption.

If a model contains blocks with states, the generated code contains reset and disable
functions. If the model is not part of a conditionally executed system, such as an enabled
subsystem, the code generator can remove the disable function because the generated
code does not call it. If the model is not part of a conditionally executed system that can
reset states when a control input enables it, the code generator can remove the reset
function because the generated code does not call it.

Example Model

A referenced model, rtwdemo_optionalDisableResetFunc_bot, is in
rtwdemo_optionalDisableResetFunc_top. The referenced model contains two
blocks with states, a Delay block and a Discrete-Time Integrator block.

57-28

 Remove Reset and Disable Functions from the Generated Code

Generate Code

1 Open the models. In the Command Window, type
rtwdemo_optionalDisableResetFunc_bot and
rtwdemo_optionalDisableResetFunc_top.

2 In your system temporary folder, create a temporary folder for the build and
inspection process.

3 Build the model.
4 Open the rtwdemo_optionalDisableResetFunc_top.c and

rtwdemo_optionalDisableResetFunc_bot.c files.

57-29

57 Memory Usage in Embedded Coder

The rtwdemo_optionalDisableResetFunc_bot.c file contains these reset and
disable functions.

/* System reset for referenced model: 'rtwdemo_optionalDisableResetFunc_bot' */

void rtwdemo_optionalDisableResetFunc_bot_Reset

 (DW_rtwdemo_optionalDisableResetFunc_bot_f_T *localDW)

{

 /* InitializeConditions for Delay: '<Root>/Delay' */

 localDW->Delay_DSTATE = 0.0;

 /* InitializeConditions for DiscreteIntegrator: '<Root>/Discrete-Time Integrator' */

 localDW->DiscreteTimeIntegrator_DSTATE = 3.0;

}

/* Disable for referenced model: 'rtwdemo_optionalDisableResetFunc_bot' */

void rtwdemo_optionalDisableResetFunc_bot_Disable(real_T *rty_Out1,

 DW_rtwdemo_optionalDisableResetFunc_bot_f_T *localDW)

{

 /* Disable for DiscreteIntegrator: '<Root>/Discrete-Time Integrator' */

 localDW->DiscreteTimeIntegrator_DSTATE = *rty_Out1;

}

The rtwdemo_optionalDisableResetFunc_top_step function does not
call the rtwdemo_optionalDisableResetFunc_bot_Disable function
because the model is not part of a conditionally executed system. The
rtwdemo_optionalDisableResetFunc_top_step function does not call the
rtwdemo_optionalDisableResetFunc_bot_Reset function because the model is not
part of a conditionally executed system that can reset states when a control input enables
it.

Enable Optimization

1 Open the Model Configuration Parameters dialog box for
rtwdemo_optionalDisableResetFunc_bot.

2 On the All Parameters tab, select Remove Disable Function and Remove
Reset Function.

Open the rtwdemo_optionalDisableResetFunc_bot.c file. The code does not
contain the rtwdemo_optionalDisableResetFunc_bot_Reset function or the
rtwdemo_optionalDisableResetFunc_bot_Disable function.

57-30

 Remove Reset and Disable Functions from the Generated Code

See Also
“Remove reset function” | “Remove disable function”

Related Examples
• “Optimization Tools and Techniques” on page 53-7

57-31

58

Code Execution Profiling in Embedded
Coder

• “Code Execution Profiling with SIL and PIL” on page 58-2
• “View and Compare Code Execution Times” on page 58-7
• “Analyze Code Execution Data” on page 58-18
• “Tips and Limitations” on page 58-21

58 Code Execution Profiling in Embedded Coder

Code Execution Profiling with SIL and PIL

In this section...

“Configure Code Execution Profiling” on page 58-3
“Profiling for Atomic Subsystems and Model Reference Hierarchies” on page 58-4

You can configure a software-in-the-loop (SIL) or processor-in-the-loop (PIL) on page
64-2 simulation to produce execution-time metrics for tasks and functions in your
generated code. The software calculates execution times from data that is obtained
through code instrumentation added to the SIL or PIL application or the generated code
under test. You can use the execution-time metrics to determine whether the generated
code meets the requirements for real-time deployment on your target hardware.

For example, you can perform the following analysis:

1 Identify tasks that require the most time. Tasks are main entry points into
the generated code. For example, the step function for a sample rate or the
model_initialize function.

2 In these tasks, investigate code sections that require the most time.
3 Identify variations in execution time over time steps.

If you are trying to reduce execution times, the analysis results help you to focus on the
most critical code sections. To observe performance changes for an updated model, rerun
the SIL or PIL simulation and compare the new metrics against previous metrics.

Note: Execution-time measurements depend greatly on the hardware that you use. For
reliable results, collect execution-time metrics using hardware on which you plan to
deploy the generated code, that is, run PIL simulations that execute code on your target
hardware. SIL simulations, which execute code on your host computer, might not produce
representative metrics.

When the SIL or PIL simulation is complete, you can:

• View execution-time metrics through a display window or report.
• Use the Simulation Data Inspector to view and compare the variation of execution

times over a simulation.
• Analyze the measurements within the MATLAB environment.

58-2

 Code Execution Profiling with SIL and PIL

Configure Code Execution Profiling

To configure code execution profiling for a SIL or PIL simulation:

1 In your top model, open the Configuration Parameters dialog box, and select the
Code Generation > Verification pane.

2 Select the Measure task execution time check box.
3 If you also want function execution times, select the Measure function execution

times check box.
4 In the Workspace variable field, specify a name. When you run the simulation,

the software generates a variable with this name in the MATLAB base workspace.
The variable contains the execution-time measurements, and is an object of type
coder.profile.ExecutionTime.

If you select the Data Import/Export > Single simulation output check box, the
software creates the variable in the Simulink.SimulationOutput object that you
specify.

5 From the Save options drop-down list, select one of the following:

• Summary data only — If you want to generate only a report and reduce
memory usage, for example, during a long simulation.

• All data — Allows you to generate a report and store execution-
time profiles in the base workspace. After the simulation, you can
use methods from the coder.profile.ExecutionTime and
coder.profile.ExecutionTimeSection classes to retrieve execution-time
measurements for every call to each profiled section of code that occurs during the
simulation.

6 Click OK.

For a PIL simulation, you must configure a hardware-specific timer. When you set up
the connectivity configuration for your target, create a timer object. This action is not
required for a SIL simulation.

If you select All data from the Save options drop-down list, the metrics display
window and generated report display Simulation Data Inspector icons . When you
click one of these icons, the software imports simulation results into the Simulation Data
Inspector. You can then plot execution times and manage and compare plots from various
simulations.

58-3

58 Code Execution Profiling in Embedded Coder

Profiling for Atomic Subsystems and Model Reference Hierarchies

To generate execution-time metrics for tasks only, on the Code Generation >
Verification pane of the Configuration Parameters dialog box, select the Measure task
execution time check box and clear the Measure function execution times check
box.

To generate function execution data for atomic subsystems in the top model, on the
Code Generation > Verification pane, select the Measure task execution time and
Measure function execution times check boxes.

The generation of function execution data requires the insertion of measurement
probes into the generated code. The software inserts measurement probes for an atomic
subsystem only if you set the Function packaging field (on the Code Generation
tab of the Function Block Parameters dialog box) to either Nonreusable function or
Reusable function. If the field is set to Auto, then the insertion of probes depends on
the packaging choice that results from the Auto setting. If the field is set to Inline, the
software does not insert probes.

Note: In the generated code, the software wraps each function call with measurement
probes except when:

• The call site cannot be wrapped because of expression folding (see “Minimize
Computations and Storage for Intermediate Results at Block Outputs” (Simulink
Coder)).

• The call site is located in the shared utility code (see “Sharing Utility Code” (Simulink
Coder)).

You might not want to generate profiles for specific subsystems. To disable code
execution profiling for a subsystem in the top model:

1 Right-click the subsystem.
2 From the context menu, select Properties.
3 In the Block Properties dialog box, select the General tab.
4 In the Tag field, enter DoNotProfile.
5 Click OK.

58-4

 Code Execution Profiling with SIL and PIL

To generate function execution data for model reference hierarchies:

1 In the top model, open the Configuration Parameters dialog box, and select the Code
Generation > Verification pane.

2 Select the Measure task execution time check box.
3 For each Model block that you want to profile, select Measure function execution

times only at the reference level for which you require function execution data.

For example, consider a top model that has Model block A, which in turn contains Model
block B.

If you want to generate execution times for functions from model B, select Measure task
execution time for the top model and Measure function execution times for model
B.

Note: By default, the Model block parameter Code interface is set to Model
reference. If this block parameter is set to Top model, the configuration parameter
Measure task execution time for the top model and the referenced model must be the
same. Otherwise, the software produces an error.

If your top model has a PIL block, the execution profiling settings that apply to the PIL
block are the settings from the original model that you used to create the PIL block. See
“Simulation with Blocks From Subsystems” on page 64-18. The execution profiling
settings of your top model do not apply to the PIL block.

See Also
“Save options” | “Measure function execution times” | “Workspace variable” | “Measure
task execution time”

58-5

58 Code Execution Profiling in Embedded Coder

Related Examples
• “Configure and Run SIL Simulation” on page 64-15
• “View and Compare Code Execution Times” on page 58-7
• “Analyze Code Execution Data” on page 58-18
• “Specify Hardware Timer” on page 64-52
• “View and Analyze Simulation Results” (Simulink)

58-6

 View and Compare Code Execution Times

View and Compare Code Execution Times

During a software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation, you can
use the Simulation Data Inspector to observe streamed execution times. At the end of the
simulation, you can:

• View execution-time metrics for a profiled model component.
• Open a report of execution-time metrics for all profiled components.
• Use the Simulation Data Inspector to plot and compare execution times from various

simulations.

Consider the model rtwdemo_sil_topmodel, which has two subsystems
CounterTypeA and CounterTypeB.

58-7

58 Code Execution Profiling in Embedded Coder

58-8

 View and Compare Code Execution Times

To measure code execution times for the subsystems, on the Configuration
Parameters > Code Generation > Verification pane:

1 Select the following check boxes:

• Measure task execution time — Provides execution-time metrics for the task
generated from the top model rtwdemo_sil_topmodel.

• Measure function execution times — Provides execution-time metrics for the
functions generated from the subsystems CounterTypeA and CounterTypeB.

2 Specify a Workspace variable, for example, executionProfile.
3 From the Save options drop-down list, select All data.

The simulation generates the variable executionProfile in the MATLAB base
workspace.

Note: If you select the Data Import/Export > Single simulation output check box,
the simulation creates the variable in your specified Simulink.SimulationOutput
object.

To view streamed execution times during the simulation, open the Simulation Data
Inspector. On the Simulink Editor toolbar, click the Simulation Data Inspector button.

When the simulation is complete, the profiled model components are colored blue. To
view execution-time metrics for a profiled component, click the component. For example,
subsystem CounterTypeB.

58-9

58 Code Execution Profiling in Embedded Coder

The display window also has links to:

• The complete profiling report, which provides execution-time metrics for all profiled
code sections.

• The profiled code section in the code generation report.
• The Simulation Data Inspector, which allows you to plot and compare execution-time

measurements for the profiled code section.

For top-model SIL or PIL simulations, the Simulink Editor background is also colored
blue. When you click the background, the display window shows execution-time metrics
for top-model tasks.

If you close the model or display window, you can reopen the colored model and display
window with this line command:

>> annotate(executionProfile)

58-10

 View and Compare Code Execution Times

Code Execution Profiling Report

At the end of the simulation, you can open this report through the metrics display
window or with this line command:

>> report(executionProfile)

Part 1 provides a summary. Part 2 contains information about profiled code sections.

Expand and collapse profiled sections in Part 2 by clicking [+] and [–] respectively. This
graphic shows fully expanded sections.

58-11

58 Code Execution Profiling in Embedded Coder

The report contains time measurements for:

• The model initialization function rtwdemo_sil_topmodel_initialize.
• A task represented by the step function rtwdemo_sil_topmodel_step [0.1 0].
• Functions generated from the subsystems CounterTypeA and CounterTypeB.

You can go to a profiled code section in the Generated Code view of the Code Generation
Report. In the Code Execution Profiling Report, on a code section row, click the icon .
For example, if you click the icon for the rtwdemo_sil_topmodel_initialize task,
you see the measurement probes around the call site in the SIL application.

58-12

 View and Compare Code Execution Times

If you click the icon for a function, the call site is highlighted.

58-13

58 Code Execution Profiling in Embedded Coder

From the Code Execution Profiling Report, you can trace the model component
that produces a set of metrics. For example, in the Section column, if you click the
CounterTypeA hyperlink, the Simulink Editor identifies the subsystem.

58-14

 View and Compare Code Execution Times

By default, the report displays time in nanoseconds (10-9 seconds). You can specify the
time unit and numeric display format. For example, to display time in microseconds (10-6

seconds), use the following command:
>>report(executionProfile,'Units', 'Seconds', 'ScaleFactor', '1e-06', 'NumericFormat', '%0.3f')

The report displays time in seconds only if the timer is calibrated, that is, the number
of timer ticks per second is known. On a Windows machine, the software determines
this value for a SIL simulation. On a Linux machine, calibrate the timer manually. For
example, if your processor speed is 1 GHz, specify the number of timer ticks per second:

>>executionProfile.TimerTicksPerSecond = 1e9;

To display measured execution times for a task or function, click the Simulation Data
Inspector icon on the corresponding row. Use the Simulation Data Inspector to
manage and compare plots from various simulations.

Note: To observe how code sections are invoked over the execution timeline, use the
timeline function.

The following table describes the information provided in the code section profiles.

Column Description

Section Name of task, top model, subsystem, or Model block. Click the link
to go to the model.

58-15

58 Code Execution Profiling in Embedded Coder

Column Description

With a task, the sample period and sample offset are listed next
to the task name. For example, rtwdemo_sil_topmodel_step
[0.1 0] indicates that the sample period is 0.1 seconds and the
sample offset is 0.

Maximum
Execution Time

Longest time between start and end of code section.

Average Execution
Time

Average time between start and end of code section.

Maximum Self
Time

Maximum execution time, excluding time in child sections.

Average Self Time Average execution time, excluding time in child sections.
Calls Number of calls to the code section.

Icon that you click to see the profiled code section in the Generated
Code view of the Code Generation Report. The code section can be a
task or a function.

The specified workspace variable, for example,
executionProfile, must be present in the base workspace.
Icon that you click to display the profiled code section in the
Command Window. Equivalent to executing the command
executionProfile.Sections(i).

The specified workspace variable, for example,
executionProfile, must be present in the base workspace.
Icon that you click to display measured execution times with
Simulation Data Inspector.

The specified workspace variable, for example,
executionProfile, must be present in the base workspace.

See Also
annotate | report

Related Examples
• “Code Execution Profiling with SIL and PIL” on page 58-2

58-16

 View and Compare Code Execution Times

• “Analyze Code Execution Data” on page 58-18
• “Simulation Data Inspector in Your Workflow” (Simulink)

More About
• “Tips and Limitations” on page 58-21

58-17

58 Code Execution Profiling in Embedded Coder

Analyze Code Execution Data

After a SIL or PIL simulation, you can analyze execution-time data using methods from
the coder.profile.ExecutionTime and coder.profile.ExecutionTimeSection
classes.

1 Open rtwdemo_sil_topmodel.
2 On the Configuration Parameters > Code Generation > Verification pane,

specify profiling options:

• Select the Measure task execution time check box.
• Specify a Workspace variable, for example, myExecutionProfile.
• From the Save options drop-down list, select All data.

3 Run a SIL simulation.

The software generates the workspace variable myExecutionProfile, an
coder.profile.ExecutionTime object.

To get the total number of code sections that have profiling data, use the Sections
method.
>> no_of_Sections = myExecutionProfile.Sections

no_of_Sections =

 1×2 ExecutionTimeTaskSection array with properties:

 Name

 Number

 ExecutionTimeInTicks

 SelfTimeInTicks

 TurnaroundTimeInTicks

 TotalExecutionTimeInTicks

 TotalSelfTimeInTicks

 TotalTurnaroundTimeInTicks

 MaximumExecutionTimeInTicks

 MaximumExecutionTimeCallNum

 MaximumSelfTimeInTicks

 MaximumSelfTimeCallNum

 MaximumTurnaroundTimeInTicks

 MaximumTurnaroundTimeCallNum

 NumCalls

 ExecutionTimeInSeconds

 Time

To get the coder.profile.ExecutionTimeSection object for a profiled code section,
use the method Sections.

58-18

 Analyze Code Execution Data

>> FirstSectionProfile = myExecutionProfile.Sections(1)

SecondSectionProfile = myExecutionProfile.Sections(2)

FirstSectionProfile =

 ExecutionTimeTaskSection with properties:

 Name: 'rtwdemo_sil_topmodel_initialize'

 Number: 1

 ExecutionTimeInTicks: 1188

 SelfTimeInTicks: 1188

 TurnaroundTimeInTicks: 1188

 TotalExecutionTimeInTicks: 1188

 TotalSelfTimeInTicks: 1188

 TotalTurnaroundTimeInTicks: 1188

 MaximumExecutionTimeInTicks: 1188

 MaximumExecutionTimeCallNum: 1

 MaximumSelfTimeInTicks: 1188

 MaximumSelfTimeCallNum: 1

 MaximumTurnaroundTimeInTicks: 1188

 MaximumTurnaroundTimeCallNum: 1

 NumCalls: 1

 ExecutionTimeInSeconds: 5.4000e-07

 Time: 0

SecondSectionProfile =

 ExecutionTimeTaskSection with properties:

 Name: 'rtwdemo_sil_topmodel_step [0.1 0]'

 Number: 2

 ExecutionTimeInTicks: [1×101 uint64]

 SelfTimeInTicks: [1×101 uint64]

 TurnaroundTimeInTicks: [1×101 uint64]

 TotalExecutionTimeInTicks: 70316

 TotalSelfTimeInTicks: 70316

 TotalTurnaroundTimeInTicks: 70316

 MaximumExecutionTimeInTicks: 2448

 MaximumExecutionTimeCallNum: 2

 MaximumSelfTimeInTicks: 2448

 MaximumSelfTimeCallNum: 2

 MaximumTurnaroundTimeInTicks: 2448

 MaximumTurnaroundTimeCallNum: 2

 NumCalls: 101

 ExecutionTimeInSeconds: [1×101 double]

 Time: [101×1 double]

Use coder.profile.ExecutionTimeSection methods to extract profiling information
for a particular code section. For example, use Name to obtain the name of a profiled task.
>> name_of_section = SecondSectionProfile.Name

name_of_section =

58-19

58 Code Execution Profiling in Embedded Coder

rtwdemo_sil_topmodel_step [0.1 0]

If the timer is uncalibrated and you know the timer rate, for example 2.2 GHz, you can
use the coder.profile.ExecutionTime method TimerTicksPerSecond to calibrate
the timer:
>> myExecutionProfile.TimerTicksPerSecond = 2.2e9;

>> SecondSectionProfile = myExecutionProfile.Sections(2);

Related Examples
• “Code Execution Profiling with SIL and PIL” on page 58-2
• “View and Compare Code Execution Times” on page 58-7
• “Tips and Limitations” on page 58-21

58-20

 Tips and Limitations

Tips and Limitations

In this section...

“Triggered Model Block” on page 58-21
“Outliers in Execution-Time Profiles” on page 58-21
“Hardware-Specific Timer” on page 58-23
“Task Context Switching Due to Preemption” on page 58-23
“Data Type Replacement Support” on page 58-23
“Subsystem Code Reuse” on page 58-24
“Cannot Load Execution-Time Measurements from Previous Release” on page 58-24

Triggered Model Block

Consider the case where a triggered Model block is configured to run in the SIL or PIL
simulation mode. The software generates one execution-time measurement each time the
referenced model is triggered to run. If there are multiple triggers in a single time step,
the software generates multiple measurements for the triggered Model block. Conversely,
if there is no trigger in a given time step, the software generates no time measurements.

Outliers in Execution-Time Profiles

When you run a SIL simulation with execution time profiling enabled, you might see
spikes in execution-time measurements.

58-21

58 Code Execution Profiling in Embedded Coder

The spikes are due to process preemption that occurs with a multitasking host operating
system. If the operating system preempts the SIL process and runs another process, the
measured execution time includes the time during which the SIL process is suspended.
With a PIL simulation, you do not see spikes because code execution on the target is not
preempted.

Counter wrapping produces execution-time measurements that are smaller than
expected. For SIL, the counter wraps when an execution-time period is greater than 264

ticks (232 ticks if the MEX compiler is LCC). For PIL, the wrapping point depends on the
timer you specify and can be 28, 216, 232, or 264 ticks.

Consider a PIL example where the timer frequency is 20 MHz. For a 32-bit timer,
wrapping occurs when the execution-time period is greater than 1/(20e6)*(2^32-1),
that is, 214.7 s. However, for a 16-bit timer, the point at which wrapping occurs is 0.0033
s.

58-22

 Tips and Limitations

For a real-time, multi-core application, the software accommodates synchronization
discrepancies when recording timer values for different cores, which effectively reduces
the timer measurement range.

Hardware-Specific Timer

If your target configuration does not already specify a timer, create a timer object that
provides details of the hardware-specific timer and associated source files:

• For SIL simulation, the timer word length is 64 bits.
• For PIL simulation, you can specify an 8-, 16-, 32-, or 64-bit timer.

Task Context Switching Due to Preemption

Profiling instrumentation is intrusive and affects the quantity that it is meant to
measure. Therefore, the design goal is to maximize code understanding with a minimum
of instrumentation. For example, with a real-time system, there can be task context
switches due to preemption. These context switches are not explicitly instrumented.
To record the start and end of each task, the software must infer context switches from
instrumentation. As a result, the software reports behavior that is an estimate. The
estimate is subject to error because of incomplete instrumentation within the kernel.

In some cases, when the software cannot accurately determine behavior, the software
generates a warning:

Warning: Analysis unsuccessful for one or more profiling data points. ...

For example, the software might generate this warning when not all mutex take system
calls (associated with rate transitions) are instrumented. In the case of Simulink Real-
Time, this situation might arise if you generate code for a model reference hierarchy
without enabling function profiling for all referenced models (set_param(model,
'CodeProfilingInstrumentation', 'on')). If a mutex take system call is not
instrumented, a task context switch might occur that is not visible to the execution
profiling analysis.

In other cases, although the software cannot accurately determine behavior, the software
does not generate a warning.

Data Type Replacement Support

Data type replacement does not support the measurement of function execution times.
For your model, clear one of the following check boxes:

58-23

58 Code Execution Profiling in Embedded Coder

• Configuration Parameters > Code Generation > Verification > Measure
function execution times

• Configuration Parameters > Code Generation > Data Type Replacement >
Replace data type names in the generated code

Subsystem Code Reuse

You cannot generate execution-time profiles for function call sites within subsystem code
that is reused across a model or multiple models. For information about subsystem code
reuse, see “Code Reuse For Subsystems Shared Across Models” (Simulink Coder).

Cannot Load Execution-Time Measurements from Previous Release

You cannot load execution-time measurements saved with a previous release. For
example, using R2014a, you save workspace variables to a MAT-file. One of the
workspace variables contains execution-time measurements. In R2015b, if you try to load
the MAT-file, you see this error:

Format of execution profiling data is invalid. This error can occur if

you load data from a previous release. Loading data from a previous

release is not supported.

58-24

59

Code Execution Profiling for MATLAB
Coder

• “Execution Time Profiling for SIL and PIL” on page 59-2
• “Generate Execution Time Profile” on page 59-3
• “View Execution Times” on page 59-4
• “Analyze Execution Time Data” on page 59-7

59 Code Execution Profiling for MATLAB Coder

Execution Time Profiling for SIL and PIL

During a software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution, you can
produce a profile of execution times for code generated from entry-point functions. The
software calculates execution times from data that is obtained through instrumentation
probes added to the SIL or PIL application.

Use the execution time profile to check whether your code runs within the required time
on your target hardware:

• If code execution overruns, look for ways to reduce execution time.
• If your code easily meets time requirements, consider enhancing functionality to

exploit the unused processing power.

At the end of the SIL or PIL execution, you can:

• View a report of code execution times.
• Use the Simulation Data Inspector to view and compare plots of function execution

times.
• Access and analyze execution time profiling data.

Note: SIL and PIL execution supports multiple entry-point functions. An entry-point
function can call another entry-point function as a subfunction. However, the software
generates execution time profiles only for functions that are called at the entry-point
level. The software does not generate execution time profiles for entry-point functions
that are called as subfunctions by other entry-point functions.

Related Examples
• “Generate Execution Time Profile” on page 59-3
• “View Execution Times” on page 59-4
• “Analyze Execution Time Data” on page 59-7

59-2

 Generate Execution Time Profile

Generate Execution Time Profile

Before running a software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution,
enable execution time profiling:

1 To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the app icon.

2
To open your project, click and then click Open existing project. Select the
project.

3 On the Generate Code page, click Verify Code.
4 Select the Enable entry point execution profiling for SIL/PIL check box.

Or, from the Command Window, specify the CodeExecutionProfiling property of
your coder.EmbeddedCodeConfig object. For example:

config.CodeExecutionProfiling = true;

Related Examples
• “Software-in-the-Loop Execution with the MATLAB Coder App” on page 66-4
• “Processor-in-the-Loop Execution with the MATLAB Coder App” on page 66-25
• “View Execution Times” on page 59-4
• “Analyze Execution Time Data” on page 59-7

More About
• “Execution Time Profiling for SIL and PIL” on page 59-2

59-3

59 Code Execution Profiling for MATLAB Coder

View Execution Times

When you run a SIL or PIL execution with execution time profiling enabled, the software
generates a message in the Test Output tab. For example:
Current plot held

Starting SIL execution for 'kalman01'

 To terminate execution: clear kalman01_sil

 Execution profiling data is available for viewing. Open Simulation Data Inspector.

 Execution profiling report available after termination.

Current plot released

To observe streamed execution times while the execution runs, click the Simulation
Data Inspector link.

To open the code execution profiling report:

1 Click the Stop SIL Verification link.

The software terminates the execution process and displays a new link.
Stopping SIL execution for 'kalman01'

 Execution profiling report: report(getCoderExecutionProfile('kalman01'))

2 Click the new link.

The first section provides a summary. The second section contains information about
profiled code sections.

59-4

 View Execution Times

The report contains time measurements for:

• The entry_point_fn_initialize function, for example, kalman01_initialize.
• The entry-point function, for example, kalman01.
• The entry_point_fn_terminate function, for example, kalman01_terminate.

By default, the report displays time in nanoseconds (10-9 seconds). You can specify the
time unit and numeric display format. For example, to display time in microseconds (10-6

seconds), use the report command:

executionProfile=getCoderExecutionProfile('kalman01'); % Create workspace var

report(executionProfile, ...

 'Units', 'Seconds', ...

 'ScaleFactor', '1e-06', ...

 'NumericFormat', '%0.3f')

The report displays time in seconds only if the timer is calibrated, that is, the number of
timer ticks per second is established. On a Windows machine, the software determines
this value for a SIL simulation. On a Linux machine, you must manually calibrate the
timer. For example, if your processor speed is 1 GHz, specify the number of timer ticks
per second:

executionProfile.TimerTicksPerSecond = 1e9;

To display measured execution times for a code section, click the Simulation Data
Inspector icon on the corresponding row. You can use the Simulation Data Inspector
to manage and compare plots from various executions.

The following table lists the information provided in the code section profiles.

Column Description

Section Name of function from which code is generated.
Maximum
Execution Time

Longest time between start and end of code section.

Average Execution
Time

Average time between start and end of code section.

Maximum Self
Time

Maximum execution time, excluding time in child sections.

Average Self Time Average execution time, excluding time in child sections.

59-5

59 Code Execution Profiling for MATLAB Coder

Column Description

Calls Number of calls to the code section.
Icon that you click to display the profiled code section.

Icon that you click to display measured execution times with
Simulation Data Inspector.

Related Examples
• “Generate Execution Time Profile” on page 59-3
• “Analyze Execution Time Data” on page 59-7
• “Simulation Data Inspector in Your Workflow” (Simulink)

59-6

 Analyze Execution Time Data

Analyze Execution Time Data

After a software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution, you can
analyze execution-time data using methods from the coder.profile.ExecutionTime
and coder.profile.ExecutionTimeSection classes.

In the following example, you run a SIL execution and apply supplied methods to
execution-time data.

Extract Execution Time Data for Kalman Estimator Code

1 Run SIL execution to generate execution time data

Copy MATLAB code to your working folder.

src_dir = ...

 fullfile(docroot,'toolbox','coder','examples','kalman');

copyfile(fullfile(src_dir,'kalman01.m'), '.')

copyfile(fullfile(src_dir,'test01_ui.m'), '.')

copyfile(fullfile(src_dir,'plot_trajectory.m'), '.')

copyfile(fullfile(src_dir,'position.mat'), '.')

For a description of the Kalman estimator, see “C Code Generation at the Command
Line” (MATLAB Coder).

Create a coder.EmbeddedCodeConfig object.

config = coder.config('lib');

config.GenerateReport = true; % HTML report

Configure the object for SIL and enable execution time profiling.

config.VerificationMode = 'SIL';

config.CodeExecutionProfiling = true;

Generate library code for the kalman01 MATLAB function and the SIL interface.

codegen('-config', config, '-args', {zeros(2,1)}, 'kalman01');

Run the MATLAB test file test01_ui with kalman01_sil. kalman01_sil is the
SIL interface for kalman01.

coder.runTest('test01_ui', ['kalman01_sil.' mexext]);

59-7

59 Code Execution Profiling for MATLAB Coder

You see the following message.

Starting SIL execution for 'kalman01'

 To terminate execution: clear kalman01_sil

 Execution profiling data is available for viewing. Go to Simulation Data Inspector.

 Execution profiling report available after termination.

Current plot released

Terminate the SIL execution process. Click the link clear kalman01_sil.

 ### Stopping SIL execution for 'kalman01'

 Execution profiling report: report(getCoderExecutionProfile('kalman01'))

2 Create workspace variable that holds execution time data

Use the getCoderExecutionProfile function to create a workspace variable that
holds execution time profiling data.

executionProfile=getCoderExecutionProfile('kalman01');

3 Extract code sections

Use the Sections method.

allSections = executionProfile.Sections

The software displays the number of code sections and a list of properties.

allSections =

 1x3 ExecutionTimeTaskSection array with properties:

 Name

 Number

 ExecutionTimeInTicks

 SelfTimeInTicks

 TurnaroundTimeInTicks

 TotalExecutionTimeInTicks

 TotalSelfTimeInTicks

 TotalTurnaroundTimeInTicks

 MaximumExecutionTimeInTicks

 MaximumExecutionTimeCallNum

 MaximumSelfTimeInTicks

 MaximumSelfTimeCallNum

 MaximumTurnaroundTimeInTicks

 MaximumTurnaroundTimeCallNum

 NumCalls

 ExecutionTimeInSeconds

 Time

59-8

 Analyze Execution Time Data

4 Extract execution time data from specific code section

Specify the code section that you want to examine.

secondSectionProfile = executionProfile.Sections(2)

The software displays profile data for the code section.

secondSectionProfile =

 ExecutionTimeTaskSection with properties:

 Name: 'kalman01'

 Number: 2

 ExecutionTimeInTicks: [1x300 uint64]

 SelfTimeInTicks: [1x300 uint64]

 TurnaroundTimeInTicks: [1x300 uint64]

 TotalExecutionTimeInTicks: 6641016

 TotalSelfTimeInTicks: 6641016

 TotalTurnaroundTimeInTicks: 6641016

 MaximumExecutionTimeInTicks: 48864

 MaximumExecutionTimeCallNum: 158

 MaximumSelfTimeInTicks: 48864

 MaximumSelfTimeCallNum: 158

 MaximumTurnaroundTimeInTicks: 48864

 MaximumTurnaroundTimeCallNum: 158

 NumCalls: 300

 ExecutionTimeInSeconds: [1x300 double]

 Time: [300x1 double]

You can extract specific properties, for example, the name of a profiled function.

nameOfSection = secondSectionProfile.Name

The software displays the name.

nameOfSection =

kalman01

The following table lists the information that you can extract from each code section.

Property Description

Name Name of entry-point function
Number Code section number

59-9

59 Code Execution Profiling for MATLAB Coder

Property Description

ExecutionTimeInTicks Vector of execution times, measured in timer ticks. Each
element contains the difference between the timer reading at
the start and at the end of the code section. The data type is
the same data type as the data type of the timer used on the
target, which allows you to infer the maximum range of the
timer measurements.

SelfTimeInTicks Vector of timer tick numbers. Each element contains the
number of ticks recorded for the code section, excluding the
time spent in calls to child functions.

TurnaroundTimeInTicks Vector of timer tick numbers. Each element contains the
number of ticks recorded between the start and the finish of
the code section. Unless the code is preempted, this number is
the same number as the execution time.

TotalExecutionTimeInTicks Total number of timer ticks recorded for the code section over
the entire execution.

TotalSelfTimeInTicks Total number of timer ticks recorded for the profiled code
section over the entire execution. However, this number
excludes the time spent in calls to child functions.

TotalTurnaroundTimeInTicks Total number of timer ticks recorded between the start
and the finish of the profiled code section over the entire
execution. Unless the code is preempted, this number is the
same as the total execution time.

MaximumExecutionTimeInTicks Maximum number of timer ticks recorded for a single
invocation of the code section over the execution.

MaximumExecutionTimeCallNum Number of call in which MaximumExecutionTimeInTicks
occurs.

MaximumSelfTimeInTicks Maximum number of timer ticks recorded for a single code
section invocation, but excluding the time spent in calls to
child functions.

MaximumSelfTimeCallNum Number of call in which MaximumSelfTimeInTicks occurs.
MaximumTurnaroundTimeInTicks Maximum number of timer ticks recorded between the start

and the finish of a single invocation of the profiled code
section over the execution. Unless the code is preempted, this
time is the same as the maximum execution time.

59-10

 Analyze Execution Time Data

Property Description

MaximumTurnaroundTimeCallNum Number of call in which MaximumTurnaroundTimeInTicks
occurs.

NumCalls Total number of calls to the code section over the entire
execution.

ExecutionTimeInSeconds Vector of execution times, measured in seconds. Each element
contains the difference between the timer reading at the
start and at the end of the code section. Produced only if
TimerTicksPerSecond is set.

Time Vector of execution time measurements for the code section.

Related Examples
• “Generate Execution Time Profile” on page 59-3
• “View Execution Times” on page 59-4
• “Simulation Data Inspector in Your Workflow” (Simulink)

59-11

Verification

60

Simulation and Code Comparison in
Simulink Coder

60 Simulation and Code Comparison in Simulink Coder

Simulation and Code Comparison

In this section...

“Configure Signal Data for Logging” on page 60-2
“Log Simulation Data” on page 60-3
“Run Executable and Load Data” on page 60-5
“Visualize and Compare Results” on page 60-6
“Compare States for Simulation and Code Generation” on page 60-8

This example shows how to verify the answers computed by code generated from the
slexAircraftExample model. It shows how to capture and compare two sets of output
data. Simulating the model produces one set of output data. Executing the generated
code produces a second set of output data.

Note To obtain a valid comparison between model output and the generated code, use the
same Solver options and Step size for the simulation run and the build process.

Configure Signal Data for Logging

Configure the model for logging and recording signal data.

1 Make sure that slexAircraftExample is closed. Clear the base workspace to
eliminate the results of previous simulation runs. In the Command Window, type:

clear

The clear operation clears variables created during previous simulations
and all workspace variables, some of which are standard variables that the
slexAircraftExample model requires.

2 In the Command Window, enter slexAircraftExample to open the model.
3 In the model window, choose File > Save As, navigate to the working folder, and

save a copy of the slexAircraftExample model as myAircraftExample.
4 Set up your model to log signal data for signals: Stick, alpha,rad, and q, rad/

sec. For each signal:

a Right-click the signal. From the context menu, select Properties.

60-2

 Simulation and Code Comparison

b In the Signal Properties dialog box, select Log signal data.
c In the Logging name section, from the drop-down list, select Custom.
d In the text field, enter the logging name for the corresponding signal.

Signal Name Logging Name

Stick Stick_input

alpha,rad Alpha

q, rad/sec Pitch_rate

e Click Apply and OK.

For more information, see “Export Signal Data Using Signal Logging” (Simulink).
5 Select Simulation > Model Configuration Parameters to open the Configuration

Parameters dialog box.
6 Select the Solver pane and in the Solver options section, specify the Type

parameter as Fixed-step.
7 On the Data Import/Export pane:

• Specify the Format parameter as Structure with time.
• Clear the States parameter check box.
• Select the Signal logging parameter.
• Select the Record logged workspace data in Simulation Data Inspector

parameter to enable logged signal data to send to the Simulation Data Inspector
after the simulation is finished.

8 Save the model.

Proceed to “Log Simulation Data” on page 60-3.

Log Simulation Data

Run the simulation, log the signal data, and view the data in the Simulation Data
Inspector.

1 Run the model. When the simulation is done, on the Simulink Editor toolbar, the
Simulation Data Inspector button is highlighted to indicate that new simulation
output is available in the Simulation Data Inspector.

60-3

60 Simulation and Code Comparison in Simulink Coder

2 Click the Simulation Data Inspector button to open the Simulation Data
Inspector.

3 Group the signals:

a On the Visualize tab, click Group Signals.
b In the Group Signals dialog box, select Data Hierarchy from the Then By list.

c Click OK.
4 Click the logsout expander to view the logged signals.
5 Click the Format tab.
6 Click the Subplots button and select 3x1 to show three subplots.
7 For each signal:

a Click the top subplot. A blue border indicates the plot selection.
b Select the check box next to the Alpha signal name. The signal data appears in

the subplot.
c Plot the Pitch_rate signal in the middle subplot.
d Plot the Stick_input signal in the bottom subplot.

60-4

 Simulation and Code Comparison

Proceed to “Run Executable and Load Data” on page 60-5.

Run Executable and Load Data

You must rebuild and run the myAircraftExample executable to obtain a valid data file
because you have modified the model.

1 Select Simulation > Model Configuration Parameters to open the Configuration
Parameters dialog box.

2 Select the Code Generation > Interface pane.
3 Set the MAT-file variable name modifier parameter to rt_. rt_ is prefixed to

each variable that you selected for logging in the first part of this example.
4 Click Apply and OK.
5 Save the model.
6 On the Simulink Editor toolbar, click the Build Model button to generate code.
7 When the build is finished, run the standalone program from the Command Window.

60-5

60 Simulation and Code Comparison in Simulink Coder

!myAircraftExample

The executing program writes the following messages to the Command Window.

** starting the model **

** created myAircraftExample.mat **

8 Load the data file myAircraftExample.mat.

load myAircraftExample

Tip: For UNIX platforms, run the executable in the Command Window with the syntax
!./executable_name. If preferred, run the executable from an OS shell with the
syntax ./executable_name. For more information, see “Run External Commands,
Scripts, and Programs” (MATLAB).

Proceed to “Visualize and Compare Results” on page 60-6.

Visualize and Compare Results

When you follow the example sequence that began in “Configure Signal Data for
Logging” on page 60-2, you obtain data from a Simulink run of the model and from a
run of the program generated from the model.

1 To view the execution output for alpha,rad, import the data into the Simulation
Data Inspector.

a On the Simulation Data Inspector Visualize tab, click the Import button to
open the Import dialog.

b Specify Import from as Base workspace.
c Specify Import to as New run.
d To the left of Signal Name, click the check mark to clear the check boxes.
e Select the check box for the alpha,rad data where the Time Series Root is

rt_yout.
f Click Import.

60-6

 Simulation and Code Comparison

The selected data is now under Run 2: Imported_Data.
2 View a plot of the executed data.

a Click the rt_yout expander.
b Click the top subplot and select the check box next to the alpha, rad signal

name. The signal data appears in the top subplot.

The alpha, rad signal from Run 1 and Run 2 overlap in the subplot because
the signals are equivalent.

60-7

60 Simulation and Code Comparison in Simulink Coder

It is possible to see a very small difference between simulation and code generation
results. A slight difference can be caused by many factors, including:

• Different compiler optimizations
• Statement ordering
• Run-time libraries

For example, a function call such as sin(2.0) can return a slightly different value
depending on which C library you use. Such variations can also cause differences
between your results and these results.

Compare States for Simulation and Code Generation

The order in which Simulink logs states during simulation is different than the order in
which Simulink Coder logs states during code generation. If you want to compare states
between simulation and code generation, sort the states by block name.

60-8

 Simulation and Code Comparison

For example, by default, Simulink exports state data to the MATLAB variable, xout.
Simulink Coder exports state data to the variable rt_xout. To sort the state data for
these variables, enter the following commands in the MATLAB Command Window:

[~,idx1]=sort({xout.signals.blockName});

xout_sorted=[xout.signals(idx1).values];

[~,idx2]=sort({rt_xout.signals.blockName});

rt_xout_sorted=[rt_xout.signals(idx2).values];

You can confirm that the logging order is the same between code generation and
simulation by entering the following command in the MATLAB Command Window:

isequal(xout_sorted, rt_xout_sorted)

Related Examples
• “Log Program Execution Results” (Simulink Coder)

60-9

61

Code Tracing in Embedded Coder

• “What Is Code Tracing?” on page 61-2
• “Traceability Tags” on page 61-5
• “Trace Code to Model Objects by Using Hyperlinks” on page 61-6
• “Trace Model Objects to Generated Code” on page 61-8
• “Trace Stateflow Objects in Generated Code” on page 61-10
• “Link Generated Code to Requirements” on page 61-23
• “Reload Existing Traceability Information” on page 61-28
• “Customize Traceability Reports” on page 61-29
• “Generate a Traceability Matrix” on page 61-31
• “Traceability Limitations” on page 61-32

61 Code Tracing in Embedded Coder

What Is Code Tracing?

Code tracing (traceability) involves using hyperlinks to navigate between a line of
generated code and its corresponding objects in a model. You can also right-click an
object or objects in a model to find the lines of code to which they correspond. This two-
way navigation is bidirectional traceability.

Code tracing provides a way to:

• Verify generated code. You can identify which model objects correspond to a line of
code. You are able to keep track of code from different objects that you have or have
not reviewed.

• Include comments in code generated for large-scale models. You can identify objects in
generated code and avoid manually entering comments or descriptions.

The HTML code generation report that the code generator produces for a model includes
resources that support code tracing:

• Code element hyperlinks (indicated with underlining) to trace through and toggle
between generated source and header files.

• Tags in code comments that identify objects in a model from which lines of code are
generated.

• Line number hyperlinks which link to the model component from which the line of
code was generated.

Traceable Objects

Bidirectional traceability is supported for blocks and the following Stateflow objects:

• States
• Transitions
• MATLAB functions (not supported for external code called from a MATLAB function)

Note: Traceability is not supported for external code that you call from a MATLAB
function.

• Truth Table blocks and truth table functions
• Graphical functions

61-2

 What Is Code Tracing?

• Simulink functions
• State transition tables

Traceability in one direction is supported for these Stateflow objects:

• Events (code-to-model)

Code-to-model traceability works for explicit events, but not implicit events. Clicking
a hyperlink for an explicit event in the generated code highlights that item in the
Contents pane of the Model Explorer.

• Junctions (model-to-code)

Model-to-code traceability works for junctions with at least one outgoing transition.
Right-clicking such a junction in the Stateflow Editor highlights the line of code that
corresponds to the first outgoing transition for that junction.

Note: MATLAB Function blocks that you insert directly in a Simulink model are also
traceable. For more information, see “Use Traceability in MATLAB Function Blocks”
(Simulink).

Workflow Traceability

The basic workflow for using traceability is:

1 Open your model.
2 Define your system target file as an embedded real-time (ert) target.
3 Enable and configure the traceability options.
4 Generate the source code and header files for your model.
5 Do one or both of these steps:

• Trace a line of generated code to the model.
• Trace objects in the model to lines of code.

Related Examples
• “Trace Code to Model Objects by Using Hyperlinks” on page 61-6
• “Trace Model Objects to Generated Code” on page 61-8

61-3

61 Code Tracing in Embedded Coder

• “Reload Existing Traceability Information” on page 61-28
• “Customize Traceability Reports” on page 61-29

More About
• “Traceability Tags” on page 61-5

61-4

 Traceability Tags

Traceability Tags

A traceability tag appears in a comment above the corresponding line of generated code.
The format of the tags is <system>/block_name.

• system is one of the following:

• The text Root
• A unique system number assigned by the Simulink engine

• block_name is the name of the source block

The code generator documents the tags for a model in the comments section of the
generated header file model.h. For example, the following comment appears in the
header file for a model, foo, that has a subsystem Outer and a nested subsystem Inner:

/* Here is the system hierarchy for this model.

 *

 * <Root> : foo

 * <S1> : foo/Outer

 * <S2> : foo/Outer/Inner

 */

This code shows a tag comment adjacent to a line of code. A Gain block at the root level of
a source model generates this code:

/* Gain: '<Root>/UnDeadGain1' */

rtb_UnDeadGain1_h = dead_gain_U.In1 *

 dead_gain_P.UnDeadGain1_Gain;

The following code shows a tag comment adjacent to a line of code. A Gain block within a
subsystem one level below the root level of the source model generates this code:

/* Gain: '<S1>/Gain' */

dead_gain_B.temp0 *= (dead_gain_P.s1_Gain_Gain);

61-5

61 Code Tracing in Embedded Coder

Trace Code to Model Objects by Using Hyperlinks

When using the Simulink Coder product, you can trace code to model objects by using the
hilite_system command. The Embedded Coder product simplifies traceability with
the use of hyperlinks in HTML code generation reports. The reports display hyperlinks
in comment lines in generated code. To highlight the corresponding block or subsystem in
the model diagram, click the hyperlinks.

To use hyperlinks for tracing code to model objects:

1 Open the model and make sure it is configured for an ERT target.
2 In the Configuration Parameters dialog box, on the Code Generation > Report

pane, the Create code generation report parameter is selected by default. When
selected, this parameter enables and selects Open report automatically and
Code-to-model.

3 Build or generate code for the model. An HTML code generation report is displayed.
4 In the HTML report window, click hyperlinks to highlight source blocks. For

example, generate an HTML report for model rtwdemo_hyperlinks. In the
generated code for the model step function in rtwdemo_hyperlinks.c, click the
first UnitDelay block hyperlink.

In the model window, the corresponding UnitDelay block is highlighted.

61-6

 Trace Code to Model Objects by Using Hyperlinks

To use line numbers for tracing code to model objects:

1 In the previous example, rtwdemo_hyperlinks, click the hyperlink at line number
144.

2 In the model window, the Chart subsystem is highlighted and contains the operation
on line 144.

61-7

61 Code Tracing in Embedded Coder

Trace Model Objects to Generated Code

1 Open the model and make sure that it is configured for an ERT target.
2 In the Configuration Parameters dialog box, the Code Generation > Report >

Create code generation report parameter is selected by default. When selected,
the parameter enables and selects the Open report automatically and Code-to-
model parameters.

3 On the All Parameters tab, select Model-to-code. This parameter:

• Enables the Configure button, which opens a dialog box for loading existing
trace information.

• Enables and selects parameters for customizing the content of a traceability
report.

4 Build or generate code for the model. An HTML code generation report is displayed.
5 In the model window, right-click a model object. To select multiple blocks, hold Shift

and right-click additional blocks.
6 From the context menu, select C/C++ Code > Navigate to C/C++ Code. In the

HTML code generation report, you see the first instance of highlighted code that is
generated for the model object. In the left pane of the report, numbers that appear
to the right of generated file names indicate the total number of highlighted lines
in each file. The following figure shows the result of tracing the Unit Delay block in
model rtwdemo_hyperlinks.

61-8

 Trace Model Objects to Generated Code

At the top of the code window, use the navigation bar to move forward and backward
through multiple instances of highlighted lines. Use the navigation sidebar to go
directly to a line of code.

If you close and reopen a model, the Navigate to Code context menu option might not
be available because Embedded Coder cannot find a build folder for your model in the
current working folder. Do one of the following:

• Reset the current working folder to the parent folder of the existing build folder.
• Select Model-to-code and rebuild the model. Rebuilding the model regenerates the

build folder into the current working folder.
• Click Configure. In the Model-to-code navigation dialog box, reload the existing trace

information.

See Also
“Model-to-code” (Simulink Coder) | “Configure” (Simulink Coder)

61-9

61 Code Tracing in Embedded Coder

Trace Stateflow Objects in Generated Code

In this section...

“Bidirectional Traceability for States and Transitions” on page 61-10
“Bidirectional Traceability for State Transition Tables” on page 61-12
“Bidirectional Traceability for Truth Table Blocks” on page 61-15
“Bidirectional Traceability for Graphical Functions” on page 61-17
“Code-to-Model Traceability for Events” on page 61-18
“Model-to-Code Traceability for Junctions” on page 61-19
“Format of Traceability Comments for Stateflow Objects” on page 61-20

Bidirectional Traceability for States and Transitions

See how bidirectional traceability works for states and transitions by following these
steps:

1 At the command prompt, type old_sf_car.
2 Open the Model Configuration Parameters dialog box.
3 In the Code Generation pane, go to the Target selection section and enter

ert.tlc for the system target file. Click Apply in the lower-right corner of the
window. Traceability comments appear in generated code only for embedded real-
time targets.

4 In the Code Generation > Report pane, the Create code generation report
parameter is selected by default. This step automatically selects Open report
automatically and Code-to-model.

5 On the All Parameters tab, select Model-to-code. Click Apply.
6 Go to the Code Generation > Interface pane. In the Software environment

section, select continuous time. Click Apply. Before generating code, you must
perform this step because this model contains a block with a continuous sample time.

7 Press Ctrl+B.

This step generates source code and header files for the old_sf_car model that
contains the shift_logic chart. After the code generation process is complete, the
code generation report appears.

8 In the report, click the old_sf_car.c hyperlink.

61-10

 Trace Stateflow Objects in Generated Code

9 To see the traceability comments, scroll down through the code. The following line
numbers can differ from the numbers that appear in your code generation report.

10 To navigate to the corresponding model component, click the line number hyperlinks.
11 Click the <S5>:2 hyperlink in this traceability comment:

/* During 'gear_state': '<S5>:2' */

The corresponding state appears highlighted in the chart.
12 Click the <S5>:12 hyperlink in this traceability comment:

/* Transition: '<S5>:12' */

The corresponding transition appears highlighted in the chart. To remove
highlighting from an object in the chart, select Display > Remove Highlighting.

13 You can also trace objects in the model to lines of generated code. In the chart, right-
click the object gear_state and select C/C++ Code > Navigate to C/C++ Code.

The code for that state appears highlighted in old_sf_car.c.

Highlighted
line of code

61-11

61 Code Tracing in Embedded Coder

14 In the chart, right-click the transition with the condition [speed > up_th] and
select C/C++ Code > Navigate to C/C++ Code.

The code for that transition appears highlighted in old_sf_car.c.

Highlighted
line of code

Note: For a list of the Stateflow objects in your model that are traceable, click the
Traceability Report hyperlink in the code generation report.

Bidirectional Traceability for State Transition Tables

This example shows how to navigate bidirectionally between objects in a state transition
table and the generated C/C++ and HDL code for traceability.

1 At the command prompt, type sf_cdplayer_STT. This model is already configured
for traceability. For more information on these configurations, see “Traceability of
Stateflow Objects in Generated Code” (Stateflow).

2 Press Ctrl+B.

This step generates source code and header files for the sf_cdplayer_STT model.
After the code generation process is complete, the code generation report appears.

3 Click the sf_cdplayer_STT.c hyperlink in the report.
4 To see the traceability comments, scroll down through the code. The line numbers

shown can differ from the numbers that appear in your code generation report.

61-12

 Trace Stateflow Objects in Generated Code

5 Click the <S2>:58 hyperlink in this traceability comment:

/* Entry Internal 'ON': '<S2>:58' */

The corresponding state’ON' appears highlighted in the state transition table.

61-13

61 Code Tracing in Embedded Coder

6 Right-click the highlighted state and select View state object. The state ’ON' also
appears highlighted in the underlying state transition diagram.

7 You can also trace a state or transition from the state transition table to the
generated code. Right-click the state Standby and select C/C++ Code > Navigate
to C/C++ Code.

The entry code for the state Standby is highlighted in the generated code.

61-14

 Trace Stateflow Objects in Generated Code

Bidirectional Traceability for Truth Table Blocks

See how bidirectional traceability works for a Truth Table block by following these steps:

1 At the command prompt, type sf_climate_control
2 Complete steps 2 through 5 in “Bidirectional Traceability for States and Transitions”

on page 61-10.
3 To build the model, press Ctrl+B.

The code generation report appears.
4 Click the sf_climate_control.c hyperlink in the report.
5 To see the traceability comments, scroll down through the code. The following line

numbers can differ from the numbers that appear in your code.

Traceability
comment for a
truth table decision

Traceability
comment for a
truth table action

6 Click the <S1>:1:47 hyperlink in this traceability comment:

/* Action '3': '<S1>:1:47' */

In the Truth Table Editor, row 3 of the Action Table appears highlighted.

61-15

61 Code Tracing in Embedded Coder

7 You can also trace a condition, decision, or action in the table to a line of generated
code. For example, right-click a cell in the column D2 and select C/C++ Code >
Navigate to C/C++ Code.

The code for that decision appears highlighted in sf_climate_control.c.

61-16

 Trace Stateflow Objects in Generated Code

Highlighted
line of code

Tip: To select C/C++ Code > Navigate to C/C++ Code for a condition, decision, or
action, right-click a cell in the row or column that corresponds to that truth table
element.

Bidirectional Traceability for Graphical Functions

See how bidirectional traceability works for graphical functions by following these steps:

1 At the command prompt, type sf_clutch.
2 Complete steps 2 through 6 in “Bidirectional Traceability for States and Transitions”

on page 61-10.
3 In the Model Configuration Parameters dialog box, go to the Solver pane. In the

Solver options section, select Fixed-step in the Type field. Click Apply. Before
generating code, you must perform this step because the model does not work with
variable step solvers.

4 To build the model, press Ctrl+B.

The code generation report appears.
5 Click the sf_clutch.c hyperlink in the report.
6 To see the traceability comments, scroll down through the code. The following line

numbers can differ from the numbers that appear in your code generation report.

Traceability
comment for a
graphical function

7 Click the <S1>:3 hyperlink in this traceability comment:

/* Graphical Function 'getSlipTorque': '<S1>:3' */

In the chart, the graphical function getSlipTorque appears highlighted.

61-17

61 Code Tracing in Embedded Coder

8 You can also trace a graphical function in the chart to a line of generated code. For
example, right-click the graphical function detectSlip and select C/C++ Code >
Navigate to C/C++ Code.

The code for that graphical function appears highlighted in sf_clutch.c.

Highlighted
line of code

Code-to-Model Traceability for Events

See how code-to-model traceability works for events by following these steps:

1 At the command prompt, type sf_security.
2 Complete steps 2 through 6 in “Bidirectional Traceability for States and Transitions”

on page 61-10.
3 To build the model, press Ctrl+B.

The code generation report appears.
4 Click the sf_security.c hyperlink in the report.
5 To see the following traceability comment, scroll down through the code. The

following line numbers can differ from the numbers that appear in your code
generation report.

Traceability
comment for
an event

6 Click the <S8>:56 hyperlink in this traceability comment:

/* Event: '<S8>:56' */

In the Contents pane of the Model Explorer, the event Sound appears highlighted.

61-18

 Trace Stateflow Objects in Generated Code

Model-to-Code Traceability for Junctions

See how model-to-code traceability works for junctions by following these steps:

1 At the command prompt, type sf_abs.
2 Complete steps 2 through 6 in “Bidirectional Traceability for States and Transitions”

on page 61-10.
3 In the Model Configuration Parameters dialog box, go to the Solver pane. In the

Solver options section, select Fixed-step in the Type field. Click Apply. Before
generating code, you must perform this step because the model does not work with
variable-step solvers.

4 To build the model, press Ctrl+B.

61-19

61 Code Tracing in Embedded Coder

The code generation report appears.
5 Open the AbsoluteValue chart.
6 Right-click the left junction and select C/C++ Code > Navigate to C/C++ Code.

The code for the first outgoing transition of that junction appears highlighted in
sf_abs.c.

Highlighted
line of code

Format of Traceability Comments for Stateflow Objects

The format of a traceability comment depends on the Stateflow object type.

State

Syntax

/* <ActionType> '<StateName>': '<ObjectHyperlink>' */

Example

/* During 'gear_state': '<S5>:2' */

This comment refers to the during action of the state gear_state, which has the
hyperlink <S5>:2.

Transition

Syntax

/* Transition: '<ObjectHyperlink>' */

Example

/* Transition: '<S5>:12' */

61-20

 Trace Stateflow Objects in Generated Code

This comment refers to a transition, which has the hyperlink <S5>:12.

MATLAB Function

Syntax

/* MATLAB Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a MATLAB function, comments that link to individual lines of
the function have the following syntax:

/* '<ObjectHyperlink>' */

Examples

/* MATLAB Function 'test_function': '<S50>:99' */

/* '<S50>:99:20' */

The first comment refers to the MATLAB function named test_function, which has
the hyperlink <S50>:99.

The second comment refers to line 20 of the MATLAB function in your chart.

Truth Table Block

Syntax

/* Truth Table Function '<Name>': '<ObjectHyperlink>' */

Within the inlined code for a Truth Table block, comments for conditions, decisions, and
actions have the following syntax:

/* Condition '#<Num>': '<ObjectHyperlink>' */

/* Decision 'D<Num>': '<ObjectHyperlink>' */

/* Action '<Num>': '<ObjectHyperlink>' */

<Num> is the row or column number that appears in the Truth Table Editor.

Examples

/* Truth Table Function 'truth_table_default': '<S10>:100' */

/* Condition '#1': '<S10>:100:8' */

/* Decision 'D1': '<S10>:100:16' */

/* Action '1': '<S10>:100:31' */

61-21

61 Code Tracing in Embedded Coder

The first comment refers to a Truth Table block named truth_table_default, which
has the hyperlink <S10>:100.

The other three comments refer to elements of that Truth Table block. Each condition,
decision, and action in the Truth Table block has a unique hyperlink.

Truth Table Function

For syntax and examples, see “Truth Table Block” on page 61-21.

Graphical Function

Syntax

/* Graphical Function '<Name>': '<ObjectHyperlink>' */

Example

/* Graphical Function 'hello': '<S1>:123' */

This comment refers to a graphical function named hello, which has the hyperlink
<S1>:123.

Simulink Function

Syntax

/* Simulink Function '<Name>': '<ObjectHyperlink>' */

Example

/* Simulink Function 'simfcn': '<S4>:10' */

This comment refers to a Simulink function named simfcn, which has the hyperlink
<S4>:10.

Event

Syntax

/* Event: '<ObjectHyperlink>' */

Example

/* Event: '<S3>:33' */

This comment refers to an event, which has the hyperlink <S3>:33.

61-22

 Link Generated Code to Requirements

Link Generated Code to Requirements

Link generated code to model object requirements. Using configuration parameters, you
can specify whether to include requirement descriptions as comments in the generated
code.

Open Model

Open the rtwdemo_requirements model. The model contains Simulink® and Stateflow®
objects with associated requirements.

model='rtwdemo_requirements';

open_system(model);

61-23

61 Code Tracing in Embedded Coder

View Requirements

You can view requirements to model objects by using the object context menu. Right-click
an object and select Requirements Traceability. To view the requirements, use these
commands:

1. To view the requirements for the DiscretePulseGenerator block, open the Link
Editor.

clockblock='rtwdemo_requirements/clock';

clockblockh=get_param(clockblock,'handle');

rmi('edit',clockblockh);

2. To view the requirements, open the Signal Builder block.

sigbblock='rtwdemo_requirements/Signal Builder';

open_system(sigbblock)

61-24

 Link Generated Code to Requirements

3. To view the requirements for the Stateflow® state, open the Link Editor.

state=find(sfroot,'-isa','Stateflow.State','-and','Tag','req_state');

rmi('edit',state.id);

4. To view the requirements for the Stateflow transition, open the Link Editor.

trans=find(sfroot,'-isa','Stateflow.Transition','-and','Tag','req_trans');

rmi('edit',trans.id);

5. To view the requirements for the Stateflow function, open the Link Editor.

61-25

61 Code Tracing in Embedded Coder

func=find(sfroot,'-isa','Stateflow.Function','-and','Tag','req_function');

rmi('edit',func.id);

Close the open windows.

close_system(sigbblock);

Set Configuration Parameters

Open the Configuration Parameters dialog box Code Generation > Comments pane.
View the configuration parameter settings.

model = bdroot;

slCfgPrmDlg(model,'Open');

slCfgPrmDlg(bdroot,'TurnToPage','Comments');

Generate Code

Generate code for the model.

rtwbuild('rtwdemo_requirements')

Starting build procedure for model: rtwdemo_requirements

Successful completion of build procedure for model: rtwdemo_requirements

In the generated code, view the comments containing the requirements.

rtwdemodbtype('rtwdemo_requirements_ert_rtw/rtwdemo_requirements.c',...

 '/* Function for Chart:','return result;',1,0);

/* Function for Chart: '<Root>/rebound_elimination' */

static real_T rebound_fcn(real_T prev_in, real_T prev_out, real_T curr_in)

{

 real_T result;

 /* Graphical Function 'rebound_fcn': '<S2>:2':

 * 1. Result Computation

 */

 /* Transition: '<S2>:4' */

 if (prev_in == curr_in) {

 /* Transition: '<S2>:5' */

 result = curr_in;

 } else {

 /* Transition: '<S2>:6' */

 /* Transition: '<S2>:7' */

61-26

 Link Generated Code to Requirements

 result = prev_out;

 }

See Also

• For requirement traceability, see Overview of the Requirements Management
Interface

Close Model

rtwdemoclean;

close_system('rtwdemo_requirements',0);

61-27

61 Code Tracing in Embedded Coder

Reload Existing Traceability Information

To reload existing traceability information for a model:

1 In the Configuration Parameters dialog box, on the All Parameters tab, under
Model-to-code, click Configure.

2 In the Model-to-code navigation dialog box, in the Build folder field, type or browse
to the build folder that contains the existing traceability information.

If you close and reopen a model, the Navigate to Code context menu option might not
be available because Embedded Coder cannot find a build folder for your model in the
current working folder. Without having to reset the current working folder or rebuild the
model, do the following:

1 To open the Model-to-code navigation dialog box, click Configure.
2 In the Model-to-code navigation dialog box, click Browse.
3 Browse to the build folder for your model, and select the folder. The build folder path

is displayed in the Build folder field.

4 If you selected Model-to-code for the build, clicking Apply or OK loads traceability
information from the earlier build into your Simulink session.

5 To open the context menu and trace a model object to corresponding code, right-click
a model object and select C/C++ Code > Navigate to C/C++ Code.

61-28

 Customize Traceability Reports

Customize Traceability Reports

In the Configuration Parameters dialog box, the Code Generation section lists
parameters that you can select and clear to customize the content of your traceability
reports.

Select or clear any combination of the following parameters, which are on by default:

• Eliminated / virtual blocks (Simulink Coder) (account for blocks that are
untraceable)

• Traceable Simulink blocks (Simulink Coder)
• Traceable Stateflow objects (Simulink Coder)
• Traceable MATLAB functions (Simulink Coder)

If you select all parameters, you get a complete mapping between model elements and
the generated code.

The following figure shows the top section of the traceability report that is generated
when you select all traceability content parameters for model rtwdemo_hyperlinks.

61-29

61 Code Tracing in Embedded Coder

61-30

 Generate a Traceability Matrix

Generate a Traceability Matrix

If you have DO Qualification Kit software or IEC Certification Kit software and are using
a Windows host, you can generate a traceability matrix into Microsoft Excel® format
directly from the traceability report. See “Customize Traceability Reports” on page 61-29.

Go to the Traceability Report section of the HTML code generation report and click
Generate Traceability Matrix.

To select an existing matrix file to update or specify a new matrix file to create, use
the options in the Generate Traceability Matrix dialog box. Optionally, you can select
and order the columns that appear in the generated matrix. For more information, see
“Generating a Traceability Matrix” in either the DO Qualification Kit documentation
(DO Qualification Kit) or the IEC Certification Kit documentation (IEC Certification Kit).

61-31

61 Code Tracing in Embedded Coder

Traceability Limitations

These limitations apply to reports generated by Embedded Coder software.

• Under the following conditions, model-to-code traceability is disabled for a block if the
block name contains:

• A single quote (').
• An asterisk (*), that causes a name-mangling ambiguity relative to other names in

the model. This name-mangling ambiguity occurs if in a block name or at the end
of a block name, an asterisk precedes or follows a slash (/).

• The character ÿ (char(255)).
• If a block name contains a newline character (\n), in the generated code comments,

the block path name hyperlink replaces the newline character with a space for
readability.

• You cannot trace blocks representing these types of subsystems to generated code:

• Virtual subsystems
• Masked subsystems
• Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at subsystem level, you might be able to trace
individual blocks within the subsystem.

• If you open a model on a platform that is different from the platform used to generate
code, you cannot use model-to-code and code-to-model traceability features.

61-32

62

Component Verification in Embedded
Coder

• “Component Verification in the Target Environment” on page 62-2
• “Goals of Component Verification” on page 62-3
• “Maximizing Code Portability and Configurability” on page 62-4
• “Simplifying Code Integration and Maximizing Code Efficiency” on page 62-5
• “Running Component Tests” on page 62-6

62 Component Verification in Embedded Coder

Component Verification in the Target Environment

After you generate production code for a component design, you need to integrate,
compile, link, and deploy the code as a complete application on the embedded system.
One approach is to manually integrate the code into an existing software framework that
consists of an operating system, device drivers, and support utilities. The algorithm can
include externally written legacy or custom code.

An easier approach to verifying a component in a target environment is to use processor-
in-the-loop (PIL) simulation. For information about PIL simulations, see “SIL and PIL
Simulations” on page 64-2.

62-2

 Goals of Component Verification

Goals of Component Verification

Assuming that you have generated production source code and integrated required
externally written code, such as drivers and a scheduler, you can verify that the
integrated software operates as expected by testing it in the target environment. During
testing, you can achieve either of the following goals, depending on whether you export
code that is strictly ANSI C/C++ or mixes ANSI C/C++ with code optimized for a target
environment.

Goal Type of Code Export

Maximize code portability and configurability ANSI C/C++
Simplify integration and maximize use of processor
resources and code efficiency

Mixed code

Regardless of your goal, you must integrate required external drivers and scheduling
software. To achieve real-time execution, you must integrate the real-time scheduling
software.

62-3

62 Component Verification in Embedded Coder

Maximizing Code Portability and Configurability

To maximize code portability and configurability, limit the application code to ANSI/ISO
C or C++ code only, as the following figure shows.

Special

interfaces

Actuators
Communication

interfaces

Comm

drivers

Input

drivers

Output

drivers

Special

device

drivers

Scheduler/operating system

and support utilities

Sensors

Tuning

Algorithm model

Generated

algorithm

code

Included

legacy

code

62-4

 Simplifying Code Integration and Maximizing Code Efficiency

Simplifying Code Integration and Maximizing Code Efficiency

To simplify code integration and maximize code efficiency for a target environment, use
Embedded Coder features for:

• Controlling code interfaces
• Exporting subsystems
• Including target-specific code, including compiler optimizations

The following figure shows a mix of ANSI C/C++ code with code that is optimized for a
target environment.

Special

interfaces

Actuators
Communication

interfaces

Comm

drivers

Input

drivers

Output

drivers

Special

device

drivers

Scheduler/operating system

and support utilities

Sensors

Tuning

Controller model

Generated

algorithm

code

Included

target

optimized

code

62-5

62 Component Verification in Embedded Coder

Running Component Tests

The workflow for running software component tests in the target environment is:

1 Integrate external code, for example, for device drivers and a scheduler, with
the generated C or C++ code for your component model. For more information,
see “S-Functions and Code Generation” (Simulink Coder) in the Simulink Coder
documentation. For more specific references that depend on your verification goals,
see the following table.

For See

ANSI C/C++ code integration “Integrate C Functions Using Legacy Code Tool”
(Simulink) in the Simulink documentation. Also,
open rtwdemos and navigate to the Custom
Code folder.

Mixed code integration • “Generate Component Source Code for Export
to External Code Base” on page 39-51 and
example rtwdemo_exporting_functions

• “Control Generation of Function Prototypes”
on page 26-2, “Control Generation of C++
Class Interfaces” on page 26-23, and example
rtwdemo_fcnprotoctrl

• “What Is Code Replacement?” on page
38-2, “What Is Code Replacement
Customization?” on page 51-3, and example
rtwdemo_crl_script

2 Simulate the integrated component model.
3 Generate code for the integrated component model.
4 Connect to data interfaces for the generated C code data structures. See “Exchange

Data Between Generated and External Code Using C API” (Simulink Coder) and
“Export ASAP2 File for Data Measurement and Calibration” (Simulink Coder)
in the Simulink Coder documentation. Also see examples rtwdemo_capi and
rtwdemo_asap2.

5 Customize and control the build process, if required. See “Customize Post-
Code-Generation Build Processing” (Simulink Coder) in the Simulink Coder
documentation, and example rtwdemo_buildinfo .

62-6

 Running Component Tests

6 Create a zip file that contains generated code files, static files, and dependent data
to build the generated code in an environment other than your host computer. See
“Relocate Code to Another Development Environment” (Simulink Coder), in the
Simulink Coder documentation, and example rtwdemo_buildinfo.

62-7

63

Component Verification With a Real-
Time Target Environment in Embedded
Coder

• “About Real-Time Software Component Verification” on page 63-2
• “Real-Time Software Component Testing” on page 63-4

63 Component Verification With a Real-Time Target Environment in Embedded Coder

About Real-Time Software Component Verification

One approach to verifying a software component is to build the component into a
complete software system that can execute in real time in the target environment. A
complete software system includes:

• Algorithm for the software component
• Scheduling algorithms
• Calls to drivers for board-specific devices

This single build approach is more time consuming to set up, but makes it easier to get
the complete application running in the target environment.

The following figure shows code generated for an algorithm being built into a complete
system executable for the target environment.

63-2

 About Real-Time Software Component Verification

Special

interfaces

Actuators
Communication

interfaces

Comm

drivers

Input

drivers

Output

drivers

Special

device

drivers

Scheduler/operating system

and support utilities

Sensors

Tuning

Algorithm model

Generated

algorithm

code

Optional

target

optimized

code

63-3

63 Component Verification With a Real-Time Target Environment in Embedded Coder

Real-Time Software Component Testing

The workflow for testing component software as part of a complete real-time target
environment is:

1 Develop a component model and generate source code for production.

For information on building in scheduling and real-time system support, see:

• “Time-Based Scheduling and Code Generation” (Simulink Coder) and
“Modeling for Multitasking Execution” (Simulink Coder) in the Simulink Coder
documentation. For an example, open rtwdemos and navigate to the Multirate
Support folder.

• “Asynchronous Events” (Simulink Coder) in the Simulink Coder documentation
and example rtwdemo_async

• “Deploy Generated Standalone Executable Programs To Target Hardware” on
page 49-2

• “Workflows for AUTOSAR” and example “Generate AUTOSAR-Compliant C Code
and Export ARXML Descriptions”.

2 Optimize generated code for a specific run-time environment, using specialized
function libraries. For more information, see “What Is Code Replacement?” on page
38-2, “What Is Code Replacement Customization?” on page 51-3, and “Optimize
Generated Code By Developing and Using Code Replacement Libraries - Simulink®”.

3 Customize post code generation build processing to accommodate third-party
tools and processes, as required. See “Customize Post-Code-Generation Build
Processing” (Simulink Coder) in the Simulink Coder documentation and example
rtwdemo_buildinfo.

4 Integrate external code, for example, for device drivers and a scheduler, with
the generated C or C++ code for your component model. For more information,
see “S-Functions and Code Generation” (Simulink Coder) in the Simulink Coder
documentation. For more specific references depending on your verification goals, see
the following table.

For... See...

ANSI C/C++ code integration “Integrate C Functions Using Legacy Code Tool”
(Simulink) in the Simulink documentation. Also,
open rtwdemos and navigate to the Custom
Code folder.

63-4

 Real-Time Software Component Testing

For... See...

Mixed code integration • “Generate Component Source Code for Export
to External Code Base” on page 39-51 and
example rtwdemo_exporting_functions

• “Control Generation of Function Prototypes”
on page 26-2, “Control Generation of C++
Class Interfaces” on page 26-23, and example
rtwdemo_fcnprotoctrl

• “What Is Code Replacement?” on page 38-2,
“What Is Code Replacement Customization?”
on page 51-3, and example “Optimize
Generated Code By Developing and Using Code
Replacement Libraries - Simulink®”

5 Simulate the integrated model.
6 Generate code for the integrated model.
7 Connect to data interfaces for the generated C code data structures. See “Exchange

Data Between Generated and External Code Using C API” (Simulink Coder) and
“Export ASAP2 File for Data Measurement and Calibration” (Simulink Coder)
in the Simulink Coder documentation. Also see examples rtwdemo_capi and
rtwdemo_asap2.

8 Customize and control the build process, as required. See “Customize Post-
Code-Generation Build Processing” (Simulink Coder), in the Simulink Coder
documentation, and example rtwdemo_buildinfo .

9 Create a zip file that contains generated code files, static files, and dependent data
to build the generated code in an environment other than your host computer. See
“Relocate Code to Another Development Environment” (Simulink Coder), in the
Simulink Coder documentation, and example rtwdemo_buildinfo.

63-5

64

Numerical Equivalence Checking in
Embedded Coder

• “SIL and PIL Simulations” on page 64-2
• “Choose a SIL or PIL Approach” on page 64-11
• “Configure and Run SIL Simulation” on page 64-15
• “Configure and Run PIL Simulation” on page 64-26
• “Simulation Mode Override Behavior in Model Reference Hierarchy” on page

64-35
• “Debug Generated Code During SIL Simulation” on page 64-37
• “Create PIL Target Connectivity Configuration” on page 64-40
• “Host-Target Communication for PIL” on page 64-46
• “Specify Hardware Timer” on page 64-52
• “PIL Simulation Sequence” on page 64-55
• “Verification of Code Generation Assumptions” on page 64-58
• “View SIL and PIL Files in Code Generation Report” on page 64-59
• “SIL and PIL Limitations” on page 64-61
• “Check Configuration” on page 64-76
• “Verify Numerical Equivalence with CGV” on page 64-78
• “Verify Numerical Equivalence Between Two Modes of Execution of a Model” on page

64-79
• “Using Code Generation Verification API” on page 64-86

64 Numerical Equivalence Checking in Embedded Coder

SIL and PIL Simulations

In this section...

“What Are SIL and PIL Simulations?” on page 64-2
“Why Use SIL and PIL” on page 64-2
“How SIL and PIL Simulations Work” on page 64-4
“Comparison of SIL and PIL Simulations” on page 64-5
“Code Interfaces for SIL and PIL” on page 64-6
“Scheduling Considerations” on page 64-7
“Imported Data and Function Definitions” on page 64-9

What Are SIL and PIL Simulations?

With Embedded Coder, you can run software-in-the-loop (SIL) and processor-in-the-
loop (PIL) simulations of your model. These simulations generate source code for either
the top model or part of the model. A SIL simulation compiles and runs the generated
code on your development computer. A PIL simulation cross-compiles source code on
your development computer, and then downloads and runs the object code on a target
processor or an equivalent instruction set simulator.

With SIL and PIL simulations, you can:

• Test whether your model and generated code are numerically equivalent.
• Observe code coverage.
• Perform code execution profiling.

Why Use SIL and PIL

Through SIL and PIL, you can early on test and fix defects. For example, you can model
and test a system component in normal mode. Then, you can reuse your test suites
in a SIL or PIL simulation that runs compiled generated code. To check numerical
equivalence, you compare normal and SIL or PIL simulation results. You thereby avoid
leaving the Simulink environment to test generated code on a separate infrastructure.

This table describes situations where you can use SIL and PIL.

64-2

 SIL and PIL Simulations

Situation Use

Reuse test vectors developed for normal mode simulation to verify
numerical output of generated (or legacy) code. For example,
reusing test cases generated by Simulink Design Verifier™. See
“What Is Test Case Generation?” (Simulink Design Verifier) in
Simulink Design Verifier documentation.

SIL and PIL

Collect metrics for generated code:

• Code coverage. See “Configure Code Coverage with Third-Party
Tools” on page 67-10.

• Execution profiling. See “Code Execution Profiling with SIL and
PIL” on page 58-2

• Stack profiling. See “Perform Stack Profiling with IDE and
Toolchain Targets” on page 73-22.

SIL and PIL

Achieve IEC 61508, IEC 62304, ISO 26262, or DO-178 certification.
See “Embedded Coder Reference Workflow Overview” (IEC
Certification Kit) in the IEC Certification Kit documentation and
Testing of Outputs of Integration Process (DO Qualification Kit) in
the DO Qualification Kit documentation.

SIL and PIL

Without target hardware, get a convenient alternative to PIL. SIL

64-3

64 Numerical Equivalence Checking in Embedded Coder

Situation Use

With target hardware, for example, an evaluation board or
instruction set simulator:

• Verify behavior of target-specific code, for example, code
replacement optimizations, and legacy code. See “What Is Code
Replacement?” on page 38-2 and “What Is Code Replacement
Customization?” on page 51-3.

• Optimize the execution speed and memory footprint of your
code. In this table, see the information about collecting
execution profiling and stack profiling metrics.

• Investigate effects of compiler settings and optimizations, for
example, deviation from ANSI C overflow behavior.

Normal simulation techniques do not account for restrictions and
requirements that the hardware imposes, such as limited memory
resources or behavior of target-specific optimized code.

For information about running PIL simulations on specific targets,
see “Sample Custom Targets” (Simulink Coder) in the Simulink
Coder documentation.

PIL

Note: The SIL and PIL simulation modes are not designed for the reduction of model
simulation times. If you want to speed up the simulation of your model, use the rapid
accelerator mode. For more information, see “What Is Acceleration?” (Simulink).

How SIL and PIL Simulations Work

In a SIL or PIL simulation, code is generated for either the top model or part of the
model. With SIL, this code is compiled for and executed on your development computer.
With PIL, the code is cross-compiled for the target hardware and runs on the target
processor.

Through a communication channel, Simulink sends stimulus signals to the code on your
computer or target processor for each sample interval of the simulation.

• For a top model, Simulink uses stimulus signals from the base or model workspace.

64-4

 SIL and PIL Simulations

• If you have designated only part of the model to simulate in SIL or PIL mode, then a
part of the model remains in Simulink and code is not generated for this part of the
model. Typically, you configure this part of the model to provide test vectors for the
software executing on the hardware. This part of the model can represent other parts
of the algorithm or the environment in which the algorithm operates.

When your computer or target processor receives signals from Simulink, the processor
executes the SIL or PIL algorithm for one sample step. The SIL or PIL algorithm returns
output signals calculated during this step to Simulink through a communication channel.
One sample cycle of the simulation is complete, and Simulink proceeds to the next
sample interval. The process keeps repeating itself and the simulation progresses. SIL
and PIL simulations do not run in real time. In each sample period, Simulink and the
object code exchange I/O data.

Comparison of SIL and PIL Simulations

Type of SIL or PIL
Simulation

What Happens in SIL Simulation What Happens in PIL Simulation

Specify through:

• Top-model
simulation mode

• Model block
Simulation mode
parameter

• Test behavior of generated
source code on development
computer. Simulation does
not test code compiled
for target hardware
because code is compiled
for the development
computer (different compiler
and different processor
architecture than the
target).

• Generated production code
compiled and executed on
development computer
as separate process,
independent of MATLAB
process.

• Execution is host/host and
nonreal time.

• Test object code that
you intend to deploy in
production on either real
target hardware or an
instruction set simulator.

• On development computer,
generated production code
cross-compiled for target.
Object code downloaded
and executed on target
processor or instruction set
simulator.

• Execution is host/target
and nonreal time.

64-5

64 Numerical Equivalence Checking in Embedded Coder

Type of SIL or PIL
Simulation

What Happens in SIL Simulation What Happens in PIL Simulation

Use SIL or PIL
block created from
subsystem.

• Simulation runs compiled
object code through S-
function. S-function
communicates with
object code executing as
standalone application on
development computer.
SIL block execution is
independent of the MATLAB
process.

• Execution is host/host and
nonreal time.

• Simulation runs cross-
compiled object code
through S-function on
development computer.
S-function communicates
with object code executing
as standalone application
on target processor or
instruction set simulator.

• Execution is host/target
and nonreal time.

Code Interfaces for SIL and PIL

You generate standalone code when you perform, for example, a top-model or right-click
subsystem build for a single deployable component. You can compile and link standalone
code into a standalone executable or integrate it with other code. For more information
on the standalone code interface, see “Entry-Point Functions and Scheduling” (Simulink
Coder).

When you generate code for a referenced model hierarchy, the software generates
standalone executable code for the top model and a library module called a model
reference target for each referenced model. When the code executes, the standalone
executable invokes the applicable model reference targets to compute the referenced
model outputs. For more information, see “Build Model Reference Targets” (Simulink
Coder).

To integrate generated code with legacy code, use standalone code because the
standalone code interface is documented.

Note: SIL and PIL simulations do not provide direct support for custom code interfaces.
You can incorporate these interfaces into Simulink as an S-function, for example, using
the Legacy Code Tool, S-Function Builder, or handwritten code. Then, you can verify the
custom code by using SIL and PIL simulations.

64-6

 SIL and PIL Simulations

This table provides the interfaces that SIL and PIL simulations generate.

SIL/PIL
Simulation

Code Interface

Top-model SIL/PIL simulation generates the standalone code interface. If code
exists, simulation calls standalone code for the model . If code does not
exist, simulation generates standalone code.

Model block If you set Code interface block parameter to Top model, SIL/PIL
simulation generates standalone code interface. Simulation calls
standalone code for the model if it exists. Otherwise, simulation
generates standalone code by using slbuild('model') command.

If you set Code interface block parameter to Model reference,
SIL/PIL simulation generates model reference code interface.
Simulation calls model reference target for Model block if it exists.
Otherwise, simulation generates model reference target by using
slbuild('model', 'ModelReferenceRTWTarget') command.

SIL or PIL
block

Block uses standalone code interface.

Scheduling Considerations

Item Information

Algebraic
loops

There are algebraic loops that occur in SIL and PIL simulations but not in
normal mode simulations:

• Single output/update function in code generation optimization
can introduce algebraic loops because the option introduces direct
feedthrough via a combined output and update function.

Single output/update function is not compatible with Minimize
algebraic loop occurrences (in the Subsystem Parameters dialog
box and Configuration Parameters > Model Referencing pane).
Minimize algebraic loop occurrences allows code generation to
remove algebraic loops by partitioning generated code between output
and update functions to avoid direct feedthrough.

• If you generate code for a virtual subsystem, code generation treats
the subsystem as atomic and generates the code accordingly. The

64-7

64 Numerical Equivalence Checking in Embedded Coder

Item Information

resulting code can change the execution behavior of your model, for
example, by applying algebraic loops, and introduce inconsistencies to
the simulation behavior.

To enable consistent simulation and execution behavior for your
model, declare virtual subsystems as atomic subsystems.

For more information, see:

• “Algebraic Loops” (Simulink)
• “Algebraic Loops” (Simulink Coder)
• “Code Generation of Subsystems” (Simulink Coder)

Exported
functions
in feedback
loops

If your model has function-call subsystems and you export a subsystem
that has context-dependent inputs (for example, feedback signals), the
results of a SIL/PIL simulation with the generated code and the results
of the normal mode simulation of your model can differ. One approach to
make SIL/PIL and normal mode simulations yield identical results is to
use Function-Call Feedback Latch (Simulink) blocks in your model. You
can make context-dependent inputs become context-independent.

Embedded Coder generates a warning identifying context-dependent
inputs of exported function-call subsystems if you set Configuration
Parameters > Diagnostics > Connectivity > Context-dependent
inputs to one of the following:

• Enable all as warnings

• Use local settings

• Disable all

For more information, see:

• “Code Generation of Subsystems” (Simulink Coder)
• Function-Call Feedback Latch (Simulink)
• “Context-dependent inputs” (Simulink)

64-8

 SIL and PIL Simulations

Imported Data and Function Definitions

Item Information

Imported data In SIL and PIL simulations, you can use signals, parameters, and data
stores that specify storage classes with imported data definitions. The
simulations define storage for imported data associated with:

• Signals at the root level of the component (on the I/O boundary)
• Parameters
• Global data stores

SIL and PIL simulations do not define storage for other imported data.
For example, the simulations do not define storage for imported data
associated with:

• Internal signals (not on the I/O boundary)
• Local data stores

In these cases, define the storage through custom code
included by the component under test or through the PIL
rtw.pil.RtIOStreamApplicationFramework API.

See also “Tunable Parameters and SIL/PIL” on page 64-63.
GetSet custom
storage class

SIL and PIL simulations support the GetSet custom storage class.
The SIL/PIL test harness provides C definitions of the Get and Set
functions that are used during simulations. For more information, see
“Access Data Through Functions with Custom Storage Class GetSet”
on page 23-92.

AUTOSAR
Runtime
Environment
(RTE)

You can use top-model and Model block SIL/PIL and SIL/PIL block
simulations to perform model-based testing of an AUTOSAR software
component. The generated code for the AUTOSAR software component
is linked with a basic component-specific AUTOSAR Runtime
Environment (RTE) to create a test application. This application tests
AUTOSAR API calls made by the AUTOSAR software component.

Note: For Model block SIL/PIL, to test the AUTOSAR interface, set the
Code interface block parameter to Top model.

64-9

64 Numerical Equivalence Checking in Embedded Coder

Item Information

For more information, see “Verify AUTOSAR C Code with SIL and
PIL”.

Related Examples
• “Test Generated Code with SIL and PIL Simulations”
• “Choose a SIL or PIL Approach” on page 64-11
• “Configure and Run SIL Simulation” on page 64-15
• “Check Configuration” on page 64-76

64-10

 Choose a SIL or PIL Approach

Choose a SIL or PIL Approach

In this section...

“Test Top-Model Code” on page 64-12
“Test Referenced Model Code” on page 64-13
“Test Subsystem Code” on page 64-13
“Summary” on page 64-13

Consider a top model that consists of components A, B, C, and D:

• A and B are existing components for which code has previously been generated and
tested.

• C, a referenced model, and D, a subsystem, are new components.

With software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations, you can use
the following approaches to numerical equivalence testing:

• Test code from all components together. See “Test Top-Model Code” on page 64-12.
• Test new components separately (before testing code from all components). See

“Test Referenced Model Code” on page 64-13 and “Test Subsystem Code” on page
64-13.

64-11

64 Numerical Equivalence Checking in Embedded Coder

For some forms of testing, you require a test harness model. The test harness model:

• Generates test vectors or stimulus inputs that feed the block under test.
• Makes it possible for you to observe or capture output from the block.

The following example shows a simple test harness model.

The block under test is a Model block. The Sine Wave block generates the input for the
Model block. Through the Scope block, you can observe the output from the Model block.

Test Top-Model Code

To test code generated from the top-model components together (A, B, C, and D), you can
use top-model SIL/PIL or Model block SIL/PIL.

• Top-model SIL/PIL:

1 Create test vectors or stimulus inputs in the MATLAB workspace (Simulink).
2 Run the top model in normal, SIL, and PIL simulation modes. The software loads

the test vectors or stimulus inputs from the MATLAB workspace.
3 For each simulation mode, observe or capture outputs.
4 Verify numerical equivalence by comparing normal outputs against SIL and PIL

outputs.
• Model block SIL/PIL:

1 Create a Model block that contains the top-model components.
2 Insert the Model block in a simulation model, for example, your test harness

model.
3 Run simulations, switching the Model block between normal, SIL, and PIL

modes. For the SIL and PIL simulation modes, set the Code interface Model
block parameter to Top model.

4 Verify numerical equivalence by comparing normal outputs against SIL and PIL
outputs.

64-12

 Choose a SIL or PIL Approach

Test Referenced Model Code

To test code generated from the component C as part of a model reference hierarchy, use
the Model block SIL/PIL approach:

• Insert the Model block C in a simulation model, for example, your test harness model.
• Run simulations, switching the Model block between normal, SIL, and PIL modes. For

the SIL and PIL simulation modes, set the Code interface Model block parameter to
Model reference.

• Verify numerical equivalence by comparing normal outputs against SIL and PIL
outputs.

Test Subsystem Code

To test code generated from the subsystem D, use the SIL or PIL block approach:

1 Insert the subsystem in a simulation model, for example, your test harness model.
2 Run a normal mode simulation, capturing the outputs.
3 Create a SIL or PIL block from the subsystem.
4 In the model, replace the subsystem with the SIL or PIL block.
5 Run a simulation of the model, capturing the outputs.
6 Verify numerical equivalence by comparing normal mode subsystem outputs against

SIL or PIL block outputs.

Summary

Simulation
Type

Component From
Which Code Is
Generated

Mode Selection
Method

Generated Code
Interface

Test Signal Source

Top-
model
SIL/PIL

Top model Menu item on
Simulink Editor
toolbar

Standalone MATLAB workspace
(Simulink)

Model
block
SIL/PIL

Model referenced
by Model block

Model block
parameter
Simulation
mode

Determined by
Model block
parameter Code
interface:
standalone or
model reference.

Simulation model,
for example, test
harness model

64-13

64 Numerical Equivalence Checking in Embedded Coder

Simulation
Type

Component From
Which Code Is
Generated

Mode Selection
Method

Generated Code
Interface

Test Signal Source

SIL or
PIL
block

Subsystem Manual block
substitution

Standalone Simulation model,
for example, test
harness model.

Related Examples
• “Test Generated Code with SIL and PIL Simulations”
• “Configure and Run SIL Simulation” on page 64-15

More About
• “SIL and PIL Simulations” on page 64-2
• “Code Interfaces for SIL and PIL” on page 64-6

64-14

 Configure and Run SIL Simulation

Configure and Run SIL Simulation

In this section...

“Simulation with Top Model” on page 64-15
“Simulation with Model Blocks” on page 64-17
“Simulation with Blocks From Subsystems” on page 64-18
“Configure Hardware Implementation Settings” on page 64-19
“Log Internal Signals of a Component” on page 64-22
“Prevent Code Changes in Multiple Simulations” on page 64-23
“Speed Up Testing” on page 64-24
“Simulation with Function Calls” on page 64-25

There are three ways of running SIL and PIL simulations. You can use:

• The top model.
• Model blocks.
• SIL and PIL blocks that you create from subsystems.

Simulation with Top Model

To configure and run a top-model SIL or PIL simulation:

1 Open your model.
2 Select either Simulation > Mode > Software-in-the-Loop (SIL) or Simulation >

Mode > Processor-in-the-Loop (PIL). This option is available only if the model is
configured for an ERT or AUTOSAR target. See “Model Configuration Parameters:
Code Generation” (Simulink Coder) and “Export AUTOSAR Component XML and C
Code” for configuration information.

3 If you have not already done so, in the Configuration Parameters dialog box, on the
Data Import/Export pane:

• In the Input check box and field, specify stimulus signals (or test vectors) for
your top model.

• Configure logging for model outputs, with either output logging or signal logging:

64-15

64 Numerical Equivalence Checking in Embedded Coder

• In the Output check box and field, specify output logging.
• In the Signal logging check box and field, specify signal logging.

• Disable logging of Data Store Memory variables. The software does not support
this option for this simulation mode. If you do not clear the Data stores check
box, the software produces a warning when you run the simulation.

4 If you are configuring a SIL simulation, specify the portable word sizes option.
You can then switch seamlessly between the SIL and PIL modes. Select Code
Generation > Verification > Enable portable word sizes.

5 If required, configure:

• Code coverage.
• Code execution profiling.
• Creation of code generation report and static code metrics.

6 Start the simulation.

Note: On a Windows operating system, the Windows Firewall can potentially block your
SIL simulation. To allow the SIL simulation, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

You cannot:

• Close the model while the simulation is running. To interrupt the simulation, in the
Command Window, press Ctrl+C.

• Alter the model during the simulation. You can move blocks and lines as long as it
does not alter the behavior of the model.

You can run a top-model SIL or PIL simulation with the command sim(model). The
software supports the sim command option SrcWorkspace for the value 'base'.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations.

With a top-model SIL or PIL simulation, Simulink creates a hidden model,
modelName_wrapper. The simulation generates code for the model and uses the hidden
model to call this code at each time step. As a result, in some circumstances, logged
signals can have a _wrapper suffix. The simulation can also generate warnings that
refer to the hidden model. For example:

64-16

 Configure and Run SIL Simulation

Warning: The model 'modelName_wrapper' has the 'Configuration Parameters' ...

Simulation with Model Blocks

To configure a Model block for a SIL or PIL simulation:

1 Open your model, for example, rtwdemo_sil_modelblock.
2 Right-click your Model block, for example, Counter A. In the context menu,

select Block Parameters (ModelReference), which opens the Function Block
Parameters dialog box.

3 From the Simulation Mode drop-down list, select the required mode, for example,
Software-in-the-loop (SIL).

4 From the Code interface drop-down list, specify the code that you want to test, for
example, Model reference.

5 Click OK. The software displays the simulation mode as a block label.

If you select Top model, the software displays the block label (SIL: Top).
6 If you are configuring a SIL simulation, specify the portable word sizes option.

You can then switch seamlessly between the SIL and PIL modes. Select Code
Generation > Verification > Enable portable word sizes.

7 If required, configure:

• Code coverage.
• Code execution profiling for your Model block, by configuring execution profiling

for the top model.
• Creation of code generation report and static code metrics.

64-17

64 Numerical Equivalence Checking in Embedded Coder

8 Start the simulation.

Note: On a Windows operating system, the Windows Firewall can potentially block your
SIL simulation. To allow the SIL simulation, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations.

Simulation with Blocks From Subsystems

To create a SIL or PIL block from a subsystem and use this block to test the code
generated from the subsystem:

1 In the Configuration Parameters dialog box, click the All Parameters tab.
2 From the Create block drop-down list, select either SIL or PIL.
3 If required, configure code execution profiling.
4 Click OK.
5 In your model window, right-click the subsystem that you want to simulate.
6 Select C/C++ Code > Build This Subsystem.
7 Click Build, which starts the subsystem build process that creates a SIL or PIL

block for the generated subsystem code.
8 Add the generated block to an environment or test harness model that supplies test

vectors or stimulus input.
9 Run simulations with the environment or test harness model.

Note: On a Windows operating system, the Windows Firewall can potentially block your
SIL simulation. To allow the SIL simulation, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

You cannot create a SIL or PIL block if you do one of the following:

• Disable the CreateSILPILBlock property.
• Select a code coverage tool.

64-18

 Configure and Run SIL Simulation

Create block appears dimmed.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations.

Configure Hardware Implementation Settings

For a SIL simulation, you must configure hardware implementation settings, which
enables generated code compilation for your development computer. These settings can
differ from the hardware implementation settings that you use when building the model
for your production hardware. Use one of these approaches.

Approach Details

Switch between SIL and PIL modes without regenerating code. You
use the same generated source code files for the SIL simulation on your
development computer and for production deployment on the target
platform.

To configure a model to use portable word sizes, in Configuration
Parameters > All Parameters, set:

• ProdEqTarget to on.
• PortableWordSizes to on.

Portable
word sizes

When you generate code for a model with portable word sizes specified,
the code generator conditionalizes data type definitions in rtwtypes.h:

#ifdef PORTABLE_WORDSIZES /* PORTABLE_WORDSIZES defined */

…

#else /* PORTABLE_WORDSIZES not defined */

…

#endif /* PORTABLE_WORDSIZES */

If you use the template makefile approach to build code for your
development computer, the template makefile that you select controls
the passing of the PORTABLE_WORDSIZES definition to the compiler. For
example, ert_unix.tmf has the following lines:

64-19

64 Numerical Equivalence Checking in Embedded Coder

Approach Details
ifeq ($(PORTABLE_WORDSIZES),1)

CPP_REQ_DEFINES += -DPORTABLE_WORDSIZES

endif

Note: The template makefile that you use to build code for your target
must not contain the PORTABLE_WORDSIZES definition.

With the toolchain approach, the software specifies -
DPORTABLE_WORDSIZES for the compiler only for host-based builds.

For information about the template makefile and toolchain approaches
to building code, see “Choose and Configure Build Process” (Simulink
Coder).
Consider the case where your target uses code that your development
computer cannot compile. When you switch from the PIL mode to the SIL
mode and try to simulate the model, you see compilation errors. You can
try to work around this problem by adding the source code files to the
SkipForSil group in the build information object RTW.BuildInfo. The
SIL build on the host platform does not compile source files present in the
SkipForSil group. For information about how you add source code files
to a group in the build information object, see:

• addSourceFiles (Simulink Coder) in the Simulink Coder
documentation

• “Customize Post-Code-Generation Build Processing” (Simulink Coder)
in the Simulink Coder documentation

64-20

 Configure and Run SIL Simulation

Approach Details

Numerical results can differ between generated code executing in a SIL
simulation and generated code executing on the production hardware
under one of these conditions:

• Your model contains blocks implemented in TLC, for which C integral
promotion in expressions can behave differently between the MATLAB
host and the production hardware target. Normal and PIL simulation
results match, but SIL simulation results can differ.

• Your production hardware implements rounding to Floor for signed
integer division, and divisions in your model use rounding mode
Ceiling, Floor, Simplest, or Zero. Normal and PIL simulation
results match, but SIL simulation results can differ.

• You use custom code with the Stateflow product. In this case, type
conversion statements are not inserted into the custom code, which
target overflow behavior on the host can require. Normal and PIL
simulation results match, but SIL simulation results can differ.

Test
hardware

Use this approach only when you want to work around a limitation of
portable word sizes.

To configure a model for test hardware, in Configuration Parameters >
All Parameters, set:

• PortableWordSizes to off.
• ProdEqTarget to off.
• TargetHWDeviceType to Custom Processor->MATLAB Host

Processor.
Production
hardware

Use this approach only when the production hardware settings match
your development computer architecture.

In Configuration Parameters > All Parameters, set:

• PortableWordSizes to off.
• ProdEqTarget to on.
• ProdHWDeviceType to match your development computer

architecture. For example, you can select Intel->x86-64
(Windows64) and set ProdLongLongMode to on.

64-21

64 Numerical Equivalence Checking in Embedded Coder

For information about test and production targets, see “Configure Run-Time
Environment Options” (Simulink Coder) in the Simulink Coder documentation.

Log Internal Signals of a Component

SIL and PIL component outputs are available for observation and comparison with other
simulation mode outputs. If you want to examine an internal signal, you can enable
internal signal logging for top-model or Model block SIL or PIL. With signal logging, you
can:

• Collect signal logging outputs during SIL/PIL simulations, for example, logsout.
• Log the internal signals and the root-level outputs of a SIL/PIL component.
• Manage the SIL/PIL signal logging settings with the Simulink Signal Logging

Selector.
• Use the Simulation Data Inspector to:

• Observe streamed signals during normal, SIL, and PIL simulations.
• Compare logged signals from normal, SIL, and PIL simulations.

For SIL and PIL signal logging:

• Set Configuration Parameters > All Parameters > Format to Dataset.
• Select the Configuration Parameters > Code Generation > Interface >

Generate C API for: signals check box.

The C API determines the addresses of the internal signals that require logging.

You can use other methods to examine internal signals of the SIL or PIL component:

• Manually route the signal to the top level.
• Use global data stores to access internal signals:

1 Inside the component, connect a Data Store Write block to the required signal.
2 Outside the component, use a Data Store Read block to access the signal value.

• Use MAT-file logging. Note that:

• MAT-file logging does not support signal logging. If signal logging is enabled,
logsout is generated but not stored in the MAT-file.

• For PIL, the target environment must support MAT-file logging.

64-22

 Configure and Run SIL Simulation

For more information, see:

• “Test Points” (Simulink)
• “Export Signal Data Using Signal Logging” (Simulink)
• “Local and Global Data Stores” (Simulink)
• “Global Data Store Example” (Simulink)
• “Log Program Execution Results” (Simulink Coder)

Prevent Code Changes in Multiple Simulations

Use Model block SIL/PIL or the SIL/PIL block with fast restart when you want to run
multiple SIL or PIL simulations with:

• Varying test vectors (parameter sets and input data).
• Unchanged generated code, that is, none of the simulations regenerate or rebuild

code after the initial build. For example, you want to avoid the incremental code
generation that an initial value change can trigger.

For Model block SIL/PIL, you can also use one of these methods:

• In your test harness model, set Configuration Parameters > Model Referencing
> Rebuild to Never. If the Model block Code interface parameter is Model
reference, the software does not rebuild the referenced model code. (If the Code
interface parameter is Top model, the software ignores the Rebuild setting.)

• Create a protected model and generate source or binary code. Then, insert the
protected model in your test harness model. With this method, you can verify top-
model code (with the standalone code interface) or model reference code.

For the alternative methods of running Model block SIL/PIL, the following table
summarizes code generation behavior after the initial build.

SIL and PIL Approach Code Generation Behavior
After Initial Build

Model block Configuration
Parameters > Model
Referencing > Rebuild
of test harness model set to
Never.

1 Component (algorithm)
code from initial build is
not regenerated.

2 Component code
makefile is not called.

64-23

64 Numerical Equivalence Checking in Embedded Coder

SIL and PIL Approach Code Generation Behavior
After Initial Build

3 SIL/PIL application files
from initial build are not
regenerated.

4 SIL/PIL application
makefile is called.

Source code from protected
model.

You observe the same
behavior except for feature 2.
In this case, the component
code makefile is run.
The component code is
recompiled and linked to
produce new object code.

Model block (protected
model)

Binary code from protected
model.

You observe features 1–4.

For more information, see:

• “Model Configuration Parameters: Model Referencing” (Simulink)
• “Create a Protected Model” (Simulink Coder)

Speed Up Testing

If your model has SIL/PIL blocks or Model blocks in SIL/PIL mode, you can speed up SIL/
PIL testing by:

• Running the top-model simulation in accelerator mode (Simulink). This mode
accelerates the simulation of model components that are not in SIL or PIL mode.

• Turning on fast restart (Simulink) with the Fast restart button on the Simulink
Editor toolbar. After the first simulation, you can tune parameters and rerun
simulations without model recompilation.

Note: The SIL and PIL simulation modes are not designed for the reduction of model
simulation times. If you want to speed up the simulation of your model, use the rapid
accelerator mode. For more information, see “What Is Acceleration?” (Simulink).

64-24

 Configure and Run SIL Simulation

Simulation with Function Calls

Use the Simulink Function block and Function Caller block when you want to:

• Generate code that makes a function-call to external code, for example, driver or
legacy code.

• Provide a subsystem that behaves like the external code in normal, SIL, or PIL
simulations.

The example in “Configure Calls to AUTOSAR NVRAM Manager Service” shows
how you can configure client calls to Basic Software (BSW) NVRAM Manager (NvM)
service interfaces from your AUTOSAR software component. In a simulation, Simulink
implements the BSW NvM calls through Simulink Function and preconfigured Function
Caller blocks. For the final system, you link function-call stubs with external BSW
function code that runs in the AUTOSAR Runtime Environment (RTE).

For more information, see:

• “Modeling Functions and Callers for Code Generation” on page 4-2
• “Generate Code for Functions and Callers” on page 4-6

Related Examples
• “SIL and PIL Simulations” on page 64-2
• “Choose a SIL or PIL Approach” on page 64-11
• “Test Generated Code with SIL and PIL Simulations”
• “Debug Generated Code During SIL Simulation” on page 64-37
• “View SIL and PIL Files in Code Generation Report” on page 64-59
• “Run Simulations Programmatically” (Simulink)
• “Simulation Mode Override Behavior in Model Reference Hierarchy” on page

64-35
• “SIL and PIL Limitations” on page 64-61
• “Configure Code Coverage with Third-Party Tools” on page 67-10
• “Code Execution Profiling with SIL and PIL” on page 58-2

64-25

64 Numerical Equivalence Checking in Embedded Coder

Configure and Run PIL Simulation

In this section...

“Simulation with Top Model” on page 64-15
“Simulation with Model Blocks” on page 64-17
“Simulation with Blocks From Subsystems” on page 64-18
“Log Internal Signals of a Component” on page 64-22
“Prevent Code Changes in Multiple Simulations” on page 64-23
“Speed Up Testing” on page 64-24
“Simulation with Function Calls” on page 64-25

There are three ways of running SIL and PIL simulations. You can use:

• The top model.
• Model blocks.
• SIL and PIL blocks that you create from subsystems.

Simulation with Top Model

To configure and run a top-model SIL or PIL simulation:

1 Open your model.
2 Select either Simulation > Mode > Software-in-the-Loop (SIL) or Simulation >

Mode > Processor-in-the-Loop (PIL). This option is available only if the model is
configured for an ERT or AUTOSAR target. See “Model Configuration Parameters:
Code Generation” (Simulink Coder) and “Export AUTOSAR Component XML and C
Code” for configuration information.

3 If you have not already done so, in the Configuration Parameters dialog box, on the
Data Import/Export pane:

• In the Input check box and field, specify stimulus signals (or test vectors) for
your top model.

• Configure logging for model outputs, with either output logging or signal logging:

• In the Output check box and field, specify output logging.

64-26

 Configure and Run PIL Simulation

• In the Signal logging check box and field, specify signal logging.
• Disable logging of Data Store Memory variables. The software does not support

this option for this simulation mode. If you do not clear the Data stores check
box, the software produces a warning when you run the simulation.

4 If you are configuring a SIL simulation, specify the portable word sizes option.
You can then switch seamlessly between the SIL and PIL modes. Select Code
Generation > Verification > Enable portable word sizes.

5 If required, configure:

• Code coverage.
• Code execution profiling.
• Creation of code generation report and static code metrics.

6 Start the simulation.

Note: On a Windows operating system, the Windows Firewall can potentially block your
SIL simulation. To allow the SIL simulation, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

You cannot:

• Close the model while the simulation is running. To interrupt the simulation, in the
Command Window, press Ctrl+C.

• Alter the model during the simulation. You can move blocks and lines as long as it
does not alter the behavior of the model.

You can run a top-model SIL or PIL simulation with the command sim(model). The
software supports the sim command option SrcWorkspace for the value 'base'.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations.

With a top-model SIL or PIL simulation, Simulink creates a hidden model,
modelName_wrapper. The simulation generates code for the model and uses the hidden
model to call this code at each time step. As a result, in some circumstances, logged
signals can have a _wrapper suffix. The simulation can also generate warnings that
refer to the hidden model. For example:

64-27

64 Numerical Equivalence Checking in Embedded Coder

Warning: The model 'modelName_wrapper' has the 'Configuration Parameters' ...

Simulation with Model Blocks

To configure a Model block for a SIL or PIL simulation:

1 Open your model, for example, rtwdemo_sil_modelblock.
2 Right-click your Model block, for example, Counter A. In the context menu,

select Block Parameters (ModelReference), which opens the Function Block
Parameters dialog box.

3 From the Simulation Mode drop-down list, select the required mode, for example,
Software-in-the-loop (SIL).

4 From the Code interface drop-down list, specify the code that you want to test, for
example, Model reference.

5 Click OK. The software displays the simulation mode as a block label.

If you select Top model, the software displays the block label (SIL: Top).
6 If you are configuring a SIL simulation, specify the portable word sizes option.

You can then switch seamlessly between the SIL and PIL modes. Select Code
Generation > Verification > Enable portable word sizes.

7 If required, configure:

• Code coverage.
• Code execution profiling for your Model block, by configuring execution profiling

for the top model.
• Creation of code generation report and static code metrics.

64-28

 Configure and Run PIL Simulation

8 Start the simulation.

Note: On a Windows operating system, the Windows Firewall can potentially block your
SIL simulation. To allow the SIL simulation, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations.

Simulation with Blocks From Subsystems

To create a SIL or PIL block from a subsystem and use this block to test the code
generated from the subsystem:

1 In the Configuration Parameters dialog box, click the All Parameters tab.
2 From the Create block drop-down list, select either SIL or PIL.
3 If required, configure code execution profiling.
4 Click OK.
5 In your model window, right-click the subsystem that you want to simulate.
6 Select C/C++ Code > Build This Subsystem.
7 Click Build, which starts the subsystem build process that creates a SIL or PIL

block for the generated subsystem code.
8 Add the generated block to an environment or test harness model that supplies test

vectors or stimulus input.
9 Run simulations with the environment or test harness model.

Note: On a Windows operating system, the Windows Firewall can potentially block your
SIL simulation. To allow the SIL simulation, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

You cannot create a SIL or PIL block if you do one of the following:

• Disable the CreateSILPILBlock property.
• Select a code coverage tool.

64-29

64 Numerical Equivalence Checking in Embedded Coder

Create block appears dimmed.

For a PIL simulation, you control the way code compiles and executes in the target
environment through connectivity configurations.

Log Internal Signals of a Component

SIL and PIL component outputs are available for observation and comparison with other
simulation mode outputs. If you want to examine an internal signal, you can enable
internal signal logging for top-model or Model block SIL or PIL. With signal logging, you
can:

• Collect signal logging outputs during SIL/PIL simulations, for example, logsout.
• Log the internal signals and the root-level outputs of a SIL/PIL component.
• Manage the SIL/PIL signal logging settings with the Simulink Signal Logging

Selector.
• Use the Simulation Data Inspector to:

• Observe streamed signals during normal, SIL, and PIL simulations.
• Compare logged signals from normal, SIL, and PIL simulations.

For SIL and PIL signal logging:

• Set Configuration Parameters > All Parameters > Format to Dataset.
• Select the Configuration Parameters > Code Generation > Interface >

Generate C API for: signals check box.

The C API determines the addresses of the internal signals that require logging.

You can use other methods to examine internal signals of the SIL or PIL component:

• Manually route the signal to the top level.
• Use global data stores to access internal signals:

1 Inside the component, connect a Data Store Write block to the required signal.
2 Outside the component, use a Data Store Read block to access the signal value.

• Use MAT-file logging. Note that:

• MAT-file logging does not support signal logging. If signal logging is enabled,
logsout is generated but not stored in the MAT-file.

64-30

 Configure and Run PIL Simulation

• For PIL, the target environment must support MAT-file logging.

For more information, see:

• “Test Points” (Simulink)
• “Export Signal Data Using Signal Logging” (Simulink)
• “Local and Global Data Stores” (Simulink)
• “Global Data Store Example” (Simulink)
• “Log Program Execution Results” (Simulink Coder)

Prevent Code Changes in Multiple Simulations

Use Model block SIL/PIL or the SIL/PIL block with fast restart when you want to run
multiple SIL or PIL simulations with:

• Varying test vectors (parameter sets and input data).
• Unchanged generated code, that is, none of the simulations regenerate or rebuild

code after the initial build. For example, you want to avoid the incremental code
generation that an initial value change can trigger.

For Model block SIL/PIL, you can also use one of these methods:

• In your test harness model, set Configuration Parameters > Model Referencing
> Rebuild to Never. If the Model block Code interface parameter is Model
reference, the software does not rebuild the referenced model code. (If the Code
interface parameter is Top model, the software ignores the Rebuild setting.)

• Create a protected model and generate source or binary code. Then, insert the
protected model in your test harness model. With this method, you can verify top-
model code (with the standalone code interface) or model reference code.

For the alternative methods of running Model block SIL/PIL, the following table
summarizes code generation behavior after the initial build.

SIL and PIL Approach Code Generation Behavior
After Initial Build

Model block Configuration
Parameters > Model
Referencing > Rebuild

1 Component (algorithm)
code from initial build is
not regenerated.

64-31

64 Numerical Equivalence Checking in Embedded Coder

SIL and PIL Approach Code Generation Behavior
After Initial Build

of test harness model set to
Never.

2 Component code
makefile is not called.

3 SIL/PIL application files
from initial build are not
regenerated.

4 SIL/PIL application
makefile is called.

Source code from protected
model.

You observe the same
behavior except for feature 2.
In this case, the component
code makefile is run.
The component code is
recompiled and linked to
produce new object code.

Model block (protected
model)

Binary code from protected
model.

You observe features 1–4.

For more information, see:

• “Model Configuration Parameters: Model Referencing” (Simulink)
• “Create a Protected Model” (Simulink Coder)

Speed Up Testing

If your model has SIL/PIL blocks or Model blocks in SIL/PIL mode, you can speed up SIL/
PIL testing by:

• Running the top-model simulation in accelerator mode (Simulink). This mode
accelerates the simulation of model components that are not in SIL or PIL mode.

• Turning on fast restart (Simulink) with the Fast restart button on the Simulink
Editor toolbar. After the first simulation, you can tune parameters and rerun
simulations without model recompilation.

64-32

 Configure and Run PIL Simulation

Note: The SIL and PIL simulation modes are not designed for the reduction of model
simulation times. If you want to speed up the simulation of your model, use the rapid
accelerator mode. For more information, see “What Is Acceleration?” (Simulink).

Simulation with Function Calls

Use the Simulink Function block and Function Caller block when you want to:

• Generate code that makes a function-call to external code, for example, driver or
legacy code.

• Provide a subsystem that behaves like the external code in normal, SIL, or PIL
simulations.

The example in “Configure Calls to AUTOSAR NVRAM Manager Service” shows
how you can configure client calls to Basic Software (BSW) NVRAM Manager (NvM)
service interfaces from your AUTOSAR software component. In a simulation, Simulink
implements the BSW NvM calls through Simulink Function and preconfigured Function
Caller blocks. For the final system, you link function-call stubs with external BSW
function code that runs in the AUTOSAR Runtime Environment (RTE).

For more information, see:

• “Modeling Functions and Callers for Code Generation” on page 4-2
• “Generate Code for Functions and Callers” on page 4-6

Related Examples
• “SIL and PIL Simulations” on page 64-2
• “Choose a SIL or PIL Approach” on page 64-11
• “Create PIL Target Connectivity Configuration” on page 64-40
• “Test Generated Code with SIL and PIL Simulations”
• “Configure Code Coverage with Third-Party Tools” on page 67-10
• “Code Execution Profiling with SIL and PIL” on page 58-2
• “View SIL and PIL Files in Code Generation Report” on page 64-59
• “Run Simulations Programmatically” (Simulink)
• “Simulation Mode Override Behavior in Model Reference Hierarchy” on page

64-35

64-33

64 Numerical Equivalence Checking in Embedded Coder

• “SIL and PIL Limitations” on page 64-61

64-34

 Simulation Mode Override Behavior in Model Reference Hierarchy

Simulation Mode Override Behavior in Model Reference Hierarchy

When the top model contains a Model block, the simulation mode of the top model
can override the simulation mode of the Model block. The Model block itself can be a
parent block containing child Model blocks at lower levels of its reference hierarchy. The
simulation mode of the parent block can override the simulation mode of the child block.

You can specify the simulation mode of a top model to be normal, accelerator, rapid
accelerator, SIL, or PIL. With a Model block, you can specify all modes except rapid
accelerator. This table shows how the software determines the effective simulation mode
of a Model block in a reference hierarchy.

Mode of Parent or Child Block in Reference HierarchyMode of Top Model or
Parent Block Normal Accelerator SIL PIL

Normal Equivalent Compatible Compatible Compatible
Accelerator Override Equivalent Compatible if

top model mode
is accelerator.

Error if parent
block mode is
accelerator.

Compatible if
top model mode
is accelerator.

Error if parent
block mode is
accelerator.

Rapid accelerator Override Override Error Error
SIL Override Override Equivalent Error
PIL Override Override Error Equivalent

The different types of behavior are:

• Equivalent — Both parent and child Model block run in the same simulation mode.
• Compatible — The software simulates the child block in the mode specified for the

child block, for example, when the simulation mode of the top model is normal or
accelerator.

• Error — The simulation produces an error. For example, if a top model has simulation
mode rapid accelerator but contains a child block in SIL or PIL mode, then running a
simulation produces an error: the rapid accelerator mode cannot override the SIL and
PIL mode of child blocks. This behavior avoids the risk of “false positives”, that is, the
simulation of a model in rapid accelerator mode does not lead to the conclusion that
generated source or object code of child Model blocks is tested or verified.

64-35

64 Numerical Equivalence Checking in Embedded Coder

• Override — The simulation mode of the top model or parent Model block overrides the
simulation mode of the child block. For example, if a top model or parent Model block
that you configured for a SIL simulation contains a child Model block with normal or
accelerator simulation mode, then the software simulates the child block in SIL mode.
The override behavior:

• Allows a Model block in the reference hierarchy to have the SIL or PIL mode.
• Makes lower-level referenced models execute in SIL or PIL mode if you simulate

the top model or parent Model block in SIL or PIL mode. You do not have to switch
the simulation mode of every model component in the hierarchy.

For a model reference hierarchy that consists of multiple subhierarchies, if the top-model
simulation mode is normal or accelerator, the software can run only one subhierarchy in
PIL mode. For example, if your normal mode top model contains multiple Model blocks,
you can specify the PIL mode for only one of the Model blocks.

Note: You can view your model hierarchy in the Model Dependency Viewer. In the
Referenced Model Instances view, the software displays Model blocks differently to
indicate their simulation modes, for example, normal, accelerator, SIL, and PIL. In this
view, the software does not indicate the simulation mode of the top model.

More About
• “What Is Acceleration?” (Simulink)
• “SIL and PIL Simulations” on page 64-2

64-36

 Debug Generated Code During SIL Simulation

Debug Generated Code During SIL Simulation

If a software-in-the-loop (SIL) simulation fails or you notice differences between the
outputs of your original functions and the generated code, you can rerun the SIL
simulation with a debugger enabled. By inserting breakpoints, you can observe the
behavior of code sections, which can help you to understand the cause of the issue.

For a SIL simulation failure, you can also view information from the standard output and
standard error streams in the Diagnostic Viewer. For example:

• Output from printf statements in your code.
• Error messages sent to stderr.
• Some low-level system messages.

During a SIL simulation, the SIL application redirects the stdout and stderr streams.
When the application terminates, the Diagnostic Viewer displays the information from
the redirected streams. The SIL application also provides a basic signal handler, which
captures the POSIX® signals SIGFPE, SIGILL, SIGABRT, and SIGSEV. For this signal
handler, the SIL application includes the file signal.h.

A SIL simulation supports these debuggers;

• On Windows, Microsoft Visual Studio® debugger.
• On Linux, GNU Data Display Debugger (DDD).

Note: You can perform SIL debugging only if the Simulink product family supports
your Microsoft Visual C++ or GNU GCC compiler. For more information, see supported
compilers.

To enable your debugger for a SIL simulation, on the Configuration Parameters >
Code Generation > Verification pane, select the Enable source-level debugging
for SIL check box.

If your top model has Model blocks where the Code interface block parameter is set
to Top model, then the Enable source-level debugging for SIL parameters for the
top model and referenced models must have the same settings. Otherwise, the software
produces an error.

64-37

http://www.mathworks.com/support/compilers/
http://www.mathworks.com/support/compilers/

64 Numerical Equivalence Checking in Embedded Coder

When you run the SIL simulation, for example on a Windows computer, your model.c or
model.cpp file opens in the Microsoft Visual Studio IDE with debugger breakpoints at
the start of the model_initialize and model_step functions.

You can now use the debugger features to observe code behavior. For example, you can
step through code and examine variables.

To end the debugging session:

1 Remove all breakpoints.
2 Click the Continue button (F5).

The SIL simulation runs to completion and the Microsoft Visual Studio IDE closes.

Note: In the Microsoft Visual Studio IDE, if you select Debug > Stop Debugging, the
SIL simulation times out with the following error message:

The timeout of 1 seconds for receiving data from the rtiostream

64-38

 Debug Generated Code During SIL Simulation

interface has been exceeded. There are multiple possible causes

for this failure.

...

...

Related Examples
• “Configure and Run SIL Simulation” on page 64-15

64-39

64 Numerical Equivalence Checking in Embedded Coder

Create PIL Target Connectivity Configuration

In this section...

“Target Connectivity Configurations for PIL” on page 64-40
“Create a Target Connectivity API Implementation” on page 64-41
“Register a Connectivity API Implementation” on page 64-43
“Verify Target Connectivity Configuration” on page 64-43
“Target Connectivity API Examples” on page 64-43

Target Connectivity Configurations for PIL

Use target connectivity configurations and the target connectivity API to customize
processor-in-the-loop (PIL) simulation for your target environments.

Through a target connectivity configuration, you specify:

• A configuration name for a target connectivity API implementation.
• Settings that define the set of compatible Simulink models. For example, the set of

models that have a particular system target file, template makefile, and hardware
implementation.

A PIL simulation requires a target connectivity API implementation that integrates
third-party tools for:

• Cross-compiling generated code, creating the PIL application that runs on the target
hardware.

• Downloading, starting, and stopping the application on the target.
• Communicating between Simulink and the target.

You can have many different target connectivity configurations for PIL
simulation. Register a connectivity configuration with Simulink by creating an
sl_customization.m file and placing it on the MATLAB search path.

When you run a PIL simulation, the software determines which of the available
connectivity configurations to use. The software looks for a connectivity configuration
that is compatible with the model under test. If the software finds multiple or no
compatible connectivity configurations, the software generates an error message with
information about resolving the problem.

64-40

 Create PIL Target Connectivity Configuration

Create a Target Connectivity API Implementation

This diagram shows the components of the PIL target connectivity API.

You must provide implementations of the three API components:

• Build API — Specify the Simulink Coder toolchain or template makefile approach for
building generated code.

• Launcher API — Control how Simulink starts and stops the PIL executable.
• Communications API — Customize connectivity between Simulink and the

PIL target. Embedded Coder provides host-side support for TCP/IP and serial
communications, which you can adapt for other protocols.

64-41

64 Numerical Equivalence Checking in Embedded Coder

These steps outline how you create a target connectivity API implementation. The
example code shown in the steps is taken from ConnectivityConfig.m in “Configure
Processor-In-The-Loop (PIL) for a Custom Target”.

1 Create a subclass of rtw.connectivity.Config.

ConnectivityConfig < rtw.connectivity.Config

2 In the subclass:

• Instantiate rtw.connectivity.MakefileBuilder, which configures the build
process.

builder = rtw.connectivity.MakefileBuilder(componentArgs, ...

 targetApplicationFramework, ...

 exeExtension);

• Create a subclass of rtw.connectivity.Launcher, which downloads and
executes the application using a third-party tool.

launcher = mypil.Launcher(componentArgs, builder);

3 Configure your rtiostream API implementation of the host-target communications
on page 64-46 channel.

• For the target side, you must provide the driver code for communications, for
example, TCP/IP or serial communications. To integrate this code into the build
process, create a subclass of rtw.pil.RtIOStreamApplicationFramework.

• For the host side, you can use a supplied library
for TCP/IP or serial communications. Instantiate
rtw.connectivity.RtIOStreamHostCommunicator, which loads and
initializes the library that you specify.

hostCommunicator = rtw.connectivity.RtIOStreamHostCommunicator(componentArgs, ...

 launcher, ...

 rtiostreamLib);

4 If you require execution-time profiling of generated code, create a timer object that
provides details of the hardware-specific timer and associated source files. See
“Specify Hardware Timer” on page 64-52.

Note: Each time you modify a connectivity implementation, close and reopen the models
to refresh them.

64-42

 Create PIL Target Connectivity Configuration

Register a Connectivity API Implementation

To register a target connectivity API implementation as a target connectivity
configuration in Simulink:

1 Create or update an sl_customization.m file. In this file:

• Create a target connectivity configuration object that specifies, for example, the
configuration name for a target connectivity API implementation and compatible
models.

• Invoke registerTargetInfo.
2 Add the folder containing sl_customization.m to the search path and refresh

your customizations.

addpath(sl_customization_path);

sl_refresh_customizations;

For more information, see rtw.connectivity.ConfigRegistry.

Verify Target Connectivity Configuration

To verify your target connectivity configuration early on and independently of your model
development and code generation, use the supplied piltest function. With the function,
you can run a suite of tests. In the tests, the function runs various normal, SIL, and PIL
simulations. The function compares results and produces errors if it detects differences
between simulation modes.

Target Connectivity API Examples

For step-by-step examples, see:

• “Configure Processor-In-The-Loop (PIL) for a Custom Target”

This example shows you how to create a custom PIL implementation using the
target connectivity APIs. You can examine the code that configures the build process
to support PIL, a downloading and execution tool, and a communication channel
between host and target. To activate a full host-based PIL configuration, follow the
steps in the example.

• “Create a Target Communication Channel for Processor-In-The-Loop (PIL)
Simulation”

64-43

64 Numerical Equivalence Checking in Embedded Coder

This example shows you how to implement a communication channel for use with the
Embedded Coder product and your embedded target. This communication channel
enables exchange of data between different processes. PIL simulation requires
exchange of data between the Simulink software running on your development
computer and deployed code executing on target hardware.

The rtiostream interface provides a generic communication channel that you can
implement in the form of target connectivity drivers for a range of connection types.
The example shows how to configure your own target-side driver for TCP/IP, to
operate with the default host-side TCP/IP driver. The default TCP/IP communications
allow high-bandwidth communication between host and target, which you can use for
transferring data such as video.

Note: If you customize the rtiostream TCP/IP implementation for your PIL
simulations, you must turn off Nagle's algorithm for the server side of the connection.
If Nagle's algorithm is not turned off, your PIL simulations can run at a significantly
slower speed. The matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/
rtiostream_tcpip.c file shows how you can turn off Nagle's algorithm:

/* Disable Nagle's Algorithm*/

option = 1;

sockStatus = setsockopt(lFd,IPPROTO_TCP,TCP_NODELAY,(char*)&option,sizeof(option));

The code for your custom TCP/IP implementation can require modification.

The example also shows how to implement custom target connectivity drivers,
for example, using serial, CAN, or USB for both host and target sides of the
communication channel.

See Also
piltest | rtw.connectivity.Config | rtw.connectivity.ConfigRegistry
| rtw.connectivity.Launcher | rtw.connectivity.MakefileBuilder
| rtw.connectivity.RtIOStreamHostCommunicator |
rtw.pil.RtIOStreamApplicationFramework

Related Examples
• “Specify Hardware Timer” on page 64-52
• “Subclass Constructors” (MATLAB)

64-44

 Create PIL Target Connectivity Configuration

More About
• “Host-Target Communication for PIL” on page 64-46

64-45

64 Numerical Equivalence Checking in Embedded Coder

Host-Target Communication for PIL

In this section...

“Communications rtiostream API” on page 64-46
“Synchronize Host and Target” on page 64-47
“Test an rtiostream Driver” on page 64-48

Communications rtiostream API

The rtiostream API supports communications for the target connectivity API. Use the
rtiostream API to implement a communication channel that enables data exchange
between different processes.

PIL simulation requires a host-target communications channel. This communications
channel comprises driver code that runs on the host and target. The rtiostream API
defines the signature of target-side and host-side functions that this driver code must
implement.

The API is independent of the physical layer that sends the data. Possible physical layers
include RS232, Ethernet, or Controller Area Network (CAN).

A full rtiostream implementation requires both host-side and target-side drivers. Code
generation software includes host-side drivers for the default TCP/IP implementation
and a version for serial communications. To use:

• The TCP/IP rtiostream communications channel, you must provide, or obtain from
a third party, target-specific TCP/IP device drivers.

• The serial communications channel, you must provide, or obtain from a third party,
target-specific serial device drivers.

For other communication channels and platforms, the code generation software does not
provide default implementations. You must provide both the host-side and the target-side
drivers.

The rtiostream API comprises the following functions:

• rtIOStreamOpen

64-46

 Host-Target Communication for PIL

• rtIOStreamSend

• rtIOStreamRecv

• rtIOStreamClose

For information about:

• Using rtiostream functions in a connectivity implementation, see “Create a Target
Connectivity API Implementation” on page 64-41.

• Testing the rtiostream shared library methods from MATLAB code, see
rtiostream_wrapper.

• Debugging and verifying the behavior of custom rtiostream interface
implementations, see “Test an rtiostream Driver” on page 64-48.

Synchronize Host and Target

If you use the rtiostream API to implement the communications channel, the host and
target must be synchronized, which prevents Simulink from transmitting and receiving
data before the target application is fully initialized.

To synchronize the host and target for TCP/IP rtiostream
implementations, use the setInitCommsTimeout method from
rtw.connectivity.RtIOStreamHostCommunicator. This approach works well
for connection-oriented TCP/IP rtiostream implementations because Simulink
automatically waits until the target server is running.

With other rtiostream implementations, for example, serial, the Simulink side of
the rtiostream connection opens without waiting for the target to be fully initialized.
In this case, you must make your Launcher implementation wait until the target
application is fully initialized. Use one of the following approaches to synchronize your
host and target:

• Add a pause at the end of the Launcher implementation that makes the Launcher
wait until target initialization is complete.

• In the Launcher implementation, use third-party downloader or debugger APIs that
wait until target initialization is complete.

• Implement a handshaking mechanism in the Launcher / rtiostream
implementation that confirms completion of target initialization.

64-47

64 Numerical Equivalence Checking in Embedded Coder

Test an rtiostream Driver

Use a test suite to debug and verify the behavior of custom rtiostream interface
implementations.

The test suite has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in
rtiostream support.

• Reduces time for testing custom rtiostream drivers.
• Helps analyze the performance of custom rtiostream drivers.

The test suite has two parts. One part of the test suite runs on the target.

Note: After building the target application, download it to the target and run it.

To start this part, compile and link the following files, which are in the folder
matlabroot/toolbox/coder/rtiostream/src/rtiostreamtest (open).

• rtiostreamtest.c

• rtiostreamtest.h

• rtiostream.h, located in the folder matlabroot/rtw/c/src (open)
• rtiostream implementation under investigation (for example,

rtiostream_tcpip.c)
• main.c

To run the MATLAB part of the test suite, invoke rtiostreamtest. The syntax is as
follows:

rtiostreamtest(connection,param1,param2)

• connection is a character vector indicating the communication method. It can have
values 'tcp' or 'serial'.

• param1 and param2 have different values depending on the value of connection.

• If connection is 'tcp', then param1 and param2 are hostname and port,
respectively. For example, rtiostreamtest('tcp', 'localhost', 2345).

64-48

 Host-Target Communication for PIL

• If connection is 'serial', then param1 and param2 are COM port and baud
rate, respectively. For example, rtiostreamtest('serial', 'COM1', 9600).

You can run the MATLAB part of the test suite as follows:

rtiostreamtest('tcp','localhost','2345')

An output in the following format appears in the MATLAB window:

Test suite for rtiostream

Initializing connection with target...

Hardware characteristics discovered

Size of char : 8 bit

Size of short : 16 bit

Size of int : 32 bit

Size of long : 32 bit

Size of float : 32 bit

Size of double : 64 bit

Size of pointer : 64 bit

Byte ordering : Little Endian

rtiostream characteristics discovered

Round trip time : 0.96689 ms

rtIOStreamRecv behavior : non-blocking

Test results

Test 1 (fixed size data exchange): PASS

Test 2 (varying size data exchange): PASS

Test suite for rtiostream finished successfully

Furthermore, the following profile appears.

64-49

64 Numerical Equivalence Checking in Embedded Coder

See Also
rtiostream_wrapper | rtIOStreamClose | rtIOStreamOpen | rtIOStreamRecv |
rtIOStreamSend | rtw.connectivity.RtIOStreamHostCommunicator

64-50

 Host-Target Communication for PIL

Related Examples
• “Create PIL Target Connectivity Configuration” on page 64-40

64-51

64 Numerical Equivalence Checking in Embedded Coder

Specify Hardware Timer

For processor-in-the-loop (PIL) code execution profiling, you must create a timer object
that provides details of the hardware-specific timer and associated source files. You
can use the Code Replacement Tool or the code replacement library API to specify this
hardware-specific timer.

To specify the timer with the Code Replacement Tool:

1 Open the Code Replacement Tool. In the Command Window, enter crtool.
2 Create a new code replacement table. Select File > New table.
3 Create a new function entry. Under Tables List, right-click the new table. Then,

from the context-menu, select New entry > Function.
4 In the middle view, select the new unnamed function.
5 On the Mapping Information pane:

a From the Function drop-down list, select code_profile_read_timer.
b Specify the count direction for your timer. For example, from the Count

direction drop-down list, select Up.
c In the Ticks per second field, specify the number of ticks per second for your

timer, for example, 1e+09.

The default value is 0. In this case, the software reports time measurements in
terms of ticks, not seconds.

d In the Name field, specify a replacement function name, for example, MyTimer.
e Click Apply.

64-52

 Specify Hardware Timer

f To validate the function entry, click Validate entry.
6 On the Build Information pane, specify the required build information. See

“Specify Build Information for Replacement Code” on page 51-59.
7 Save the table (Ctrl+S). When you save the table for the first time, use the Save As

dialog box to specify the file name and location.

You must save the table in a location that is on the MATLAB search
path. For example, you can save this file in the folder for your subclass of
rtw.connectivity.Config.

The software stores your timer information as a code replacement library table.
8 Assuming you save the table as MyCrlTable.m, in your subclass of

rtw.connectivity.Config, add the following line:

setTimer(this, MyCrlTable)

64-53

64 Numerical Equivalence Checking in Embedded Coder

Related Examples
• “Create a Target Connectivity API Implementation” on page 64-41
• “Code Execution Profiling with SIL and PIL” on page 58-2
• “Specify Build Information for Replacement Code” on page 51-59

More About
• “What Is Code Replacement?” on page 38-2
• “What Is Code Replacement Customization?” on page 51-3

64-54

 PIL Simulation Sequence

PIL Simulation Sequence
A processor-in-the-loop (PIL) simulation cross-compiles production source code, and then
downloads and runs object code on your target hardware. The connectivity configuration
that you create controls the way code is compiled and executed on the target. This table
describes the sequence of stages in a PIL simulation.

Stage Description

1 Start For top-model PIL, on the Simulink Editor toolbar, you
select the Processor-in-the-Loop (PIL) mode, and
then click the Run button.

For Model block PIL, you set the Simulation mode
parameter of the Model block to Processor-in-the-loop
(PIL), and then run a simulation of the harness model that
contains the Model block.

For the PIL block, you run a simulation of the harness
model that contains the PIL block.

2 Validate target
connectivity

The software verifies that a target connectivity
configuration is registered for PIL. Otherwise, the software
produces an error.

3 Generate production
source code and build
object code for target

The generated source code is identical to the code that is
produced when you run the slbuild command.

• For top-model PIL or Model block PIL with block
parameter Code interface set to Top model, the
generated code is identical to the code produced when
you run slbuild('model').

• For Model block PIL with block parameter Code
interface set to Model reference, the generated
code is identical to the code produced when you run
slbuild('model', 'ModelReferenceRTWTarget').
The model reference simulation target is also produced.

The software builds object code for the target by using the
template makefile or toolchain that you specify.

4 Create instances of
PIL API components

The software instantiates your
rtw.connectivity.Config class, which creates

64-55

64 Numerical Equivalence Checking in Embedded Coder

Stage Description

instances of rtw.connectivity.MakefileBuilder,
rtw.connectivity.Launcher,
rtw.pil.RtIOStreamApplicationFramework, and
rtw.connectivity.RtIOStreamHostCommunicator.

5 Generate PIL files The generated PIL files are in the pil folder. At the end of
the simulation, use the code generation report to view the
files.

6 Build target
application

The software:

• Uses your instance of
rtw.connectivity.MakefileBuilder to build the
target application.

• Compiles the PIL interface file, xil_interface.c,
and other PIL files into the target executable file.
On a Windows system, for example, this file is called
modelName.exe. The object code, including the
executable file, is in the pil folder.

• If configured, produces the code generation report.
7 Start target

application
The software uses rtw.connectivity.Launcher to start
the application on the target.

8 Simulink engine
interacts with PIL S-
function

The Simulink engine interacts with the PIL S-function in
the same way that it interacts with a C S-function.

From the host-side, the PIL S-function communicates with
the target executable code through rtIOStream commands.
On the target side, xil_interface executes generated
code.

9 Stop target application The software uses rtw.connectivity.Launcher to stop
the application on the target.

64-56

 PIL Simulation Sequence

Stage Description

10 End PIL simulation For top-model PIL, at the end of the simulation, the
software destroys the rtw.connectivity.Config
instance.

For Model block PIL and PIL block, the block creates and
owns the rtw.connectivity.Config instance, which is
not destroyed at the end of the simulation. You can rerun
the simulation, which now does not require the creation of
another rtw.connectivity.Config instance. If you want
to destroy the instance, close the parent model.

See Also
rtw.connectivity.Config | rtw.connectivity.Launcher |
rtw.connectivity.MakefileBuilder |
rtw.connectivity.RtIOStreamHostCommunicator |
rtw.pil.RtIOStreamApplicationFramework

Related Examples
• “Create PIL Target Connectivity Configuration” on page 64-40
• “View SIL and PIL Files in Code Generation Report” on page 64-59

More About
• “SIL and PIL Simulations” on page 64-2
• “Simulink Engine Interaction with C S-Functions” (Simulink)

64-57

64 Numerical Equivalence Checking in Embedded Coder

Verification of Code Generation Assumptions

The settings on the Configuration Parameters > Hardware Implementation pane
specify target behavior, which result in the implementation of implicit assumptions in
the generated code. Incorrect settings can lead to:

• Suboptimal code
• Code execution failure, incorrect code output, and nondeterministic code behavior

At the start of a processor-in-the-loop (PIL) simulation, the software verifies the
Hardware Implementation pane settings with reference to the target hardware. The
software checks:

• The correctness of settings. For example, the integer bit length in the Number of
bits: int field.

• Whether the settings are optimized. For example, the rounding of signed integer
division in the Signed integer division rounds to field.

If required, the software generates warnings and errors.

See Also
“Hardware Implementation Pane” (Simulink)

More About
• “SIL and PIL Simulations” on page 64-2

64-58

 View SIL and PIL Files in Code Generation Report

View SIL and PIL Files in Code Generation Report

With top-model and Model block SIL and PIL simulations, you can produce a code
generation report and static code metrics that cover SIL and PIL files. The information
helps you to:

• Understand and review the SIL and PIL testing process.
• See how your registered custom target connectivity files fit into the target application

that runs during a SIL or PIL simulation.

This capability is not supported for simulations that you run with the PIL block.

To configure the creation of a code generation report and static code metrics, on the
Configuration Parameters > Code Generation > Report pane, select the Create
code generation report, Open report automatically, and Static code metrics
check boxes. Then click OK.

At the end of the simulation, in the Code Generation Report window:

• To review code metrics, in the Contents view, click Static Code Metrics Report.
• To review SIL and PIL files, in the Generated Code view, expand the SIL/PIL files

node. For example:

• To review the S-function that runs on the host, click modelName_sbs.c or
modelName_pbs.c.

• To view the SIL or PIL interface that runs on the target, click xil_interface.c.

64-59

64 Numerical Equivalence Checking in Embedded Coder

Note: Do not use the SIL or PIL files in code development as these files can change over
releases. Use supplied APIs for code development.

Related Examples
• “Static Code Metrics” on page 35-34

More About
• “HTML Code Generation Report Extensions” on page 35-3

64-60

 SIL and PIL Limitations

SIL and PIL Limitations

In this section...

“About SIL and PIL Limitations” on page 64-62
“General SIL and PIL Limitations” on page 64-63
“Top-Model SIL/PIL Limitations” on page 64-71
“Model Block SIL/PIL Limitations” on page 64-73
“SIL/PIL Block Limitations” on page 64-74

64-61

64 Numerical Equivalence Checking in Embedded Coder

About SIL and PIL Limitations

With Embedded Coder, you can run software-in-the-loop (SIL) and processor-in-the-loop
(PIL) simulations in three ways:

• Top-model SIL/PIL — Set the top-model simulation mode to Software-in-the-
Loop (SIL) or Processor-in-the-Loop (PIL).

• Model block SIL/PIL — Set the Model block parameter Simulation mode to
Software-in-the-loop (SIL) or Processor-in-the-loop (PIL).

• SIL/PIL block — Use SIL or PIL blocks in the model.

The following sections describe modeling and code generation features that are either
unsupported or partially supported by SIL and PIL simulations.

64-62

 SIL and PIL Limitations

General SIL and PIL Limitations

Tunable Parameters and SIL/PIL

For Model block SIL/PIL and SIL/PIL block simulations, you can tune tunable workspace
parameters but not tunable dialog box parameters. For information about tuning
parameters, see “Block Parameter Representation in the Generated Code” on page 19-47.

For a top model with tunable parameters, you can run a SIL/PIL simulation but you
cannot tune the parameters during the simulation.

The software cannot define, initialize, or tune the following types of tunable workspace
parameters.

Software responseParameter description

Top-Model SIL/PIL Model Block SIL/PIL SIL/PIL Block

Parameters with storage
class that applies
"static" scope or
"const" keyword. For
example, Custom, Const,
or ConstVolatile

Warning Warning Warning

Parameters with
multiword, fixed-point data
types

Warning Error Warning

Parameters with data
types that have different
sizes on host and target

Warning Error Warning

For C++ class code, SIL/PIL you can tune tunable workspace parameters when
Parameter visibility is public. If Parameter visibility is private or protected,
tuning is supported only if Parameter access is Method or Inlined method.

For top-model SIL/PIL and the SIL/PIL block, consider the case where all of the following
conditions apply:

• Code Generation > Interface > Code interface packaging is Reusable
function.

• All Parameters > Use dynamic memory allocation for model initialization is
not selected.

64-63

64 Numerical Equivalence Checking in Embedded Coder

• Optimization > Signals and Parameters > Default parameter behavior is
Tunable.

• The model contains parameters with storage class Auto or SimulinkGlobal.

If the SIL/PIL component cannot dynamically initialize tunable parameters in the rtP
model parameter structure, you see an error message like the following:
Parameter Dialog:InitialOutput in 'rtwdemo_sil_topmodel/CounterTypeA/count'

is part of the imported "rtP" structure in the generated code but cannot be

initialized by SIL or PIL. To avoid this error, make sure the parameter

corresponds to a tunable base workspace variable with a storage class such

as SimulinkGlobal and is supported for dynamic parameter initialization /

tuning with SIL/PIL. Alternatively, select Configuration Parameters >

Code Generation > Interface and set 'Code interface packaging' to

'Nonreusable function', or select 'Use dynamic memory allocation for model

initialization'.

If you select All Parameters > Use dynamic memory allocation for model
initialization, this limitation does not apply.

For Model block SIL/PIL, if you specify the code under test to be Top model, you can
tune parameters while a simulation runs. If you tune parameters between successive
runs of the simulation, the software generates new code for the later run. The new code
uses your latest settings as initial parameter values.

Global and Local Data Stores

SIL/PIL supports global data stores. For components that are not export-function models,
top-model SIL/PIL and SIL/PIL block simulations that access global data stores must be
single rate. Otherwise, the software produces an error.

SIL/PIL does not support local data stores.

SIL/PIL Does Not Check Simulink Coder Error Status

SIL/PIL does not check the Simulink Coder error status of the generated code under test.
This error status flags exceptional conditions during execution of the generated code.

Blocks in the model can also set the Simulink Coder error status, for example, custom
blocks that you create. SIL/PIL does not check this error status and report errors.

Missing Code Interface Description File Errors

SIL/PIL requires a code interface description file, which is created during code generation
for the component under test. If the code interface description file is missing, the SIL/PIL

64-64

 SIL and PIL Limitations

simulation cannot proceed. You see an error reporting that the file does not exist. If you
select the unsupported option Classic call interface, this error can occur. Therefore, do
not select the option.

To Workspace Block

If you enable MAT-file logging, top-model SIL/PIL and SIL/PIL blocks support To
Workspace blocks.

Model block SIL/PIL does not support To Workspace blocks.

Cannot Connect SIL/PIL Outputs to Merge Block

If you connect Model block SIL/PIL or SIL/PIL block outputs to a Merge block, you see an
error because S-function memory is not reusable.

Variant Condition Propagation with Variant Source and Variant Sink Blocks

Top-model SIL/PIL and SIL/PIL block simulations do not support the propagation of
variant conditions across component boundaries.

Unsupported Blocks

SIL/PIL does not support the following blocks:

• Scope blocks, and all types of run-time display. For example, display of port values
and signal values.

• Stop blocks. SIL/PIL ignores the Stop Simulation block and continues simulating.

Multiword Fixed-Point I/O

You cannot run SIL and PIL simulations of models that have multiword, fixed-point
signals across component boundaries.

Fixed-Point Data Types Wider Than 32 Bits

SIL/PIL supports fixed-point data types that are wider than 32 bits. For example:

• 64-bit long and long long
• 64-bit execution profiling timer data type
• int64 and uint64 in MATLAB Coder SIL execution.

64-65

64 Numerical Equivalence Checking in Embedded Coder

The following constraints apply:

• For 64-bit data type support, the data type must be representable as long or
long long on the MATLAB host and the target. Otherwise, the software uses the
multiword, fixed-point approach, which SIL/PIL does not support.

• The software does not support the 40-bit long data type of the TI’s C6000™ target.

Through the Configuration > Hardware Implementation pane, you can enable
support for the 64-bit long long data type. For data types with widths between 33
and 40 bits (inclusive), the software implements the data types using the 40-bit long
data type, which SIL/PIL does not support.

Data Type Replacement

The software does not support replacement data type names that you define for the built-
in data type boolean if these names map to the int or uint built-in data type.

Continuous Sample Times

Top-model SIL/PIL and SIL/PIL block do not support continuous sample times at the SIL
or PIL component boundary. However, they support continuous sample times within the
component.

Model block SIL/PIL does not support continuous sample times.

Variable-Size Signals

Model block SIL/PIL simulations support variable-size signals only if All Parameters >
Propagate sizes of variable-size signals is During execution.

Top-model SIL/PIL and SIL/PIL block simulations treat variable-size signals at the I/O
boundary of the SIL/PIL component as fixed-size signals, which can lead to errors during
propagation of signal sizes. To avoid such errors, use only fixed-size signals at the I/O
boundary of the SIL/PIL component.

There can be cases where no error occurs during propagation of signal sizes. In these
cases, the software treats variable-size input signals as zero-size signals.

Internal Signal Logging

SIL/PIL blocks do not support signal logging. For a workaround, see “Log Internal
Signals of a Component” on page 64-22.

64-66

 SIL and PIL Limitations

The following internal signal logging limitations apply to top-model and Model block SIL/
PIL simulations.

Applies ToLimitation

Top-Model
SIL/PIL

Model Block
SIL/PIL

Only signals that are included in the C API are logged
during SIL/PIL simulation. To observe the signals in the
generated code, you can configure the signals as test points.
For each signal, select the Signal Properties > Test
point check box.

Yes Yes

Signals feeding merge blocks are not supported for logging
in normal simulation but are logged in SIL/PIL mode. The
logged values during SIL/PIL are the same as the logged
values for the output of the merge block.

Yes No

Top-model normal simulation logs data at a periodic rate
but top-model SIL/PIL simulation logs data at a constant
rate under these circumstances:

• Default parameter behavior is Tunable.
• A constant sample time signal from a Model block is

logged in the top model.
• The logged signal is not directly connected to a root-level

output port.

To avoid this behavior and log at the constant rate in all
simulation modes, set Default parameter behavior to
Inlined.

Yes No

Features not supported:

• Signal logging in models referenced by the SIL/PIL
component.

• Signal logging in Simulink Function block.
• Virtual signals, for example, mux.
• Buses.
• Custom storage classes.

Yes Yes

64-67

64 Numerical Equivalence Checking in Embedded Coder

Applies ToLimitation

Top-Model
SIL/PIL

Model Block
SIL/PIL

• Continuous, asynchronous, and triggered sample times.
At the top-level of export-function models, you can log
signals with triggered sample times.

• Logging of Stateflow states and local data.
• Units.
Variable-size, function-call, and Action signals are not
supported. A normal simulation produces an error. A SIL/
PIL simulation produces a warning.

Yes No

State port signals are not supported. A normal simulation
produces an error. A SIL/PIL simulation does not produce a
warning.

Yes No

Unsupported Implementation Errors

If you use a custom storage class (CSC) with a Type property that is Other or if you use
a data store, signal, or parameter implementation that SIL/PIL does not support, you can
see errors like the following:
The following data interfaces have

implementations that are not supported by SIL or PIL.

data interfaces can be global data stores, inports, outports, or parameters.

The model output port has been optimized through virtual output port optimization.
See “Virtualized Output Ports Optimization” on page 55-17. The error occurs because
the properties (for example, data type, dimensions) of the signal or signals entering the
virtual root output port have been modified by routing the signals in one of the following
ways:

• Through a Mux block.
• Through a block that changes the signal data type. To check the consistency of data

types in the model, display Port Data Types by selecting Display > Signals & Ports
> Port Data Types (see “Port Data Types” (Simulink)).

• Through a block that changes the signal dimensions. To check the consistency of data
types in the model, display dimensions by selecting Display > Signal & Ports >
Signal Dimensions.

64-68

 SIL and PIL Limitations

Dimension changes from scalar (1) to matrix [1x1], and, matrix [1x1] to scalar (1),
can lead to this error. It is difficult to inspect the model for such changes because
Display > Signal & Ports > Signal Dimensions does not distinguish between
(1) and [1x1] dimensions. Both signals are displayed as scalar signals. Check your
model and workspace objects carefully. Make sure that you specify scalar dimensions
consistently.

The following model causes this error by changing the output port signal data type.

Hardware Implementation

PIL does not support multiword data types where the word order differs from the target
byte order. The PIL simulation fails, displaying undefined behavior.

PIL requires that you configure the correct Hardware Implementation settings for the
target environment, including byte ordering for targets. If you do not specify the correct
byte ordering, the PIL simulation fails, displaying undefined behavior.

Non-ASCII Characters in Folder Name

If the name of the current working folder contains non-ASCII characters, you cannot run
a SIL simulation.

State Logging

SIL/PIL does not support state logging (Simulink).

64-69

64 Numerical Equivalence Checking in Embedded Coder

Bus Elements Mapped to Imported Bit-Field Definitions

If you map Simulink bus elements to bit fields through an imported header file, a SIL or
PIL simulation produces a build error. For example, if your model has an Inport block
connected to a bus that is a Simulink.Bus object with these properties:

• Name — myBus
• Bus elements — An array of Simulink.BusElement objects with these properties.

Name DataType Complexity Dimensions

bitField0 boolean real 1

bitField1 boolean real 1

bitField2 boolean real 1

bitField3 boolean real 1

bitField4 boolean real 1

bitField5 boolean real 1

• Data scope — Imported
• Header file — busSpecification.h. This file contains myBus, which defines C bit-

field data types for the bus elements.

typedef struct myBus

{

 unsigned int bitField0 : 1;

 unsigned int bitField1 : 1;

 unsigned int bitField2 : 1;

 unsigned int bitField3 : 1;

 unsigned int bitField4 : 1;

 unsigned int bitField5 : 1;

} myBus;

Size Mismatch Between Simulink and Target Hardware Data Types

When a Simulink data type and the corresponding target hardware data type differ in
size, a SIL or PIL simulation produces an error. This size mismatch can occur if you
map a Simulink data type to the target hardware data type through definitions in an
imported header file. For example, if you create a data type alias, T_BOOL, which is a
Simulink.AliasType object with these properties:

• Base type — boolean.

64-70

 SIL and PIL Limitations

• Mode — Built in, boolean.
• Data scope — Imported.
• Header file — myDefinitions.h. This file defines T_BOOL as an enumerated data

type:

typedef enum _BOOL_TYPE

{

 FALSE = 0,

 TRUE = 1

} BOOL_TYPE;

typedef BOOL_TYPE T_BOOL;

In this case, the compiler for the target hardware determines the size of T_BOOL,
which can differ from the size of the Simulink data type, boolean.

Top-Model SIL/PIL Limitations

Top-Model Root-Level Logging

Top-model SIL/PIL supports signal logging for signals connected to root-level inports and
outports. The C API is not required. Root-level logging has the following limitations:

• The characteristics of the logged data such as data type, sample time, and dimensions
must match the characteristics of the root-level inports and outports (rather than the
characteristics of the connected signal).

In some cases, there can be differences in data type and dimensions between the
signal being logged and the root inport or outport that the signal is connected to.
Consider the following examples.

• If a signal being logged has matrix dimensions [1x5] but the outport connected
to the signal has vector dimensions (5), then the data logged during a SIL or PIL
simulation has vector dimensions (5).

• If a signal being logged has scalar dimensions but the outport connected to the
signal has matrix dimensions [1x1], then the data logged during a SIL or PIL
simulation has matrix dimensions [1x1].

• Signals connected to duplicated inports are not logged during SIL/PIL simulation. No
warning is issued.

During normal simulation, signals connected directly to duplicated inports are logged.

64-71

64 Numerical Equivalence Checking in Embedded Coder

• The Signal Logging Selector / DataLoggingOverride override mechanism is not
supported.

• Normal and SIL/PIL simulations log bus signals with names that are different when
all of the following conditions apply:

• The SaveOutput or SignalLogging configuration parameter is on.
• The names of the elements in the bus signal are different from the corresponding

names in the bus object. For example, when the InheritFromInputs parameter
for a Bus Creator block is set to 'on'.

• The software inserts the suffix, _wrapper for output logging, if the save format is
Structure, Structure with time, or Dataset and you run the sim command
without specifying the single-output format. The software adds _wrapper to the block
name for signals in yout. If the save format is Array, the software does not add the
suffix. For example:

>> yout.signals

ans =

 values: [11x1 double]

 dimensions: 1

 label: 'SignalLogging'

 blockName: 'sillogging_wrapper/OutputLogging'

To avoid this behavior, run command-line simulations with the sim command
specifying the single-output format. See “Run Simulations Programmatically”
(Simulink).

Model in Compiled State During Top-Model SIL/PIL

During a top-model SIL/PIL simulation, the software places the model in a compiled
state – see model. This action can result in a conflict over global resources between the
model and the generated SIL/PIL code. In this case, differences between normal mode
and SIL/PIL simulation outputs can result.

For example, consider a model that uses UDP blocks from the DSP System Toolbox.
These blocks open UDP sockets, which can lead to resource contention between the model
and the generated SIL/PIL code.

Callback Support

SIL/PIL does not support the callbacks (model or block) StartFcn and StopFcn.

64-72

 SIL and PIL Limitations

Note: Top-model SIL/PIL supports the callback InitFcn.

Incremental Build

When you start a top-model SIL/PIL simulation, the software regenerates code if it
detects changes to your model. The software detects changes by using a checksum for the
model. The software does not detect changes that you make to:

• The HeaderFile property of a Simulink.AliasType object
• Legacy S-functions

If you make these changes, build (Ctrl-B) your model again before starting the next PIL
simulation.

Initialize, Reset, and Terminate Function Blocks

Top-model SIL/PIL supports:

• For export-function models (Simulink), Initialize Function, Reset Function, and
Terminate Function blocks.

• For models that are not export-function models, Initialize Function and Terminate
Function blocks.

Model Block SIL/PIL Limitations

Top-Model Code Testing

The following limitations apply:

• The Model Variants block does not support the block parameter CodeInterface.
The software behaves as if CodeInterface is set to 'Model reference'. To work
around this limitation, use the Variant Subsystem block. Through this block, you
can incorporate Model blocks for which CodeInterface is set to 'Top model'.

• Because model arguments do not apply to a top model, when the Code interface
block parameter is set to Top model, the software does not support the Model
arguments block parameter.

• Conditional execution does not apply to a top model. If a Model block is set up
to execute conditionally and the Code interface block parameter is set to 'Top
model', the software produces an error when you run a SIL or PIL simulation.

64-73

64 Numerical Equivalence Checking in Embedded Coder

• For sample time independent models, you must set Configuration Parameters
> Solver > Periodic sample time constraint to Ensure sample time
independent.

• Simulation results from top-model code and model reference code can differ when
a root-level Inport is connected to a root-level Outport by a signal that has a signal
object with an initial value.

For top-model code, the software associates the signal object with the Inport.
The software can apply the initial value for the signal object to the Inport. See
“Initialization Behavior Summary for Signal Objects” (Simulink).

For model reference code, the software associates the signal object with the Outport.
The software does not apply the initial value for the signal object to the Inport.

Conditionally Executed Subsystem

You see an error if:

• You place your Model block, in either SIL or PIL simulation mode, in a conditionally
executed subsystem and the referenced model is multirate (that is, has multiple
sample times). Single-rate, referenced models (with only a single sample time) are not
affected.

• Your Model block, in either SIL or PIL simulation mode, has blocks that depend on
absolute time and is conditionally executed.

Outputs with Constant Sample Time

If the block parameter Code interface is Top model, Model block SIL/PIL supports
outputs with constant sample time.

Noninlined S-Functions

Model-block SIL/PIL simulations do not support noninlined S-functions.

SIL/PIL Block Limitations

PIL Block Mux

The PIL block supports mux signals, except mixed data-type mux signals that expand
into individual signals during a right-click subsystem build.

64-74

 SIL and PIL Limitations

Code Coverage

SIL block simulations do not support the generation of code coverage results. PIL block
support for code coverage depends on your target connectivity configuration and third-
party product support.

Subsystem with Inherited Sample Time Blocks

When you create a SIL/PIL block from a subsystem that has blocks with inherited
sample times, the generated code and SIL/PIL wrapper acquire the sample time of the
original parent model. If you use the SIL/PIL block in a context that does not allow
explicit sample times, for example, within a triggered subsystem, you see an error.

Try one of these workarounds:

• Before you create the SIL/PIL block, in the parent model, set Configuration
Parameters > Solver > Periodic sample time constraint to Ensure sample
time independent.

• Using the subsystem, create a Model block that is independent of sample time. With
this block, run Model block SIL/PIL simulations.

Related Examples
• “SIL and PIL Simulations” on page 64-2
• “Choose a SIL or PIL Approach” on page 64-11

64-75

64 Numerical Equivalence Checking in Embedded Coder

Check Configuration

Use the cgv.Config class to check model settings for a SIL or PIL simulation. You can
review your model configuration and determine the settings that you must change.
By default, cgv.Config changes configuration parameter values to the value that it
recommends, but does not save the model. Alternatively, you can:

• Change configuration parameter values to the values that cgv.Config recommends,
and save the model. Specify this approach using the SaveModel property.

• List the values that cgv.Config recommends for the configuration parameters, but
not change the configuration parameters or the model. Specify this approach using
the ReportOnly property.

Note:

• Execution in the target environment can require additional modifications to
configuration parameter values or the model.

• Do not use referenced configuration sets in models that you are changing
using cgv.Config. If the model uses a referenced configuration
set, update the model with a copy of the configuration set. Use the
Simulink.ConfigSetRef.getRefConfigSet method. For more information, see
Simulink.ConfigSetRef in the Simulink documentation.

• If you use cgv.Config on a model that executes a callback function, the callback
function can change configuration parameter values each time the model loads. The
callback function can revert changes that cgv.Config. For more information, see
“Callbacks for Customized Model Behavior” (Simulink).

To verify that your model is configured for SIL or PIL:

1 Construct a cgv.Config object that changes the configuration parameter values
without saving the model. For example, to configure your model for SIL:

c = cgv.Config('vdp', 'connectivity', 'sil');

Tip:

64-76

 Check Configuration

• You can obtain a list of changes without changing the configuration
parameter values. When you construct the object, include the
'ReportOnly', 'on' property name and value pair.

• You can change the configuration parameter values and save the model.
When you construct the object, include the 'SaveModel', 'on' property
name and value pair.

2 Determine and change the configuration parameter values that the object
recommends using the configModel method. For example:

c.configModel();

3 Display a report of the changes that configModel makes. For example:

c.displayReport();

4 Review the changes.
5 To apply the changes to your model, save the model.

Related Examples
• “Configure and Run SIL Simulation” on page 64-15
• “Verify Numerical Equivalence with CGV” on page 64-78
• “Verify Numerical Equivalence Between Two Modes of Execution of a Model” on

page 64-79

64-77

64 Numerical Equivalence Checking in Embedded Coder

Verify Numerical Equivalence with CGV
Before verifying numerical equivalence:

• Configure your model for SIL or PIL simulation.
• Use the cgv.Config class of the CGV API to verify the model configuration for SIL or

PIL simulation.
• Configure your model for code generation. For more information, see “Configure

Model for Code Generation Objectives by Using Code Generation Advisor” on page
29-2.

• Save your model. If you modify a model without saving it, CGV can issue an error.

To verify numerical equivalence:

• Set up the tests for the first execution environment. For example, simulation.
• Use run (cgv.CGV) to run the tests for the first execution environment.
• Set up the tests for the second execution environment. For example, top-model PIL.
• Use cgv.CGV.run to run the tests for the second execution environment.
• Use getOutputData (cgv.CGV) to get the output data for each execution environment.
• Use getSavedSignals (cgv.CGV) to display the signal names in the output data.

(optional)
• Build a list of signal names for input to other cgv.CGV methods. (optional)
• Use createToleranceFile (cgv.CGV) to create a file correlating tolerance information

with output signal names. (optional)
• Use compare (cgv.CGV) to compare the output signals of the first and second

execution environments for numerical equivalence.

Note: Simulink Test is a separate product that provides additional capabilities for SIL
and PIL testing, for example, test sequence construction and test management.

Related Examples
• “Configure and Run SIL Simulation” on page 64-15
• “Check Configuration” on page 64-76
• “Verify Numerical Equivalence Between Two Modes of Execution of a Model” on

page 64-79

64-78

 Verify Numerical Equivalence Between Two Modes of Execution of a Model

Verify Numerical Equivalence Between Two Modes of Execution of
a Model

In this section...

“Configure the Model” on page 64-79
“Execute the Model” on page 64-80
“Compare All Output Signals” on page 64-81
“Compare Individual Output Signals” on page 64-83
“Plot Output Signals” on page 64-84

The following example describes configuring, executing, and comparing the results of the
rtwdemo_cgv model in normal and software-in-the-loop (SIL) simulation modes.

Configure the Model

The first task for verifying numerical equivalence is to check the configuration of your
model.

1 Open the rtwdemo_cgv model.

cgvModel = 'rtwdemo_cgv';

load_system(cgvModel);

2 Save the model to a working directory.

save_system(cgvModel, fullfile(pwd, cgvModel));

close_system(cgvModel); % avoid original model shadowing saved model

3 Use the cgv.Config class to create a cgv.Config object. Specify parameters that
check and modify configuration parameter values and save the model for top-model
SIL mode of execution.

cgvCfg = cgv.Config('rtwdemo_cgv', 'connectivity', 'sil', 'SaveModel', 'on');

4 Use the configModel (cgv.Config) method to review your model configuration and to
change the settings to configure your model for SIL. When 'connectivity' is set
to 'sil', the system target file is automatically set to 'ert.tlc'. If you specified
the parameter/value pair, ('SaveModel', 'on') when you created the cgvCfg
object, the cgv.Config.configModel method saves the model.

64-79

64 Numerical Equivalence Checking in Embedded Coder

Note: CGV runs on models that are open. If you modify a model without saving it,
CGV can issue an error.

cgvCfg.configModel(); % Evaluate, change, and save your model for SIL

5 Display a report of the changes that cgv.Config.configModel makes to the
model.
cgvCfg.displayReport(); % In this example, this reports no changes

Execute the Model

Use the CGV API to execute the model in two modes. The two modes in this example are
normal mode simulation and SIL mode. In each execution of the model, the CGV object
for each mode captures the output data and writes the data to a file.

1 If you have not already done so, follow the steps described in “Configure the Model”
on page 64-79.

2 Create a cgv.CGV object that specifies the rtwdemo_cgv model in normal mode
simulation.
cgvSim = cgv.CGV(cgvModel, 'connectivity', 'sim');

Note: When the top model is set to normal simulation mode, the CGV API sets
referenced models in PIL mode to accelerator mode.

3 Provide the input file to the cgvSim object.

cgvSim.addInputData(1, [cgvModel '_data']);

4 Before execution of the model, specify the MATLAB files to execute or MAT-files to
load. This step is optional.
cgvSim.addPostLoadFiles({[cgvModel '_init.m']});

5 Specify a location where the object writes all output data and metadata files for
execution. This step is optional.
cgvSim.setOutputDir('cgv_output');

6 Execute the model.
result1 = cgvSim.run();

64-80

 Verify Numerical Equivalence Between Two Modes of Execution of a Model

*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

 connectivity sim, InputData rtwdemo_cgv_data.mat

End CGV execution: status completed

7 Get the output data associated with the input data.
outputDataSim = cgvSim.getOutputData(1);

8 For the next mode of execution, SIL, repeat steps 2–7.
cgvSil = cgv.CGV(cgvModel, 'Connectivity', 'sil');

cgvSil.addInputData(1, [cgvModel '_data']);

cgvSil.addPostLoadFiles({[cgvModel '_init.m']});

cgvSil.setOutputDir('cgv_output');

result2 = cgvSil.run();

At the MATLAB command line, the result is:
*** handling PostLoad file rtwdemo_cgv_init.m

Start CGV execution of model rtwdemo_cgv, ComponentType topmodel, ...

 connectivity sil, InputData rtwdemo_cgv_data.mat

Starting build procedure for model: rtwdemo_cgv

Successful completion of build procedure for ...

 model: rtwdemo_cgv

Preparing to start SIL simulation ...

Starting SIL simulation for model: rtwdemo_cgv

Stopping SIL simulation for model: rtwdemo_cgv

End CGV execution: status completed

Compare All Output Signals

After setting up and running the test, compare the outputs by doing the following:

1 If you have not already done so, configure and test the model, as described in
“Configure the Model” on page 64-79 and “Execute the Model” on page 64-80.

2 Test that the execution result of the model:
if ~result1 || ~result2

 error('Execution of model failed.');

end

3 Use the getOutputData (cgv.CGV) method to get the output data from the cgv.CGV
objects.
simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

4 Display a list of signals by name using the getSavedSignals (cgv.CGV) method.
cgvSim.getSavedSignals(simData);

64-81

64 Numerical Equivalence Checking in Embedded Coder

At the MATLAB command line, the result it:

simData.hi0.Data(:,1)

simData.hi0.Data(:,2)

simData.Vector.Data(:,1)

simData.Vector.Data(:,2)

simData.Vector.Data(:,3)

simData.Vector.Data(:,4)

simData.BusOutputs.hi0.Data(:,1)

simData.BusOutputs.hi0.Data(:,2)

simData.BusOutputs.hi1.mid0.lo0.Data(1,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(1,2,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,1,:)

simData.BusOutputs.hi1.mid0.lo0.Data(2,2,:)

simData.BusOutputs.hi1.mid0.lo1.Data

simData.BusOutputs.hi1.mid0.lo2.Data

simData.BusOutputs.hi1.mid1.Data(:,1)

simData.BusOutputs.hi1.mid1.Data(:,2)

simData.ErrorsInjected.Data

5 Using the list of signals, build a list of signals in a cell array of character vectors.
The signal list can contain a number of signals.

signalList = {'simData.ErrorsInjected.Data'};

6 Use the createToleranceFile (cgv.CGV) method to create a file, in this example,
'localtol', correlating tolerance information with output signal names.

toleranceList = {{'absolute', 0.5}};

cgv.CGV.createToleranceFile('localtol', signalList, toleranceList);

7 Compare the output data signals. By default, the compare (cgv.CGV) method looks at
all signals which have a common name between both executions. If a tolerance file is
present, cgv.CGV.compare uses the associated tolerance for a specific signal during
comparison; otherwise the tolerance is zero. In this example, the 'Plot' parameter
is set to 'mismatch'. Therefore, only mismatched signals produce a plot.

[matchNames, ~, mismatchNames, ~] = ...

 cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

 'Tolerancefile', 'localtol');

fprintf('%d Signals match, %d Signals mismatch\n', ...

 length(matchNames), length(mismatchNames));

disp('Mismatched Signal Names:');

disp(mismatchNames);

At the MATLAB command line, the result is:

14 Signals match, 1 Signals mismatch

Mismatched Signal Names:

 'simData.ErrorsInjected.Data'

A plot results from the mismatch on signal simData.ErrorsInjected.Data.

64-82

 Verify Numerical Equivalence Between Two Modes of Execution of a Model

The lower plot displays the numeric difference between the results.

Compare Individual Output Signals

After setting up and running the test, compare the outputs of individual signals by doing
the following:

1 If you have not already done so, configure and test the model, as described in
“Configure the Model” on page 64-79 and “Execute the Model” on page 64-80.

64-83

64 Numerical Equivalence Checking in Embedded Coder

2 Use the getOutputData (cgv.CGV) method to get the output data from the cgv.CGV
objects.

simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

3 Use the getSavedSignals (cgv.CGV) method to display the output data signal names.
Build a list of specific signal names in a cell array of character vectors. The signal
list can contain number of signals.

cgv.CGV.getSavedSignals(simData);

signalList = {'simData.BusOutputs.hi1.mid0.lo1.Data', ...

'simData.BusOutputs.hi1.mid0.lo2.Data', 'simData.Vector.Data(:,3)'};

4 Use the specified signals as input to the compare (cgv.CGV) method to compare the
signals from separate runs.

[matchNames, ~, mismatchNames, ~] = ...

 cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

 'signals', signalList);

fprintf('%d Signals match, %d Signals mismatch\n', ...

 length(matchNames), length(mismatchNames));

if ~isempty(mismatchNames)

 disp('Mismatched Signal Names:');

 disp(mismatchNames);

end

At the MATLAB command line, the result is:

3 Signals match, 0 Signals mismatch

Plot Output Signals

After setting up and running the test, use the plot (cgv.CGV) method to plot output
signals.

1 If you have not already done so, configure and test the model, as described in
“Configure the Model” on page 64-79 and “Execute the Model” on page 64-80.

2 Use the getOutputData (cgv.CGV) method to get the output data from the cgv.CGV
objects.

simData = cgvSim.getOutputData(1);

3 Use the getSavedSignals (cgv.CGV) method to display the output data signal names.
Build a list of specific signal names in a cell array of character vectors. The signal
list can contain number of signals.

cgv.CGV.getSavedSignals(simData);

signalList = {'simData.Vector.Data(:,1)'};

64-84

 Verify Numerical Equivalence Between Two Modes of Execution of a Model

4 Use the specified signal list as input to the plot (cgv.CGV) method to compare the
signals from separate runs.
[signalNames, signalFigures] = cgv.CGV.plot(simData, ...

 'Signals', signalList);

Related Examples
• “Verify Numerical Equivalence with CGV” on page 64-78
• “Check Configuration” on page 64-76

64-85

64 Numerical Equivalence Checking in Embedded Coder

Using Code Generation Verification API

Configure and run normal, software-in-the-loop (SIL), and processor-in-the-loop (PIL)
simulations, and compare results.

Note: Simulink Test is a separate product that provides additional capabilities for SIL
and PIL testing, for example, test sequence construction and test management.

Review the Model

The rtwdemo_cgv model uses buses, scalars, and vectorized data, plus error injection to
create differences between test executions.

Note: Before executing the code in this example, change to a writable folder. If you are
not working in a writable folder, code generation errors occur.

To open rtwdemo_cgv, in the MATLAB® Command Window, enter the following
commands.

baseVars = who; % For future cleanup.

cgvModel = 'rtwdemo_cgv';

close_system(cgvModel,0);

open_system(cgvModel);

64-86

 Using Code Generation Verification API

The model contains a hierarchical bus with three nested buses. This arrangement of
buses produces complex hierarchical data at the first logged outport. At the second
outport, the model injects errors in the signal at fixed intervals. These errors produce
different results between two runs. The signal at the third outport is a vector of four
values per sample to help show the comparison support.

Verify the Model Configuration

CGV provides a class, cgv.Config, to check whether models have a configuration that is
compatible with execution in a SIL or PIL environment using an ert target. This model
has already been modified using the cgv.Config class.

64-87

64 Numerical Equivalence Checking in Embedded Coder

Execute Under CGV

Run in Normal and SIL Modes

The model executes in three modes under CGV: normal, SIL, and PIL. In each case, the
CGV object captures the output data and writes it to a file. For more information, see
CGV Documentation. To execute the model in normal and SIL simulation modes, enter:

cgvSim = cgv.CGV(cgvModel, 'Connectivity', 'Normal');

cgvSim.addInputData(1, [cgvModel '_data']);

% This next CGV function, addPostLoadFiles(), allows you to specify MATLAB(R)

% programs to execute, or mat-files to load, before execution of the model.

cgvSim.addPostLoadFiles({[cgvModel '_init.m']});

cgvSim.setOutputDir('cgv_output');

cgvSim.activateConfigSet('CS1_default');

result1 = cgvSim.run();

% CGV provides methods to simplify numerical equivalence checking.

% The copySetup method creates an exact duplicate of an existing CGV object without

% results data. You can change the SimulationMode using setMode() and then

% execute again.

cgvSil = cgvSim.copySetup();

cgvSil.setMode('SIL');

% You can provide a baseline file to CGV for comparing the simulation

% output. In this example, the comparison results set the status to

% 'failed', because the ErrorsInjected signal differs between simulations.

cgvSil.addBaseline(1, 'rtwdemo_cgv_results');

result2 = cgvSil.run();

% To see the name(s) of the signal(s) that did match, use getMismatches.

% Mismatched signal names are only available if a baseline was added and

% the comparison failed.

if strcmp(cgvSil.getStatus(1), 'failed')

 disp('Mismatched Signal Names:');

 [signalNames, plotFiles] = cgvSil.getMismatches(1);

 fprintf(1, 'Signal Names: %s\n', signalNames{:});

 fprintf(1, 'Path to plot files: %s\n', plotFiles{:});

 assert(numel(signalNames)==1,'Expected exactly one mismatch');

end

Applying Configuration Set:

 CS1_default

Applying PostLoad file:

 B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_cgv_init.m

Starting execution:

64-88

 Using Code Generation Verification API

 ComponentType: topmodel

 Connectivity: normal

 InputData:

 B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_cgv_data.mat

End CGV execution: status completed.

Applying PostLoad file:

 B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_cgv_init.m

Starting execution:

 ComponentType: topmodel

 Connectivity: sil

 InputData:

 B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_cgv_data.mat

Starting build procedure for model: rtwdemo_cgv

Successful completion of build procedure for model: rtwdemo_cgv

Preparing to start SIL simulation ...

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Updating code generation report with SIL files ...

Starting SIL simulation for component: rtwdemo_cgv

Stopping SIL simulation for component: rtwdemo_cgv

End CGV execution: status failed.

Mismatched Signal Names:

Signal Names: simout.getElement(3).Values.Data

Path to plot files: C:\TEMP\Bdoc17a_538369_5692\IB_CPU_21\tp32af565d\ex96023632\cgv_output\input_1_figure_1.png

Run in PIL Mode

Next, the model runs a PIL simulation, using your embedded processor. A universal
embedded processor does not exist. Therefore, PIL support is provided by using the host
computer where MATLAB® is running. The host processor is treated as an embedded
target.

A customization file is executed that maps this model's PIL execution onto the SIL
infrastructure. After the customization file is executed, CGV execution displays PIL
messages for the mode. SIL messages display the connectivity target.

The configuration set for the model is already configured with: Hardware
Implementation > Test hardware > Test hardware is the same as production
hardware is checked. Code Generation > Verification > Enable portable word
sizes is checked. These settings work in SIL and in PIL when PIL is mapped onto the
SIL connectivity target.

copyfile(which('rtwdemo_cgv_sl_customization.m'), fullfile(pwd, 'sl_customization.m'),'f');

64-89

64 Numerical Equivalence Checking in Embedded Coder

sl_refresh_customizations();

cgvPil = cgvSim.copySetup();

cgvPil.setMode('PIL');

result3 = cgvPil.run();

Applying PostLoad file:

 B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_cgv_init.m

Starting execution:

 ComponentType: topmodel

 Connectivity: pil

 InputData:

 B:\matlab\toolbox\rtw\rtwdemos\rtwdemo_cgv_data.mat

Starting build procedure for model: rtwdemo_cgv

Successful completion of build procedure for model: rtwdemo_cgv

Preparing to start PIL simulation ...

Building with 'Microsoft Visual C++ 2013 Professional (C)'.

MEX completed successfully.

Connectivity configuration for "C:\TEMP\Bdoc17a_538369_5692\IB_CPU_21\tp32af565d\ex96023632\rtwdemo_cgv_ert_rtw": CS1_default

Updating code generation report with PIL files ...

Starting application: 'rtwdemo_cgv_ert_rtw\pil\rtwdemo_cgv.exe'

End CGV execution: status completed.

Remove Customization

To prevent problems with other models, immediately remove the customization used to
show PIL mode.

delete('sl_customization.m');

sl_refresh_customizations();

Check that execution did not terminate with an error

The run() function returns a Boolean value, which is true if the execution completes
without model compilation or simulation error. Before accessing the data, check the
result returned from each execution.

if ~result1 || ~result2 || ~result3

 disp('Execution of model failed.');

end

simData = cgvSim.getOutputData(1);

silData = cgvSil.getOutputData(1);

pilData = cgvPil.getOutputData(1);

64-90

 Using Code Generation Verification API

Compare Results

The executions are now complete. Compare the results. The comparison code supports a
plot with filters. Plots display both the data and the difference.

CGV functions display signals names (as used in the command window) and create a file
correlating tolerance information with signal names.

Show Signal Names from Normal Simulation

Display a list of signal names from the saved data.

Note: cgv.CGV.compare ignores signals that appear in only one data set. For example,
the compare function ignores a logged internal signal hi0 that appears in the output of a
normal simulation, but does not appear in the output of a SIL simulation.

cgv.CGV.getSavedSignals(simData);

simData.getElement(1).Values.Data(:,1)

simData.getElement(1).Values.Data(:,2)

simData.getElement(2).Values.Data(:,1)

simData.getElement(2).Values.Data(:,2)

simData.getElement(2).Values.Data(:,3)

simData.getElement(2).Values.Data(:,4)

simData.getElement(3).Values.hi0.Data(:,1)

simData.getElement(3).Values.hi0.Data(:,2)

simData.getElement(3).Values.hi1.mid0.lo0.Data(1,1,:)

simData.getElement(3).Values.hi1.mid0.lo0.Data(2,1,:)

simData.getElement(3).Values.hi1.mid0.lo0.Data(1,2,:)

simData.getElement(3).Values.hi1.mid0.lo0.Data(2,2,:)

simData.getElement(3).Values.hi1.mid0.lo1.Data

simData.getElement(3).Values.hi1.mid0.lo2.Data

simData.getElement(3).Values.hi1.mid1.Data(:,1)

simData.getElement(3).Values.hi1.mid1.Data(:,2)

simData.getElement(4).Values.Data

Create a Tolerance File

The CGV createToleranceFile function creates a file correlating tolerance
information with signal names. For the options available to configure tolerances, see
cgv.CGV.createToleranceFile. By default, tolerances are zero. Therefore the signals must
match exactly. This example allows a delta of 0.5 on the ErrorsInjected signal.

signalList = {'simData.ErrorsInjected.Data' };

64-91

64 Numerical Equivalence Checking in Embedded Coder

toleranceList = { { 'absolute', 0.5}};

cgv.CGV.createToleranceFile('localtol', signalList, toleranceList);

Compare Signals

By default, the cgv.CGV.compare function looks at signals that have a common name
between both executions. In the following code, the simData.hi0.Data signals are not
compared, because the signals do not appear in silData.

The second and fourth return parameters of the compare function are for matched figures
and mismatched figures. Tildes (~) represent these parameters because this example
does not use the return values.

A plot results from the mismatch on signal simData.ErrorsInjected.Data.

[matchNames, ~, mismatchNames, ~] = ...

 cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

 'Tolerancefile', 'localtol');

fprintf('%d Signals match, %d Signals mismatch\n', ...

 length(matchNames), length(mismatchNames));

assert(length(mismatchNames) == 1,'Expected exactly one mismatch');

assert(length(matchNames) == 14, 'Expected exactly 14 matches');

disp('Mismatched Signal Names:');

disp(mismatchNames');

14 Signals match, 1 Signals mismatch

Mismatched Signal Names:

 'simData.getElement(4).Values.Data'

64-92

 Using Code Generation Verification API

Compare Individual Signals

The cgv.CGV.compare function also compares only the specified signals. In this example,
the function compares only three signals.

[matchNames, ~, mismatchNames, ~] = ...

 cgv.CGV.compare(simData, silData, 'Plot', 'mismatch', ...

 'Signals', {'simData.getElement(3).Values.hi1.mid0.lo1.Data', 'simData.getElement(3).Values.hi1.mid0.lo2.Data', ...

 'simData.getElement(2).Values.Data(:,3)'});

fprintf('%d Signals match, %d Signals mismatch\n', ...

 length(matchNames), length(mismatchNames));

assert(isempty(mismatchNames),'Expected no mismatches');

if ~isempty(mismatchNames)

 disp('Mismatched Signal Names:');

 disp(mismatchNames');

end

64-93

64 Numerical Equivalence Checking in Embedded Coder

% Since a mismatch does not occur for these signals, a plot is not generated.

3 Signals match, 0 Signals mismatch

Additional Plotting Support

To create a plot of a list of signals, call cgv.CGV.plot. For example,

[signalNames, signalFigures] = cgv.CGV.plot(simData, ...

 'Signals', {'simData.getElement(2).Values.Data(:,1)'});

View Signal Data in the Simulation Data Inspector Tool

To open the Simulation Data Inspector tool, at the MATLAB® command line, enter
Simulink.sdi.view. To import the signal data, in the Simulation Data Inspector tool,

64-94

 Using Code Generation Verification API

select File > Import Data, which opens the Data Import tool. Select Import from >
Base workspace, to view and select the signals saved in simData and silData.

Clear Your Workspace

Clear the variables from the workspace:

newBaseVars = who;

addedVars = setdiff(newBaseVars, baseVars);

clearCmd = ['clear ' sprintf('%s ', addedVars{:})];

eval(clearCmd);

clear newBaseVars addedVars clearCmd

rtwdemoclean;

Related Examples
• “Simulink Test”
• “Verify Numerical Equivalence with CGV” on page 64-78
• “Verify Numerical Equivalence Between Two Modes of Execution of a Model” on

page 64-79

64-95

65

Numerical Consistency between
Model and Generated Code

65 Numerical Consistency between Model and Generated Code

Numerical Consistency of Model and Generated Code Simulation
Results

In this section...

“Numerical Consistency” on page 65-2
“Numerical Consistency in Complex Systems” on page 65-3
“Reasons for Block-Level Numerical Differences” on page 65-5

Numerical Consistency

In the Model-Based Design workflow (Simulink Code Inspector), you use MathWorks
products to generate code for numerical applications that employ fixed-point and
floating-point arithmetic.

• To develop models, you use MATLAB, Simulink, and Stateflow.
• To generate source code, you use Simulink Coder and Embedded Coder.
• To test numerical equivalence between your model and generated code, you compare

model and generated code simulation results. For example, normal mode simulation
results compared with software-in-the-loop (SIL) simulation results.

The results from the model and generated code simulations are numerically consistent if:

• In fixed-point applications, the results agree in a bit-wise comparison.
• In floating-point applications, the results agree with an error tolerance that you

specify.

Use the Simulation Data Inspector to compare results. To determine whether
discrepancies exist or are significant, you can specify absolute and relative tolerance
values:

• For fixed-point applications, you can specify an absolute tolerance of zero.
• For floating-point applications, you can specify tolerance with respect to a reference

value or signal. The choice of reference depends on your application. Consider these
examples:

• An algorithm that solves a linear algebraic equation by iterative, feed-forward
error calculations. You can specify tolerance with respect to eps.

65-2

 Numerical Consistency of Model and Generated Code Simulation Results

• A Proportional-Integral-Derivative (PID) controller for a closed-loop system.
For transient behavior, you can specify tolerance with criteria from a standard.
For steady-state behavior, you can specify tolerance with reference to the PID
controller characteristics.

Programmatically, you can specify absolute and relative tolerance values through the
absTol and relTol properties of the Simulink.sdi.Signal object.

Numerical Consistency in Complex Systems

For complex systems, numerical differences between model and generated code
simulations can be a result of block-level differences propagating through the system. If
you observe numerical differences at the system level:

1 Identify blocks for which block-level numerical differences exceed the error tolerance.
2 Investigate each identified block.

Consider the following plant-controller model.

65-3

65 Numerical Consistency between Model and Generated Code

• T produces reference or test signals.
• C is the controller component. The controller output is the plant input. C can be a

Model block that comprises multiple Model blocks.
• P is the plant component. The plant output is subtracted from the reference signal to

produce the controller input.

To test numerical equivalence between the model controller and the generated code
version:

1 Run the model in normal mode, and, using the Simulation Data Inspector, record the
output of C.

2 Specify SIL mode for C. Rerun the simulation, recording the output of C.
3 Using the Simulation Data Inspector, compare normal and SIL mode outputs with

reference to your specified error tolerance.

65-4

 Numerical Consistency of Model and Generated Code Simulation Results

If the Simulation Data Inspector comparison indicates a match, the model and generated
code results are numerically consistent.

If the normal and SIL mode outputs do not match:

1 Within C, enable signal logging for block outputs.
2 Run the model in normal mode.
3 Rerun the simulation with C in SIL mode.
4 Using the Simulation Data Inspector, compare the logged output signals with

reference to your specified error tolerance. See “Compare Simulation Data”
(Simulink).

5 Identify blocks for which normal and SIL mode output differences exceed the error
tolerance.

6 Analyze each identified block and look for the cause. For example, the generated
code might use a different math library than MATLAB.

Note: If the comparison of a large number of signals is required, you can automate
the workflow with Simulink Test. See “Code Generation Verification Workflow with
Simulink Test” (Simulink Test).

Reasons for Block-Level Numerical Differences

In fixed-point and floating-point application development, there are factors that can
affect numerical agreement between block-level results from model and generated code
simulations.

Some factors can affect both fixed-point and floating-point applications. For example, the
use of:

• Code generation optimization.
• Custom code.
• Code replacement library entries whose results differ from MATLAB results.
• Code replacement libraries that implement different algorithms.

Other factors affect only floating-point applications. For example:

• Numerical soundness of algorithm.

65-5

65 Numerical Consistency between Model and Generated Code

• Algorithm sensitivity to input.
• Closed loop and open loop behavior.

References

[1] IEEE Standard on Transitions, Pulses, and Related Waveforms, IEEE Standard 181,
2003, pp. 15–17.

See Also
eps

Related Examples
• “Record Data with the Simulation Data Inspector” (Simulink)
• “Compare Simulation Data” (Simulink)
• “Inspect and Compare Data Programmatically” (Simulink)
• “Code Generation Verification Workflow with Simulink Test” (Simulink Test)

More About
• “How the Simulation Data Inspector Compares Data” (Simulink)
• “Differences Between Generated Code and MATLAB Code” (Simulink)
• “Code Replacement”
• “Types of In-the-Loop Testing in the V-Model”
• MATLAB Function (Simulink)
• “SIL and PIL Limitations” on page 64-61

65-6

66

Software-in-the-Loop Execution for
MATLAB Coder

• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop
Execution” on page 66-2

• “Software-in-the-Loop Execution with the MATLAB Coder App” on page 66-4
• “Software-in-the-Loop Execution From Command Line” on page 66-6
• “Debug Generated Code During SIL Execution” on page 66-9
• “Create PIL Target Connectivity Configuration” on page 66-12
• “Host-Target Communication for PIL” on page 66-16
• “Specify Hardware Timer” on page 66-22
• “Processor-in-the-Loop Execution with the MATLAB Coder App” on page 66-25
• “Processor-in-the-Loop Execution From Command Line” on page 66-27
• “Verification of Code Generation Assumptions” on page 66-33
• “SIL/PIL Execution Support and Limitations” on page 66-34

66 Software-in-the-Loop Execution for MATLAB Coder

Code Verification Through Software-in-the-Loop and Processor-in-
the-Loop Execution

MATLAB Coder supports software-in-the-loop (SIL) and processor-in-the-loop (PIL)
execution, which enables you to verify production-ready source code and compiled
object code. With these execution modes, you can reuse test vectors developed for your
MATLAB functions to verify the numerical behavior of library code.

In SIL execution, through a MATLAB SIL interface, the software compiles and runs
library code on your development computer. In PIL execution, through a MATLAB
PIL interface, the software cross-compiles and runs production object code on a target
processor or an equivalent instruction set simulator. Before you run a PIL execution, you
must set up a PIL connectivity configuration for your target.

The workflow for generating and verifying code is:

1 Set up MATLAB Coder.
2 Fix errors detected at design time.
3 Generate MEX function.
4 Test MEX function.
5 Generate C/C++ library code.
6 Verify generated C/C++ code through SIL or PIL execution — requires Embedded

Coder license.

In step 4, you verify code that is generated for execution within MATLAB. However,
this code is different from the standalone code generated for libraries. In step 6, with an
Embedded Coder license, you use SIL or PIL execution to verify the standalone code.

For more information, use the following table.

Feature See

SIL execution • “Software-in-the-Loop Execution with
the MATLAB Coder App” on page
66-4

• “Software-in-the-Loop Execution From
Command Line” on page 66-6

66-2

 Code Verification Through Software-in-the-Loop and Processor-in-the-Loop Execution

Feature See

PIL target connectivity configuration • “Create PIL Target Connectivity
Configuration” on page 66-12

• “Host-Target Communication for PIL”
on page 66-16

• “Processor-in-the-Loop Execution From
Command Line” on page 66-27

PIL execution • “Processor-in-the-Loop Execution with
the MATLAB Coder App” on page
66-25

• “Processor-in-the-Loop Execution From
Command Line” on page 66-27

Code generation, MEX functions, and
libraries

• “MATLAB Code Analysis” (MATLAB
Coder)

• “Generating Code” (MATLAB Coder)
• “Deployment” (MATLAB Coder)

66-3

66 Software-in-the-Loop Execution for MATLAB Coder

Software-in-the-Loop Execution with the MATLAB Coder App

Use software-in-the-loop (SIL) execution to verify the numerical behavior of the
generated C/C++ code with reference to your original MATLAB functions.

1 To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the app icon.

2
To open your project, click , and then click Open existing project. Select the
project. For example, kalman_filter01.prj.

3 On the Generate Code page, click the Generate arrow .
4 In the Generate dialog box:

a Set Build type to Static Library or Dynamic Library.
b In the Output file name field, use the default value. For example, kalman01.
c Specify Language.
d Clear the Generate code only check box.
e In the Hardware Board field, use the default value (MATLAB Host

Computer).

You do not have to specify the Toolchain setting. By default, the MATLAB Coder
app locates an installed toolchain.

5 To generate the C or C++ code, click Generate.
6 Click Verify Code.
7 In the command field, specify the test file that calls the original MATLAB functions,

for example, test01_ui.m.
8 If required, select the Enable source-level debugging for SIL check box.
9 To start the SIL execution, click Run Generated Code.

The MATLAB Coder app:

• Generates a standalone library, for example, codegen\lib\kalman01.
• Generates SIL interface code, for example, codegen\lib\kalman01\sil.
• Runs the test file, replacing calls to the MATLAB function with calls to the

generated code in the library.

66-4

 Software-in-the-Loop Execution with the MATLAB Coder App

• Displays messages from the SIL execution in the Test Output tab.
10 Verify that the results from the SIL execution match the results from the original

MATLAB functions.
11 To terminate the SIL execution process, click Stop SIL Verification. Alternatively,

on the Test Output tab, click the link that follows To terminate execution.

Note: On a Windows operating system, the Windows Firewall can potentially block the
SIL execution. To allow the SIL execution, use the Windows Security Alert dialog box.
For example, in Windows 7, click Allow access.

Related Examples
• “C Code Generation Using the MATLAB Coder App” (MATLAB Coder)
• “Software-in-the-Loop Execution From Command Line” on page 66-6
• “Debug Generated Code During SIL Execution” on page 66-9
• “Generate Execution Time Profile” on page 59-3

More About
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution” on page 66-2

66-5

66 Software-in-the-Loop Execution for MATLAB Coder

Software-in-the-Loop Execution From Command Line

Use software-in-the-loop (SIL) execution to verify the numerical behavior of the
generated C/C++ code with reference to your original MATLAB functions.

To set up and start a SIL execution from the command line:

1 Create a coder.EmbeddedCodeConfig object.
2 Configure the object for SIL.
3 Use the codegen function to generate library code for your MATLAB function and

the SIL interface.
4 Use the coder.runTest function to run the test file for your original MATLAB

function.

To terminate the SIL execution, use the clear function_sil or clear mex
command.

The following example shows how you can set up and run a SIL execution from the
command line.

SIL Execution of Code Generated for a Kalman Estimator

1 Copy MATLAB code for Kalman estimator

From docroot\toolbox\coder\examples\kalman, copy the following files to
your working folder:

• kalman01.m — MATLAB function for the Kalman estimator
• test01_ui.m — MATLAB file to test kalman01.m
• plot_trajectory.m — File that plots actual target trajectory and Kalman

estimator output
• position.mat — Input data

src_dir = ...

 fullfile(docroot,'toolbox','coder','examples','kalman');

copyfile(fullfile(src_dir,'kalman01.m'), '.')

copyfile(fullfile(src_dir,'test01_ui.m'), '.')

66-6

 Software-in-the-Loop Execution From Command Line

copyfile(fullfile(src_dir,'plot_trajectory.m'), '.')

copyfile(fullfile(src_dir,'position.mat'), '.')

For a description of the Kalman estimator in this example, see “C Code Generation
at the Command Line” (MATLAB Coder).

2 Configure SIL execution

a From your working folder, create a coder.EmbeddedCodeConfig object.

config = coder.config('lib');

config.GenerateReport = true; % Optional, documents code in HTML report

b Configure the object for SIL.

config.VerificationMode = 'SIL';

% Check that production hardware setting is the default

% i.e. 'Generic->MATLAB Host Computer'

disp(config.HardwareImplementation.ProdHWDeviceType);

c If required, enable the Microsoft Visual Studio debugger for SIL execution:

config.SILDebugging = true;

3 Generate code and run SIL execution

a Generate library code for the kalman01 MATLAB function and the SIL
interface.

codegen('-config', config, '-args', {zeros(2,1)}, 'kalman01');

The software creates the following output folders:

• codegen\lib\kalman01 — Standalone code for kalman01.
• codegen\lib\kalman01\sil — SIL interface code for kalman01.

b Run the MATLAB test file test01_ui with kalman01_sil. kalman01_sil is
the SIL interface for kalman01.

coder.runTest('test01_ui', ['kalman01_sil.' mexext]);

Verify that the output of this run matches the output from the original kalman01.m
function.

66-7

66 Software-in-the-Loop Execution for MATLAB Coder

Note: On a Windows operating system, the Windows Firewall can potentially block
the SIL execution. To allow the SIL execution, use the Windows Security Alert dialog
box. For example, in Windows 7, click Allow access.

4 Debug code during SIL execution

If you enable the Microsoft Visual Studio debugger, then running the test file opens
the Microsoft Visual Studio IDE with debugger breakpoints at the start of the
kalman01_initialize and kalman01 functions.

You can use the debugger features to observe code behavior. For example, you can
step through code and examine variables.

To end the debugging session:

a Remove all breakpoints.
b Click the Continue button (F5).

The SIL execution runs to completion.
5 Terminate SIL execution

Terminate the SIL execution process.

clear kalman01_sil;

You can also use the command clear mex, which clears MEX functions from
memory.

Related Examples
• “C Code Generation Using the MATLAB Coder App” (MATLAB Coder)
• “Software-in-the-Loop Execution with the MATLAB Coder App” on page 66-4
• “Debug Generated Code During SIL Execution” on page 66-9
• “Generate Execution Time Profile” on page 59-3

More About
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution” on page 66-2

66-8

 Debug Generated Code During SIL Execution

Debug Generated Code During SIL Execution

If a SIL execution fails or you notice differences between the outputs of your original
functions and the generated code, you can rerun the SIL execution with a debugger
enabled. By inserting breakpoints, you can observe the behavior of code sections, which
might help you to understand the cause of the problem.

For a SIL execution failure, you can also view information from the standard output and
standard error streams in the MATLAB Command Window. For example:

• Output from printf statements in your code.
• If you enable run-time error detection, messages sent to stderr.
• Some low-level system messages.

Note: During a SIL execution, the SIL application redirects the stdout and stderr
streams. When the application terminates, the MATLAB Command Window displays the
information from the redirected streams. The SIL application also provides a basic signal
handler, which captures the POSIX signals SIGFPE, SIGILL, SIGABRT, and SIGSEV. For
this signal handler, the SIL application includes the file signal.h.

A SIL execution supports the following debuggers:

• On Windows, Microsoft Visual Studio debugger.
• On Linux, GNU Data Display Debugger (DDD).

Note: You can perform SIL debugging only if your Microsoft Visual C++ or GNU GCC
compiler is supported by the MATLAB product family. For more information, see
supported compilers.

To run a SIL execution with debugging enabled:

1 On the Generate Code page, click Verify Code.
2 Select the Enable source-level debugging for SIL check box.
3 Click Run Generated Code.

66-9

http://www.mathworks.com/support/compilers/

66 Software-in-the-Loop Execution for MATLAB Coder

On a Windows computer, your user_fn.c or user_fn.cpp file opens in the Microsoft
Visual Studio IDE with debugger breakpoints at the start of the user_fn_initialize
and user_fn functions.

You can now use the debugger features to observe code behavior. For example, you can
step through code and examine variables.

To end the debugging session:

1 Remove all breakpoints.
2 Click the Continue button (F5).

The SIL execution runs to completion.
3 To terminate the SIL execution process, on the Test Output tab, click the link that

follows To terminate execution, for example, clear kalman01_sil.

The Microsoft Visual Studio IDE closes automatically.

Note: If you select Debug > Stop Debugging, the SIL execution times out with the
following error message:

66-10

 Debug Generated Code During SIL Execution

Communications error: failed to send data to the target. There might be

multiple reasons for this failure.

...

...

Related Examples
• “Software-in-the-Loop Execution with the MATLAB Coder App” on page 66-4
• “Software-in-the-Loop Execution From Command Line” on page 66-6

66-11

66 Software-in-the-Loop Execution for MATLAB Coder

Create PIL Target Connectivity Configuration

In this section...

“Target Connectivity Configurations for PIL” on page 66-12
“Create a Target Connectivity API Implementation” on page 66-13
“Register Target Connectivity Configuration” on page 66-14
“Verify Target Connectivity Configuration” on page 66-15

Target Connectivity Configurations for PIL

Use target connectivity configurations and the target connectivity API to customize
processor-in-the-loop (PIL) execution for your target environments.

Through a target connectivity configuration, you specify:

• A target connectivity configuration name for a target connectivity API
implementation.

• Settings that define compatible MATLAB code. For example, the code that is
generated for a particular hardware implementation.

A PIL execution requires a target connectivity PIL API implementation that integrates
third-party tools for:

• Building the PIL application that runs on the target hardware
• Downloading, starting, and stopping the application on the target
• Communicating between MATLAB and the target

You can have many different connectivity configurations for PIL execution. Register a
connectivity configuration with MATLAB by creating an rtwTargetInfo.m file and
placing it on the MATLAB search path.

In a PIL execution, the software determines which of the available connectivity
configurations to use. The software looks for a connectivity configuration that is
compatible with the MATLAB code under test. If the software finds multiple or no
compatible connectivity configurations, the software generates an error message with
information about resolving the problem.

66-12

 Create PIL Target Connectivity Configuration

Create a Target Connectivity API Implementation

This diagram shows the components of the PIL target connectivity API.

You must provide implementations of the three API components:

• Build API — Specify a toolchain approach for building generated code.
• Launcher API — Control how MATLAB starts and stops the PIL executable.
• Communications API — Customize connectivity between MATLAB and the

PIL target. Embedded Coder provides host-side support for TCP/IP and serial
communications, which you can adapt for other protocols.

These steps outline how you create a target connectivity API implementation. The
example code shown in the steps is taken from the ConnectivityConfig.m file used in
“Processor-in-the-Loop Execution From Command Line” on page 66-27.

1 Create a subclass of rtw.connectivity.Config.
ConnectivityConfig < rtw.connectivity.Config

2 In the subclass:

66-13

66 Software-in-the-Loop Execution for MATLAB Coder

• Instantiate rtw.connectivity.MakefileBuilder, which configures the build
process.
builder = rtw.connectivity.MakefileBuilder(componentArgs, ...

 targetApplicationFramework, ...

 exeExtension);

• Create a subclass of rtw.connectivity.Launcher, which downloads and
executes the application using a third-party tool.
launcher = mypil.Launcher(componentArgs, builder);

3 Configure your rtiostream API implementation of the host-target communications
on page 66-16 channel.

• For the target side, you must provide the driver code for communications,
for example, code for TCP/IP or serial communications. To
integrate this code into the build process, create a subclass of
rtw.pil.RtIOStreamApplicationFramework.

• For the host side, you can use a supplied library
for TCP/IP or serial communications. Instantiate
rtw.connectivity.RtIOStreamHostCommunicator, which loads and
initializes the library that you specify.
hostCommunicator = rtw.connectivity.RtIOStreamHostCommunicator(...

 componentArgs, ...

 launcher, ...

 rtiostreamLib);

4 If you require execution-time profiling of generated code, create a timer object that
provides details of the hardware-specific timer and associated source files. See
“Specify Hardware Timer” on page 66-22.

Register Target Connectivity Configuration

To register a target connectivity API implementation as a target connectivity
configuration in MATLAB:

1 Create or update an rtwTargetInfo.m file. In this file:

• Create a target connectivity configuration object that specifies, for example, the
configuration name for a target connectivity API implementation and compatible
MATLAB code.

• Invoke registerTargetInfo.

66-14

 Create PIL Target Connectivity Configuration

2 Add the folder containing rtwTargetInfo.m to the search path and refresh the
MATLAB Coder library registration information.

For more information, see rtw.connectivity.ConfigRegistry.

Verify Target Connectivity Configuration

To verify your target connectivity configuration early on and independently of your
algorithm development and code generation, use the piltest function. With the
function, you can run a suite of tests. The function:

• Runs the MATLAB function and performs PIL executions.
• Compares results and produces errors if it detects differences.

For an example, see “PIL Execution of Code Generated for a Kalman Estimator” on page
66-27.

See Also
piltest | rtw.connectivity.Config | rtw.connectivity.ConfigRegistry
| rtw.connectivity.Launcher | rtw.connectivity.MakefileBuilder
| rtw.connectivity.RtIOStreamHostCommunicator |
rtw.pil.RtIOStreamApplicationFramework

Related Examples
• “Processor-in-the-Loop Execution From Command Line” on page 66-27
• “Subclass Constructors” (MATLAB)
• “Host-Target Communication for PIL” on page 66-16
• “Specify Hardware Timer” on page 66-22

66-15

66 Software-in-the-Loop Execution for MATLAB Coder

Host-Target Communication for PIL

In this section...

“Communications rtiostream API” on page 66-16
“Synchronize Host and Target” on page 66-17
“Test an rtiostream Driver” on page 66-18

Communications rtiostream API

The rtiostream API supports communications for the target connectivity API. Use the
rtiostream API to implement a communication channel that enables data exchange
between different processes.

PIL verification requires a host-target communications channel. This communications
channel comprises driver code that runs on the host and target. The rtiostream API
defines the signature of target-side and host-side functions that must be implemented by
this driver code.

The API is independent of the physical layer that sends the data. Possible physical layers
include RS232, Ethernet, or Controller Area Network (CAN).

A full rtiostream implementation requires both host-side and target-side drivers. Code
generation software includes host-side drivers for the default TCP/IP implementation as
well as a version for serial communications. To use:

• The TCP/IP rtiostream communications channel, you must provide, or obtain from
a third party, target-specific TCP/IP device drivers.

• The serial communications channel, you must provide, or obtain from a third party,
target-specific serial device drivers.

For other communication channels and platforms, the code generation software does not
provide default implementations. You must provide both the host-side and the target-side
drivers.

The rtiostream API comprises the following functions:

• rtIOStreamOpen

66-16

 Host-Target Communication for PIL

• rtIOStreamSend

• rtIOStreamRecv

• rtIOStreamClose

For information about:

• Using rtiostream functions in a connectivity implementation, see “Create a Target
Connectivity API Implementation” on page 66-13.

• Testing the rtiostream shared library methods from MATLAB code, see
rtiostream_wrapper.

• Debugging and verifying the behavior of custom rtiostream interface
implementations, see “Test an rtiostream Driver” on page 66-18.

Synchronize Host and Target

If you use the rtiostream API to implement the communications channel, the host and
target must be synchronized, which prevents MATLAB from transmitting and receiving
data before the target application is fully initialized.

To synchronize the host and target for TCP/IP rtiostream
implementations, use the setInitCommsTimeout method from
rtw.connectivity.RtIOStreamHostCommunicator . This approach works well
for connection-oriented TCP/IP rtiostream implementations because MATLAB
automatically waits until the target server is running.

With other rtiostream implementations, for example, serial, the MATLAB side of
the rtiostream connection opens without waiting for the target to be fully initialized.
In this case, you must make your Launcher implementation wait until the target
application is fully initialized. Use one of the following approaches to synchronize your
host and target:

• Add a pause at the end of the Launcher implementation that makes the Launcher
wait until target initialization is complete.

• In the Launcher implementation, use third-party downloader or debugger APIs that
wait until target initialization is complete.

• Implement a handshaking mechanism in the Launcher / rtiostream
implementation that confirms completion of target initialization.

66-17

66 Software-in-the-Loop Execution for MATLAB Coder

Test an rtiostream Driver

Use a test suite to debug and verify the behavior of custom rtiostream interface
implementations.

The test suite has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in
rtiostream support.

• Reduces time for testing custom rtiostream drivers.
• Helps analyze the performance of custom rtiostream drivers.

The test suite has two parts. One part of the test suite runs on the target.

Note: After building the target application, download it to the target and run it.

To start this part, compile and link the following files, which are in the folder
matlabroot/toolbox/coder/rtiostream/src/rtiostreamtest (open).

• rtiostreamtest.c

• rtiostreamtest.h

• rtiostream.h, located in the folder matlabroot/rtw/c/src (open)
• rtiostream implementation under investigation (for example,

rtiostream_tcpip.c)
• main.c

To run the MATLAB part of the test suite, invoke rtiostreamtest. The syntax is as
follows:

rtiostreamtest(connection,param1,param2)

• connection is a character vector indicating the communication method. It can have
values 'tcp' or 'serial'.

• param1 and param2 have different values depending on the value of connection.

• If connection is 'tcp', then param1 and param2 are hostname and port,
respectively. For example, rtiostreamtest('tcp', 'localhost', 2345).

66-18

 Host-Target Communication for PIL

• If connection is 'serial', then param1 and param2 are COM port and baud
rate, respectively. For example, rtiostreamtest('serial', 'COM1', 9600).

You can run the MATLAB part of the test suite as follows:

rtiostreamtest('tcp','localhost','2345')

An output in the following format appears in the MATLAB window:

Test suite for rtiostream

Initializing connection with target...

Hardware characteristics discovered

Size of char : 8 bit

Size of short : 16 bit

Size of int : 32 bit

Size of long : 32 bit

Size of float : 32 bit

Size of double : 64 bit

Size of pointer : 64 bit

Byte ordering : Little Endian

rtiostream characteristics discovered

Round trip time : 0.96689 ms

rtIOStreamRecv behavior : non-blocking

Test results

Test 1 (fixed size data exchange): PASS

Test 2 (varying size data exchange): PASS

Test suite for rtiostream finished successfully

Furthermore, the following profile appears.

66-19

66 Software-in-the-Loop Execution for MATLAB Coder

See Also
rtiostream_wrapper | rtIOStreamClose | rtIOStreamOpen | rtIOStreamRecv |
rtIOStreamSend | rtw.connectivity.RtIOStreamHostCommunicator

66-20

 Host-Target Communication for PIL

Related Examples
• “Create PIL Target Connectivity Configuration” on page 66-12

66-21

66 Software-in-the-Loop Execution for MATLAB Coder

Specify Hardware Timer

For processor-in-the-loop (PIL) code execution profiling, you must create a timer object
that provides details of the hardware-specific timer and associated source files. You
can use the Code Replacement Tool or the code replacement library API to specify this
hardware-specific timer.

To specify the timer with the Code Replacement Tool:

1 Open the Code Replacement Tool. In the Command Window, enter crtool.
2 Create a new code replacement table. Select File > New table.
3 Create a new function entry. Under Tables List, right-click the new table. Then,

from the context-menu, select New entry > Function.
4 In the middle view, select the new unnamed function.
5 On the Mapping Information pane:

a From the Function drop-down list, select code_profile_read_timer.
b Specify the count direction for your timer. For example, from the Count

direction drop-down list, select Up.
c In the Ticks per second field, specify the number of ticks per second for your

timer, for example, 1e+09.

The default value is 0. In this case, the software reports time measurements in
terms of ticks, not seconds.

d In the Name field, specify a replacement function name, for example, MyTimer.
e Click Apply.

66-22

 Specify Hardware Timer

f To validate the function entry, click Validate entry.
6 On the Build Information pane, specify the required build information. See

“Specify Build Information for Replacement Code” on page 51-59.
7 Save the table (Ctrl+S). When you save the table for the first time, use the Save As

dialog box to specify the file name and location.

You must save the table in a location that is on the MATLAB search
path. For example, you can save this file in the folder for your subclass of
rtw.connectivity.Config.

The software stores your timer information as a code replacement library table.
8 Assuming you save the table as MyCrlTable.m, in your subclass of

rtw.connectivity.Config, add the following line:

setTimer(this, MyCrlTable)

66-23

66 Software-in-the-Loop Execution for MATLAB Coder

Related Examples
• “Create a Target Connectivity API Implementation” on page 66-13
• “Generate Execution Time Profile” on page 59-3
• “Specify Build Information for Replacement Code” on page 51-59

More About
• “What Is Code Replacement?” on page 38-2
• “What Is Code Replacement Customization?” on page 51-3

66-24

 Processor-in-the-Loop Execution with the MATLAB Coder App

Processor-in-the-Loop Execution with the MATLAB Coder App

Use processor-in-the-loop (PIL) execution to verify the numerical behavior of cross-
compiled object code with reference to your original MATLAB functions.

Before you run a PIL execution, you must define a target connectivity configuration.
In “Processor-in-the-Loop Execution From Command Line” on page 66-27, steps 1
and 2 of the example PIL Execution of Code Generated for a Kalman Estimator show
how you can set up and register a connectivity configuration for PIL execution on your
development computer.

1 To open the MATLAB Coder app, on the MATLAB Toolstrip Apps tab, under Code
Generation, click the app icon.

2
To open your project, click , and then click Open existing project. Select the
project. For example, kalman_filter.prj.

3 On the Generate Code page, click the Generate arrow .
4 In the Generate dialog box:

a Set Build type to Static Library or Dynamic Library.
b In the Output file name field, use the default value. For example, kalman01.
c Clear the Generate code only check box.
d From the Hardware Board drop-down list, select None - Select device

below.
e In the Device fields, specify vendor and type. These settings must match

the target hardware settings in the rtwTargetInfo.m file of your target
connectivity configuration. For host-based PIL, select settings that match your
host computer. For example:

• For a Windows 64-bit system, set Device vendor to Intel and Device
type to x86-64 (Windows64). In addition, set Enable long long to Yes.

• For a Linux 64-bit system, set Device vendor to Intel and Device type to
x86-64 (Linux 64).

• For a Mac OS X system, set Device vendor to Intel and Device type to
x86-64 (Mac OS X).

66-25

66 Software-in-the-Loop Execution for MATLAB Coder

You do not have to specify the Toolchain setting. By default, the MATLAB Coder
app locates an installed toolchain.

5 To generate the C or C++ code, click Generate.
6 Click Verify Code.
7 In the command field, specify the test file that calls the original MATLAB functions,

for example, test01_ui.m.
8 To start the PIL execution, click Run Generated Code.

The MATLAB Coder app:

• Generates a standalone library, for example, codegen\lib\kalman01.
• Generates PIL interface code, for example, codegen\lib\kalman01\pil.
• Runs the test file, replacing calls to the MATLAB function with calls to the

generated code in the library.
• Displays messages from the PIL execution in the Test Output tab.

9 Verify that the results from the PIL execution match the results from the original
MATLAB functions.

10 To terminate the PIL execution process, click Stop PIL Verification. Alternatively,
on the Test Output tab, click the link that follows To terminate execution.

Related Examples
• “C Code Generation Using the MATLAB Coder App” (MATLAB Coder)
• “Processor-in-the-Loop Execution From Command Line” on page 66-27
• “Generate Execution Time Profile” on page 59-3

More About
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution” on page 66-2

66-26

 Processor-in-the-Loop Execution From Command Line

Processor-in-the-Loop Execution From Command Line

Use processor-in-the-loop (PIL) execution to verify code that you intend to deploy in
production.

To set up and start a PIL execution from the command line:

1 Create, register, and verify your target connectivity configuration.
2 Create a coder.EmbeddedCodeConfig object.
3 Configure the object for PIL.
4 Use the codegen function to generate library code for your MATLAB function and

the PIL interface.
5 Use the coder.runTest function to run the test file for your original MATLAB

function.

To terminate the PIL execution, use the clear function_pil or clear mex
command.

The following example shows how you can use line commands to set up and run a PIL
execution on your development computer.

PIL Execution of Code Generated for a Kalman Estimator

1 Create a target connectivity API implementation

a In your current working folder, make a local copy of the connectivity classes.

src_dir = ...

 fullfile(matlabroot,'toolbox','coder','simulinkcoder','+coder','+mypil');

if exist(fullfile('.','+mypil'),'dir')

 rmdir('+mypil','s')

end

mkdir +mypil

copyfile(fullfile(src_dir,'Launcher.m'), '+mypil');

copyfile(fullfile(src_dir,'TargetApplicationFramework.m'), '+mypil');

copyfile(fullfile(src_dir,'ConnectivityConfig.m'), '+mypil');

b Make the copied files writable.

fileattrib(fullfile('+mypil', '*'),'+w');

c Update the package name to reflect the new location of the files.

66-27

66 Software-in-the-Loop Execution for MATLAB Coder

coder.mypil.Utils.UpdateClassName(...

 './+mypil/ConnectivityConfig.m',...

 'coder.mypil',...

 'mypil');

d Check that you now have a folder +mypil in the current folder, which
includes three files, Launcher.m, TargetApplicationFramework.m, and
ConnectivityConfig.m.

dir './+mypil'

e Review the code that starts the PIL application. The mypil.Launcher class
configures a tool for starting the PIL executable. Open this class in the editor.

edit(which('mypil.Launcher'))

Review the content of this file. For example, consider the setArgString
method. This method allows additional command line parameters to be supplied
to the application. These parameters can include a TCP/IP port number. For
an embedded processor implementation, you might have to hard code these
settings.

f The class mypil.ConnectivityConfig configures target connectivity.

edit(which('mypil.ConnectivityConfig'))

Review the content of this file. For example:

• The creation of an instance of
rtw.connectivity.RtIOStreamHostCommunicator that configures the
host side of the TCP/IP communications channel.

• A call to the setArgString method of Launcher that configures the target
side of the TCP/IP communications channel.

• A call to setTimer that configures a timer for execution time measurement.
To define your own target-specific timer for execution time profiling, you
must use the Code Replacement Library to specify a replacement for the
function code_profile_read_timer.

g Review the target-side communication drivers.

rtiostreamtcpip_dir=fullfile(matlabroot,'rtw','c','src','rtiostream',...

 'rtiostreamtcpip');

edit(fullfile(rtiostreamtcpip_dir,'rtiostream_tcpip.c'))

Scroll down to the end of this file. The file contains a TCP/IP implementation
of the functions rtIOStreamOpen, rtIOStreamSend, andrtIOStreamRecv.

66-28

 Processor-in-the-Loop Execution From Command Line

These functions are required for target communication with the host. For each
of these functions, you must provide an implementation that is specific to your
target hardware and communication channel.

The mypil.TargetApplicationFramework class adds target-side
communication drivers to the connectivity configuration.

edit(which('mypil.TargetApplicationFramework'))

The file specifies additional files to include in the build.
2 Register a target connectivity configuration

Use an rtwTargetInfo.m file to:

• Create a target connectivity configuration object.
• Invoke registerTargetInfo, which registers the target connectivity

configuration.

The target connectivity configuration object specifies, for example:

• The configuration name and associated API implementation. See
rtw.connectivity.ConfigRegistry

• A toolchain for your target hardware. This example assumes that the target
hardware is your host computer, and uses the toolchain supplied for host-based
PIL verification. For information about toolchains, see “Custom Toolchain
Registration” (MATLAB Coder).

a Insert the following code into your rtwTargetInfo.m file, and save the file in
the current working folder or in a folder that is on the MATLAB search path:

function rtwTargetInfo(tr)

% Register PIL connectivity config: mypil.ConnectivityConfig

tr.registerTargetInfo(@loc_createConfig);

% local function

function config = loc_createConfig

% Create object for connectivity configuration

config = rtw.connectivity.ConfigRegistry;

% Assign connectivity configuration name

config.ConfigName = 'My PIL Example';

% Associate the connectivity configuration with the connectivity

66-29

66 Software-in-the-Loop Execution for MATLAB Coder

% API implementation

config.ConfigClass = 'mypil.ConnectivityConfig';

% Specify toolchains for host-based PIL

config.Toolchain = rtw.connectivity.Utils.getHostToolchainNames;

% Through the HardwareBoard and TargetHWDeviceType properties,

% define compatible code for the target connectivity configuration

config.HardwareBoard = {}; % Any hardware board

config.TargetHWDeviceType = {'Generic->32-bit x86 compatible' ...

 'Generic->Custom' ...

 'Intel->x86-64 (Windows64)', ...

 'Intel->x86-64 (Mac OS X)', ...

 'Intel->x86-64 (Linux 64)'};

b Refresh the MATLAB Coder library registration information.

RTW.TargetRegistry.getInstance('reset');

3 Verify target connectivity configuration

Use the supplied piltest function to verify your target connectivity configuration.

a Create a coder.EmbeddedCodeConfig object for verifying the target
connectivity configuration.

configVerify = coder.config('lib');

b Specify the manufacturer and test hardware type. For example, PIL execution
on a 64-bit Windows development computer requires:

configVerify.HardwareImplementation.TargetHWDeviceType =...

 'Intel->x86-64 (Windows64)';

configVerify.HardwareImplementation.ProdLongLongMode = true;

c Run piltest.

piltest(configVerify, 'ConfigParam', {'ProdLongLongMode'})

4 Copy MATLAB code for Kalman estimator

Copy the MATLAB code to your working folder.

src_dir = ...

 fullfile(docroot,'toolbox','coder','examples','kalman');

66-30

 Processor-in-the-Loop Execution From Command Line

copyfile(fullfile(src_dir,'kalman01.m'), '.')

copyfile(fullfile(src_dir,'test01_ui.m'), '.')

copyfile(fullfile(src_dir,'plot_trajectory.m'), '.')

copyfile(fullfile(src_dir,'position.mat'), '.')

For a description of the Kalman estimator in this example, see “C Code Generation
at the Command Line” (MATLAB Coder).

5 Configure the PIL execution

a Create a coder.EmbeddedCodeConfig object.

config = coder.config('lib');

b Configure the object for PIL.

config.VerificationMode = 'PIL';

c Specify production hardware, which must match one of the test hardware
settings in rtwTargetInfo.m. For PIL execution on your development
computer, specify settings that match the computer. For example, if your
computer is a Windows 64-bit system, specify:

config.HardwareImplementation.ProdHWDeviceType =...

 'Intel->x86-64 (Windows64)';

config.HardwareImplementation.ProdLongLongMode = true;

For a Linux 64-bit system, set ProdHWDeviceType to 'Intel->x86-64
(Linux 64)'.

For a Mac OS X system, set ProdHWDeviceType to 'Intel->x86-64 (Mac OS
X)'.

6 Generate code and run PIL execution

a Generate library code for the kalman01 MATLAB function and the PIL
interface.

codegen('-config', config, '-args', {zeros(2,1)}, 'kalman01');

The software creates the following output folders:

• codegen\lib\kalman01 — Standalone code for kalman01.
• codegen\lib\kalman01\pil — PIL interface code for kalman01.

b Run the MATLAB test file test01_ui with kalman01_pil. kalman01_pil is
the PIL interface for kalman01.

66-31

66 Software-in-the-Loop Execution for MATLAB Coder

coder.runTest('test01_ui', ['kalman01_pil.' mexext]);

Verify that the output of this run matches the output from the original
kalman01.m function.

7 Terminate PIL execution

Terminate the PIL execution process.

clear kalman01_pil;

Related Examples
• “C Code Generation Using the MATLAB Coder App” (MATLAB Coder)
• “Processor-in-the-Loop Execution with the MATLAB Coder App” on page 66-25
• “Generate Execution Time Profile” on page 59-3

More About
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution” on page 66-2

66-32

 Verification of Code Generation Assumptions

Verification of Code Generation Assumptions

The settings on the More Settings > Hardware tab specify target behavior, which
result in the implementation of implicit assumptions in the generated code. Incorrect
settings can lead to:

• Suboptimal code
• Code execution failure, incorrect code output, and nondeterministic code behavior

At the start of a processor-in-the-loop (PIL) execution, the software verifies the
Hardware tab settings with reference to the target hardware. The software checks:

• The correctness of settings. For example, the integer bit length in the Sizes > int
field.

• Whether the settings are optimized. For example, the rounding of signed integer
division in the Signed integer division rounds to field.

If required, the software generates warnings and errors.

Related Examples
• “Processor-in-the-Loop Execution with the MATLAB Coder App” on page 66-25

66-33

66 Software-in-the-Loop Execution for MATLAB Coder

SIL/PIL Execution Support and Limitations

Feature Supported

Static library Yes
Dynamic library YesOutput types
Executable No
C YesLanguages
C++ Yes
Inputs Yes
Outputs Yes
Constant inputs Yes

Interface types

Global data Yes. SIL and PIL execution supports
four types of storage classes on
page 77-2 for MATLAB Coder
global variables. The synchronization
(MATLAB Coder) of global data
between MATLAB and the SIL or PIL
application depends on the type of
storage class that you specify:

• ExportedGlobal (default) —
The synchronization of global data
between MATLAB and a SIL or
PIL application is identical to the
synchronization between MATLAB
and a MEX function.

• ExportedDefine — There is no
synchronization of global data
between MATLAB and the SIL or
PIL application. The application
uses the values of the global
variables in MATLAB at the time of
code generation.

• ImportedExtern and
ImportedExternPointer —
There is no synchronization of

66-34

 SIL/PIL Execution Support and Limitations

Feature Supported

global data between MATLAB and
the SIL or PIL application. The
application uses initial values of
global variables, which you specify
in the external code. If the global
variables are not initialized in
the external code, the SIL or PIL
execution results are undefined.

Constant global
data

Yes

Reentrant code Yes
Multiple entry
points

Yes

Basic types Yes
Enumerated types Yes
Structures Yes
Complex data Yes
Fixed-point data Yes
Multiword fixed-
point data

SIL only

char arrays Yes
Empty values Yes

Data types

Cell arrays Yes
Scalars Yes
Fixed-size arrays Yes
Static variable-size
arrays

YesSize

Dynamic variable-
size size arrays

Yes

66-35

66 Software-in-the-Loop Execution for MATLAB Coder

Related Examples
• “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop

Execution” on page 66-2

66-36

67

Code Coverage in Embedded Coder

• “Simulink Code Coverage Metrics” on page 67-2
• “Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-

Loop (PIL) Mode” on page 67-6
• “Configure Code Coverage with Third-Party Tools” on page 67-10
• “View Code Coverage Information at the End of SIL or PIL Simulations” on page

67-13
• “Configure Code Coverage Programmatically” on page 67-16
• “Code Coverage Summary and Annotations” on page 67-18
• “Code Coverage Tool Support” on page 67-23
• “Tips and Limitations” on page 67-24

67 Code Coverage in Embedded Coder

Simulink Code Coverage Metrics

In this section...

“Statement Coverage for Code Coverage” on page 67-2
“Condition Coverage for Code Coverage” on page 67-3
“Decision Coverage for Code Coverage” on page 67-3
“Modified Condition/Decision Coverage (MCDC) for Code Coverage” on page 67-4
“Cyclomatic Complexity for Code Coverage” on page 67-5
“Relational Boundary for Code Coverage” on page 67-5

If you have a Simulink Verification and Validation license, you can run a SIL or PIL
simulation that produces code coverage metrics for generated model code. The simulation
performs several types of code coverage analysis.

Statement Coverage for Code Coverage

Statement coverage determines the number of source code statements that execute when
the code runs. Use this type of coverage to determine whether every statement in the
program has been invoked at least once.

Statement coverage = (Number of executed statements / Total number of statements)
*100

Statement Coverage Example

This code snippet contains five statements. To achieve 100% statement coverage, you
need at least three test cases. Specifically, tests with positive x values, negative x values,
and x values of zero.

if (x > 0)

 printf("x is positive");

else if (x < 0)

 printf("x is negative");

else

 printf("x is 0");

67-2

 Simulink Code Coverage Metrics

Condition Coverage for Code Coverage

Condition coverage analyzes statements that include conditions in source code.
Conditions are C/C++ Boolean expressions that contain relation operators (<, >, <=,
or >=), equation operators (!= or ==), or logical negation operators (!), but that do not
contain logical operators (&& or ||). This type of coverage determines whether every
condition has been evaluated to all possible outcomes at least once.

Condition coverage = (Number of executed condition outcomes / Total number of
condition outcomes) *100

Condition Coverage Example

In this expression:

y = x<=5 && x!=7;

there are these conditions:

x<=5

x!=7

Decision Coverage for Code Coverage

Decision coverage analyzes statements that represent decisions in source code. Decisions
are Boolean expressions composed of conditions and one or more of the logical C/C++
operators && or ||. Conditions within branching constructs (if/else, while, do-while) are
decisions. Decision coverage determines the percentage of the total number of decision
outcomes the code exercises during execution. Use this type of coverage to determine
whether all decisions, including branches, in your code are tested.

Note: The decision coverage definition for DO-178C compliance differs from the Simulink
Verification and Validation definition. For decision coverage compliance with DO-178C,
select the Condition Decision structural coverage level for Boolean expressions not
containing && or || operators.

Decision coverage = (Number of executed decision outcomes / Total number of decision
outcomes) *100

67-3

67 Code Coverage in Embedded Coder

Decision Coverage Example

This code snippet contains three decisions:

y = x<=5 && x!=7; // decision #1

if(x > 0) // decision #2

 printf("decision #2 is true");

else if(x < 0 && y) // decision #3

 printf("decision #3 is true");

else

 printf("decisions #2 and #3 are false");

Modified Condition/Decision Coverage (MCDC) for Code Coverage

Modified condition/decision coverage (MCDC) is the extent to which the conditions within
decisions are independently exercised during code execution.

• All conditions within decisions have been evaluated to all possible outcomes at least
once.

• Every condition within a decision independently affects the outcome of the decision.

MCDC coverage = (Number of conditions evaluated to all possible outcomes affecting the
outcome of the decision / Total number of conditions within the decisions) *100

Modified Condition/Decision Coverage Example

For this decision:

X || (Y && Z)

the following set of test cases delivers 100% MCDC coverage.

 X Y Z

Test case #1 0 0 1
Test case #2 0 1 0
Test case #3 0 1 1
Test case #4 1 0 1

67-4

 Simulink Code Coverage Metrics

Cyclomatic Complexity for Code Coverage

Cyclomatic complexity is a measure of the structural complexity of code that uses
the McCabe complexity measure. To compute the cyclomatic complexity of code, code
coverage uses this formula:

c o
n

N

= -Â ()1

1

N is the number of decisions in the code. on is the number of outcomes for the nth decision
point. Code coverage adds 1 to the complexity number for each C/C++ function.

Coverage Example

For this code snippet:

void evalNum(int x){

 if (x > 0)

 printf("x is positive");

 else if (x < 0)

 printf("x is negative");

 else

 printf("x is 0");

}

the cyclomatic complexity is 3.

Relational Boundary for Code Coverage

Relational boundary code coverage examines code that has relational operations.
Relational boundary code coverage metrics align with those for model coverage, as
described in “Relational Boundary Coverage” (Simulink Verification and Validation).
Fixed-point values in your model are integers during code coverage.

Related Examples
• “Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-

the-Loop (PIL) Mode” on page 67-6

67-5

67 Code Coverage in Embedded Coder

Code Coverage for Models in Software-in-the-Loop (SIL) Mode and
Processor-in-the-Loop (PIL) Mode

In this section...

“Requirements to Enable SIL or PIL Code Coverage for a Model” on page 67-6
“Conditions for Simulink Verification and Validation Code Coverage Measurement” on
page 67-7
“Reviewing the Coverage Results for Models in SIL or PIL Mode” on page 67-7
“Limitations” on page 67-9

Requirements to Enable SIL or PIL Code Coverage for a Model

If you have both an Embedded Coder license and a Simulink Verification and Validation
license, you can measure coverage for code generated from models in software-in-the-loop
(SIL) mode or processor-in-the-loop (PIL) mode. The following configurations must apply
for the parameters in Code Generation > Verification:

• Under Code profiling, clear Measure function execution times.
• Under Code coverage for SIL or PIL, the selected Code coverage tool must be

None.

67-6

 Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode

Conditions for Simulink Verification and Validation Code Coverage
Measurement

There are two workflows for measuring code coverage:

• The top model is in SIL mode or PIL mode. Measures code coverage for the top model
depending on RecordCoverage. Also measures code coverage for referenced models,
depending on CovModelRefEnable.

• The top model is in Normal mode and contains at least one reference model in SIL or
PIL mode. Measures code coverage for the referenced model if CovModelRefEnable
is 'on', 'all', or 'filtered' and RecordCoverage is 'off'.

Reviewing the Coverage Results for Models in SIL or PIL Mode

In the code coverage report, each hyperlink opens a report with more details on the
coverage analysis for the model. The code coverage results in these reports are similar to

67-7

67 Code Coverage in Embedded Coder

the coverage results for C/C++ code in S-function blocks, as described in “View Coverage
Results for C/C++ Code in S-Function Blocks” (Simulink Verification and Validation).
You can navigate from code coverage results to the associated model blocks by using the
links within the detailed code coverage reports.

Each detailed code coverage report also contains syntax highlighted code with coverage
information.

67-8

 Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-the-Loop (PIL) Mode

Limitations

Coverage for models in SIL and PIL mode has these limitations:

• The model must meet the requirements listed in “Requirements to Enable SIL or PIL
Code Coverage for a Model” on page 67-6.

• Code coverage results must not include external C/C++ files in read-only folders.

Related Examples
• “Software-in-the-Loop Code Coverage” (Simulink Verification and Validation)

67-9

67 Code Coverage in Embedded Coder

Configure Code Coverage with Third-Party Tools

During a top-model or Model block SIL or PIL simulation, you can collect code coverage
metrics for generated code using a third-party tool. Embedded Coder supports the
following tools:

• LDRA Testbed from LDRA Software Technology. For information about installing and
using this tool, go to www.ldra.com.

The software supports LDRA Testbed code coverage for SIL and PIL.

• BullseyeCoverage from Bullseye Testing Technology. For information about installing
and using this tool, go to www.bullseye.com.

The software supports BullseyeCoverage code coverage for SIL and, in certain cases,
PIL.

To configure a code coverage tool for a top-model or Model block SIL or PIL simulation:

1 Select Simulation > Model Configuration Parameters > Code Generation >
Verification.

2 From the Code coverage tool drop-down list, select a tool, for example,
BullseyeCoverage or LDRA Testbed.

3 Click Configure Coverage to open the Code Coverage Settings dialog box.
4 In the Installation folder field, specify the location where your coverage tool is

installed. If you click Browse, the Select Installation Folder dialog box opens,
which allows you to navigate to the folder where your coverage tool is installed. The
software detects and displays the tool version.

67-10

http://www.ldra.com
http://www.bullseye.com

 Configure Code Coverage with Third-Party Tools

By default, the software selects the following check boxes:

• Code coverage for this model — Generate coverage data for the current (top)
model.

• Code coverage for referenced models — Generate data for models referenced
by the current (top) model.

If your top model has Model blocks where the Code interface block parameter is
set to Top model, then the top model and referenced models must have the same
settings for these parameters. Otherwise, the software produces an error.

5 Click OK. You return to the Verification pane.
6 To view cumulative code coverage results within a code generation report, in the

Configuration Parameters > Code Generation > Report pane, select the
following check boxes:

• Create code generation report
• Launch report automatically

7 Click OK. You return to the model window.

With LDRA Testbed:

• The evaluation of cumulative code coverage begins from the point when you last
added a new file to the existing set of source files. For example, existing code coverage
results are deleted when you:

• Run a simulation with a new model using the existing code generation folder.
• Run a simulation that results in additional source code files being instrumented.

• If you switch between SIL and PIL simulations of a model, the software generates
separate cumulative code coverage results for the SIL and PIL simulations.

For a model in a reference hierarchy, the software does not support simultaneous
function execution time measurement and code coverage.

Related Examples
• “Configure and Run SIL Simulation” on page 64-15
• “Configure Code Coverage Programmatically” on page 67-16
• “View Code Coverage Information at the End of SIL or PIL Simulations” on page

67-13

67-11

67 Code Coverage in Embedded Coder

• “Collect Code Coverage Metrics with a Third-Party Tool”
• “Code Coverage Tool Support” on page 67-23
• “Minor SIL and PIL Differences for LDRA Testbed” on page 67-26
• “PIL Support for BullseyeCoverage” on page 67-27
• “Simulink Code Coverage Metrics” on page 67-2
• “Code Coverage for Models in Software-in-the-Loop (SIL) Mode and Processor-in-

the-Loop (PIL) Mode” on page 67-6

External Websites
• www.ldra.com
• www.bullseye.com

67-12

http://www.ldra.com
http://www.bullseye.com

 View Code Coverage Information at the End of SIL or PIL Simulations

View Code Coverage Information at the End of SIL or PIL
Simulations

In this section...

“View LDRA Testbed Results” on page 67-13
“View BullseyeCoverage Results” on page 67-15

If you configure third-party code coverage for a SIL or PIL simulation, when the
simulation is complete, the code generation report opens automatically and you see
hyperlinks in the Command Window.

View LDRA Testbed Results

If you specified the LDRA Testbed, you see three links in the Command Window:

Starting SIL simulation for component: rtwdemo_sil_topmodel

Stopping SIL simulation for component: rtwdemo_sil_topmodel

Starting analysis of coverage data

Use the following links to view code coverage results:

 LDRA Testbed GUI

 LDRA Testbed Code Coverage Overview Report

 HTML code generation report with code coverage annotations

Completed code coverage analysis

>>

To go to the LDRA Testbed GUI, click the LDRA Testbed GUI link.

To open the LDRA Testbed Report with your Web browser, click the LDRA Testbed
Code Coverage Overview Report link.

67-13

67 Code Coverage in Embedded Coder

For information about using this report, refer to the LDRA Testbed documentation.

LDRA Testbed analysis results for all code in the current code generation folder belong
to a set. In this set, you can find analysis results for models that share the same code
generation folder. The LDRA Testbed Code Coverage Overview Report link
identifies the location of the LDRA Testbed analysis results, which is determined by:

• The LDRA Testbed configuration.
• The name of the LDRA Testbed set associated with the current code generation folder.

To view summary data and code annotations with coverage information in the code
generation report, click the HTML code generation report with code coverage
annotations link.

67-14

 View Code Coverage Information at the End of SIL or PIL Simulations

View BullseyeCoverage Results

If you specified the BullseyeCoverage tool, you see two links in the Command Window:
Starting SIL simulation for component: rtwdemo_sil_topmodel

Stopping SIL simulation for component: rtwdemo_sil_topmodel

Processing code coverage data

Use the following links to view code coverage results:

 BullseyeCoverage browser (coverage for last run)

 HTML code generation report (cumulative coverage)

Completed code coverage analysis

>>

To view the coverage report using the BullseyeCoverage Browser, click the
BullseyeCoverage browser (coverage for last run) link.

The BullseyeCoverage Browser shows coverage data for instrumented files associated
with your latest top-model simulation. The coverage data shown in the browser is not
cumulative and pertains only to the most recent simulation. For information about the
BullseyeCoverage Browser, go to www.bullseye.com.

To view summary data and code annotations with coverage information in the code
generation report, click the HTML code generation report (cumulative
coverage) link.

Related Examples
• “Configure Code Coverage with Third-Party Tools” on page 67-10
• “Collect Code Coverage Metrics with a Third-Party Tool”
• “Code Coverage Summary and Annotations” on page 67-18

67-15

http://www.bullseye.com

67 Code Coverage in Embedded Coder

Configure Code Coverage Programmatically

You can configure code coverage for your model using command-line APIs. A typical
workflow with BullseyeCoverage is:

1 Using get_param, retrieve the object containing coverage settings for the current
model, for example, gcs.
>> covSettings = get_param(gcs, 'CodeCoverageSettings')

covSettings =

 CodeCoverageSettings with properties:

 TopModelCoverage: 'on'

 ReferencedModelCoverage: 'off'

 CoverageTool: 'BullseyeCoverage'

The property TopModelCoverage determines whether the software generates code
coverage data for just the top model, while ReferencedModelCoverage determines
whether the software generates coverage data for models referenced by the top
model. If neither property is 'on', then no code coverage data is generated during a
SIL simulation.

If LDRA Testbed is the specified code coverage tool, then the property
CoverageTool is 'LDRA Testbed'.

When you save your model, the properties TopModelCoverage,
ReferencedModelCoverage, and CoverageTool are also saved.

2 Check the class of covSettings.

>> class(covSettings)

ans =

coder.coverage.CodeCoverageSettings

3 Turn on coverage for referenced models.
>> covSettings.ReferencedModelCoverage='on';

4 Using set_param, apply the new coverage settings to the model.
 >>set_param(gcs,'CodeCoverageSettings', covSettings);

5 Assuming you have installed the BullseyeCoverage tool, specify the installation path.
>>coder.coverage.BullseyeCoverage.setPath('C:\Program Files\BullseyeCoverage')

67-16

 Configure Code Coverage Programmatically

For LDRA Testbed, use coder.coverage.LDRA.setPath('C:\...).
6 Check that the path is saved as a preference.

>> coder.coverage.BullseyeCoverage.getPath

For LDRA Testbed, use coder.coverage.LDRA.getPath.

Related Examples
• “Collect Code Coverage Metrics with a Third-Party Tool”
• “Configure Code Coverage with Third-Party Tools” on page 67-10

67-17

67 Code Coverage in Embedded Coder

Code Coverage Summary and Annotations

In this section...

“LDRA Testbed Coverage” on page 67-18
“BullseyeCoverage Information” on page 67-20

If you specify a code coverage tool for a SIL or PIL simulation, the software produces a
code generation report that provides summary data and code annotations with coverage
information. Each code annotation is associated with a code feature and indicates the
nature of the feature coverage during code execution.

The code generation report also allows you to navigate easily between blocks in your
model and the corresponding sections in the source code.

LDRA Testbed Coverage

The cumulative coverage data in a code generation report is derived from instrumented
files associated with your latest top-model simulation and coverage data collected from
simulations with other top models that share referenced models with your current top
model.

The software provides LDRA Testbed annotations in the code generation report to help
you to review code coverage.

67-18

 Code Coverage Summary and Annotations

Note: Do not use the code generation report alone to verify that you have achieved your
coverage goals. You must refer to the LDRA Testbed Report.

This example shows three kinds of annotations. On lines 134, 139, 140, and 141, the
annotation indicates that statement coverage for each of these lines of code is not
complete.

Placing the cursor over the annotation =>b produces a tooltip.

This tooltip indicates that only one branch destination is covered. The code within
the curly brackets, which starts at column 45 of line 134, is not executed. As the if
statement on line 139 lies within this code, the corresponding annotation => states that
the branch is not covered.

The following table describes the LDRA Testbed code annotations that you might see in a
code generation report produced by a SIL and PIL simulations.

Code feature
Annotation

symbol
What happened during simulation

Fcn Function name returned through this exit
point.

Function
=> Function name never returned through this

exit point.
=> Condition not encountered.
=>t Condition evaluated true only.Branch/condition
=>f Condition evaluated false only.

67-19

67 Code Coverage in Embedded Coder

Code feature
Annotation

symbol
What happened during simulation

tf Condition evaluated both true and false.
=> Branch never encountered.

=>b
Branch to at least one destination covered and
branch to at least one other destination not
covered.

Branch/decision

b Branch fully exercised.

=>mc Condition did not independently affect outcome
of decision.Modified Condition/

Decision Coverage
(MC/DC) mc Condition independently affected outcome of

decision.
Statements associated with line covered.

Statement Not all statements associated with line
covered.

=>Σ
Zero coverage — probes within source code
line or files included by source code line not
exercised.

=>Σ Coverage probes within source code line or any
included file partially exercised.

Code that is
reformatted by LDRA
Testbed and does not
match the original
source code. For
example, source
code with #include
statements to include
other files, and source
code with #define
statements for macros.

For detailed coverage
information, refer to
the LDRA Testbed
report.

Σ

Coverage probes within source code line or
included files fully exercised.

BullseyeCoverage Information

The cumulative coverage data in a code generation report is derived from instrumented
files associated with your latest top-model simulation and coverage data collected from

67-20

 Code Coverage Summary and Annotations

simulations with other top models that share referenced models with your current top
model.

The software provides BullseyeCoverage annotations in the code generation report to
help you to review code coverage.

This example shows two kinds of annotations. At line 41, TF indicates that the if
decision had both true and false outcomes during the simulation. At line 52, =>F
indicates that the if decision was false only during the simulation.

The following table describes the BullseyeCoverage code annotations that you might see
in a code generation report produced by a SIL simulation.

Code feature
Annotation

symbol
What happened during simulation

=> Decision not executed.
Decision TF Decision evaluated both true and false.

67-21

67 Code Coverage in Embedded Coder

Code feature
Annotation

symbol
What happened during simulation

=>T Decision evaluated true only.
=>F Decision evaluated false only.
=> Function not called.

Function
Fcn Function called.
=> Switch command not used.

Switch label
Sw Switch command used.

Constant k Decision or condition was constant, which did not
allow any variation in coverage.

=> Condition not encountered.
tf Condition evaluated both true and false.

=>t Condition evaluated true only.
Condition

=>f Condition evaluated false only.
=> Try block never completed.

Try
Try Try block covered.
=> Catch block not covered.

Catch
Cat Catch block covered.

Related Examples
• “Configure Code Coverage with Third-Party Tools” on page 67-10
• “View Code Coverage Information at the End of SIL or PIL Simulations” on page

67-13
• “Trace Model Objects to Generated Code” on page 61-8
• “Trace Code to Model Objects by Using Hyperlinks” on page 61-6
• “Collect Code Coverage Metrics with a Third-Party Tool”

67-22

 Code Coverage Tool Support

Code Coverage Tool Support

Embedded Coder code coverage provides the following support for the BullseyeCoverage
and LDRA Testbed tools.

BullseyeCoverage LDRA Testbed

Operating system Version supported Compiler supported Version supported Compiler supported

Windows 8.9.37 Microsoft Visual C+
+ (MSVC)

9.4.6 • Microsoft
Visual C++
(MSVC)

• LCC
• MinGW

Linux 8.9.37 gcc 9.4.6 gcc

Mac Not supported Not supported

Related Examples
• “Configure Code Coverage with Third-Party Tools” on page 67-10
• “Select and Configure C or C++ Compiler or IDE” (Simulink Coder)

67-23

67 Code Coverage in Embedded Coder

Tips and Limitations

Right-Click Subsystem Build Unsupported for Code Coverage

The software does not support right-click builds for subsystems if a code coverage tool is
specified.

BullseyeCoverage License Wait

When you build your model, you might have to wait for a BullseyeCoverage license.
If you want to see information about the wait, before you build your model, select
Configuration Parameters > All Parameters > Verbose build.

Current Working Folder Cannot be UNC Path

If your MATLAB current working folder is a Universal Naming Convention (UNC) path,
code coverage fails.

Characters in matlabroot and File Path

If matlabroot or the path to your generated files contains a space or the . (period)
character, code coverage might fail.

Header Files with Identical Names

Consider a model that is configured for LDRA Testbed code coverage. During the build
process, if the software detects two header files with the same name in the folder for
generated code, the software generates an error.

Code Coverage for Source Files in Shared Utility Folders

The software supports code coverage for source files generated in shared utility folders.
If you configure code coverage for a model that uses shared utility code generation, when
you build the model, you also build all source files in the shared utilities folder with code
coverage enabled.

Whenever you build a model, the code coverage settings of the model must be consistent
with source files that you previously built in the shared utilities folder. Otherwise, the

67-24

 Tips and Limitations

software reports that code in the shared utilities folder is inconsistent with the current
model configuration and must be rebuilt. For example, if you run a SIL simulation for a
model with code coverage enabled and then run a SIL simulation for another model with
code coverage disabled, the software must rebuild all source files in the shared utilities
folder.

BullseyeCoverage Behavior with Inline Macros

The BullseyeCoverage tool, by default, does not provide code coverage data for inline
macros.

For example, if a model generates a file slprj/ert/_sharedutils/rt_SATURATE.h
that contains the macro

#define rt_SATURATE(sig,ll,ul) (((sig) >= (ul)) ? (ul) : (((sig) <=

(ll)) ? (ll) : (sig)))

and the macro is in sat_ert_rtw/sat.c, then the coverage report provides a
measurement for sat.c, but no coverage data for the conditions within the macro
rt_SATURATE.

To configure the BullseyeCoverage tool to provide code coverage data for inline macros:

1 Open the BullseyeCoverage Browser.
2 Select Tools > Options to open the Options dialog box.
3 On the Build tab, select the Instrument macro expansions check box.
4 Click OK.
5 Rerun your simulation.

Alternatively, you can add the text -macro to the BullseyeCoverage configuration file.
For more information, go to www.bullseye.com/help.

SIL and PIL Simulations with Open LDRA Testbed

If you enable code coverage with the LDRA Testbed tool, you must verify that the LDRA
Testbed GUI is not open when you run your SIL or PIL simulation. If the set name in the
LDRA Testbed GUI differs from the set name used by the SIL or PIL simulation, the SIL
or PIL simulation fails.

67-25

http://www.bullseye.com/help

67 Code Coverage in Embedded Coder

Minor SIL and PIL Differences for LDRA Testbed

The target connectivity API supports code coverage with LDRA Testbed for top-model
and Model block PIL.

There are minor differences in the code coverage information collected during SIL and
PIL simulations. In particular, with PIL, the software does not explicitly show function
exit point coverage. However, you can infer the coverage of function exit points by
examining statement coverage.

PIL Zero Coverage LDRA Testbed Annotations

For a PIL simulation with LDRA Testbed code coverage specified, there might be some
source files where the recorded coverage is zero. In this case, the software provides
summary information indicating that:

• There is coverage to measure.
• The coverage is zero.

You do not see information for individual probes on each line. The displayed summary
information has an associated annotation tooltip:

67-26

 Tips and Limitations

0 out of N coverage probes were exercised (detailed breakdown unavailable)

PIL Support for BullseyeCoverage

Code coverage with BullseyeCoverage is available for top-model and Model block PIL
provided your PIL application can write directly to the host file system. Your target for
the PIL application must provide fopen and fread access to the host file system.

If code coverage is not available when you run the PIL application on your target
hardware, you might be able to collect code coverage measurements by running the PIL
application on an instruction set simulator that supports direct file I/O with the host file
system.

Modify Legacy Code

If you modify legacy code and rerun a SIL or PIL simulation, the legacy code is
recompiled. However, the code from the model may be up-to-date. In this case, the code
generation report is not updated and does not show the modified legacy code. Instead,
the code coverage information for the modified legacy code is displayed with reference
to the original legacy code. You must regenerate the report. For more information, see
“Limitation” (Simulink Coder).

IDE Link Does Not Support LDRA Testbed

When you generate code for IDE Link, you cannot use LDRA Testbed for SIL or PIL
code coverage. Specifically, this limitation applies when you use the following settings
together:

• Configuration Parameters > Code Generation > System target file:
idelink_ert.tlc

• Configuration Parameters > Code Generation > Verification > Code coverage
tool: LDRA Testbed.

67-27

Embedded IDEs and Embedded Targets

68

Getting Started with Embedded
Targets in Embedded Coder

68 Getting Started with Embedded Targets in Embedded Coder

Embedded Coder Supported Hardware

As of this release, Embedded Coder supports the following hardware.

Support Package Vendor Earliest
Release
Available

Last
Release
Available

Altera SoC Altera® R2014b Current

Analog Devices DSPs Analog Devices® R2013a R2015b

ARM Cortex-A Processors ARM® R2014a Current

ARM Cortex-M Processors ARM R2013b Current
ARM Cortex-R Processors ARM R2016b Current
AUTOSAR Standard AUTOSAR

(AUTomotive
Open System
ARchitecture)
development
partnership

R2014b Current

BeagleBone Black Hardware BeagleBoard R2014b Current
Green Hills MULTI Green Hills®

Software
R2012b R2014a

STMicroelectronics Discovery Boards STMicroelectronics® R2013b Current

Texas Instruments C2000 Processors Texas Instruments R2013b Current
Texas Instruments C2000 F28M3x Concerto Processors Texas Instruments R2014b Current
Texas Instruments C6000 DSPs Texas Instruments R2014a R2016a
Wind River VxWorks RTOS Wind River R2013b Current
Xilinx Zynq-7000 Platform Xilinx® R2013a Current

For a complete list of supported hardware, see Hardware Support.

68-2

https://www.mathworks.com/hardware-support.html?fq=product:EC

69

Run-Time Data Interface Extensions in
Simulink Coder

• “Customize Generated ASAP2 File” on page 69-2
• “Create a Transport Layer for External Communication” on page 69-8

69 Run-Time Data Interface Extensions in Simulink Coder

Customize Generated ASAP2 File

In this section...

“About ASAP2 File Customization” on page 69-2
“ASAP2 File Structure on the MATLAB Path” on page 69-2
“Customize the Contents of the ASAP2 File” on page 69-3
“ASAP2 Templates” on page 69-4
“Customize Computation Method Names” on page 69-6
“Suppress Computation Methods for FIX_AXIS” on page 69-7

About ASAP2 File Customization

The Embedded Coder product provides a number of Target Language Compiler (TLC)
files to enable you to customize the ASAP2 file generated from a Simulink model.

ASAP2 File Structure on the MATLAB Path

The ASAP2 related files are organized within the folders identified below:

• TLC files for generating ASAP2 file

The matlabroot/rtw/c/tlc/mw (open) folder contains TLC files that
generate ASAP2 files, asamlib.tlc, asap2lib.tlc, asap2main.tlc, and
asap2grouplib.tlc. These files are included by the selected System target file.
(See “Targets Supporting ASAP2” on page 44-3.)

• ASAP2 target files

The matlabroot/toolbox/rtw/targets/asap2/asap2 (open) folder contains the
ASAP2 system target file and other control files.

• Customizable TLC files

The matlabroot/toolbox/rtw/targets/asap2/asap2/user (open) folder
contains files that you can modify to customize the content of your ASAP2 files.

• ASAP2 templates

69-2

 Customize Generated ASAP2 File

The matlabroot/toolbox/rtw/targets/asap2/asap2/user/templates (open)
folder contains templates that define each type of CHARACTERISTIC in the ASAP2
file.

Customize the Contents of the ASAP2 File

The ASAP2 related TLC files enable you to customize the appearance of the ASAP2 file
generated from a Simulink model. Most customization is done by modifying or adding to
the files contained in the matlabroot/toolbox/rtw/targets/asap2/asap2/user
(open) folder. This section refers to this folder as the asap2/user folder.

The user-customizable files provided are divided into two groups:

• The static files define the parts of the ASAP2 file that are related to the environment
in which the generated code is used. They describe information specific to the user or
project. The static files are not model dependent.

• The dynamic files define the parts of the ASAP2 file that are generated based on the
structure of the source model.

The procedure for customizing the ASAP2 file is as follows:

1 Make a copy of the asap2/user folder before making modifications.
2 Remove the old asap2/user folder from the MATLAB path, or add the new asap2/

user folder to the MATLAB path above the old folder. The MATLAB session uses
the ASAP2 setup file, asap2setup.tlc, in the new folder.

asap2setup.tlc specifies the folders and files to include in the TLC path during
the ASAP2 file generation process. Modify asap2setup.tlc to control the folders
and folders included in the TLC path.

3 Modify the static parts of the ASAP2 file. These include

• Project and header symbols, which are specified in asap2setup.tlc
• Static sections of the file, such as file header and tail, A2ML, MOD_COMMON, and so

on These are specified in asap2userlib.tlc.
• Specify the appearance of the dynamic contents of the ASAP2 file by modifying

the existing ASAP2 templates or by defining new ASAP2 templates. Sections of
the ASAP2 file affected include

RECORD_LAYOUT: modify parts of the ASAP2 template files.

69-3

69 Run-Time Data Interface Extensions in Simulink Coder

CHARACTERISTIC: modify parts of the ASAP2 template files. For more
information on modifying the appearance of CHARACTERISTIC records, see
“ASAP2 Templates” on page 69-4.

• MEASUREMENT: These are specified in asap2userlib.tlc.
• COMPU_METHOD: These are specified in asap2userlib.tlc.

ASAP2 Templates

The appearance of CHARACTERISTIC records in the ASAP2 file is controlled using a
different template for each type of CHARACTERISTIC. The asap2/user folder contains
template definition files for scalars, 1-D Lookup Table blocks and 2-D Lookup Table
blocks. You can modify these template definition files, or you can create additional
templates as required.

The procedure for creating a new ASAP2 template is as follows:

1 Create a template definition file. See “Create Template Definition Files” on page
69-4.

2 Include the template definition file in the TLC path. The path is specified in the
ASAP2 setup file, asap2setup.tlc.

Create Template Definition Files

This section describes the components that make up an ASAP2 template definition file.
This description is in the form of code examples from asap2lookup1d.tlc, the template
definition file for the Lookup1D template. This template corresponds to the Lookup1D
parameter group.

Note When creating a new template, use the corresponding parameter group name in
place of Lookup1D in the code shown.

Template Registration Function

The input argument is the name of the parameter group associated with this template:

%<LibASAP2RegisterTemplate("Lookup1D")>

69-4

 Customize Generated ASAP2 File

RECORD_LAYOUT Name Definition Function

Record layout names (aliases) can be arbitrarily specified for each data type. This
function is used by the other components of this file.

%function ASAP2UserFcnRecordLayoutAlias_Lookup1D(dtId) void

 %switch dtId

 %case tSS_UINT8

 %return "Lookup1D_UBYTE"

 ...

 %endswitch

%endfunction

Function to Write RECORD_LAYOUT Definitions

This function writes RECORD_LAYOUT definitions associated with this template. The
function is called by the built-in functions involved in the ASAP2 file generation
process. The function name must be defined as shown, with the template name after the
underscore:

%function ASAP2UserFcnWriteRecordLayout_Lookup1D() Output

 /begin RECORD_LAYOUT

%<ASAP2UserFcnRecordLayoutAlias_Lookup1D(tSS_UINT8)>

 ...

 /end RECORD_LAYOUT

%endfunction

Function to Write the CHARACTERISTIC

This function writes the CHARACTERISTIC associated with this template. The function
is called by the built-in functions involved in the ASAP2 file generation process. The
function name must be defined as shown, with the template name after the underscore.

The input argument to this function is a pointer to a parameter group record. The
example shown is for a Lookup1D parameter group that has two members. The
references to the associated x and y data records are obtained from the parameter group
record as shown.

This function calls a number of built-in functions to obtain the required information. For
example, LibASAP2GetSymbol returns the symbol (name) for the specified data record:

%function ASAP2UserFcnWriteCharacteristic_Lookup1D(paramGroup)

Output

69-5

69 Run-Time Data Interface Extensions in Simulink Coder

 %assign xParam = paramGroup.Member[0].Reference

 %assign yParam = paramGroup.Member[1].Reference

 %assign dtId = LibASAP2GetDataTypeId(xParam)

 /begin CHARACTERISTIC

 /* Name */ %<LibASAP2GetSymbol(xParam)>

 /* Long identifier */ "%<LibASAP2GetLongID(xParam)>"

 ...

 /end CHARACTERISTIC

%endfunction

Customize Computation Method Names

In generated ASAP2 files, computation methods translate the electronic control unit
(ECU) internal representation of measurement and calibration quantities into a physical
model oriented representation. Simulink Coder software provides the ability to customize
the names of computation methods. You can provide names that are more intuitive,
enhancing ASAP2 file readability, or names that meet organizational requirements.

To customize computation method names, use the MATLAB function
getCompuMethodName, which is defined in matlabroot/toolbox/rtw/targets/
asap2/asap2/user/getCompuMethodName.m.

The getCompuMethodName function constructs a computation method name. The
function prototype is

cmName = getCompuMethodName(dataTypeName, cmUnits)

where dataTypeName is the name of the data type associated with the
computation method, cmUnits is the units as specified in the Unit property of a
Simulink.Parameter or Simulink.Signal object (for example, rpm or m/s), and
cmName returns the constructed computation method name.

The default constructed name returned by the function has the format

<localPrefix><datatype>_<cmUnits>

where

• <local_Prefix> is a local prefix, CM_, defined in matlabroot/toolbox/rtw/
targets/asap2/asap2/user/getCompuMethodName.m.

• <datatype> and <cmUnits> are the arguments you specified to the
getCompuMethodName function.

69-6

 Customize Generated ASAP2 File

Additionally, in the generated ASAP2 file, the constructed name is prefixed with
<ASAP2CompuMethodName_Prefix>, a model prefix defined in matlabroot/toolbox/
rtw/targets/asap2/asap2/user/asap2setup.tlc.

For example, if you call the getCompuMethodName function with the dataTypeName
argument 'int16' and the cmUnits argument 'm/s', and generate an ASAP2 file for
a model named myModel, the computation method name would appear in the generated
file as follows:

/begin COMPU_METHOD

 /* Name of CompuMethod */ myModel_CM_int16_m_s

 /* Units */ "m/s"

 ...

/end COMPU_METHOD

Suppress Computation Methods for FIX_AXIS

Versions 1.51 and later of the ASAP2 specification state that for certain cases of
lookup table axis descriptions (integer data type and no doc units), a computation
method is not required and the Conversion Method parameter must be set to the
value NO_COMPU_METHOD. You can control whether or not computation methods
are suppressed when not required using the Target Language Compiler (TLC)
option ASAP2GenNoCompuMethod. This TLC option is disabled by default. If you
enable the option, ASAP2 file generation does not generate computation methods for
lookup table axis descriptions when not required, and instead generates the value
NO_COMPU_METHOD. For example:

/begin CHARACTERISTIC

/* Name */

lu1d_fix_axisTable_data

...

/begin AXIS_DESCR

 ...

 /* Conversion Method */

NO_COMPU_METHOD

 ...

/end CHARACTERISTIC

The ASAP2GenNoCompuMethod option is defined in matlabroot/toolbox/rtw/
targets/asap2/asap2/user/asap2setup.tlc.

69-7

69 Run-Time Data Interface Extensions in Simulink Coder

Create a Transport Layer for External Communication

In this section...

“About Creating a Transport Layer for External Communication” on page 69-8
“Design of External Mode” on page 69-8
“External Mode Communications Overview” on page 69-11
“External Mode Source Files” on page 69-12
“Implement a Custom Transport Layer” on page 69-16

About Creating a Transport Layer for External Communication

This section helps you to connect your custom target by using external mode using your
own low-level communications layer. The topics include:

• An overview of the design and operation of external mode
• A description of external mode source files
• Guidelines for modifying the external mode source files and building an executable to

handle the tasks of the default ext_comm MEX-file

This section assumes that you are familiar with the execution of Simulink Coder
programs, and with the basic operation of external mode.

Design of External Mode

External mode communication between the Simulink engine and a target system is based
on a client/server architecture. The client (the Simulink engine) transmits messages
requesting the server (target) to accept parameter changes or to upload signal data. The
server responds by executing the request.

A low-level transport layer handles physical transmission of messages. Both the Simulink
engine and the model code are independent of this layer. Both the transport layer and
code directly interfacing to the transport layer are isolated in separate modules that
format, transmit, and receive messages and data packets.

This design makes it possible for different targets to use different transport layers. The
GRT, ERT, and RSim targets support host/target communication by using TCP/IP and

69-8

 Create a Transport Layer for External Communication

RS-232 (serial) communication. The Simulink Desktop Real-Time target supports shared
memory communication. The Wind River Systems Tornado® target supports TCP/IP only.

The Simulink Coder product provides full source code for both the client and server-
side external mode modules, as used by the GRT, ERT, Rapid Simulation, and Tornado
targets, and the Simulink Desktop Real-Time and Simulink Real-Time products. The
main client-side module is ext_comm.c. The main server-side module is ext_svr.c.

These two modules call the specified transport layer through the following source files.

Built-In Transport Layer Implementations

Protocol Client or
Server?

Source Files

TCP/IP Client
(host)

• matlabroot/toolbox/coder/simulinkcoder_core/ext_mode/

host/common/rtiostream_interface.c

• matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/

rtiostream_tcpip.c

 Server
(target)

• matlabroot/rtw/c/src/ext_mode/common/

rtiostream_interface.c

• matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/

rtiostream_tcpip.c

Serial Client
(host)

• matlabroot/toolbox/coder/simulinkcoder_core/ext_mode/

host/serial/ext_serial_transport.c

• matlabroot/rtw/c/src/rtiostream/rtiostreamserial/

rtiostream_serial.c

 Server
(target)

• matlabroot/rtw/c/src/ext_mode/serial/

ext_svr_serial_transport.c

• matlabroot/rtw/c/src/rtiostream/rtiostreamserial/

rtiostream_serial.c

For serial communication, the modules ext_serial_transport.c and
rtiostream_serial.c implement the client-side transport functions and the
modules ext_svr_serial_transport.c and rtiostream_serial.c implement
the corresponding server-side functions. For TCP/IP communication, the modules
rtiostream_interface.c and rtiostream_tcpip.c implement both client-side and
server-side functions. You can edit copies of these files (but do not modify the originals).

69-9

69 Run-Time Data Interface Extensions in Simulink Coder

You can support external mode using your own low-level communications layer by
creating similar files using the following templates:

• Client (host) side: matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/
rtiostream_tcpip.c (TCP/IP) or matlabroot/rtw/c/src/rtiostream/
rtiostreamserial/rtiostream_serial.c (serial)

• Server (target) side: matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/
rtiostream_tcpip.c (TCP/IP) or matlabroot/rtw/c/src/rtiostream/
rtiostreamserial/rtiostream_serial.c (serial)

The file rtiostream_interface.c is an interface between the external mode protocol
and an rtiostream communications channel. For more details on implementing an
rtiostream communications channel, see “Communications rtiostream API” on page
64-46. Implement your rtiostream communications channel by using the documented
interface to avoid having to make changes to the file rtiostream_interface.c or
other external mode related files.

Note Do not modify working source files. Use the templates provided in the /custom or /
rtiostream folder as starting points, guided by the comments within them.

You need only provide code that implements low-level communications. You need not
be concerned with issues such as data conversions between host and target, or with the
formatting of messages. The Simulink Coder software handles these functions.

On the client (Simulink engine) side, communications are handled by ext_comm (for
TCP/IP) and ext_serial_win32_comm (for serial) MEX-files.

On the server (target) side, external mode modules are linked into the target executable.
This takes place automatically if the External mode code generation option is selected
at code generation time, based on the External mode transport option selected in the
target code generation options dialog box. These modules, called from the main program
and the model execution engine, are independent of the generated model code.

The general procedure for implementing your own client-side low-level transport protocol
is as follows:

1 Edit the template rtiostream_tcpip.c to replace low-level communication calls
with your own communication calls.

2 Generate a MEX-file executable for your custom transport.

69-10

 Create a Transport Layer for External Communication

3 Register your new transport layer with the Simulink software, so that the
transport can be selected for a model using the Interface pane of the Configuration
Parameters dialog box.

For more details, see “Create a Custom Client (Host) Transport Protocol” on page
69-17.

The general procedure for implementing your own server-side low-level transport
protocol is as follows:

1 Edit the template rtiostream_tcpip.c to replace low-level communication calls
with your own communication calls. Typically this involves writing or integrating
device drivers for your target hardware.

2 Modify template makefiles to support the new transport.

For more details, see “Create a Custom Server (Target) Transport Protocol” on page
69-21.

External Mode Communications Overview

This section gives a high-level overview of how a Simulink Coder generated program
communicates with Simulink external mode. This description is based on the TCP/IP
version of external mode that ships with the Simulink Coder product.

For communication to take place,

• The server (target) program must have been built with the conditional EXT_MODE
defined. EXT_MODE is defined in the model.mk file if the External mode code
generation option was selected at code generation time.

• Both the server program and the Simulink software must be executing. This does not
mean that the model code in the server system must be executing. The server can be
waiting for the Simulink engine to issue a command to start model execution.

The client and server communicate by using bidirectional sockets carrying packets.
Packets consist either of messages (commands, parameter downloads, and responses) or
data (signal uploads).

If the target program was invoked with the -w command-line option, the program enters
a wait state until it receives a message from the host. Otherwise, the program begins
execution of the model. While the target program is in a wait state, the Simulink engine
can download parameters to the target and configure data uploading.

69-11

69 Run-Time Data Interface Extensions in Simulink Coder

When the user chooses the Connect to Target option from the Simulation menu, the
host initiates a handshake by sending an EXT_CONNECT message. The server responds
with information about itself. This information includes

• Checksums. The host uses model checksums to determine that the target code is an
exact representation of the current Simulink model.

• Data format information. The host uses this information when formatting data to be
downloaded, or interpreting data that has been uploaded.

At this point, host and server are connected. The server is either executing the model
or in the wait state. (In the latter case, the user can begin model execution by selecting
Start Real-Time Code from the Simulation menu.)

During model execution, the message server runs as a background task. This task
receives and processes messages such as parameter downloads.

Data uploading comprises both foreground execution and background servicing of the
signal packets. As the target computes model outputs, it also copies signal values into
data upload buffers. This occurs as part of the task associated with each task identifier
(tid). Therefore, data collection occurs in the foreground. Transmission of the collected
data, however, occurs as a background task. The background task sends the data in the
collection buffers to the Simulink engine by using data packets.

The host initiates most exchanges as messages. The target usually sends a response
confirming that it has received and processed the message. Examples of messages and
commands are:

• Connection message / connection response
• Start target simulation / start response
• Parameter download / parameter download response
• Arm trigger for data uploading / arm trigger response
• Terminate target simulation / target shutdown response

Model execution terminates when the model reaches its final time, when the host sends
a terminate command, or when a Stop Simulation block terminates execution. On
termination, the server informs the host that model execution has stopped, and shuts
down its socket. The host also shuts down its socket, and exits external mode.

External Mode Source Files

• “Client (Host) MEX-file Interface Source Files” on page 69-13

69-12

 Create a Transport Layer for External Communication

• “Server (Target) Source Files” on page 69-14
• “Other Files in the Server Folder” on page 69-16

Client (Host) MEX-file Interface Source Files

The source files for the MEX-file interface component are located in the folder
matlabroot/toolbox/coder/simulinkcoder_core/ext_mode/host (open), except
as noted:

• common/ext_comm.c

This file is the core of external mode communication. It acts as a relay station
between the target and the Simulink engine. ext_comm.c communicates to the
Simulink engine by using a shared data structure, ExternalSim. It communicates to
the target by using calls to the transport layer.

Tasks carried out by ext_comm.c include establishment of a connection with the
target, downloading of parameters, and termination of the connection with the target.

• common/rtiostream_interface.c

This file is an interface between the external mode protocol and an rtiostream
communications channel. For more details on implementing an rtiostream
communications channel, see “Communications rtiostream API” on page 64-46.
Implement your rtiostream communications channel using the documented
interface to avoid having to change the file rtiostream_interface.c or other
external mode related files.

• matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c

This file implements required TCP/IP transport layer functions. The version of
rtiostream_tcpip.c shipped with the Simulink Coder software uses TCP/IP
functions including recv(), send(), and socket().

• matlabroot/rtw/c/src/rtiostream/rtiostreamserial/

rtiostream_serial.c

This file implements required serial transport layer functions. The version of
rtiostream_serial.c shipped with the Simulink Coder software uses serial
functions including ReadFile(), WriteFile(), and CreateFile().

• serial/ext_serial_transport.c

69-13

69 Run-Time Data Interface Extensions in Simulink Coder

This file implements required serial transport layer functions.
ext_serial_transport.c includes ext_serial_utils.c, which is located in
matlabroot/rtw/c/src/ext_mode/serial (open) and contains functions common
to client and server sides.

• common/ext_main.c

This file is a MEX-file wrapper for external mode. ext_main.c interfaces to the
Simulink engine by using the standard mexFunction call. (See the mexFunction
reference page and “MATLAB API for Other Languages” (MATLAB) for more
information.) ext_main.c contains a function dispatcher, esGetAction, that sends
requests from the Simulink engine to ext_comm.c.

• common/ext_convert.c and ext_convert.h

This file contains functions used for converting data from host to target formats (and
vice versa). Functions include byte-swapping (big to little- endian), conversion from
non-IEEE floats to IEEE doubles, and other conversions. These functions are called
both by ext_comm.c and directly by the Simulink engine (by using function pointers).

Note You do not need to customize ext_convert to implement a custom transport
layer. However, you might want to customize ext_convert for the intended target.
For example, if the target represents the float data type in Texas Instruments
format, ext_convert must be modified to perform a Texas Instruments to IEEE
conversion.

• common/extsim.h

This file defines the ExternalSim data structure and access macros. This structure
is used for communication between the Simulink engine and ext_comm.c.

• common/extutil.h

This file contains only conditionals for compilation of the assert macro.
• common/ext_transport.h

This file defines functions that must be implemented by the transport layer.

Server (Target) Source Files

These files are linked into the model.exe executable. They are located within
matlabroot/rtw/c/src/ext_mode (open) except as noted.

69-14

 Create a Transport Layer for External Communication

• common/ext_svr.c

ext_svr.c is analogous to ext_comm.c on the host, but generally is responsible for
more tasks. It acts as a relay station between the host and the generated code. Like
ext_comm.c, ext_svr.c carries out tasks such as establishing and terminating
connection with the host. ext_svr.c also contains the background task functions
that either write downloaded parameters to the target model, or extract data from the
target data buffers and send it back to the host.

• common/rtiostream_interface.c

This file is an interface between the external mode protocol and an rtiostream
communications channel. For more details on implementing an rtiostream
communications channel, see “Communications rtiostream API” on page 64-46.
Implement your rtiostream communications channel by using the documented
interface to avoid having to change the file rtiostream_interface.c or other
external mode related files.

• matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/rtiostream_tcpip.c

This file implements required TCP/IP transport layer functions. The version of
rtiostream_tcpip.c shipped with the Simulink Coder software uses TCP/IP
functions including recv(), send(), and socket().

• matlabroot/rtw/c/src/rtiostream/rtiostreamserial/

rtiostream_serial.c

This file implements required serial transport layer functions. The version of
rtiostream_serial.c shipped with the software uses serial functions including
ReadFile(), WriteFile(), and CreateFile().

• matlabroot/rtw/c/src/rtiostream.h

This file defines the rtIOStream* functions implemented in rtiostream_tcpip.c.
• serial/ext_svr_serial_transport.c

This file implements required serial transport layer functions.
ext_svr_serial_transport.c includes serial/ext_serial_utils.c, which
contains functions common to client and server sides.

• common/updown.c

updown.c handles the details of interacting with the target model. During parameter
downloads, updown.c does the work of installing the new parameters into the

69-15

69 Run-Time Data Interface Extensions in Simulink Coder

model's parameter vector. For data uploading, updown.c contains the functions
that extract data from the model's blockio vector and write the data to the upload
buffers. updown.c provides services both to ext_svr.c and to the model code (for
example, grt_main.c). It contains code that is called by using the background
tasks of ext_svr.c as well as code that is called as part of the higher priority model
execution.

• matlabroot/rtw/c/src/dt_info.h (included by generated model build file
model.h)

These files contain data type transition information that allows access to multi-data
type structures across different computer architectures. This information is used in
data conversions between host and target formats.

• common/updown_util.h

This file contains only conditionals for compilation of the assert macro.
• common/ext_svr_transport.h

This file defines the Ext* functions that must be implemented by the server (target)
transport layer.

Other Files in the Server Folder

• common/ext_share.h

Contains message code definitions and other definitions required by both the host and
target modules.

• serial/ext_serial_utils.c

Contains functions and data structures for communication, MEX link, and generated
code required by both the host and target modules of the transport layer for serial
protocols.

• The serial transport implementation includes the additional files

• serial/ext_serial_pkt.c and ext_serial_pkt.h
• serial/ext_serial_port.h

Implement a Custom Transport Layer

• “Requirements for Custom Transport Layers” on page 69-17

69-16

 Create a Transport Layer for External Communication

• “Create a Custom Client (Host) Transport Protocol” on page 69-17
• “MATLAB Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files” on page

69-18
• “Register a Custom Client (Host) Transport Protocol” on page 69-20
• “Create a Custom Server (Target) Transport Protocol” on page 69-21
• “Serial Receive Buffer Smaller than 64 Bytes” on page 69-22

Requirements for Custom Transport Layers

• By default, ext_svr.c and updown.c use malloc to allocate buffers in target
memory for messages, data collection, and other purposes, although there is also an
option to preallocate static memory. If your target uses another memory allocation
scheme, you must modify these modules.

• The target is assumed to support both int32_T and uint32_T data types.

Create a Custom Client (Host) Transport Protocol

To implement the client (host) side of your low-level transport protocol,

1 Edit the template file matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/
rtiostream_tcpip.c to replace low-level communication calls with your own
communication calls.

a Copy and rename the file to rtiostream_name.c (replacing name with a name
meaningful to you).

b Replace the functions rtIOStreamOpen, rtIOStreamClose,
rtIOStreamSend, and rtIOStreamRecv with functions (of the same name)
that call your low-level communication primitives. These functions are called
from other external mode modules via rtiostream_interface.c. For more
information, see “Communications rtiostream API” on page 64-46.

c Build your rtiostream implementation into a shared library that
exports the rtIOStreamOpen, rtIOStreamClose, rtIOStreamRecv and
rtIOStreamSend functions.

2 Build the customized MEX-file executable using the MATLAB mex function. See
“MATLAB Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files” on
page 69-18 for examples of mex invocations.

Do not replace the existing ext_comm MEX-file if you want to preserve its
existing function. Instead, use the -output option to name the resulting

69-17

69 Run-Time Data Interface Extensions in Simulink Coder

executable (for example, mex -output ext_myrtiostream_comm ... builds
ext_myrtiostream_comm.mexext, on Windows platforms).

3 Register your new client transport layer with the Simulink software, so that the
transport can be selected for a model using the Interface pane of the Configuration
Parameters dialog box. For details, see “Register a Custom Client (Host) Transport
Protocol” on page 69-20.

Sample commands for rebuilding external mode MEX-files are listed in “MATLAB
Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files” on page 69-18.

MATLAB Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files

The following table lists the commands for building the standard ext_comm and
ext_serial_win32 modules on PC and UNIX platforms.

Platform Commands

Windows, TCP/IP >> cd (matlabroot)

>> mex toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_comm.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_convert.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\common\rtiostream_interface.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_util.c ...

-Irtw\c\src -Irtw\c\src\rtiostream\utils ...

-Irtw\c\src\ext_mode\common ...

-Itoolbox\coder\simulinkcoder_core\ext_mode\host\common ...

-Itoolbox\coder\simulinkcoder_core\ext_mode\host\common\include ...

-lmwrtiostreamutils -lsl_services ...

-DEXTMODE_TCPIP_TRANSPORT ...

-DSL_EXT_DLL -output toolbox\coder\simulinkcoder_core\ext_comm

Note: The rtiostream_interface.c function defines
RTIOSTREAM_SHARED_LIB as libmwrtiostreamtcpip and dynamically
loads the MathWorks TCP/IP rtiostream shared library. Modify this file if
you need to load a different rtiostream shared library.

Linux, TCP/IP Use the Windows commands, with these changes:

• Change -DSL_EXT_DLL to -DSL_EXT_SO.
• Change -lsl_services to -lmwsl_services.
• Replace back slashes with forward slashes.

Mac, TCP/IP Use the Windows commands, with these changes:

• Change -DSL_EXT_DLL to -DSL_EXT_DYLIB.

69-18

 Create a Transport Layer for External Communication

Platform Commands

• Change -lsl_services to -lmwsl_services.
• Replace back slashes with forward slashes.

Windows, serial >> cd (matlabroot)

>> mex toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_comm.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_convert.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\serial\ext_serial_transport.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\serial\ext_serial_pkt.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\serial\rtiostream_serial_interface.c ...

toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_util.c ...

-Irtw\c\src -Irtw\c\src\rtiostream\utils ...

-Irtw\c\src\ext_mode\common ...

-Irtw\c\src\ext_mode\serial ...

-Itoolbox\coder\simulinkcoder_core\ext_mode\host\common ...

-Itoolbox\coder\simulinkcoder_core\ext_mode\host\common\include ...

-lmwrtiostreamutils -lsl_services ...

-DEXTMODE_SERIAL_TRANSPORT -DSL_EXT_DLL ...

-output toolbox\coder\simulinkcoder_core\ext_serial_win32_comm

Note: The rtiostream_interface.c function defines
RTIOSTREAM_SHARED_LIB as libmwrtiostreamserial and dynamically
loads the MathWorks serial rtiostream shared library. Modify this file if you
need to load a different rtiostream shared library.

Linux, serial Use the Windows commands, with these changes:

• Change -DSL_EXT_DLL to -DSL_EXT_SO.
• Change -lsl_services to -lmwsl_services.
• Replace back slashes with forward slashes.

Mac, serial Use the Windows commands, with these changes:

• Change -DSL_EXT_DLL to -DSL_EXT_DYLIB.
• Change -lsl_services to -lmwsl_services.
• Replace back slashes with forward slashes.

Note: mex requires a compiler supported by the MATLAB API. See the mex reference
page and “MATLAB API for Other Languages” (MATLAB) for more information about
the mex function.

69-19

69 Run-Time Data Interface Extensions in Simulink Coder

Register a Custom Client (Host) Transport Protocol

To register a custom client transport protocol with the Simulink software, you must add
an entry of the following form to an sl_customization.m file on the MATLAB path:
function sl_customization(cm)

 cm.ExtModeTransports.add('stf.tlc', 'transport', 'mexfile', 'Level1');

% -- end of sl_customization

where

• stf.tlc is the name of the system target file for which the transport will be
registered (for example, 'grt.tlc')

• transport is the transport name to display in the Transport layer menu on the
Interface pane of the Configuration Parameters dialog box (for example, 'mytcpip')

• mexfile is the name of the transport's associated external interface MEX-file (for
example, 'ext_mytcpip_comm')

You can specify multiple targets and/or transports with additional
cm.ExtModeTransports.add lines, for example:
function sl_customization(cm)

 cm.ExtModeTransports.add('grt.tlc', 'mytcpip', 'ext_mytcpip_comm', 'Level1');

 cm.ExtModeTransports.add('ert.tlc', 'mytcpip', 'ext_mytcpip_comm', 'Level1');

% -- end of sl_customization

If you place the sl_customization.m file containing the transport registration
information on the MATLAB path, your custom client transport protocol will be
registered with each subsequent Simulink session. The name of the transport will appear
in the Transport layer menu on the Interface pane of the Configuration Parameters
dialog box. When you select the transport for your model, the name of the associated
external interface MEX-file will appear in the noneditable MEX-file name field, as
shown in the following figure.

69-20

 Create a Transport Layer for External Communication

Create a Custom Server (Target) Transport Protocol

The rtIOStream* function prototypes in matlabroot/rtw/c/src/rtiostream.h
define the calling interface for both the server (target) and client (host) side transport
layer functions.

• The TCP/IP implementations are in matlabroot/rtw/c/src/rtiostream/
rtiostreamtcpip/rtiostream_tcpip.c.

• The serial implementations are in matlabroot/rtw/c/src/rtiostream/
rtiostreamserial/rtiostream_serial.c.

Note: The Ext* function prototypes in matlabroot/rtw/c/src/ext_mode/common/
ext_svr_transport.h are implemented in matlabroot/rtw/c/src/ext_mode/
common/rtiostream_interface.c or matlabroot/rtw/c/src/ext_mode/
serial/rtiostream_serial_interface.c. In most cases you will not need to modify
rtiostream_interface.c or rtiostream_serial_interface.c for your custom
TCP/IP or serial transport layer.

To implement the server (target) side of your low-level TCP/IP or serial transport
protocol:

1 Edit the template matlabroot/rtw/c/src/rtiostream/rtiostreamtcpip/
rtiostream_tcpip.c or matlabroot/rtw/c/src/rtiostream/
rtiostreamserial/rtiostream_serial.c to replace low-level communication
calls with your own communication calls.

a Copy and rename the file to rtiostream_name.c (replacing name with a name
meaningful to you).

b Replace the functions rtIOStreamOpen, rtIOStreamClose,
rtIOStreamSend, and rtIOStreamRecv with functions (of the same name)
that call your low-level communication drivers.

You must implement the functions defined in rtiostream.h, and your
implementations must conform to the prototypes defined in that file. Refer to the
original rtiostream_tcpip.c or rtiostream_serial.c for guidance.

2 Incorporate the external mode source files for your transport layer into the model
build process, according to your target type:

69-21

69 Run-Time Data Interface Extensions in Simulink Coder

• If your target uses toolchain controls to configure a build, use a build process
mechanism such as a post code generation command or a before_make hook
function to make the transport files available to the build process. (For more
information on the build process mechanisms, see “Customize Post-Code-
Generation Build Processing” (Simulink Coder), “Customize Build Process with
STF_make_rtw_hook File” (Simulink Coder), and “Customize Build Process with
sl_customization.m” (Simulink Coder).) For example:

• Add the file created in the previous step to the build information:

path/rtiostream_name.c

• For TCP/IP, add the following file to the build information:

matlabroot/rtw/c/src/ext_mode/common/rtiostream_interface.c

• For serial, add the following files to the build information:

matlabroot/rtw/c/src/ext_mode/serial/ext_serial_pkt.c

matlabroot/rtw/c/src/ext_mode/serial/rtiostream_serial_interface.c

matlabroot/rtw/c/src/ext_mode/serial/ext_svr_serial_transport.c

• If your target uses template makefile controls to configure a build, modify
template makefiles to support the new transport. Be sure to include the file
created in the previous step, rtiostream_name.c. If you are writing your
own template makefile, make sure that the EXT_MODE code generation option
is defined. The generated makefile will then link rtiostream_name.c,
rtiostream_interface.c or rtiostream_serial_interface.c, and other
server code into your executable.

Note: For external mode, check that rtIOStreamRecv is not a blocking implementation.
Otherwise, it might cause the external mode server to block until the host sends data
through the comm layer.

Serial Receive Buffer Smaller than 64 Bytes

For serial communication, if the serial receive buffer of your target is smaller than 64
bytes:

1 Update the following macro with the actual target buffer size:

#define TARGET_SERIAL_RECEIVE_BUFFER_SIZE 64

69-22

 Create a Transport Layer for External Communication

Implement the change in the following files:
matlabroot/rtw/c/src/ext_mode/serial/ext_serial_utils.c

matlabroot/toolbox/coder/simulinkcoder_core/ext_mode/host/serial/ext_serial_utils.c

2 Run the command to rebuild the ext_serial_win32 MEX-file. See “MATLAB
Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files” on page
69-18.

69-23

70

Build Process Integration in Simulink
Coder

• “Control Build Process Compiling and Linking” on page 70-2
• “Cross-Compile Code Generated on Microsoft Windows” on page 70-4
• “Control Library Location and Naming During Build” on page 70-7
• “Recompile Precompiled Libraries” on page 70-13
• “Customize Post-Code-Generation Build Processing” on page 70-14
• “Configure Generated Code with TLC” on page 70-22
• “Use makecfg to Customize Generated Makefiles for S-Functions” on page 70-24
• “Use rtwmakecfg.m API to Customize Generated Makefiles” on page 70-26
• “Customize Build Process with STF_make_rtw_hook File” on page 70-31
• “Customize Build Process with sl_customization.m” on page 70-38
• “Replace STF_rtw_info_hook Supplied Target Data” on page 70-43
• “Customize Build to Use Shared Utility Code” on page 70-44

70 Build Process Integration in Simulink Coder

Control Build Process Compiling and Linking

After generating code for a model, the build process determines whether or not to compile
and link an executable program. This decision is governed by the following:

• Generate code only option

When you select this option, the code generator produces code for the model, including
a makefile.

• Generate makefile option

When you clear this option, the code generator does not produce a makefile for the
model. You must specify post code generation processing, including compilation
and linking, as a user-defined command, as explained in “Customize Post-Code-
Generation Build Processing” on page 70-14.

• Makefile-only target

The Microsoft Visual C++ Project Makefile versions of the grt and Embedded Coder
target configurations generate a Visual C++ project makefile (model.mak). To build
an executable, you must open model.mak in the Visual C++ IDE and compile and
link the model code.

• HOST template makefile variable

The template makefile variable HOST identifies the type of system upon which your
executable is intended to run. The variable can be set to one of three possible values:
PC, UNIX, or ANY.

By default, HOST is set to UNIX in template makefiles designed for use with The Open
Group UNIX platforms (such as grt_unix.tmf), and to PC in the template makefiles
designed for use with development systems for the PC (such as grt_vc.tmf).

If the Simulink software is running on the same type of system as that specified by
the HOST variable, then the executable is built. Otherwise,

• If HOST = ANY, an executable is still built. This option is useful when you want to
cross-compile a program for a system other than the one the Simulink software is
running on.

• Otherwise, processing stops after generating the model code and the makefile; the
following message is displayed on the MATLAB command line.

70-2

 Control Build Process Compiling and Linking

Make will not be invoked - template makefile is for a different host

• TGT_FCN_LIB template makefile variable

The template makefile variable TGT_FCN_LIB specifies compiler command line
options. The line in the makefile is TGT_FCN_LIB = |>TGT_FCN_LIB<|. Use this
token in a makefile conditional statement to specify a standard math library as a
compiler option. Possible |>TGT_FCN_LIB<| token values are:

Value Generates Calls To

Name of custom CRL ISO®/IEC 9899:1990 C (ANSI_C) standard
math library

ISO_C ISO/IEC 9899:1999 C standard math
library

ISO_C++ ISO/IEC 14882:2003 C++ standard math
library

GNU GNU extensions to the ISO/IEC 9899:1999
C standard math library

70-3

70 Build Process Integration in Simulink Coder

Cross-Compile Code Generated on Microsoft Windows

If you need to generate code with the code generator on a Microsoft Windows system but
compile the generated code on a different supported platform, you can do so by modifying
your TMF and model configuration parameters. For example, you would need to do this
if you develop applications with the MATLAB and Simulink products on a Windows
system, but you run your generated code on a Linux system.

To set up a cross-compilation development environment, do the following (here a Linux
system is the destination platform):

1 On your Windows system, copy the UNIX TMF for your target to a local folder.
This will be your working folder for initiating code generation. For example,
you might copy the file matlabroot/rtw/c/grt/grt_unix.tmf to D:/work/
my_grt_unix.tmf.

2 Make the following changes to your copy of the TMF:

• Add the following line near the SYS_TARGET_FILE = line:
 MAKEFILE_FILESEP = /

• Search for the line 'ifeq ($(OPT_OPTS),$(DEFAULT_OPT_OPTS))' and, for
each occurrence, remove the conditional logic and retain only the 'else' code.
That is, remove everything from the 'if' to the 'else', inclusive, as well as the
closing 'endif'. Only the lines from the 'else' portion should remain. This
forces the run-time libraries to build for a Linux system.

3 Open your model and make the following changes in the Code Generation pane of
the Configuration Parameters dialog:

• Specify the name of your new TMF in the “Template makefile” (Simulink Coder)
text box (for example, my_grt_unix.tmf).

• Select Generate code only and click Apply.
4 Generate the code.
5 If the build folder (folder from which the model was built) is not already Linux

accessible, copy it to a Linux accessible path. For example, if your build folder for the
generated code was D:\work\mymodel_grt_rtw, copy that entire folder tree to a
path such as /home/user/mymodel_grt_rtw.

6 If the MATLAB folder tree on the Windows system is Linux accessible, skip this step.
Otherwise, copy the include and source folders to a Linux accessible drive partition,
for example, /home/user/myinstall. These folders appear in the makefile after

70-4

 Cross-Compile Code Generated on Microsoft Windows

MATLAB_INCLUDES = and ADD_INCLUDES = and can be found by searching for
$(MATLAB_ROOT). Paths that contain $(MATLAB_ROOT) must be copied. Here is an
example list (your list will vary depending on your model):

$(MATLAB_ROOT)/rtw/c/grt

$(MATLAB_ROOT)/extern/include

$(MATLAB_ROOT)/simulink/include

$(MATLAB_ROOT)/rtw/c/src

$(MATLAB_ROOT)/rtw/c/tools

Additionally, paths containing $(MATLAB_ROOT) in the build rules (lines with
%.o :) must be copied. For example, based on the build rule

%.o : $(MATLAB_ROOT)/rtw/c/src/ext_mode/tcpip/%.c

the following folder should be copied:

$(MATLAB_ROOT)/rtw/c/src/ext_mode/tcpip

Note: The path hierarchy relative to the MATLAB root must be maintained. For
example, c:\MATLAB\rtw\c\tools* would be copied to /home/user/mlroot/
rtw/c/tools/*.

For some blocksets, it is easiest to copy a higher-level folder that includes the
subfolders listed in the makefile. For example, the DSP System Toolbox product
requires the following folders to be copied:

$(MATLAB_ROOT)/toolbox/dspblks

$(MATLAB_ROOT)/toolbox/rtw/dspblks

7 Make the following changes to the generated makefile:

• Set both MATLAB_ROOT and ALT_MATLAB_ROOT equal to the Linux accessible
path to matlabroot (for example, home/user/myinstall).

• Set COMPUTER to the computer value for your platform, such as GLNX86. Enter
help computer in the MATLAB Command Window for a list of computer
values.

• In the ADD_INCLUDES list, change the build folder (designating the location of the
generated code on the Windows system) and parent folders to Linux accessible
include folders. For example, change D:\work\mymodel_grt_rtw\ to /home/
user/mymodel_grt_rtw.

Additionally, if matlabroot is a UNC path, such as \\my-server\myapps
\matlab, replace the hard-coded MATLAB root with $(MATLAB_ROOT).

70-5

70 Build Process Integration in Simulink Coder

8 From a Linux shell, compile the code you generated on the Windows system. You can
do this by running the generated model.bat file or by typing the make command
line as it appears in the .bat file.

Note: If errors occur during makefile execution, you may need to run the dos2unix
utility on the makefile (for example, dos2unix mymodel.mk).

Related Examples
• Use packNGo to Relocate Code to Another Development Environment (Simulink

Coder)

70-6

 Control Library Location and Naming During Build

Control Library Location and Naming During Build

Use the TargetPreCompLibLocation and TargetLibSuffix configuration
parameters to control values in generated makefiles during model builds when you use
the toolchain approach or the template makefile approach.

In this section...

“Library Control Parameters” on page 70-7
“Specify the Location of Precompiled Libraries” on page 70-9
“Control the Location of Model Reference Libraries” on page 70-10
“Control the Suffix Applied to Library File Names” on page 70-11

Library Control Parameters

Use the library control parameters to:

• Specify the location of precompiled libraries, such as blockset libraries or the
Simulink Coder block library. Typically, a target has cross-compiled versions of these
libraries and places them in a target-specific folder.

• Control the suffix applied to library file names (for example, _target.a or
_target.lib).

Targets can set the parameters inside the system target file (STF) select callback. For
example:
function mytarget_select_callback_handler(varargin)

 hDig=varargin{1};

 hSrc=varargin{2};

 slConfigUISetVal(hDig, hSrc, 'TargetPreCompLibLocation',...

 'c:\mytarget\precomplibs');

 slConfigUISetVal(hDig, hSrc, 'TargetLibSuffix',...

 '_target.library');

The TMF has corresponding expansion tokens:
 |>EXPAND_LIBRARY_LOCATION<|

 |>EXPAND_LIBRARY_SUFFIX<|

Alternatively, you can use a call to the set_param function. For example:
set_param(model,'TargetPreCompLibLocation',...

70-7

70 Build Process Integration in Simulink Coder

'c:\mytarget\precomplibs');

Note: If your model contains referenced models, you can use the make option
USE_MDLREF_LIBPATHS to control whether libraries used by the referenced models are
copied to the parent model's build folder. For more information, see “Control the Location
of Model Reference Libraries” on page 70-10.

Using TargetLibSuffix with the Toolchain Approach

With TargetLibSuffix, you specify a suffix followed by an extension. For example:
suffix.extension

However, when you use the toolchain approach, only the suffix provided by
TargetLibSuffix is honored. The extension that the TargetLibSuffix provides is
not honored because the toolchain approach provides a different extension.

For example, with the target makefile approach, the final binary name is composed of the
modelname, the suffix, and the extension provided by TargetLibSuffix:

modelname+suffix.extension_from_TargetLibSuffix

With the toolchain approach, the final binary name is composed of the modelname, the
suffix, and the extension provided by the toolchain approach:

model+suffix.extension_from_toolchain_approach

The extension that the toolchain approach uses comes from the file extension of the static
library that the build tool creates. To get this information:

Create the toolchain object. For example, enter:
tc = ToolchainInfo used in the model

Get the build tool name. For example, enter:
tool = tc.getBuildTool('C Compiler');

or
tool = tc.getBuildTool('C++ Compiler');

Get the extension. For example, enter:

extension_from_ToolchainInfo = tool.getFileExtension('Static Library')

70-8

 Control Library Location and Naming During Build

Note: Note: If you do not set the TargetLibSuffix parameter, template makefile and
toolchain approaches behave identically. See “Customize Library File Suffix and File
Type” (Simulink Coder).

Specify the Location of Precompiled Libraries

Use the TargetPreCompLibLocation configuration parameter to:

• Override the precompiled library location specified in the rtwmakecfg.m file (see
“Use rtwmakecfg.m API to Customize Generated Makefiles” on page 70-26 for
details)

• Precompile and distribute target-specific versions of product libraries (for example,
the DSP System Toolbox product)

For a precompiled library, such as a blockset library or the Simulink Coder block library,
the location specified in rtwmakecfg.m is typically a location specific to the blockset or
the Simulink Coder product. The code generator expects that the library exists in this
location and links against the library during builds.

However, for some applications, such as custom targets, it is preferable to locate the
precompiled libraries in a target-specific or other alternate location rather than in the
location specified in rtwmakecfg.m. For a custom target, the code generator expects that
the target-specific cross-compiler creates the library, and you place the library in the
target-specific location. Libraries supported by the target should be compiled and placed
in the target-specific location so they can be used during the build process.

You can set up the TargetPreCompLibLocation parameter in its select callback. The
path that you specify for the parameter must be a fully qualified, absolute path to the
library location. Relative paths are not supported. For example:
slConfigUISetVal(hDlg, hSrc, 'TargetPreCompLibLocation',...

'c:\mytarget\precomplibs');

Alternatively, you set the parameter with a call to the set_param function. For example:
set_param(model,'TargetPreCompLibLocation',...

'c:\mytarget\precomplibs');

During makefile generation, the build process replaces the tokens with the location from
the rtwmakecfg.m file. For example, if the library name in the rtwmakecfg.m file is
'rtwlib', the template makefile build approach expands the token from:
LIBS += |>EXPAND_LIBRARY_LOCATION<|\|>EXPAND_LIBRARY_NAME<|\

70-9

70 Build Process Integration in Simulink Coder

_target.library

to:
LIBS += c:\mytarget\precomplibs\rtwlib_target.library

By default, TargetPreCompLibLocation is an empty character vector. The build
process uses the location in rtwmakecfg.m for the token replacement.

Control the Location of Model Reference Libraries

On platforms other than the Apple Macintosh platform, when building a model that uses
referenced models, the default build process includes:

• Copy libraries that the referenced models uses to the parent model's build folder.
• Assign the file names of the libraries to MODELREF_LINK_LIBS in the generated

makefile.

For example, if a model includes a referenced model sub, the build process assigns the
library name sub_rtwlib.lib to MODELREF_LINK_LIBS. The build process copies the
library file to the parent model's build folder. This definition is then used in the final link
line, which links the library into the final product (usually an executable). This technique
minimizes the length of the link line.

On the Macintosh platform, and optionally on other platforms, the build process includes:

• No copying of libraries that the referenced models uses to the parent model's build
folder.

• Assign the relative paths and file names of the libraries to MODELREF_LINK_LIBS in
the generated makefile.

When using this technique, the build process assigns a relative path such as ../slprj/
grt/sub/sub_rtwlib.lib to MODELREF_LINK_LIBS. The build process uses the path
to gain access to the library file at link time.

To change to the nondefault behavior on platforms other than the Macintosh platform,
select the Configuration Parameters > Code Generation > Make command field.
Enter:
make_rtw USE_MDLREF_LIBPATHS=1

If you specify other Make command arguments, such as OPTS="-g", the order in which
you specify the multiple arguments does not matter.

70-10

 Control Library Location and Naming During Build

To return to the default behavior, set USE_MDLREF_LIBPATHS to 0, or remove it.

Control the Suffix Applied to Library File Names

Use the TargetLibSuffix configuration parameter to control the suffix applied to
library names (for example, _target.lib or _target.a). The specified suffix scheme
must include a period (.). You can apply TargetLibSuffix to the following libraries:

• Libraries on which a target depends, as specified in the rtwmakecfg.m API. You can
use TargetLibSuffix to change the suffix of both precompiled and non-precompiled
libraries configured from the rtwmakecfg API. For details, see “Use rtwmakecfg.m
API to Customize Generated Makefiles” on page 70-26.

In this case, a target can set the parameter in its select callback. For example:
slConfigUISetVal(hDlg, hSrc, 'TargetLibSuffix',...

'_target.library');

Alternatively, you can use a call to the set_param function. For example:
set_param(model,'TargetLibSuffix','_target.library');

During the TMF-to-makefile conversion, the build process replaces the token |
>EXPAND_LIBRARY_SUFFIX<| with the specified suffix. For example, if the library
name specified in the rtwmakecfg.m file is 'rtwlib', the TMF expands from:
LIBS += |>EXPAND_LIBRARY_LOCATION<|\|>EXPAND_LIBRARY_NAME<|\

|>EXPAND_LIBRARY_SUFFIX<|

to:
LIBS += c:\mytarget\precomplibs\rtwlib_target.library

By default, TargetLibSuffix is set to an empty character vector. In this case, the
build process replaces the token |>EXPAND_LIBRARY_SUFFIX<| with an empty
character vector.

• Shared utility library and the model libraries created with model reference.
For these cases, associated makefile variables do not require the |
>EXPAND_LIBRARY_SUFFIX<| token. Instead, the build process includes
TargetLibSuffix implicitly. For example, for a top model named topmodel with
referenced models named refmodel1 and refmodel2, the top model's TMF is
expanded from:
SHARED_LIB = |>SHARED_LIB<|

70-11

70 Build Process Integration in Simulink Coder

MODELLIB = |>MODELLIB<|

MODELREF_LINK_LIBS = |>MODELREF_LINK_LIBS<|

to:
SHARED_LIB = \

..\slprj\ert_sharedutils\rtwshared_target.library

MODELLIB = topmodellib_target.library

MODELREF_LINK_LIBS = \

refmodel1_rtwlib_target.library refmodel2_rtwlib_target.library

By default, the TargetLibSuffix parameter is an empty character vector. In this
case, the build process chooses a default suffix for these three tokens using a file
extension of .lib on Windows hosts and .a on UNIX hosts. (For model reference
libraries, the default suffix additionally includes _rtwlib.) For example, on a
Windows host, the expanded makefile values are:
SHARED_LIB = ..\slprj\ert_sharedutils\rtwshared.lib

MODELLIB = topmodellib.lib

MODELREF_LINK_LIBS = refmodel1_rtwlib.lib refmodel2_rtwlib.lib

70-12

 Recompile Precompiled Libraries

Recompile Precompiled Libraries

You can recompile precompiled libraries included as part of the code generator, such as
rtwlib or dsplib, by using a supplied MATLAB function, rtw_precompile_libs. You
might consider doing this if you need to customize compiler settings for various platforms
or environments. For details on using rtw_precompile_libs, see “Precompile S-
Function Libraries” on page 39-47.

70-13

70 Build Process Integration in Simulink Coder

Customize Post-Code-Generation Build Processing

The code generator provides a set of tools, including a build information object, you can
use to customize build processing that occurs after code generation. You might use such
customizations for target development or the integration of third-party tools into your
application development environment.

In this section...

“Workflow for Setting Up Customizations” on page 70-14
“Build Information Object” on page 70-15
“Program a Post Code Generation Command” on page 70-16
“Define a Post Code Generation Command” on page 70-17
“Customize Build Process with PostCodeGenCommand and Relocate Generated Code to
an External Environment” on page 70-18
“Suppress Makefile Generation” on page 70-20

Workflow for Setting Up Customizations

The following figure and the steps that follow show the general workflow for setting up
post-code-generation customizations.

70-14

 Customize Post-Code-Generation Build Processing

 Program post code
generation command

Build model
Modify post code

generation command

Suppress makefile
generation

Done

Generate
a makefile?

Results
OK?

Yes

No

Yes

No

 Define post code
generation command

1 Program the post code generation command.
2 Define the post code generation command.
3 Suppress makefile generation, if applicable.
4 Build the model.
5 Modify the command and rebuild the model until the build results are acceptable.

Build Information Object

At the start of a model build, the build process logs the following build option and
dependency information to a temporary build information object:

• Compiler options
• Preprocessor identifier definitions
• Linker options

70-15

70 Build Process Integration in Simulink Coder

• Source files and paths
• Include files and paths
• Precompiled external libraries

You can retrieve information from and add information to this object by using an
extensive set of functions. For a list of available functions and detailed function
descriptions, see “Build Process Customization” (Simulink Coder). “Program a Post Code
Generation Command” on page 70-16 explains how to use the functions to control
post code generation build processing.

Program a Post Code Generation Command

For certain applications, you might want to control aspects of the build process after the
code generation. For example, you might do this if you develop your own target, or you
want to apply an analysis tool to the generated code before continuing with the build
process. You can apply this level of control to the build process by programming and then
defining a post code generation command.

A post code generation command is a MATLAB language file that typically calls
functions that get data from or add data to the model's build information object. You can
program the command as a script or function.

If You Program the Command as
a...

Then the...

Script Script can gain access to the model name and the
build information directly

Function Function can pass the model name and the build
information as arguments

If your post code generation command calls user-defined functions, make sure the
functions are on the MATLAB path. If the build process cannot find a function you use in
your command, the build process errors out.

You can then call a combination of build information functions, as listed in “Build Process
Customization” (Simulink Coder), to customize the model's post code generation build
processing.

The following example shows a fragment of a post code generation command that
gets the file names and paths of the source and include files generated for a model for
analysis.

70-16

 Customize Post-Code-Generation Build Processing

function analyzegencode(buildInfo)

% Get the names and paths of source and include files

% generated for the model and then analyze them.

% buildInfo - build information for my model.

% Define cell array to hold data.

MyBuildInfo={};

% Get source file information.

MyBuildInfo.srcfiles=getSourceFiles(buildInfo, true, true);

MyBuildInfo.srcpaths=getSourcePaths(buildInfo, true);

% Get include (header) file information.

MyBuildInfo.incfiles=getIncludeFiles(buildInfo, true, true);

MyBuildInfo.incpaths=getIncludePaths(buildInfo, true);

% Analyze generated code.

.

.

.

Define a Post Code Generation Command

After you program a post code generation command, you need to inform the build process
that the command exists and to add it to the model's build processing. You do this by
defining the command with the PostCodeGenCommand model configuration parameter.
When you define a post code generation command, the build process evaluates the
command after generating and writing the model's code to disk and before generating a
makefile.

As the following syntax lines show, the arguments that you specify when setting the
configuration parameter varies depending on whether you program the command as a
script, function, or set of functions.

Note: When defining the command as a function, you can specify an arbitrary number of
input arguments. To pass the model's name and build information to the function, specify
identifiers modelName and buildInfo as arguments.

Script
set_param(model, 'PostCodeGenCommand',...

'pcgScriptName');

Function

70-17

70 Build Process Integration in Simulink Coder

set_param(model, 'PostCodeGenCommand',...

 'pcgFunctionName(modelName)');

Multiple Functions

pcgFunctions=...

'pcgFunction1Name(modelName);...

pcgFunction2Name(buildInfo)';

set_param(model, 'PostCodeGenCommand',...

 pcgFunctions);

The following call to set_param defines PostCodGenCommand to evaluate the function
analyzegencode.

set_param(model, 'PostCodeGenCommand',...

'analyzegencode(buildInfo)');

Customize Build Process with PostCodeGenCommand and Relocate
Generated Code to an External Environment

This example shows how to use the Build Information API and the Post Code
Generation Command parameter, PostCodeGenCommand.

The PostCodeGenCommand parameter value is rtwdemo_buildinfo_data. This value
directs the build process to invoke the function after code generation.

The example also demonstrates how to use the rtwmakecfg.m API.

For more information, click on the documentation links in the model.

Open Example Model

Open the example model rtwdemo_buildinfo.

open_system('rtwdemo_buildinfo');

70-18

 Customize Post-Code-Generation Build Processing

Generate Code from Model

Double-click on the Generate Code Using Simulink Coder button to generate code for
the GRT target.

Or, if Embedded Coder is installed, double-click on the Generate Code Using
Embedded Coder button to generate code for the ERT target.

The build process generates a BuildInfo.html file to document the build information
object.

Examine the Build Process Customizations and Output

Use the links in the model to examine the build process customizations and the post code
generation query of the build information object.

70-19

70 Build Process Integration in Simulink Coder

To view the BuildInfo.html file in a Web browser, click on Open BuildInfo.html.

The example uses the PostCodeGenCommand parameter of the model to generate
the html file from the build information object. The file provides hyperlinks to open
the source files (generated code) from the model. To view the PostCodeGenCommand
parameter value, type:

get_param('rtwdemo_buildinfo','PostCodeGenCommand');

This value indicates a function to execute in the Post Code Gen Command stage.

rtwdemo_buildinfo_data(buildInfo);

To study how the example uses the rtwmakecfg API, click on Open rtwmakecfg.m or
type:

edit rtwmakecfg.m;

To study the API for the buildInfo.mat object, click on Open
rtwdemo_buildinfo_data.m or type:

edit rtwdemo_buildinfo_data.m;

The buildInfo.mat object is available at:

rtwdemo_<target>_rtw\buildInfo.mat

At the end of the rtwdemo_buildinfo_data.m post code generation function, the
function invokes packNGo to package the source and objects identified in the buildInfo
object for relocation.

Further Study Topics

• “Build Process Customization” (Simulink Coder)
• “Customize Post-Code-Generation Build Processing” (Simulink Coder)
• “Use rtwmakecfg.m API to Customize Generated Makefiles” (Simulink Coder)
• “Relocate Code to Another Development Environment” (Simulink Coder)

Suppress Makefile Generation

The code generator provides the ability to suppress makefile generation during the build
process. For example, you might do this to integrate tools into the build process that are
not driven by makefiles.

70-20

 Customize Post-Code-Generation Build Processing

To instruct the code generator to not produce a makefile, do one of the following:

• Clear the Generate makefile option on the Code Generation pane of the
Configuration Parameters dialog box.

• Set the value of the configuration parameter GenerateMakefile to off.

When you suppress makefile generation,

• You cannot explicitly specify a make command or template makefile.
• You must specify your own instructions for a post code generation processing,

including compilation and linking, in a post code generation command as explained
in “Program a Post Code Generation Command” on page 70-16 and “Define a Post
Code Generation Command” on page 70-17.

70-21

70 Build Process Integration in Simulink Coder

Configure Generated Code with TLC

In this section...

“About Configuring Generated Code with TLC” on page 70-22
“Assigning Target Language Compiler Variables” on page 70-22
“Set Target Language Compiler Options” on page 70-23

About Configuring Generated Code with TLC

You can use the Target Language Compiler (TLC) to fine tune your generated code.
TLC supports extended code generation variables and options in addition to parameters
available on the Code Generation pane on the Configuration Parameters dialog box.
There are two ways to set TLC variables and options, as described in this section.

Note: You should not customize TLC files in the folder matlabroot/rtw/c/tlc even
though the capability exists to do so. Such TLC customizations might not be applied
during the code generation process and can lead to unpredictable results.

Assigning Target Language Compiler Variables

The %assign statement lets you assign a value to a TLC variable, as in
%assign MaxStackSize = 4096

This is also known as creating a parameter name/parameter value pair.

For a description of the %assign statement see “Target Language Compiler Directives”
(Simulink Coder). You should write your %assign statements in the Configure RTW
code generation settings section of the system target file.

The following table lists the code generation variables you can set with the %assign
statement.

Target Language Compiler Optional Variables

Variable Description
MaxStackSize=N When the Enable local block outputs check box is

selected, the total allocation size of local variables that

70-22

 Configure Generated Code with TLC

Variable Description
are declared by block outputs in the model cannot exceed
MaxStackSize (in bytes). MaxStackSize can be a positive
integer. If the total size of local block output variables
exceeds this maximum, the remaining block output
variables are allocated in global, rather than local, memory.
The default value for MaxStackSize is rtInf, that is,
unlimited stack size.

Note: Local variables in the generated code from sources
other than local block outputs, such as from a Stateflow
diagram or MATLAB Function block, and stack usage
from sources such as function calls and context switching
are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, do a target-specific
measurement by using run-time (empirical) analysis or
static (code path) analysis with object code.

MaxStackVariableSize=N When the Enable local block outputs check box is
selected, this limits the size of a local block output variable
declared in the code to N bytes, where N>0. A variable
whose size exceeds MaxStackVariableSize is allocated in
global, rather than local, memory. The default is 4096.

WarnNonSaturatedBlocks=value Flag to control display of overflow warnings for blocks
that have saturation capability, but have it turned off
(unchecked) in their dialog. These are the options:

• 0 — Warning is not displayed.
• 1 — Displays one warning for the model during code

generation
• 2 — Displays one warning that contains a list of

offending blocks

Set Target Language Compiler Options

You can specify TLC command line options for code generation using the model
parameter TLCOptions in a set_param function call. For information about these
options, see “Specify TLC for Code Generation” (Simulink Coder) and “Configure TLC”
(Simulink Coder).

70-23

70 Build Process Integration in Simulink Coder

Use makecfg to Customize Generated Makefiles for S-Functions

With the toolchain and template makefile approach for building code, you can customize
generated makefiles for S-functions. Through the customization, you can specify
additional items for the S-function build process:

• Source files and folders
• Include files and folders
• Library names
• Preprocessor macro definitions
• Compiler flags
• Link objects

1 To customize the generated makefile:

• For all S-functions in the build folder (Simulink Coder), create a makecfg.m file.
• For a specific S-function in the build folder, create a

specificSFunction_makecfg.m file.
2 In the file that you create, use RTW.BuildInfo (Simulink Coder) functions to

specify additional items for the S-function build process. For example, you can use:

• addCompileFlags to specify compiler options.
• addDefines to specify preprocessor macro definitions.

3 Save the created file in the build folder.

After code generation, in the build folder, the code generator searches for makecfg.m and
specificSFunction_makecfg.m files. If the files are present in the build folder, the
code generator uses these files to customize the generated makefile, model.mk.

For example, consider a build folder that contains signalConvert.mexa64 (S-function
binary file) and signalConvert.tlc (inlined S-function implementation) after the
TLC phase (Simulink Coder) of the build process. The S-function requires an additional
source code file, filterV1.c, which is located in anotherFolder. You can create
a file, signalConvert_makecfg.m, that uses RTW.BuildInfo functions to specify
filterV1.c for the build process.

function signalConvert_makecfg(objBuildInfo)

70-24

 Use makecfg to Customize Generated Makefiles for S-Functions

absolute = fullfile('$(START_DIR)', 'anotherFolder');

addIncludePaths(objBuildInfo, absolute);

addSourcePaths(objBuildInfo, absolute);

addSourceFiles(objBuildInfo,'filterV1.c');

Related Examples
• “Build Process Workflow for a Real-Time STF” (Simulink Coder)
• “Choose and Configure Build Process” (Simulink Coder)
• “Import Calls to External Code into Generated Code with Legacy Code Tool”

(Simulink Coder)
• “Use rtwmakecfg.m API to Customize Generated Makefiles” (Simulink Coder)

70-25

70 Build Process Integration in Simulink Coder

Use rtwmakecfg.m API to Customize Generated Makefiles

Both the toolchain approach and the template makefile approach for builds let you add
the following items to generated makefiles:

• Source folders
• Include folders
• Library names
• Module objects

About the rtwmakecfg Function

Using an rtwmakecfg function, you add this information to the makefile during the
build operation for S-functions. The rtwmakecfg function is particularly useful when
specifying added sources and libraries to build a model that contains one or more of your
S-function blocks.

To add information pertaining to an S-function to the makefile:

1 Create the MATLAB language rtwmakecfg function in the rtwmakecfg.m file. The
code generator associates this file with your S-function based on its folder location.
“Create the rtwmakecfg Function” on page 70-26 describes the requirements for
the rtwmakecfg function and the data it returns.

2 If you are using the template makefile approach, modify your target's TMF such
that it supports macro expansion for the information that the rtwmakecfg function
returns. “Modify the Template Makefile for rtwmakecfg” on page 70-29 describes
the required modifications. If you are using the toolchain approach, the information
that the rtwmakecfg function returns is used by the generated makefile; no further
configuration is required.

After the TLC phase of the build process, when generating a makefile, the code generator
searches for an rtwmakecfg.m file in the folder that contains the S-function MEX file. If
it finds the file, the build process calls the rtwmakecfg function.

Create the rtwmakecfg Function

Create the rtwmakecfg.m file containing the rtwmakecfg function in the same folder
as your S-function component (a MEX-file with a platform-dependent extension, such as

70-26

 Use rtwmakecfg.m API to Customize Generated Makefiles

.mexext on Microsoft Windows systems). The function must return a structured array
that contains these fields.

Field Description

makeInfo.includePath A cell array that specifies additional include folder names,
organized as a row vector. The build process expands the
folder names into include instructions in the generated
makefile.

makeInfo.sourcePath A cell array that specifies additional source folder names,
organized as a row vector. You must include the folder names
of files entered into the S-function modules field on the
S-Function Block Parameters dialog box or into the block's
SFunctionModules parameter if they are not in the same
folder as the S-function. The build process expands the folder
names into make rules in the generated makefile.

makeInfo.sources A cell array that specifies additional source file names (C or C
++), organized as a row vector. Do not include the name of the
S-function or any files entered into the S-function modules
field on the S-Function Block Parameters dialog box or into
the block's SFunctionModules parameter. The build process
expands the file names into make variables that contain the
source files. Specify only file names (with extension). Specify
path information with the sourcePath field.

makeInfo.linkLibsObjs A cell array that specifies additional, fully qualified paths to
object or library files against which the generated code links.
The build process does not compile the specified objects and
libraries. However, it includes them when linking the final
executable. This inclusion can be useful for incorporating
libraries that you do not want the build process to recompile
or for which the source files are not available. You can also
use this element to incorporate source files from languages
other than C and C++. This is possible if you first create a C
compatible object file or library outside of the build process.

makeInfo.precompile A Boolean flag that indicates whether the libraries specified
in the rtwmakecfg.m file exist in a specified location
(precompile==1) or if you must create the libraries in the
build folder during the build process (precompile==0).

70-27

70 Build Process Integration in Simulink Coder

Field Description

makeInfo.library A structure array that specifies additional run-time libraries
and module objects, organized as a row vector. The build
process expands the information into make rules in the
generated makefile. For a list of the library fields, see the
next table.

The makeInfo.library field consists of the following elements.

Element Description

makeInfo.library(n).Name A character array that specifies the name of the library
(without an extension).

makeInfo.library(n).Location A character array that specifies the folder in
which the library is located when precompiled.
For more information, see the description of
makeInfo.precompile in the preceding table. A target
can use the TargetPreCompLibLocation parameter
to override this value. See “Specify the Location of
Precompiled Libraries” (Simulink Coder).

makeInfo.library(n).Modules A cell array that specifies the C or C++ source file base
names (without an extension) that comprise the library.
Do not include the file extension. The makefile appends
the object extension.

Note: The makeInfo.library field must fully specify each library and how to build it.
The modules list in the makeInfo.library(n).Modules element cannot be empty. If
you need to specify a link-only library, use the makeInfo.linkLibsObjs field instead.

Example:
 disp(['Running rtwmakecfg from folder: ',pwd]);

 makeInfo.includePath = { fullfile(pwd, 'somedir2') };

 makeInfo.sourcePath = {fullfile(pwd, 'somedir2'), fullfile(pwd, 'somedir3')};

 makeInfo.sources = { 'src1.c', 'src2.cpp'};

 makeInfo.linkLibsObjs = { fullfile(pwd, 'somedir3', 'src3.object'),...

 fullfile(pwd, 'somedir4', 'mylib.library')};

 makeInfo.precompile = 1;

 makeInfo.library(1).Name = 'myprecompiledlib';

 makeInfo.library(1).Location = fullfile(pwd,'somdir2','lib');

 makeInfo.library(1).Modules = {'srcfile1' 'srcfile2' 'srcfile3' };

70-28

 Use rtwmakecfg.m API to Customize Generated Makefiles

Note: If a path that you specify in the rtwmakecfg.m API contains spaces, the build
process does not convert the path to its nonspace equivalent. If the build environments
you intend to support do not support spaces in paths, refer to “Enable Build Process for
Folder Names with Spaces” (Simulink Coder).

Modify the Template Makefile for rtwmakecfg

To expand the information that an rtwmakecfg function generates, modify the following
sections of your target's TMF:

• Include Path

• C Flags and/or Additional Libraries
• Rules

It is possible that these TMF code examples do not apply to your make utility. For
additional examples, see the GRT or ERT TMFs located in matlabroot/rtw/c/grt
(open) or matlabroot/rtw/c/ert (open).

Add Folder Names to the Makefile Include Path

The following TMF code example adds folder names to the include path in the generated
makefile:
ADD_INCLUDES = \

|>START_EXPAND_INCLUDES<| -I|>EXPAND_DIR_NAME<| \

|>END_EXPAND_INCLUDES<|

Additionally, the ADD_INCLUDES macro must be added to the INCLUDES line.
INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(ADD_INCLUDES) $(USER_INCLUDES)

Add Library Names to the Makefile

The following TMF code example adds library names to the generated makefile.
LIBS =

|>START_PRECOMP_LIBRARIES<|

LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_PRECOMP_LIBRARIES<|

|>START_EXPAND_LIBRARIES<|

LIBS += |>EXPAND_LIBRARY_NAME<|.a |>END_EXPAND_LIBRARIES<|

For more information, see “Control Library Location and Naming During Build” on page
70-7.

70-29

70 Build Process Integration in Simulink Coder

Add Rules to the Makefile

The TMF code example adds rules to the generated makefile.
|>START_EXPAND_RULES<|

$(BLD)/%.o: |>EXPAND_DIR_NAME<|/%.c $(SRC)/$(MAKEFILE) rtw_proj.tmw

 @$(BLANK)

 @echo ### "|>EXPAND_DIR_NAME<|\$*.c"

 $(CC) $(CFLAGS) $(APP_CFLAGS) -o (BLD)(DIRCHAR)$*.o \

 |>EXPAND_DIR_NAME<|$(DIRCHAR)$*.c > (BLD)(DIRCHAR)$*.lst

|>END_EXPAND_RULES<|

|>START_EXPAND_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \

|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \

|>END_EXPAND_MODULES<|

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

 @$(BLANK)

 @echo ### Creating $@

 $(AR) -r $@ $(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

|>END_EXPAND_LIBRARIES<|

|>START_PRECOMP_LIBRARIES<|MODULES_|>EXPAND_LIBRARY_NAME<| = \

|>START_EXPAND_MODULES<| |>EXPAND_MODULE_NAME<|.o \

|>END_EXPAND_MODULES<|

|>EXPAND_LIBRARY_NAME<|.a : $(MAKEFILE) rtw_proj.tmw

$(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

 @$(BLANK)

 @echo ### Creating $@

 $(AR) -r $@ $(MODULES_|>EXPAND_LIBRARY_NAME<|:%.o=$(BLD)/%.o)

|>END_PRECOMP_LIBRARIES<|

70-30

 Customize Build Process with STF_make_rtw_hook File

Customize Build Process with STF_make_rtw_hook File

The build process lets you supply optional custom code in hook methods that are
executed at specified points in the code generation and make process. You can use hook
methods to add target-specific actions to the build process.

In this section...

“The STF_make_rtw_hook File” on page 70-31
“Conventions for Using the STF_make_rtw_hook File” on page 70-31
“STF_make_rtw_hook.m Function Prototype and Arguments” on page 70-32
“Applications for STF_make_rtw_hook.m” on page 70-35
“Control Code Regeneration Using STF_make_rtw_hook.m” on page 70-36
“Use STF_make_rtw_hook.m for Your Build Procedure” on page 70-37

The STF_make_rtw_hook File

You can modify hook methods in a file generically referred to as STF_make_rtw_hook.m,
where STF is the name of a system target file, such as ert or mytarget. This file
implements a function, STF_make_rtw_hook, that dispatches to a specific action,
depending on the hookMethod argument passed in.

The build process calls STF_make_rtw_hook, passing in thehookMethod argument
and other arguments. You implement only those hook methods that your build process
requires.

If your model contains reference models, you can implement an STF_make_rtw_hook.m
for each reference model as required. The build process calls each STF_make_rtw_hook
for reference models, processing these files recursively (in dependency order).

Conventions for Using the STF_make_rtw_hook File

For the build process to call the STF_make_rtw_hook, check that the following
conditions are met:

• The STF_make_rtw_hook.m file is on the MATLAB path.

70-31

70 Build Process Integration in Simulink Coder

• The file name is the name of your system target file (STF), appended to the text
_make_rtw_hook.m. For example, if you generate code with a custom system target
file mytarget.tlc, name your hook file mytarget_make_rtw_hook.m, and name
the hook function implemented within the file mytarget_make_rtw_hook.

• The hook function implemented in the file uses the function prototype described in
“STF_make_rtw_hook.m Function Prototype and Arguments” on page 70-32.

STF_make_rtw_hook.m Function Prototype and Arguments

The function prototype for STF_make_rtw_hook is:

function STF_make_rtw_hook(hookMethod, modelName, rtwRoot, templateMakefile,

buildOpts, buildArgs, buildInfo)

The arguments are defined as:

• hookMethod: Character vector specifying the stage of build process from which
the STF_make_rtw_hook function is called. The following flowchart summarizes
the build process, highlighting the hook points. Valid values for hookMethod are
'entry', 'before_tlc', 'after_tlc', 'before_make', 'after_make', 'exit',
and 'error'. The STF_make_rtw_hook function dispatches to the relevant code
with a switch statement.

70-32

 Customize Build Process with STF_make_rtw_hook File

For reference models, these

steps iterate recursively (in

depency order) for each

referenced model.

Create build folder

• modelName: Character vector specifying the name of the model. Valid at all stages of
the build process.

• rtwRoot: Reserved.
• templateMakefile: Name of template makefile.
• buildOpts: A MATLAB structure containing the fields described in the following

list. Valid for the 'before_make', 'after_make', and 'exit' stages only. The
buildOpts fields include:

• modules: Character vector specifying a list of additional files to compile.

70-33

70 Build Process Integration in Simulink Coder

• codeFormat: Character vector specifying the value of the CodeFormat TLC
variable for the target. (ERT-based targets must use the 'Embedded-C' value for
the CodeFormat TLC variable and use the corresponding 'ert.tlc' value in the
rtwgensettings.DerivedFrom field.)

• noninlinedSFcns: Cell array specifying a list of noninlined S-functions in the
model.

• compilerEnvVal: Character vector specifying the compiler environment variable
value (for example, C:\Applications\Microsoft Visual).

• buildArgs: Character vector containing the argument to make_rtw. When
you invoke the build process, buildArgs is copied from the argument following
"make_rtw" in the Configuration Parameters+Code Generation+Make
command field.

For example, the following make arguments from the Make command field
make_rtw VAR1=0 VAR2=4

generate the following:
% make -f untitled.mk VAR1=0 VAR2=4

The buildArgs argument does not apply for toolchain approach builds because
these builds do not allow adding make arguments to the make_rtw call. To provide
custom definitions (for example, VAR1=0 VAR2=4) on the compiler command line that
apply for both TMF approach and toolchain approach builds, use the Configuration
Parameters > Code Generation > Custom Code > Defines field.

• buildInfo: The MATLAB structure that contains the model build information fields.
Valid for the 'after_tlc', 'before_make', 'after_make', and 'exit' stages
only. For information about these fields and functions to access them, see “Build
Process Customization” (Simulink Coder).

70-34

 Customize Build Process with STF_make_rtw_hook File

Applications for STF_make_rtw_hook.m

Here are some examples of how you might apply the STF_make_rtw_hook.m hook
methods.

In general, you can use the 'entry' hook to initialize the build process, for example, to
change or validate settings before code is generated. One application for the 'entry'
hook is to rerun the auto-configuration script that initially ran at target selection time to
compare model parameters before and after the script executes, for validation purposes.

The other hook points, 'before_tlc', 'after_tlc', 'before_make',
'after_make', 'exit', and 'error' are useful for interfacing with external tool
chains, source control tools, and other environment tools.

For example, you could use the STF_make_rtw_hook.m file at a stage after 'entry' to
obtain the path to the build folder. At the 'exit' stage, you could then locate generated
code files within the build folder and check them into your version control system. You
might use 'error' to clean up static or global data used by the hook function when an
error occurs during code generation or the build process.

Note: The build process temporarily changes the MATLAB working folder to the
build folder for stages 'before_make', 'after_make', 'exit', and 'error'. Your
STF_make_rtw_hook.m file must not make incorrect assumptions about the location of
the build folder. At a point after the 'entry' stage, you can obtain the path to the build
folder. In the following MATLAB code example, the build folder path is returned as a
character vector to the variable buildDirPath.
buildDirPath = rtwprivate('get_makertwsettings',gcs,'BuildDirectory');

70-35

70 Build Process Integration in Simulink Coder

Control Code Regeneration Using STF_make_rtw_hook.m

When you rebuild a model, by default, the build process performs checks to determine
whether changes to the model or relevant settings require regeneration of the top model
code. (For details on the criteria, see “Control Regeneration of Top Model Code” on page
40-48.) If the checks determine that top model code generation is required, the build
process fully regenerates and compiles the model code. If the checks indicate that the
top model generated code is current with respect to the model, and model settings do not
require full regeneration, the build process omits regeneration of the top model code.

Regardless of whether the top model code is regenerated, the build process subsequently
calls the build process hooks, including STF_make_rtw_hook functions and the post code
generation command. The following mechanisms allow you to perform actions related to
code regeneration in the STF_make_rtw_hook functions:

• To force code regeneration, use the following function call from the 'entry' hook:
rtw.targetNeedsCodeGen('set', true);

• In hooks from 'before_tlc' through 'exit', the buildOpts structure passed to
the hook has a Boolean field codeWasUpToDate. The field is set to true if model code
was up to date and code was not regenerated, or false if code was not up to date and
code was regenerated. You can customize hook actions based on the value of this field.
For example:
...

case 'before_tlc'

 if buildOpts.codeWasUpToDate

 %Perform hook actions for up to date model

 else

 %Perform hook actions for full code generation

 end

...

70-36

 Customize Build Process with STF_make_rtw_hook File

Use STF_make_rtw_hook.m for Your Build Procedure

To create a custom STF_make_rtw_hook hook file for your build procedure,
copy and edit the example ert_make_rtw_hook.m file, which is located in the
foldermatlabroot/toolbox/coder/embeddedcoder (open), as follows:

1 Copy ert_make_rtw_hook.m to a folder in the MATLAB path. Rename it in
accordance with the naming conventions described in “Conventions for Using the
STF_make_rtw_hook File” on page 70-31. For example, to use it with the GRT target
grt.tlc, rename it to grt_make_rtw_hook.m.

2 Rename the ert_make_rtw_hook function within the file to match the file name.
3 Implement the hooks that you require by adding code to case statements within the

switch hookMethod statement.

70-37

70 Build Process Integration in Simulink Coder

Customize Build Process with sl_customization.m

The Simulink customization file sl_customization.m is a mechanism that allows
you to use MATLAB to customize the build process interface. The Simulink software
reads the sl_customization.m file, if present on the MATLAB path, when it starts
and the customizations specified in the file are applied to the Simulink session. For
more information on the sl_customization.m customization file, see “Registering
Customizations” (Simulink).

In this section...

“The sl_customization.m File” on page 70-38
“Register Build Process Hook Functions Using sl_customization.m” on page 70-40
“Variables Available for sl_customization.m Hook Functions” on page 70-40
“Example Build Process Customization Using sl_customization.m” on page 70-41

The sl_customization.m File

The sl_customization.m file can be used to register installation-specific hook
functions to be invoked during the build process. The hook functions that you register
through sl_customization.m complement System Target File (STF) hooks (described
in “Customize Build Process with STF_make_rtw_hook File” on page 70-31) and post-
code generation commands (described in “Customize Post-Code-Generation Build
Processing” on page 70-14).

The following figure shows the relationship between installation-level hooks and the
other available mechanisms for customizing the build process.

70-38

 Customize Build Process with sl_customization.m

Start build process

Simulink Coder verification

Entry

Before TLC

After TLC

After Make

Before Make

Exit

End build process

STF 'entry' hook

Installation 'entry' hook

STF 'before_tlc' hook

Installation 'before_tlc' hook

STF 'after_tlc' hook

Installation 'after_tlc' hook

STF 'before_make' hook

Installation 'before_make' hook

Installation 'after_make' hook

STF 'after_make' hook

STF 'exit' hook

Installation 'exit' hook

Post code
generation
command

70-39

70 Build Process Integration in Simulink Coder

Register Build Process Hook Functions Using sl_customization.m

To register installation-level hook functions that will be invoked during the build
process, you create a MATLAB function called sl_customization.m and include it
on the MATLAB path of the Simulink installation that you want to customize. The
sl_customization function accepts one argument: a handle to a customization
manager object. For example,
function sl_customization(cm)

As a starting point for your customizations, the sl_customization function must first
get the default (factory) customizations, using the following assignment statement:
hObj = cm.RTWBuildCustomizer;

You then invoke methods to register your customizations. The customization manager
object includes the following method for registering build process hook customizations:

• addUserHook(hObj, hookType, hook)

Registers the MATLAB hook script or function specified by hook for the build process
stage represented by hookType. The valid values for hookType are 'entry',
'before_tlc', 'after_tlc', 'before_make', 'after_make', and 'exit'.

Your instance of the sl_customization function should use this method to register
installation-specific hook functions.

The Simulink software reads the sl_customization.m file when it starts. If you
subsequently change the file, you must restart the Simulink session or enter the
following command in the Command Window to enable the changes:
sl_refresh_customizations

Variables Available for sl_customization.m Hook Functions

The following variables are available for sl_customization.m hook functions to use:

• modelName — The name of the Simulink model (valid for all stages)
• dependencyObject — An object containing the dependencies of the generated code

(valid only for the 'after_make' stage)

A hook script can directly access the valid variables. A hook function can pass the valid
variables as arguments to the function. For example:

70-40

 Customize Build Process with sl_customization.m

hObj.addUserHook('after_make', 'afterMakeFunction(modelName,dependencyObject);');

Example Build Process Customization Using sl_customization.m

The sl_customization.m file shown in Example 1: sl_customization.m for Build
Process Customizations uses the addUserHook method to specify installation-specific
build process hooks to be invoked at the 'entry' and 'after_tlc' stages of the build
process. For the hook function source code, see Example 2: CustomRTWEntryHook.m
and Example 3: CustomRTWPostProcessHook.m.

Example 1: sl_customization.m for Build Process Customizations

function sl_customization(cm)

% Register user customizations

% Get default (factory) customizations

hObj = cm.RTWBuildCustomizer;

% Register build process hooks

hObj.addUserHook('entry', 'CustomRTWEntryHook(modelName);');

hObj.addUserHook('after_tlc', 'CustomRTWPostProcessHook(modelName);');

end

Example 2: CustomRTWEntryHook.m

function [str, status] = CustomRTWEntryHook(modelName)

str =sprintf('Custom entry hook for model ''%s.''',modelName);

disp(str)

status =1;

Example 3: CustomRTWPostProcessHook.m

function [str, status] = CustomRTWPostProcessHook(modelName)

str =sprintf('Custom post process hook for model ''%s.''',modelName);

disp(str)

status =1;

If you include the above three files on the MATLAB path of the Simulink installation
that you want to customize, the coded hook function messages will appear in
the displayed output for builds. For example, if you open the ERT-based model
rtwdemo_udt, open the Code Generation pane of the Configuration Parameters dialog
box, and press Ctrl+B to initiate a build, the following messages are displayed:
>> rtwdemo_udt

Starting build procedure for model: rtwdemo_udt

Custom entry hook for model 'rtwdemo_udt.'

Custom post process hook for model 'rtwdemo_udt.'

70-41

70 Build Process Integration in Simulink Coder

Successful completion of build procedure for model: rtwdemo_udt

>>

70-42

 Replace STF_rtw_info_hook Supplied Target Data

Replace STF_rtw_info_hook Supplied Target Data

Prior to MATLAB Release 14, custom targets supplied target-specific information with
a hook file (referred to as STF_rtw_info_hook.m). The STF_rtw_info_hook specified
properties such as word sizes for integer data types (for example, char, short, int, and
long), and C implementation-specific properties of the custom target.

The STF_rtw_info_hook mechanism has been replaced by the Hardware
Implementation pane of the Configuration Parameters dialog box. Using
this dialog box, you can specify properties that were formerly specified in your
STF_rtw_info_hook file.

For backward compatibility, existing STF_rtw_info_hook files are available. However,
you should convert your target and models to use of the Hardware Implementation
pane. See “Configure Production and Test Hardware” (Simulink Coder).

70-43

70 Build Process Integration in Simulink Coder

Customize Build to Use Shared Utility Code

The shared utility folders (slprj/target/_sharedutils) typically store generated
utility code that is common to a top model and the models it references. You can also
force the build process to use a shared utilities folder for a standalone model. See “Specify
Generated Code Interfaces” (Simulink Coder) for details.

If you want your target to support compilation of code generated in the shared utilities
folder, you must modify your template makefile (TMF). The shared utilities folder is
required to support model reference builds. See “Support Model Referencing” on page
71-83 to learn about additional updates for supporting model reference builds.

The exact syntax of the changes can vary due to differences in the make utility and
compiler/archive tools used by your target. The examples below are based on the Free
Software Foundation's GNU make utility. You can find the following updated TMF
examples for GNU and Microsoft Visual C++ make utilities in the GRT and ERT target
folders:

• GRT: matlabroot/rtw/c/grt (open)

• grt_lcc.tmf

• grt_vc.tmf

• grt_unix.tmf

• ERT: matlabroot/rtw/c/ert (open)

• ert_lcc.tmf

• ert_vc.tmf

• ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of the changes
and additions described below.

Note The ERT-based TMFs contain extra code to handle generation of ERT S-functions
and model reference simulation targets. Your target does not need to handle these cases.

Modify Template Makefiles to Support Shared Utilities

Make the following changes to your TMF to support the shared utilities folder:

70-44

 Customize Build to Use Shared Utility Code

1 Add the following make variables and tokens to be expanded when the makefile is
generated:

SHARED_SRC = |>SHARED_SRC<|

SHARED_SRC_DIR = |>SHARED_SRC_DIR<|

SHARED_BIN_DIR = |>SHARED_BIN_DIR<|

SHARED_LIB = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities folder location and the source files in it. A
typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as in the
following expansion.

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate folders for
shared source files and the library compiled from the source files. In the current
release, TMFs use the same path, as in the following expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils

SHARED_BIN_DIR = ../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities are in use.
Then append it to the overall INCLUDES variable.

SHARED_INCLUDES =

ifneq ($(SHARED_SRC_DIR),)

SHARED_INCLUDES = -I$(SHARED_SRC_DIR)

endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

 $(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o : $(SHARED_SRC_DIR)/%.c

 $(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

70-45

70 Build Process Integration in Simulink Coder

7 Provide a rule to create a library of the shared utilities. The following example is
based on The Open Group UNIX platforms.
$(SHARED_LIB) : $(SHARED_OBJS)

 @echo "### Creating $@ "

 ar r $@ $(SHARED_OBJS)

 @echo "### Created $@ "

8 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)

$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS) $(SHARED_LIB)\

 $(SYSLIBS)

@echo "### Created executable: $(MODEL)"

9 Remove explicit reference to rt_nonfinite.c or rt_nonfinite.cpp from your
TMF. For example, change
ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to
ADD_SRCS = $(RTWLOG)

70-46

71

Custom Target Development in
Simulink Coder

• “About Embedded Target Development” on page 71-2
• “Sample Custom Targets” on page 71-9
• “Target Development Folders, Files, and Builds” on page 71-11
• “Customize System Target Files” on page 71-29
• “Customize Template Makefiles” on page 71-62
• “Custom Target Optional Features” on page 71-79
• “Support Toolchain Approach with Custom Target” on page 71-81
• “Support Model Referencing” on page 71-83
• “Support Compiler Optimization Level Control” on page 71-95
• “Support C Function Prototype Control” on page 71-97
• “Support C++ Class Interface Control” on page 71-100
• “Support Concurrent Execution of Multiple Tasks” on page 71-102
• “Interface to Development Tools” on page 71-104
• “Device Drivers” on page 71-116

71 Custom Target Development in Simulink Coder

About Embedded Target Development

Target files bundled with the code generator are suitable for many different applications
and development environments. Third-party targets provide additional versatility. In
addition, you have the option of implementing a custom target.

To implement a target based on the ARM Cortex®-A or ARM Cortex-M processor, install
the corresponding support package and see the Target SDK: Embedded Coder Support
Package for ARM Cortex-A Processors, “Develop a Target” (Embedded Coder Support
Package for ARM Cortex-A Processors) or Embedded Coder Support Package for ARM
Cortex-M Processors, “Develop a Target” (Embedded Coder Support Package for ARM
Cortex-M Processors). Otherwise, use these functions and topics.

Custom Targets

You might want to implement a custom target for one of the following reasons:

• To enable end users to generate executable production code for a specific CPU or
development board, using a specific development environment (compiler/linker/
debugger).

• To support I/O devices on the target hardware by incorporating custom device driver
blocks into your models.

• To configure the build process for a special compiler (such as a cross-compiler for an
embedded microcontroller or DSP board) or development/debugging environment.

The code generator provides a point of departure for the creation of custom embedded
targets, for the basic purposes above. This manual covers the tasks and techniques you
need to implement a custom embedded target.

Types of Targets

The following sections describe several types of targets intended for different use cases

• “About Target Types” on page 71-3
• “Rapid Prototyping Targets” on page 71-3
• “Production Targets” on page 71-3
• “Verifying Targets With SIL and PIL Simulation” on page 71-4
• “HIL Simulation” on page 71-4

71-2

 About Embedded Target Development

About Target Types

There is a progression of capabilities from baseline or rapid prototyping targets to
production targets. Initially, you might want to implement a rapid prototyping target.
Later, you can enhance the target to be more full-featured. For example, you might
want to add support for software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation at some point for verifying your embedded target. The target types are not
mutually exclusive. An embedded target can support more than one of these use cases, or
additional uses not outlined here.

The discussion of target types is followed by “Recommended Features for Embedded
Targets” on page 71-4, which contains a suggested list of features and general
guidelines for embedded target development.

Rapid Prototyping Targets

A rapid prototyping target or baseline target offers a starting point for targeting a
production processor. A rapid prototyping target integrates coded generator software
with one or more popular cross-development environments (compiler/linker/debugger
tool chains). A rapid prototyping target provides a starting point from which you can
customize the target for application needs.

Target files provided for this type of target should be readable, easy to understand, and
fully commented and documented. Specific attention should be paid to the interface to
the intended cross-development environment. This interface should be implemented
using the preferred approach for that particular development system. For example, some
development environments use traditional make utilities, while others are based on
project-file builds that can be automated under control of the code generator.

When you use a rapid prototyping target, you need to include your own device driver and
legacy code and modify linker memory maps to suit your needs. You should be familiar
with the targeted development system.

Production Targets

A production target supports embedded application development for a production
processor. It includes the capability to create program executables that interact
immediately with the external world. In general, ease of use is more important than
simplicity or readability of generated code files, because it is assumed that you do not
want or need to modify the files.

Desirable features for a production target include:

71-3

71 Custom Target Development in Simulink Coder

• Significant I/O driver support, provided out of the box
• Easy downloading of generated standalone executable programs with third-party

debuggers
• User-controlled placement of an executable in FLASH or RAM memory
• Support for code visibility and tuning on target hardware

Verifying Targets With SIL and PIL Simulation

You can use software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation to verify
generated code and validate the target compiler/processor environment.

You can use SIL and PIL simulation modes to verify automatically generated code
by comparing the results with a normal mode simulation. With SIL, you can easily
verify the behavior of production-intent source code on your host computer; however,
it is generally not possible to verify exactly the same code that will subsequently be
compiled for your target hardware because the code must be compiled for your host
platform (i.e. a different compiler and different processor architecture than the target).
With PIL simulation, you can verify exactly the same code that you intend to deploy in
production, and you can run the code either on real target hardware or on an instruction
set simulator.

For examples describing how to run processor-in-the-loop testing to verify a custom
target, see “Sample Custom Targets” on page 71-9.

For more information on SIL and PIL simulation, see “SIL and PIL Simulations” on page
64-2.

HIL Simulation

A specialized use case is the generation of executables intended for use in hardware-in-
the-loop (HIL) simulations. In a HIL simulation, parts of a pure simulation are gradually
replaced with hardware components as components are refined and fabricated. HIL
simulation offers an efficient design process that eliminates costly iterations of part
fabrication.

Recommended Features for Embedded Targets

• “Basic Target Features” on page 71-5
• “Integration with Target Development Environments” on page 71-6
• “Observing Execution of Target Code” on page 71-6

71-4

 About Embedded Target Development

• “Deployment and Hardware Issues” on page 71-7

Basic Target Features

• You can base targets on the generic real-time (GRT) target or the Embedded Real-
Time (ERT) target that is included in the Embedded Coder product.

If your target is based on the ERT target, it should use ‘Embedded-C’ value for
the CodeFormat TLC variable, and it should inherit the options defined in the ERT
target's system target file with the following lines in the TLC file:

%% Assign code format

%assign CodeFormat = "Embedded-C"

%%----------------------------

/%

 BEGIN_RTW_OPTIONS

 rtwgensettings.DerivedFrom = 'ert.tlc';

 END_RTW_OPTIONS

%/

%%----------------------------

By following these recommendations, your target has the production code generation
capabilities of the ERT target.

See “Customize System Target Files” on page 71-29 for further details on the
inheritance mechanism, setting the CodeFormat, and other details.

• The most fundamental requirement for an embedded target is that it generate a real-
time executable from a model or subsystem. Typically, an embedded target generates
a timer interrupt-based, bareboard executable (although targets can be developed for
an operating system environment as well).

Your target should support code generator concepts of single-tasking and
multitasking solver modes for model execution. Tasking support is available with the
ERT target, but you should thoroughly understand how it works before implementing
an ERT-based target.

For information on timer interrupt-based execution, see “Absolute and Elapsed Time
Computation” (Simulink Coder) and “Asynchronous Events” (Simulink Coder).

• You should generate the target executable's main program module, rather than using
a static main module (such as the static rt_main.c or rt_cppclass_main.cpp
module provided with the software). A generated main.c or .cpp can be made much
more readable and more efficient, since it omits preprocessor checks and other extra
code.

71-5

71 Custom Target Development in Simulink Coder

For information on generated and static main program modules, see “Deploy
Generated Standalone Executable Programs To Target Hardware” on page 49-2.

• Follow the guidelines in “Folder and File Naming Conventions” on page 71-11.

Integration with Target Development Environments

• Most cross-development systems run under a Microsoft Windows PC host. Your target
should support the Windows operating system as the host environment.

Some cross-development systems support one or more versions of The Open Group
UNIX platforms, allowing for UNIX host support as well.

• Your embedded target must support at least one embedded development
environment. The interface to a development environment can take one of several
forms. The toolchain approach and template makefile approach generate standard
makefiles to work with your development environment. For general information about
these build approaches, see “Choose and Configure Build Process” (Simulink Coder).
For detailed information about the structure of template makefiles, see “Customize
Template Makefiles” on page 71-62.

Another approach with IDE-based tools is to create a Microsoft Visual Studio Solution
from your target for integration within a Visual Studio project.

It is important to consider the license requirements and restrictions of the
development environment vendor. You may need to modify files provided by the
vendor and ship them as part of the embedded target.

See “Interface to Development Tools” on page 71-104 for further information.

Observing Execution of Target Code

• Your target should support a mechanism you can use to observe the target code as it
runs in real time (outside of a debugger).

You can use the rtiostream API to implement a communication channel to
enable exchange of data between different processes. For an example of creating a
communication channel for target connectivity, see “Create a Target Communication
Channel for Processor-In-The-Loop (PIL) Simulation”. This rtiostream
communication channel is required to enable processor-in-the-loop (PIL) on a new
target. See “Communications rtiostream API” on page 64-46.

71-6

 About Embedded Target Development

One industry-standard approach is to use the CAN bus, with an ASAP2 file and
CAN Calibration Protocol (CCP). There are several host-based graphical front-end
tools available that connect to a CCP-enabled target and provide data viewing and
parameter tuning. Supporting these tools requires implementation of CAN hardware
drivers and CCP protocol for the target, as well as ASAP2 file generation. Your target
can leverage the ASAP2 support provided with the code generator.

Another option is to support Simulink external mode over a serial interface (RS-232).
See the “What You Can Do with a Host/Target Communication Channel” (Simulink
Coder) for information on using the external mode API.

Deployment and Hardware Issues

• Device driver support is an important issue in the design of an embedded target.
Device drivers are Simulink blocks that support either hardware I/O capabilities of
the target CPU, or I/O features of the development board.

If you are developing a rapid prototyping target, consider providing minimal driver
support, on the assumption that end users develop their own drivers. If you are
developing a production target, you should provide full driver support.

See “Device Drivers” (Simulink Coder).
• Automatic download of generated code to the target hardware makes a target easier

to use. Typically a debugger utility is used; if the chosen debugger supports command
script files, this can be straightforward to implement. “STF_make_rtw_hook.m” on
page 71-21 describes a mechanism to execute code from the build process. You can
use this mechanism to make system() calls to invoke utilities such as a debugger.
You can invoke other simple downloading utilities in a similar fashion.

If your development system supports COM automation, you can control the download
process by that mechanism. Using COM automation is discussed in “Interface to
Development Tools” on page 71-104.

• Executables that are mapped to RAM memory are typical. You can provide optional
support for FLASH or RAM placement of the executable by using your target's
code generation options. To support this capability, you might need multiple linker
command files, multiple debugger scripts, and possibly multiple makefiles or project
files. Also include the ability to automatically switch between these files, depending
on the RAM/FLASH option value.

71-7

71 Custom Target Development in Simulink Coder

• Select a popular, widely available evaluation or prototype board for your target
processor. Consider enclosed and ruggedized versions of the target board. Also
consider board level support for the various on-chip I/O capabilities of the target CPU,
and the availability of development systems that support the selected board.

More About
• “Sample Custom Targets” (Simulink Coder)
• “Target Development Folders, Files, and Builds” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)
• “Customize Template Makefiles” (Simulink Coder)
• “Custom Target Optional Features” (Simulink Coder)
• “Support Toolchain Approach with Custom Target” (Simulink Coder)
• “Support Model Referencing” (Simulink Coder)
• “Support Compiler Optimization Level Control” (Simulink Coder)
• “Support C Function Prototype Control” (Simulink Coder)
• “Support C++ Class Interface Control” (Simulink Coder)
• “Support Concurrent Execution of Multiple Tasks” (Simulink Coder)
• “Interface to Development Tools” (Simulink Coder)
• “Device Drivers” (Simulink Coder)

71-8

 Sample Custom Targets

Sample Custom Targets

There are technical solutions on the MathWorks Web site that you can use as a starting
point to create your own target solution. The solutions provide guides to the following
tasks for creating custom targets:

• Methods of embedding code onto a custom processor
• Creating a system target file
• Customizing the makefile and main file
• Adding compiler, chip, and board specific information
• Integrating legacy code and device drivers
• Creating blocks and libraries
• Implementing processor-in-the-loop (PIL) testing.

1 Start by downloading the embedded targets development guide zip file from this
web page:

Is there an example guide on developing an embedded target...?

The zip file provides example files and a guide to developing a custom embedded
target. The guide is divided into two parts, one on creating a generic custom target
and another on creating a target for the Freescale™ S12X processor using the
Cosmic Compiler.

Read the example guide along with this document to understand the tasks for
developing embedded targets.

2 For more detailed example files for specific processors, see:

• Is there an example Freescale S12X target... using the Cosmic Compiler?
• Is there an example Freescale S12X target... using the CodeWarrior Compiler?

These example kits contain example models, code generation files, and instruction
guides on generating and testing code for the processor. The Cosmic example
illustrates the use of the target connectivity API for processor-in-the-loop (PIL)
testing. The CodeWarrior example does not have PIL but shows CAN Calibration
Protocol (CCP) and Simulink external mode.

The intent of the example kits is to provide working examples that you can use as a
base to create your own target solution. The intent is not to provide a full featured

71-9

http://www.mathworks.com/matlabcentral/answers/93884-is-there-an-example-guide-on-developing-an-embedded-target-using-real-time-workshop
http://www.mathworks.com/matlabcentral/answers/92797-is-there-an-example-freescale-s12x-target-for-real-time-workshop-and-simulink-using-the-cosmic-compi
http://www.mathworks.com/matlabcentral/answers/91480-is-there-an-example-freescale-s12x-target-for-real-time-workshop-and-simulink-using-the-codewarrior

71 Custom Target Development in Simulink Coder

and maintained Embedded Target product like those provided by MathWorks or
third-party products, as listed on the Embedded Coder Hardware Support Web page.

3 You can watch videos showing overviews of both the example kits at the following
links:

• www.mathworks.com/videos/programming-the-freescale-s12x-

target-68811.html

• www.mathworks.com/videos/programming-arm9-using-the-hitex-

str9-comstick-68812.html

For another example target for the ARM9 (STR9) processor, see Is there an example
ARM9 (STR9) target... using the GNU ARM Compiler and Hitex STR9-comStick?.

If you have questions on specific targets, please email mytarget@mathworks.com.

The example kits and this document describe Embedded Coder features such as
customized ert system target files and processor-in-the-loop testing, but you can study
the examples as a starting point for use with Simulink Coder targets.

More About
• “About Embedded Target Development” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)
• “Customize Template Makefiles” (Simulink Coder)
• “Custom Target Optional Features” (Simulink Coder)
• “Support Toolchain Approach with Custom Target” (Simulink Coder)
• “Interface to Development Tools” (Simulink Coder)
• “Device Drivers” (Simulink Coder)

71-10

https://www.mathworks.com/hardware-support.html?fq=product:EC
http://www.mathworks.com/videos/programming-the-freescale-s12x-target-68811.html
http://www.mathworks.com/videos/programming-the-freescale-s12x-target-68811.html
http://www.mathworks.com/videos/programming-arm9-using-the-hitex-str9-comstick-68812.html
http://www.mathworks.com/videos/programming-arm9-using-the-hitex-str9-comstick-68812.html
http://www.mathworks.com/matlabcentral/answers/102079-is-there-an-example-arm9-str9-target-for-real-time-workshop-and-simulink-using-the-gnu-arm-compile
http://www.mathworks.com/matlabcentral/answers/102079-is-there-an-example-arm9-str9-target-for-real-time-workshop-and-simulink-using-the-gnu-arm-compile

 Target Development Folders, Files, and Builds

Target Development Folders, Files, and Builds

Target development mechanics work with a number of folder and file types. The following
topics provide the information to develop custom targets, configure folder usage, and use
custom targets in the build process.

In this section...

“Folder and File Naming Conventions” on page 71-11
“Components of a Custom Target” on page 71-12
“Key Folders Under Target Root (mytarget)” on page 71-17
“Key Files in Target Folder (mytarget/mytarget)” on page 71-19
“Additional Files for Externally Developed Targets” on page 71-22
“Target Development and the Build Process” on page 71-23

Folder and File Naming Conventions

You can use a single folder for your custom target files, or if desired you can use
subfolders, for example containing files associated with specific development
environments or tools.

For a custom target implementation, the recommended folder and file naming
conventions are

• Use only lowercase in folder names, filenames, and extensions.
• Do not embed spaces in folder names. Spaces in folder names cause errors with many

third-party development environments.
• Include desired folders in the MATLAB path
• Do not place your custom target folder anywhere in the MATLAB folder tree (that is,

in or under the matlabroot folder). If you place your folder under matlabroot you
risk losing your work if you install a new MATLAB version (or reinstall the current
version).

The following sections explain how to organize your target folders and files and add them
to the your MATLAB path. They also provide high-level descriptions of the files.

In this document, mytarget is a placeholder name that represents folders and files
that use the target's name. The names dev_tool1, dev_tool2, and so on represent

71-11

71 Custom Target Development in Simulink Coder

subfolders containing files associated with development environments or tools. This
document describes an example structure where the folder mytarget contains subfolders
for mytarget, blocks, dev_tool1, dev_tool2. The top level folder mytarget is the
target root folder.

Components of a Custom Target

• “Overview” on page 71-12
• “Code Components” on page 71-13
• “Control Files” on page 71-14

Overview

The components of a custom target are files located in a hierarchy of folders. The top-
level folder in this structure is called the target root folder. The target root folder and
its contents are named, organized, and located on the MATLAB path according to
conventions described in “Folder and File Naming Conventions” on page 71-11.

The components of a custom target include

• Code components: C source code that supervises and supports execution of generated
model code.

• Control files:

• A system target file (STF) to control the code generation process.
• File(s) to control the building of an executable from the generated code. In a

traditional make-based environment, a template makefile (TMF) generates a
makefile for this purpose. Another approach is to generate project files in support
of a modern integrated development environment (IDE) such as the Freescale
Semiconductor CodeWarrior IDE.

• Hook files: Optional TLC and MATLAB program files that can be invoked at well-
defined stages of the build process. Hook files let you customize the build process
and communicate information between various phases of the process.

• Other target files: Files that let you integrate your target into the MATLAB
environment. For example, you can provide an info.xml file to make your target
block libraries and examples available from a MATLAB session.

The next sections introduce key concepts and terminology you need to know to develop
each component. References to more detailed information sources are provided.

71-12

 Target Development Folders, Files, and Builds

Code Components

An executable program containing code generated from a Simulink model consists of a
number of code modules and data structures. These fall into two categories.

Application Components

Application components are those which are specific to a particular model; they
implement the functions represented by the blocks in the model. Application components
are not specific to the target. Application components include

• Modules generated from the model
• User-written blocks (S-functions)
• Parameters of the model that are visible, and can be interfaced to, external code

Execution Support Files

A number of code modules and data structures, referred to collectively as the execution
support files, are responsible for managing and supporting the execution of the generated
program. The execution support files modules are not automatically generated.
Depending on the requirements of your target, you must implement certain parts of the
execution support files. Execution Support Files summarizes the execution support files.

Execution Support Files

You Provide... The Code Generator Provides...

Customized main program Generic main program
Timer interrupt handler to run model Execution engine and integration solver (called

by timer interrupt handler)
Other interrupt handlers Example interrupt handlers (Asynchronous

Interrupt blocks)
Device drivers Example device drivers
Data logging, parameter tuning,
signal monitoring, and external mode
support

Data logging, parameter tuning, signal
monitoring, and external mode APIs

User-Written Execution Support Files

The code generator provides most of the execution support files. Depending on the
requirements of your target, you must implement some or all of the following elements:

71-13

71 Custom Target Development in Simulink Coder

• A timer interrupt service routine (ISR). The timer runs at the program's base sample
rate. The timer ISR is responsible for operations that must be completed within a
single clock period, such as computing the current output sample. The timer ISR
usually calls the rt_OneStep function.

If you are targeting a real-time operating system (RTOS), your generated code usually
executes under control of the timing and task management mechanisms provided by
the RTOS. In this case, you may not have to implement a timer ISR.

• The main program. Your main program initializes the blocks in the model, installs
the timer ISR, and executes a background task or loop. The timer periodically
interrupts the main loop. If the main program is designed to run for a finite amount of
time, it is also responsible for cleanup operations — such as memory deallocation and
masking the timer interrupt — before terminating the program.

If you are targeting a real-time operating system (RTOS), your main program most
likely spawns tasks (corresponding to the sample rates used in the model) whose
execution is timed and controlled by the RTOS.

Your main program typically is based on a generated or static main program. For
details on the structure of the execution support files, code execution, and guidelines
for customizing main programs, see “Deploy Generated Standalone Executable
Programs To Target Hardware” on page 49-2.

• Device drivers. Drivers communicate with I/O devices on your target hardware. In
production code, device drivers are normally implemented as inlined S-functions.

• Other interrupt handlers. If your models need to support asynchronous events, such
as hardware generated interrupts and asynchronous read and write operations, you
must supply interrupt handlers. The Interrupt Templates library provides examples.

• Data logging, parameter tuning, signal monitoring, and external mode support. It is
atypical to implement rapid prototyping features such as external mode support in an
embedded target. However, it is possible to support these features by using standard
code generator APIs. See “Data Exchange Interfaces” (Simulink Coder) for details.

Control Files

The code generation and build process is directed by a number of TLC and MATLAB files
collectively called control files. This section introduces and summarizes the main control
files.

71-14

 Target Development Folders, Files, and Builds

Top-Level Control File (make_rtw)

The build process is initiated when you press Ctrl+B. At this point, the build process
parses the Make command field of the Code Generation pane of the Configuration
Parameters dialog box, expecting to find the name of a MATLAB command that controls
the build process (as well as optional arguments to that command). The default command
is make_rtw, and the default top-level control file for the build process is make_rtw.m.

Note: make_rtw is an internal MATLAB command used by the build process. Normally,
target developers do not need detailed knowledge of how make_rtw works. (The details
for target developers are described in “Target Development and the Build Process” on
page 71-23.) You should not invoke make_rtw directly from MATLAB code, and you
should not customize make_rtw.m.

The make_rtw.m file contains the logic required to execute your target-specific control
files, including a number of hook points for execution of your custom code. make_rtw
does the following:

• Passes optional arguments in to the build process
• Performs required preprocessing before code generation
• Executes the STF to perform code generation (and optional HTML report generation)
• Processes the TMF to generate a makefile
• Invokes a make utility to execute the makefile and build an executable
• Performs required post-processing (such as generating calibration data files or

downloading the generated executable to the target)

System Target File (STF)

The Target Language Compiler (TLC) generates target-specific C or C++ code from an
partial description of your Simulink block diagram (model.rtw). The Target Language
Compiler reads model.rtw and executes a program consisting of several target files
(.tlc files.) The STF, at the top level of this program, controls the code generation
process. The output of this process is a number of source files, which are fed to your
development system's make utility.

You need to create a customized STF to set code generation parameters for your
target. You should copy, rename, and modify the standard ERT system target file
(matlabroot/rtw/c/ert/ert.tlc).

71-15

71 Custom Target Development in Simulink Coder

The detailed structure of the STF is described in “Customize System Target Files” on
page 71-29.

Note: The STF selects whether the target supports the toolchain approach or template
makefile approach for code generation. See “Customize System Target Files” on page
71-29.

Template Makefile (TMF)

A TMF provides information about your model and your development system. The build
process uses this information to create a makefile (.mk file) that builds an executable
program.

Some targets implement more than one TMF, in order to support multiple development
environments (for example, two or more cross-compilers) or multiple modes of code
generation (for example, generating a binary executable versus generating a project file
for your compiler).

The Embedded Coder software provides a large number of TMFs suitable for different
types of development computer systems. These TMFs are located in matlabroot/rtw/
c/ert (open). The standard TMFs are described in “Template Makefiles and Make
Options” (Simulink Coder).

The detailed structure of the TMF is described in “Customize Template Makefiles” on
page 71-62.

Note: The STF selects whether the target supports the toolchain approach or template
makefile approach for code generation. See “Customize System Target Files” on page
71-29.

Hook Files

The build process allows you to supply optional hook files that are executed at specified
points in the code generation and make process. You can use hook files to add target-
specific actions to the build process.

The hook files must follow well-defined naming and location requirements. “Folder and
File Naming Conventions” on page 71-11 describes these requirements.

71-16

 Target Development Folders, Files, and Builds

Key Folders Under Target Root (mytarget)

• “Target Root Folder (mytarget)” on page 71-17
• “Target Folder (mytarget/mytarget)” on page 71-17
• “Target Block Folder (mytarget/blocks)” on page 71-17
• “Development Tools Folder (mytarget/dev_tool1, mytarget/dev_tool2)” on page

71-19
• “Target Source Code Folder (mytarget/src)” on page 71-19

Target Root Folder (mytarget)

This folder contains the key subfolders for the target (see “Folder and File Naming
Conventions” on page 71-11). You can also locate miscellaneous files (such as a
readme file) in the target root folder. The following sections describe required and
optional subfolders and their contents.

Target Folder (mytarget/mytarget)

This folder contains files that are central to the target, such as the system target file
(STF) and template makefile (TMF). “Key Files in Target Folder (mytarget/mytarget)” on
page 71-19 summarizes the files that should be stored in mytarget/mytarget, and
provides pointers to detailed information about these files.

Note mytarget/mytarget should be on the MATLAB path.

Target Block Folder (mytarget/blocks)

If your target includes device drivers or other blocks, locate the block implementation
files in this folder. mytarget/blocks contains

• Compiled block MEX-files
• Source code for the blocks
• TLC inlining files for the blocks
• Library models for the blocks (if you provide your blocks in one or more libraries)

Note mytarget/blocks should be on the MATLAB path.

71-17

71 Custom Target Development in Simulink Coder

You can also store example models and supporting files in mytarget/blocks.
Alternatively, you can create a mytarget/mytargetdemos folder, which should also be
on the MATLAB path.

To display your blocks in the standard Simulink Library Browser and/or integrate
your example models into the MATLAB session environment , you can create the files
described below and store them in mytarget/blocks.

mytarget/blocks/slblocks.m

This file allows a group of blocks to be integrated into the Simulink Library and Simulink
Library Browser.

Example slblocks.m File

function blkStruct = slblocks

% Information for "Blocksets and Toolboxes" subsystem

blkStruct.Name = sprintf('Embedded Target\n for MYTARGET');

blkStruct.OpenFcn = 'mytargetlib';

blkStruct.MaskDisplay = 'disp(''MYTARGET'')';

% Information for Simulink Library Browser

Browser(1).Library = 'mytargetlib';

Browser(1).Name = 'Embedded Target for MYTARGET';

Browser(1).IsFlat = 1;% Is this library "flat" (i.e. no subsystems)?

blkStruct.Browser = Browser;

mytarget/blocks/demos.xml

This file provides information about the components, organization, and location of
example models. MATLAB software uses this information to place the example in the
MATLAB session environment.

Example demos.xml File

<?xml version="1.0" encoding="utf-8"?>

<demos>

 <name>Embedded Target for MYTARGET</name>

 <type>simulink</type>

 <icon>$toolbox/matlab/icons/boardicon.gif</icon>

 <description source = "file">mytarget_overview.html</description>

 <demosection>

 <label>Multirate model</label>

 <demoitem>

 <label>MYTARGET demo</label>

 <file>mytarget_overview.html</file>

 <callback>mytarget_model</callback>

71-18

 Target Development Folders, Files, and Builds

 </demoitem>

 </demosection>

</demos>

Development Tools Folder (mytarget/dev_tool1, mytarget/dev_tool2)

These folders contain files associated with specific development environments or tools
(dev_tool1, dev_tool2, etc.). Normally, your target supports at least one such
development environment and invokes its compiler, linker, and other utilities during the
build process. mytarget/dev_tool1 includes linker command files, startup code, hook
functions, and other files required to support this process.

For each development environment, you should provide a separate folder.

Target Source Code Folder (mytarget/src)

This folder is optional. If the complexity of your target requires it, you can use
mytarget/src to store common source code and configuration code (such as boot and
startup code).

Key Files in Target Folder (mytarget/mytarget)

• “Introduction” on page 71-19
• “mytarget.tlc” on page 71-20
• “mytarget.tmf” on page 71-20
• “mytarget_genfiles.tlc” on page 71-20
• “mytarget_main.c” on page 71-20
• “STF_make_rtw_hook.m” on page 71-21
• “STF_rtw_info_hook.m (obsolete)” on page 71-21
• “info.xml” on page 71-21
• “mytarget_overview.html” on page 71-21

Introduction

The target folder mytarget/mytarget contains key files in your target implementation.
These include the system target file, template makefile, main program module, and
optional M and TLC hook files that let you add target-specific actions to the build
process. The following sections describe the key target folder files.

71-19

71 Custom Target Development in Simulink Coder

mytarget.tlc

mytarget.tlc is the system target file (STF). Functions of the STF include

• Making the target visible in the System Target File Browser
• Definition of code generation options for the target (inherited and target-specific)
• Providing an entry point for the top-level control of the TLC code generation process

You should base your STF on ert.tlc, the STF provided by Embedded Coder software.

“Customize System Target Files” on page 71-29 gives detailed information on the
structure of the STF, and also gives instructions on how to customize an STF to

• Display your target in the System Target File Browser
• Add your own target options to the Configuration Parameters dialog box
• Tailor the code generation and build process to the requirements of your target

mytarget.tmf

mytarget.tmf is the template makefile for building an executable for your target.

For basic information on the structure and operation of template makefiles, see
“Customize Template Makefiles” on page 71-62.

If your target development environment requires automation of a modern integrated
development environment (IDE) rather than use of a traditional make utility, see
“Interface to Development Tools” on page 71-104.

mytarget_genfiles.tlc

This file is optional. mytarget_genfiles.tlc is useful as a central file from which
to invoke target-specific TLC files that generate additional files as part of your target
build process. For example, your target may create sub-makefiles or project files
for a development environment, or command scripts for a debugger to do automatic
downloads. See “Using mytarget_genfiles.tlc” on page 71-45 for details.

mytarget_main.c

A main program module is required for your target. To provide a main module, you can
either

• Modify the rt_main.c or rt_cppclass_main.cpp module provided by the software

71-20

 Target Development Folders, Files, and Builds

• Generate mytarget_main.c or .cpp during the build process

For a description of the operation of main programs, see “Deploy Generated Standalone
Executable Programs To Target Hardware” on page 49-2. The section also contains
guidelines for generating and modifying a main program module.

STF_make_rtw_hook.m

STF_make_rtw_hook.m is an optional hook file that you can use to invoke target-specific
functions or executables at specified points in the build process. STF_make_rtw_hook.m
implements a function that dispatches to a specific action depending on the method
argument that is passed into it.

“Customize Build Process with STF_make_rtw_hook File” (Simulink Coder) describes the
operation of the STF_make_rtw_hook.m hook file in detail.

STF_rtw_info_hook.m (obsolete)

Prior to Release 14, custom targets supplied target-specific information with a hook file
(referred to as STF_rtw_info_hook.m). The STF_rtw_info_hook specified properties
such as word sizes for integer data types (for example, char, short, int, and long), and
C implementation-specific properties of the custom target.

The STF_rtw_info_hook mechanism has been replaced by the Hardware
Implementation pane of the Configuration Parameters dialog box. Using this
dialog box, you can specify the properties that were formerly specified in your
STF_rtw_info_hook file.

For backward compatibility, existing STF_rtw_info_hook files are still available.
However, you should convert your target and models to use the Hardware
Implementation pane. See “Configure Run-Time Environment Options” (Simulink
Coder).

info.xml

This file provides information to MATLAB software that specifies where to display the
target toolbox in the MATLAB session environment. For more information, see “Display
Custom Documentation” (MATLAB).

mytarget_overview.html

By convention, this file serves as home page for the target examples.

71-21

71 Custom Target Development in Simulink Coder

The <description> field in demos.xml should point to mytarget_overview.html
(see “mytarget/blocks/demos.xml” on page 71-18).

Example mytarget_overview.html File

<html>

<head><title>Embedded Target for MYTARGET</title></head><body>

<p style="color:#990000; font-weight:bold; font-size:x-large">Embedded Target

for MYTARGET Example Model</p>

<p>This example provides a simple model that allows you to generate an executable

for a supported target board. You can then download and run the executable and

set breakpoints to study and monitor the execution behavior.</p>

</body>

</html>

Additional Files for Externally Developed Targets

• “Introduction” on page 71-22
• “mytarget/mytarget/mytarget_setup.m” on page 71-22
• “mytarget/mytarget/doc” on page 71-23

Introduction

If you are developing an embedded target that is not installed into the MATLAB tree,
you should provide a target setup script and target documentation within mytarget/
mytarget, for the convenience of your users. The following sections describe the required
materials and where to place them.

mytarget/mytarget/mytarget_setup.m

This file script adds paths for your target to the MATLAB path. Your documentation
should instruct users to run the script when installing the target.

You should include a call to the MATLAB function savepath in your
mytarget_setup.m script. This function saves the added paths, so users need to run
mytarget_setup.m only once.

The following code is an example mytarget_setup.m file.

function mytarget_setup()

curpath = pwd;

tgtpath = curpath(1:end-length('\mytarget'));

71-22

 Target Development Folders, Files, and Builds

addpath(fullfile(tgtpath, 'mytarget'));

addpath(fullfile(tgtpath, 'dev_tool1'));

addpath(fullfile(tgtpath, 'blocks'));

addpath(fullfile(tgtpath, 'mytargetdemos'));

savepath;

disp('MYTARGET Target Path Setup Complete.');

mytarget/mytarget/doc

You should put the documentation related to your target in the folder mytarget/
mytarget/doc.

Target Development and the Build Process

• “About the Build Process” on page 71-23
• “Build Process Phases and Information Passing” on page 71-23
• “Additional Information Passing Techniques” on page 71-26

About the Build Process

To develop an embedded target, you need a thorough understanding of the build process.
Your embedded target uses the build process and may require you to modify or customize
the process. A general overview of code generation and the build process is given in “Code
Generation” (Simulink Coder) and “Build Process” (Simulink Coder).

This section supplements that overview with a description of the build process as
customized by the Embedded Coder software. The emphasis is on points in the process
where customization hooks are available and on passing information between different
phases of the process.

This section concludes with “Additional Information Passing Techniques” on page
71-26, describing assorted tips and tricks for passing information during the build
process.

Build Process Phases and Information Passing

It is important to understand where (and when) the build process obtains required
information. Sources of information include

• The model.rtw file, which provides information about the generating model. The
information in model.rtw is available to target TLC files.

71-23

71 Custom Target Development in Simulink Coder

• The code generation panes of the Configuration Parameters dialog box. Options
(both general and target-specific) are provided through check boxes, menus, and
edit fields. You can associate options with TLC variables in the rtwoptions data
structure. Use the Configuration Parameters > Code Generation > Custom
Code > Additional build information > Defines field to define makefile tokens .

• The selected toolchain (for toolchain approach builds) or selected template makefile
.tmf (for template makefile approach builds); these generate the model-specific
makefile.

• Environment variables on the host computer. Environment variables provide
additional information about installed development tools.

• Other target-specific files such as target-related TLC files, linker command files, or
project files.

It is also important to understand the several phases of the build process and how to pass
information between the phases. The build process comprises several high-level phases:

• Execution of the top-level file (slbuild.m or rtwbuild.m) to sequence through the
build process for a target

• Conversion of the model into the TLC input file (model.rtw)
• Generation of the target code by the TLC compiler
• Compilation of the generated code with make or other utilities
• Transmission of the final generated executable to the target hardware with a

debugger or download utility

It is helpful to think of each phase of the process as a different “environment” that
maintains its own data. These environments include

• MATLAB code execution environment (MATLAB)
• Simulink
• Target Language Compiler execution environment
• makefile
• Development environments such as and IDE or debugger

In each environment, you might get information from the various sources mentioned
above. For example, during the TLC phase, execute MATLAB file might execute to
obtain information from the MATLAB environment. Also, a given phase may generate
information for a subsequent phase.

71-24

 Target Development Folders, Files, and Builds

See “Key Files in Target Folder (mytarget/mytarget)” on page 71-19 for details on the
available MATLAB file and TLC hooks for information passing, with code examples.

71-25

71 Custom Target Development in Simulink Coder

Additional Information Passing Techniques

This section describes a number of useful techniques for passing information among
different phases of the build process.

tlcvariable Field in rtwoptions Structure

Parameters on the code generation panes of the Configuration Parameters dialog box can
be associated with a TLC variable, and specified in the tlcvariable field of the option's
entry in the rtwoptions structure. The variable value is passed on the command line
when TLC is invoked. This provides a way to make code generation parameters and their
values available in the TLC phase.

See “System Target File Structure” on page 71-30 for further information.

makevariable Field in rtwoptions Structure

You can associate code generation parameters with a template makefile token, that you
specify in the makevariable field of the option's entry in the rtwoptions structure. If
a token of the same name as the makevariable name exists in the TMF, the token is
updated with the option value when the final makefile is created. If the token does not
exist in the TMF, the makevariable is passed in on the command line when make is
invoked. Thus, in either case, the makevariable is available to the makefile.

See “System Target File Structure” on page 71-30 for further information.

Accessing Host Environment Variables

You can access host shell environment variables at the MATLAB command line by
entering the getenv command. For example:

getenv ('MSDEVDIR')

ans =

D:\Applications\Microsoft Visual Studio\Common\MSDev98

To access the same information from TLC, use the FEVAL directive to invoke getenv.

%assign eVar = FEVAL("getenv","<varname>")

Supplying Development Environment Information to Your Template Makefile

An embedded target must tie the build process to target-specific development tools
installed on a host computer. For the make process to run these tools, the TMF must

71-26

 Target Development Folders, Files, and Builds

be able to determine the name of the tools, the path to the compiler, linker, and other
utilities, and possibly the host operating system environment variable settings.

Require the end user to modify the target TMF. The user enters path information (such
as the location of a compiler executable), and possibly host operating system environment
variables, as make variables. This allows the TMF to be tailored to specific needs.

Using MATLAB Application Data

Application data provides a way for applications to save and retrieve data stored with
the GUI. This technique enables you to create what is essentially a user-defined property
for an object, and use this property to store data for use in the build process. If you are
unfamiliar with this technique for creating graphical user interfaces, see “Store Data as
Application Data” (MATLAB).

The following code examples illustrates the use of application data to pass information to
TLC.

This file, tlc2appdata.m, stores the data passed in as application data under the name
passed in (appDataName).

function k = tlc2appdata(appDataName,data)

 disp([mfilename,': ',appDataName,' ', data]);

 setappdata(0,appDataName,data);

 k = 0; % TLC expects a return value for FEVAL.

The following sample TLC file uses the FEVAL directive to invoke tlc2appdata.m to
store arbitrary application data, under the name z80.

%% test.tlc

%%

%assign myApp = "z80"

%assign myData = "314159"

%assign dummy = FEVAL("tlc2appdata",myApp,myData)

To test this technique:

1 Create the tlc2appdata.m file as shown. Check that tlc2appdata.m is stored in a
folder on the MATLAB path.

2 Create the TLC file as shown. Save it as test.tlc.
3 Enter the following command at the MATLAB prompt to execute the TLC file:

tlc test.tlc

71-27

71 Custom Target Development in Simulink Coder

4 Get the application data at the MATLAB prompt:

k = getappdata(0,'z80')

The function returns the value 314159.
5 Enter the following command.

who

Note that application data is not stored in the MATLAB workspace. Also observe
that the z80 data is not visible. Using application data in this way has the advantage
that it does not clutter the MATLAB workspace. Also, it helps prevent you from
accidently deleting your data, since it is not stored directly in the your workspace.

A real-world use of application data might be to collect information from the model.rtw
file and store it for use later in the build process.

Adding Block-Specific Information to the Makefile

The rtwmakecfg mechanism provides a method for inlined S-functions such as
driver blocks to add information to the makefile. This mechanism is described in “Use
rtwmakecfg.m API to Customize Generated Makefiles” (Simulink Coder).

More About
• “About Embedded Target Development” (Simulink Coder)

71-28

 Customize System Target Files

Customize System Target Files

This section provides information on the structure of the STF, guidelines for customizing
an STF, and a basic tutorial that helps you get a skeletal STF up and running.

In this section...

“Control Code Generation With the System Target File” on page 71-29
“System Target File Naming and Location Conventions” on page 71-30
“System Target File Structure” on page 71-30
“Define and Display Custom Target Options” on page 71-38
“Tips and Techniques for Customizing Your STF” on page 71-45
“Create a Custom Target Configuration” on page 71-48

Control Code Generation With the System Target File

The system target file (STF) exerts overall control of the code generation stage of the
build process. The STF also lets you control the presentation of your target to the end
user. The STF provides

• Definitions of variables that are fundamental to the build process, such as the value
for the CodeFormat TLC variable

• The main entry point to the top-level TLC program that generates code
• Target information for display in the System Target File Browser
• A mechanism for defining target-specific code generation options (and other

parameters related to the build process) and for displaying them in the Configuration
Parameters dialog box

• A mechanism for inheriting options from another target (such as the Embedded Real-
Time (ERT) target)

Note that, although the STF is a Target Language Compiler (TLC) file, it contains
embedded MATLAB code. Before creating or modifying an STF, you should acquire a
working knowledge of TLC and of the MATLAB language. “Target Language Compiler”
(Simulink Coder) and “Scripts vs. Functions” (MATLAB) describe the features and syntax
of both the TLC and MATLAB languages.

While reading this section, you may want to refer to the STFs provided with the code
generator. Most of these files are stored in the target-specific folders under matlabroot/

71-29

71 Custom Target Development in Simulink Coder

rtw/c (open). Additional STFs are stored under matlabroot/toolbox/rtw/targets
(open).

System Target File Naming and Location Conventions

An STF must be located in a folder on the MATLAB path for the target to be displayed in
the System Target File Browser and invoked in the build process. Follow the location and
naming conventions for STFs and related target files given in “Folder and File Naming
Conventions” on page 71-11.

System Target File Structure

• “Overview” on page 71-30
• “Header Comments” on page 71-32
• “TLC Configuration Variables” on page 71-33
• “TLC Program Entry Point and Related %includes” on page 71-34
• “RTW_OPTIONS Section” on page 71-35
• “rtwgensettings Structure” on page 71-35
• “Additional Code Generation Options” on page 71-37
• “Model Reference Considerations” on page 71-38

Overview

This section is a guide to the structure and contents of an STF. The following listing
shows the general structure of an STF. Note that this is not a complete code listing of an
STF. The listing consists of excerpts from each of the sections that make up an STF.
%%----------------------------

%% Header Comments Section

%%----------------------------

%% SYSTLC: Example Real-Time Target

%% TMF: my_target.tmf MAKE: make_rtw EXTMODE: ext_comm

%% Inital comments contain directives for STF Browser.

%% Documentation, date, copyright, and other info may follow.

 ...

%selectfile NULL_FILE

 ...

%%----------------------------

%% TLC Configuration Variables Section

%%----------------------------

%% Assign code format, language, target type.

%%

%assign CodeFormat = "Embedded-C"

71-30

 Customize System Target Files

%assign TargetType = "RT"

%assign Language = "C"

%%

%%----------------------------

%% TLC Program Entry Point

%%----------------------------

%% Call entry point function.

%include "codegenentry.tlc"

%%

%%----------------------------

%% (OPTIONAL) Generate Files for Build Process

%%----------------------------

%include "mytarget_genfiles.tlc"

%%----------------------------

%% RTW_OPTIONS Section

%%----------------------------

/%

 BEGIN_RTW_OPTIONS

 %% Define rtwoptions structure array. This array defines target-specific

 %% code generation variables, and controls how they are displayed.

 rtwoptions(1).prompt = 'example code generation options';

 ...

 rtwoptions(6).prompt = 'Show eliminated blocks';

 rtwoptions(6).type = 'Checkbox';

 ...

 %--%

 % Configure RTW code generation settings %

 %--%

 ...

 %%----------------------------

 %% rtwgensettings Structure

 %%----------------------------

 %% Define suffix text for naming build folder here.

 rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

 %% Callback compatibility declaration

 rtwgensettings.Version = '1';

 %% (OPTIONAL) target inheritance declaration

 rtwgensettings.DerivedFrom = 'ert.tlc';

 %% (OPTIONAL) other rtwGenSettings fields...

 ...

 END_RTW_OPTIONS

%/

%%----------------------------

%% targetComponentClass - MATHWORKS INTERNAL USE ONLY

%% REMOVE NEXT SECTION FROM USER_DEFINED CUSTOM TARGETS

%%----------------------------

/%

 BEGIN_CONFIGSET_TARGET_COMPONENT

 targetComponentClass = 'Simulink.ERTTargetCC';

 END_CONFIGSET_TARGET_COMPONENT

%/

If you are creating a custom target based on an existing STF, you must
remove the targetComponentClass section (bounded by the directives

71-31

71 Custom Target Development in Simulink Coder

BEGIN_CONFIGSET_TARGET_COMPONENT and END_CONFIGSET_TARGET_COMPONENT).
This section is reserved for the use of targets developed internally by MathWorks.

Header Comments

These lines at the head of the file are formatted as TLC comments. They provide required
information to the System Target File Browser and to the build process. Note that you
must place the browser comments at the head of the file, before other comments or TLC
statements.

The presence of the comments enables the code generator to detect STFs. When the
System Target File Browser is opened, the code generator scans the MATLAB path for
TLC files that have formatted header comments. The comments contain the following
directives:

• SYSTLC: The descriptor that appears in the browser.
• TMF: Name of the template makefile (TMF) to use during build process. When the

target is selected, this filename is displayed in the “Template makefile” (Simulink
Coder) field of the Code Generation pane of the Configuration Parameters dialog
box.

• MAKE: make command to use during build process. When the target is selected, this
command is displayed in the Make command field of the Code Generation pane of
the Configuration Parameters dialog box.

• EXTMODE: Name of external mode interface file (if any) associated with your target.
If your target does not support external mode, use no_ext_comm.

The following header comments are from matlabroot/rtw/c/ert/ert.tlc.
%% SYSTLC: Embedded Coder TMF: ert_default_tmf MAKE: make_rtw \

%% EXTMODE: ext_comm

%% SYSTLC: Create Visual C/C++ Solution File for Embedded Coder\

%% TMF: RTW.MSVCBuild MAKE: make_rtw EXTMODE: ext_comm

.

.

.

Note:

• Limitation: Each comment can only contain a maximum of two lines, as shown in the
preceding example.

• If you do not specify the TMF or EXTMODE fields in the system target file, the
file is still valid. To change the values for the parameters Template makefile

71-32

 Customize System Target Files

(TemplateMakefile) and External mode (ExtMode), you can instead use the
callback function specified by rtwgensettings.SelectCallback.

Note that you can specify more than one group of directives in the header comments.
Each such group is displayed as a different target configuration in the System Target
File Browser. In the above example, the first two lines of code specify the default
configuration of the ERT target. The next two lines specify a configuration that creates
and builds a Microsoft Visual C++ Solution (.sln) file. The figure below shows how these
configurations appear in the System Target File Browser.

See “Create a Custom Target Configuration” on page 71-48 for an example of
customized header comments.

TLC Configuration Variables

This section of the STF assigns global TLC variables that relate to the overall code
generation process.

For an embedded target, in most cases you should simply use the global TLC variable
settings used by the ERT target (ert.tlc). It is especially important that your STF use
the ‘Embedded-C’ value for the CodeFormat TLC variable and uses the corresponding
rtwgensettings.DerivedFrom = 'ert.tlc' in the RTW_OPTIONS section of the
TLC file. Verify that values are assigned to the following variables:

• CodeFormat: The CodeFormat TLC variable selects generated code features. The
'Embedded-C' value for this variable is used by the ERT target. Your ERT-based

71-33

71 Custom Target Development in Simulink Coder

target should specify 'Embedded-C' as the value for CodeFormat. This selection is
designed for production code, minimal memory usage, static memory allocation, and a
simplified interface to generated code.

For information on other values for the CodeFormat TLC variable, see “Compare
System Target File Support” (Simulink Coder).

• Language: The only valid value is C, which enables support for C or C++ code
generation as specified by the configuration parameter TargetLang.

• TargetType: The code generator defines the preprocessor symbols RT and NRT
to distinguish simulation code from real-time code. These symbols are used in
conditional compilation. The TargetType variable determines whether RT or NRT is
defined.

Most targets are intended to generate real-time code. They assign TargetType as
follows.

%assign TargetType = "RT"

Some targets, such as the model reference simulation target, accelerated simulation
target, RSim target, and S-function target, generate code for use in nonreal time only.
Such targets assign TargetType as follows.

%assign TargetType = "NRT"

TLC Program Entry Point and Related %includes

The code generation process normally begins with codegenentry.tlc. The STF invokes
codegenentry.tlc as follows.

%include "codegenentry.tlc"

Note codegenentry.tlc and the lower-level TLC files assume that CodeFormat,
TargetType, and Language have been assigned. Set these variables before including
codegenentry.tlc.

If you need to implement target-specific code generation features, you should include
the TLC file mytarget_genfiles.tlc in your STF. This file provides a mechanism
for executing custom TLC code before and after invoking codegenentry.tlc. For
information on this mechanism, see

71-34

 Customize System Target Files

• “Using mytarget_genfiles.tlc” on page 71-45 for an example of custom TLC code
for execution after the main code generation entry point.

• “Target Development and the Build Process” on page 71-23 for general information on
the build process, and for information on other build process customization hooks.

Another way to customize the code generation process is to call lower-level functions
(normally invoked by codegenentry.tlc) directly, and include your own TLC functions
at each stage of the process. This approach should be taken with caution. See “TLC Files”
(Simulink Coder) for more information.

The lower-level functions called by codegenentry.tlc are

• genmap.tlc: maps block names to corresponding language-specific block target files.
• commonsetup.tlc: sets up global variables.
• commonentry.tlc: starts the process of generating code.

RTW_OPTIONS Section

The RTW_OPTIONS section is bounded by the directives:

/%

 BEGIN_RTW_OPTIONS

.

.

.

 END_RTW_OPTIONS

%/

The first part of the RTW_OPTIONS section defines an array of rtwoptions structures.
This structure is discussed in “Using rtwoptions to Display Custom Target Options” on
page 71-38.

The second part of the RTW_OPTIONS section defines rtwgensettings, a structure
defining the build folder name and other settings for the code generation process. See
“rtwgensettings Structure” on page 71-35 for information about rtwgensettings.

rtwgensettings Structure

The final part of the STF defines the rtwgensettings structure. This structure stores
information that is written to the model.rtw file and used by the build process. The
rtwgensettings fields of most interest to target developers are

71-35

71 Custom Target Development in Simulink Coder

• rtwgensettings.Version: Use this property to enable rtwoptions callbacks and
to use the Callback API in rtwgensettings.SelectCallback.

Note: To use callbacks, you must set:

rtwgensettings.Version = '1';

Add the statement above to the Configure RTW code generation settings section
of the system target file.

• rtwgensettings.DerivedFrom: This structure field defines the system target
file from which options are to be inherited. See “Inheriting Target Options” on page
71-44.

• rtwgensettings.SelectCallback: This structure field specifies a
SelectCallback function. You must set rtwgensettings.Version = '1'; or
your callback will be ignored. SelectCallback is associated with the target rather
than with any of its individual options. The SelectCallback function is triggered
when the user selects a target with the System Target File browser.

The SelectCallback function is useful for setting up (or disabling) configuration
parameters specific to the target.

The following code installs a SelectCallback function:
rtwgensettings.SelectCallback = 'my_select_callback_handler(hDlg,hSrc)';

The arguments to the SelectCallback function (hDlg, hSrc) are handles to
private data used by the callback API functions.

Note If you have developed a custom target and you want it to be compatible with
model referencing, you must implement a SelectCallback function to declare model
reference compatibility. See “Support Model Referencing” on page 71-83.

• rtwgensettings.ActivateCallback: this property specifies an
ActivateCallback function. The ActivateCallback function is triggered when
the active configuration set of the model changes. This could happen during model
loading, and also when the user changes the active configuration set.

The following code installs an ActivateCallback function:
rtwgensettings.ActivateCallback = 'my_activate_callback_handler(hDlg,hSrc)';

71-36

 Customize System Target Files

The arguments to the ActivateCallback function (hDlg,hSrc) are handles to
private data used by the callback API functions.

• rtwgensettings.PostApplyCallback: this property specifies a
PostApplyCallback function. The PostApplyCallback function is triggered when
the user clicks the Apply or OK button after editing options in the Configuration
Parameters dialog box. The PostApplyCallback function is called after the changes
have been applied to the configuration set.

The following code installs an PostApplyCallback function:

rtwgensettings.PostApplyCallback = 'my_postapply_callback_handler(hDlg,hSrc)';

The arguments to the PostApplyCallback function (hDlg, hSrc) are handles to
private data used by the callback API functions.

• rtwgensettings.BuildDirSuffix: Most targets define a folder name suffix
that identifies build folders created by the target. The build process appends
the suffix defined in the rtwgensettings.BuildDirSuffix field to the
model name to form the name of the build folder. For example, if you define
rtwgensettings.BuildDirSuffix as follows

rtwgensettings.BuildDirSuffix = '_mytarget_rtw'

the build folders are named model_mytarget_rtw.

Additional Code Generation Options

“Configure Generated Code with TLC” (Simulink Coder) describes additional TLC code
generation variables. End users of a target can assign these variables by entering a
MATLAB command of the form

set_param(modelName,'TLCOptions','-aVariable=val');

(For more information, see “Specify TLC for Code Generation” (Simulink Coder).)

However, the preferred approach is to assign these variables in the STF using
statements of the form:

%assign Variable = val

For readability, we recommend that you add such assignments in the section of the STF
after the comment Configure RTW code generation settings.

71-37

71 Custom Target Development in Simulink Coder

Model Reference Considerations

See “Support Model Referencing” on page 71-83 for important information on STF
and other modifications you may need to make to support the code generator model
referencing features.

Define and Display Custom Target Options

• “Using rtwoptions to Display Custom Target Options” on page 71-38
• “Example System Target File With Customized rtwoptions” on page 71-43
• “Inheriting Target Options” on page 71-44

Using rtwoptions to Display Custom Target Options

You control the options to display in the Code Generation pane of the Configuration
Parameters dialog box by customizing the rtwoptions structure in your system target
file.

The fields of the rtwoptions structure define variables and associated user interface
elements to be displayed in the Configuration Parameters dialog box. Using the
rtwoptions structure array, you can define target-specific options displayed in the
dialog box and organize options into categories. You can also write callback functions to
specify how these options are processed.

When the Code Generation pane opens, the rtwoptions structure array is scanned
and the listed options are displayed. Each option is represented by an assigned user
interface element (check box, edit field, menu, or push button), which displays the
current option value.

The user interface elements can be in an enabled or disabled (grayed-out) state. If an
option is enabled, the user can change the option value.

You can also use the rtwoptions structure array to define special NonUI elements
that cause callback functions to be executed, but that are not displayed in the Code
Generation pane. See “NonUI Elements” on page 71-42 for details.

The elements of the rtwoptions structure array are organized into groups. Each group
of items begins with a header element of type Category. The default field of a Category
header must contain a count of the remaining elements in the category.

71-38

 Customize System Target Files

The Category header is followed by options to be displayed on the Code Generation
pane. The header in each category is followed by one or more option definition elements.

Each category of target options corresponds to options listed under Code Generation in
the Configuration Parameters dialog box.

The table rtwoptions Structure Fields Summary summarizes the fields of the
rtwoptions structure.
Example rtwoptions Structure

The following rtwoptions structure is excerpted from an example system target file,
matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo/usertarget.tlc. The
code defines an rtwoptions structure array. The default field of the first (header)
element is set to 4, indicating the number of elements that follow the header.
 rtwoptions(1).prompt = 'userPreferred target options (I)';

 rtwoptions(1).type = 'Category';

 rtwoptions(1).enable = 'on';

 rtwoptions(1).default = 4; % number of items under this category

 % excluding this one.

 rtwoptions(1).popupstrings = ''; % At the first item, user has to

 rtwoptions(1).tlcvariable = ''; % initialize all supported fields

 rtwoptions(1).tooltip = '';

 rtwoptions(1).callback = '';

 rtwoptions(1).makevariable = '';

 rtwoptions(2).prompt = 'Execution Mode';

 rtwoptions(2).type = 'Popup';

 rtwoptions(2).default = 'Real-Time';

 rtwoptions(2).popupstrings = 'Real-Time|UserDefined';

 rtwoptions(2).tlcvariable = 'tlcvariable1';

 rtwoptions(2).tooltip = ['See this text as tooltip'];

 rtwoptions(3).prompt = 'Log Execution Time';

 rtwoptions(3).type = 'Checkbox';

 rtwoptions(3).default = 'on';

 rtwoptions(3).tlcvariable = 'RL32LogTETModifier';

 rtwoptions(3).tooltip = ['']; % no tooltip

 rtwoptions(4).prompt = 'Real-Time Interrupt Source';

 rtwoptions(4).type = 'Popup';

 rtwoptions(4).default = 'Timer';

 rtwoptions(4).popupstrings = 'Timer|5|6|7|8|9|10|11|12|13|14|15';

 rtwoptions(4).tlcvariable = 'tlcvariable3';

 rtwoptions(4).callback = 'usertargetcallback(hDlg, hSrc, ''tlcvariable3'')';

 rtwoptions(4).tooltip = [''];

 rtwoptions(4).tooltip = ['See TLC file for how to use reserved '...

 ' keyword ''hDlg'', and ''hSrc''.'];

...

 rtwoptions(5).prompt = 'Signal Logging Buffer Size in Doubles';

 rtwoptions(5).type = 'Edit';

71-39

71 Custom Target Development in Simulink Coder

 rtwoptions(5).default = '100000';

 rtwoptions(5).tlcvariable = 'tlcvariable2';

 rtwoptions(5).tooltip = [''];

The first element adds a userPreferred target options (I) pane under Code
Generation in the Configuration Parameters dialog box. The pane displays the options
defined in rtwoptions(2), rtwoptions(3), rtwoptions(4), and rtwoptions(5).

If you want to define a large number of options, you can define multiple Category
groups within a single system target file.

Note the rtwoptions structure and callbacks are written in MATLAB code, although
they are embedded in a TLC file. To verify the syntax of your rtwoptions structure

71-40

 Customize System Target Files

definitions and code, you can execute the commands at the MATLAB prompt by copying
and pasting them to the MATLAB Command Window.

To learn more about usertarget.tlc and the example callback files provided with
it, see “Example System Target File With Customized rtwoptions” on page 71-43.
For more examples of target-specific rtwoptions definitions, see the target.tlc files
under matlabroot/rtw/c (open).

rtwoptions Structure Fields Summary lists the fields of the rtwoptions structure.

rtwoptions Structure Fields Summary

Field Name Description

callback For examples of callback usage, see “Example System Target File
With Customized rtwoptions” on page 71-43.

closecallback

(obsolete)

Do not use closecallback.
Use rtwgensettings.PostApplyCallback instead (see
“rtwgensettings Structure” on page 71-35).

closecallback is ignored.

For examples of callback usage, see “Example System Target File
With Customized rtwoptions” on page 71-43.

default Default value of the option (empty if the type is Pushbutton).
enable Must be 'on' or 'off'. If 'on', the option is displayed as an

enabled item; otherwise, as a disabled item.
makevariable Template makefile token (if any) associated with the option. The

makevariable is expanded during processing of the template
makefile. See “Template Makefile Tokens” on page 71-62.

modelReferenceParameter-

Check

Specifies whether the option must have the same value in a
referenced model and its parent model. If this field is unspecified
or has the value 'on' the option values must be same. If the field
is specified and has the value 'off' the option values can differ.
See “Controlling Configuration Option Value Agreement” on page
71-88.

NonUI Element that is not displayed, but is used to invoke a close or open
callback. See “NonUI Elements” on page 71-42.

opencallback Do not use opencallback.

71-41

71 Custom Target Development in Simulink Coder

Field Name Description

(obsolete) Use rtwgensettings.SelectCallback instead (see
“rtwgensettings Structure” on page 71-35).

For examples of callback usage, see “Example System Target File
With Customized rtwoptions” on page 71-43.

popupstrings If type is Popup, popupstrings defines the items in the menu.
Items are delimited by the "|" (vertical bar) character. The
following example defines the items of the MAT-file variable
name modifier menu used by the GRT target.

'rt_|_rt|none'

prompt Label for the option.
tlcvariable Name of TLC variable associated with the option.
tooltip Help text displayed when mouse is over the item.
type Type of element: Checkbox, Edit, NonUI, Popup, Pushbutton, or

Category.

NonUI Elements

Elements of the rtwoptions array that have type NonUI exist solely to invoke callbacks.
A NonUI element is not displayed in the Configuration Parameters dialog box. You can
use a NonUI element if you want to execute a callback that is not associated with a user
interface element, when the dialog box opens or closes. See the next section, “Example
System Target File With Customized rtwoptions” on page 71-43 for an example.

Note: The default value of a NonUI element determines the set of values allowed for that
element.

• If the default value is '0' or '1', the element stores a Boolean value.

• If the default value contains an integer other than '0' or '1', the element stores a
value of type int32.

• If the default value does not contain an integer, the element is evaluated as a
character vector.

71-42

 Customize System Target Files

Example System Target File With Customized rtwoptions

A working system target file, with MATLAB file callback functions, has been provided
as an example of how to use the rtwoptions structure to display and process custom
options on the Code Generation pane. The examples are compatible with the callback
API.

The example target files are in the folder (open):

matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo

The example target files include:

• usertarget.tlc: The example system target file. This file illustrates how to
define custom menus, check boxes, and edit fields. The file also illustrates the use of
callbacks.

• usertargetcallback.m: A MATLAB file callback invoked by a menu.

Refer to the example files while reading this section. The example system target file,
usertarget.tlc: illustrates the use of rtwoptions to display the following custom
target options:

• The Execution Mode menu.
• The Log Execution Time check box.
• The Real-Time Interrupt Source menu. The menu executes a callback defined in

an external file, usertargetcallback.m. The TLC variable associated with the
menu is passed in to the callback, which displays the menu's current value.

• The edit field Signal Logging Buffer Size in Doubles.

Try studying the example code while interacting with the example target options in the
Configuration Parameters dialog box. To interact with the example target file,

1 Make matlabroot/toolbox/rtw/rtwdemos/rtwoptions_demo (open) your
working folder.

2 Open a model of your choice.
3 Open the Configuration Parameters dialog box and select the Code Generation

pane.
4 Click Browse. The System Target File Browser opens. Select usertarget.tlc.

Then click OK.
5 Observe that the Code Generation pane contains a custom sub-tab:

userPreferred target options (I).

71-43

71 Custom Target Development in Simulink Coder

6 As you interact with the options in this category and open and close the
Configuration Parameters dialog box, observe the messages displayed in the
MATLAB Command Window. These messages are printed from code in the STF, or
from callbacks invoked from the STF.

Inheriting Target Options

ert.tlc provides a basic set of Embedded Coder code generation options. If your target
is based on ert.tlc, your STF should normally inherit the options defined in ERT.

Use the rtwgensettings.DerivedFrom field in the rtwgensettings structure to
define the system target file from which options are to be inherited. You should convert
your custom target to use this mechanism as follows.

Set the rtwgensettings.DerivedFrom field value as in the following example:

rtwgensettings.DerivedFrom = 'stf.tlc';

where stf is the name of the system target file from which options are to be inherited.
For example:

rtwgensettings.DerivedFrom = 'ert.tlc';

When the Configuration Parameters dialog box executes this line of code, it includes the
options from stf.tlc automatically. If stf.tlc is a MathWorks internal system target
file that has been converted to a new layout, the dialog box displays the inherited options
using the new layout.

Handling Unsupported Options

If your target does not support all of the options inherited from ert.tlc, you should
detect unsupported option settings and display a warning or error message. In some
cases, if a user has selected an option your target does not support, you may need to
abort the build process. For example, if your target does not support the Generate an
example main program option, the build process should not be allowed to proceed if
that option is selected.

Even though your target may not support all inherited ERT options, it is required
that the ERT options are retained in the Code Generation pane of the Configuration
Parameters dialog box. Do not simply remove unsupported options from the rtwoptions
structure in the STF. Options must be in the dialog box to be scanned by the code
generator when it performs optimizations.

71-44

 Customize System Target Files

For example, you may want to prevent users from turning off the Single output/update
function option. It may seem reasonable to remove this option from the dialog box and
simply assign the TLC variable CombineOutputUpdateFcns to on. However, if the
option is not included in the dialog box, the code generator assumes that output and
update functions are not to be combined. Less efficient code is generated as a result.

Tips and Techniques for Customizing Your STF

• “Introduction” on page 71-45
• “Required and Recommended %includes” on page 71-45
• “Handling Aliases for Target Option Values” on page 71-46
• “Supporting Multiple Development Environments” on page 71-48

Introduction

The following sections include information on techniques for customizing your STF,
including

• How to invoke custom TLC code from your STF
• Approaches to supporting multiple development environments

Required and Recommended %includes

If you need to implement target-specific code generation features, we recommend that
your STF include the TLC file mytarget_genfiles.tlc.

Once your STF has set up the required TLC environment, you must include
codegenentry.tlc to start the standard code generation process.

mytarget_genfiles.tlc provides a mechanism for executing custom TLC code
after the main code generation entry point. See “Using mytarget_genfiles.tlc” on page
71-45.

Using mytarget_genfiles.tlc

mytarget_genfiles.tlc (optional) is useful as a central file from which to invoke
target-specific TLC files that generate additional files as part of your target build
process. For example, your target may create sub-makefiles or project files for a
development environment, or command scripts for a debugger to do automatic
downloads.

71-45

71 Custom Target Development in Simulink Coder

The build process can then invoke these generated files either directly from the make
process, or after the executable is created. This is done with the STF_make_rtw_hook.m
mechanism, as described in “Customize Build Process with STF_make_rtw_hook File”
(Simulink Coder).

The following TLC code shows an example mytarget_genfiles.tlc file.

%selectfile NULL_FILE

%assign ModelName = CompiledModel.Name

%% Create Debugger script

%assign model_script_file = "%<ModelName>.cfg"

%assign script_file = "debugger_script_template.tlc"

%if RTWVerbose

 %selectfile STDOUT

 ### Creating %<model_script_file>

 %selectfile NULL_FILE

%endif

%include "%<script_file>"

%openfile bld_file = "%<model_script_file>"

%<CreateDebuggerScript()>

%closefile bld_file

Handling Aliases for Target Option Values

This section describes utility functions that can be used to detect and resolve alias
values or legacy values when testing user-specified values for the target device type
(ProdHWDeviceType) and the code replacement library (CodeReplacementLibrary).
RTW.isHWDeviceTypeEq

To test if two target device type values represent the same hardware device, invoke the
following function:

result = RTW.isHWDeviceTypeEq(type1,type2)

where type1 and type2 are character vectors containing target device type values or
aliases.

The RTW.isHWDeviceTypeEq function returns true if type1 and type2 are character
vectors representing the same hardware device. For example, the following call returns
true:

71-46

 Customize System Target Files

RTW.isHWDeviceTypeEq('Specified','Generic->Custom')

For a description of the target device type option ProdHWDeviceType, see the command-
line information for the Hardware Implementation pane parameters “Device vendor”
(Simulink) and “Device type” (Simulink).
RTW.resolveHWDeviceType

To return the device type value for a hardware device, given a value that might be an
alias or legacy value, invoke the following function:

result = RTW.resolveHWDeviceType(type)

where type is a character vector containing a target device type value or alias.

The RTW.resolveHWDeviceType function returns the device type value of the device.
For example, the following calls both return 'Generic->Custom':

RTW.resolveHWDeviceType('Specified')

RTW.resolveHWDeviceType('Generic->Custom')

For a description of the target device type option ProdHWDeviceType, see the command-
line information for the Hardware Implementation pane parameters “Device vendor”
(Simulink) and “Device type” (Simulink).
RTW.isTflEq

To test if two code replacement library (CRL) names represent the same CRL, invoke the
following function:

result = RTW.isTflEq(name1,name2)

where name1 and name2 are character vectors containing CRL values or aliases.

The RTW.isTflEq function returns true if name1 and name2 are character vectors
representing the same code replacement library. For example, the following call returns
true:

RTW.isTflEq('GNU','GNU C99 extensions')

For a description of the CodeReplacementLibrary parameter, see “Code replacement
library” (Simulink Coder).
RTW.resolveTflName

To return the CRL value for a code replacement library, given a value that might be an
alias or legacy value, invoke the following function:

71-47

71 Custom Target Development in Simulink Coder

result = RTW.resolveTflName(name)

where name is a character vector containing a CRL value or alias.

The RTW.resolveTflName function returns the value of the referenced code
replacement library. For example, the following calls both return 'GNU C99
extensions':

RTW.resolveTflName('GNU')

RTW.resolveTflName('GNU C99 extensions')

For a description of the CodeReplacementLibrary parameter, see “Code replacement
library” (Simulink Coder).

Supporting Multiple Development Environments

Your target may require support for multiple development environments (for example,
two or more cross-compilers) or multiple modes of code generation (for example,
generating a binary executable versus generating a project file for your compiler).

One approach to this requirement is to implement multiple STFs. Each STF invokes
a template makefile for the development environment. This amounts to providing two
separate targets.

Create a Custom Target Configuration

• “Introduction” on page 71-48
• “my_ert_target Overview” on page 71-49
• “Creating Target Folders” on page 71-51
• “Create ERT-Based, Toolchain Compliant STF” on page 71-52
• “Create ERT-Based TMF” on page 71-58
• “Create Test Model and S-Function” on page 71-58
• “Verify Target Operation” on page 71-60

Introduction

This tutorial can supplement the example target guides described in “Sample Custom
Targets” on page 71-9. For an introduction and example files, try the example targets
first.

71-48

 Customize System Target Files

This tutorial guided you through the process of creating an ERT-based target,
my_ert_target. This exercise illustrates several tasks, which are typical for creating a
custom target:

• Setting up target folders and modifying the MATLAB path.
• Making modifications to a standard STF and TMF such that the custom target is

visible in the System Target File Browser, inherits ERT options, displays target-
specific options, and generates code with the default host-based compiler.

• Testing the build process with the custom target, using a simple model that
incorporates an inlined S-function.

During this exercise, you implement an operational, but skeletal, ERT-based target.
This target can be useful as a starting point in a complete implementation of a custom
embedded target.

my_ert_target Overview

In the following sections, you create a skeletal target, my_ert_target. The target
inherits and supports the standard options of the ERT target and displays additional
target-specific options in the Configuration Parameters dialog box (see Target-Specific
Options for my_ert_target).

71-49

71 Custom Target Development in Simulink Coder

Target-Specific Options for my_ert_target

my_ert_target supports a toolchain-based build, generating code and executables
that run on the host system. my_ert_target uses the lcc compiler on a Microsoft
Windows platform. The chosen compiler is readily available and is distributed with the
code generator. On a Microsoft Windows platform, if you use a different compiler, you
can set up lcc temporarily as your default compiler through the following MATLAB
command:
mex -setup

The software displays links for supported compilers that are installed on your computer.
Click the lcc link.

71-50

 Customize System Target Files

Note On Linux systems, make sure that you have an installed C compiler. If so, you can
use Linux folder syntax to complete this exercise.

my_ert_target can also support template makefile-based builds. For more information
about using this target with the template makefile approach, see “Create ERT-Based
TMF” on page 71-58.

You can test my_ert_target with a model that is compatible with the ERT target (see
“Select a System Target File” on page 30-2). Generated programs operate identically to
ERT generated programs.

To simplify the testing of your target, test with targetmodel, a very simple fixed-step
model (see “Create Test Model and S-Function” on page 71-58). The S-Function block
in targetmodel uses the source code from the timestwo example, and generates fully
inlined code. See “S-Function Examples” (Simulink) and “Inline S-Functions with TLC”
(Simulink Coder) for further discussion of the timestwo example S-function.

Creating Target Folders

Create folders to store the target files and add them to the MATLAB path, following the
recommended conventions (see “Folder and File Naming Conventions” on page 71-11).
You also create a folder to store the test model, S-function, and generated code.

This example assumes that your target and model folders are located within the folder
c:/work. Do not place your target and model folders within the MATLAB folder tree
(that is, in or under the matlabroot folder).

To create the folders and make them accessible:

1 Create a target root folder, my_ert_target. From the MATLAB Command Window
on a Windows platform, enter:
cd c:/work

mkdir my_ert_target

2 Within the target root folder, create a subfolder to store your target files.
mkdir my_ert_target/my_ert_target

3 Add these folders to your MATLAB path.
addpath c:/work/my_ert_target

addpath c:/work/my_ert_target/my_ert_target

4 Create a folder, my_targetmodel, to store the test model, S-function, and generated
code.

71-51

71 Custom Target Development in Simulink Coder

mkdir my_targetmodel

Create ERT-Based, Toolchain Compliant STF

Create an STF for your target by copying and modifying the standard STF for the ERT
target. Then, validate the STF by viewing the new target in the System Target File
Browser and in the Configuration Parameters dialog box.

Editing the STF

To edit the STF, use these steps:

1 Change your working folder to the folder you created in “Creating Target Folders” on
page 71-51.
cd c:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert.tlc in c:/work/my_ert_target/
my_ert_target and rename it to my_ert_target.tlc. The file ert.tlc is the
STF for the ERT target.

3 Open my_ert_target.tlc in a text editor of your choice.
4 Customize the STF, replacing the header comment lines with directives that make

your STF visible in the System Target File Browser and define the associated TMF,
make command, and external mode interface file (if any). For more information about
these directives, see “Header Comments” on page 71-32 .

Replace the header comments in my_ert_target.tlc with the following header
comments.
%% SYSTLC: My ERT-based Target TMF: my_ert_target_lcc.tmf MAKE: make_rtw \

%% EXTMODE: no_ext_comm

5 The file my_ert_target.tlc inherits the standard ERT options, using
the mechanism described in “Inheriting Target Options” on page 71-44.
Therefore, the existing rtwoptions structure definition is superfluous. Edit the
RTW_OPTIONS section such that it includes only the following code.
/%

 BEGIN_RTW_OPTIONS

 %--%

 % Configure RTW code generation settings %

 %--%

 rtwgensettings.BuildDirSuffix = '_ert_rtw';

71-52

 Customize System Target Files

 END_RTW_OPTIONS

 %/

6 Delete the code after the end of the RTW_OPTIONS section, which is
delimited by the directives BEGIN_CONFIGSET_TARGET_COMPONENT and
END_CONFIGSET_TARGET_COMPONENT. This code is for use only by internal
MathWorks developers.

7 Modify the build folder suffix in the rtwgenSettings structure in accordance with
the conventions described in “rtwgensettings Structure” on page 71-35.

To set the suffix to a character vector for the _my_ert_target custom target,
change the line
rtwgensettings.BuildDirSuffix = '_ert_rtw'

to
rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw'

8 Modify the rtwgenSettings structure to inherit options from the ERT target and
declare Release 14 or later compatibility as described in “rtwgensettings Structure”
on page 71-35. Add the following code to the rtwgenSettings definition:

rtwgensettings.DerivedFrom = 'ert.tlc';

rtwgensettings.Version = '1';

9 Add an rtwoptions structure that defines a target-specific options category with
three check boxes just after the BEGIN_RTW_OPTIONS directive. The following code
shows the complete RTW_OPTIONS section, including the previous rtwgenSettings
changes.
/%

 BEGIN_RTW_OPTIONS

 rtwoptions(1).prompt = 'My Target Options';

 rtwoptions(1).type = 'Category';

 rtwoptions(1).enable = 'on';

 rtwoptions(1).default = 3; % number of items under this category

 % excluding this one.

 rtwoptions(1).popupstrings = '';

 rtwoptions(1).tlcvariable = '';

 rtwoptions(1).tooltip = '';

 rtwoptions(1).callback = '';

 rtwoptions(1).makevariable = '';

 rtwoptions(2).prompt = 'Demo option 1';

 rtwoptions(2).type = 'Checkbox';

 rtwoptions(2).default = 'off';

 rtwoptions(2).tlcvariable = 'DummyOpt1';

 rtwoptions(2).makevariable = '';

71-53

71 Custom Target Development in Simulink Coder

 rtwoptions(2).tooltip = ['Demo option1 (non-functional)'];

 rtwoptions(2).callback = '';

 rtwoptions(3).prompt = 'Demo option 2';

 rtwoptions(3).type = 'Checkbox';

 rtwoptions(3).default = 'off';

 rtwoptions(3).tlcvariable = 'DummyOpt2';

 rtwoptions(3).makevariable = '';

 rtwoptions(3).tooltip = ['Demo option2 (non-functional)'];

 rtwoptions(3).callback = '';

 rtwoptions(4).prompt = 'Demo option 3';

 rtwoptions(4).type = 'Checkbox';

 rtwoptions(4).default = 'off';

 rtwoptions(4).tlcvariable = 'DummyOpt3';

 rtwoptions(4).makevariable = '';

 rtwoptions(4).tooltip = ['Demo option3 (non-functional)'];

 rtwoptions(4).callback = '';

 %--%

 % Configure RTW code generation settings %

 %--%

 rtwgensettings.BuildDirSuffix = '_my_ert_target_rtw';

 rtwgensettings.DerivedFrom = 'ert.tlc';

 rtwgensettings.Version = '1';

 rtwgensettings.SelectCallback = 'enableToolchainCompliant(hSrc, hDlg)';

 %SelectCallback provides toolchain approach support, but requires custom function

 %Omit this SelectCallback if using the template makefile approach

 END_RTW_OPTIONS

%/

10 Save your changes to my_ert_target.tlc and close the file.

Create ToolchainCompliant Function

To enable builds using the toolchain approach, you create a function that corresponds to
the SelectCallback near the end of the custom STF. This function sets properties for
toolchain compliance.
function enableToolchainCompliant(hSrc, hDlg)

 hCS = hSrc.getConfigSet();

 % The following parameters enable toolchain compliance.

 slConfigUISetVal(hDlg, hSrc, 'UseToolchainInfoCompliant', 'on');

 hCS.setProp('GenerateMakefile','on');

 % The following parameters are not required for toolchain compliance.

 % But, it is recommended practice to set these default values and

 % disable the parameters (as shown).

 hCS.setProp('RTWCompilerOptimization','off');

 hCS.setProp('MakeCommand','make_rtw');

 hCS.setPropEnabled('RTWCompilerOptimization',false);

71-54

 Customize System Target Files

 hCS.setPropEnabled('MakeCommand',false);

end

Note: If you are using the template makefile approach, omit calling the function enabling
toolchain-compliance from your STF file. Instead, use the information in “Create ERT-
Based TMF” on page 71-58.

Viewing the STF

At this point, you can verify that the target inherits and displays ERT options as follows:

1 Create a new model.
2 Open the Model Explorer or the Configuration Parameters dialog box.
3 Select the Code Generation pane.
4 Click Browse to open the System Target File browser.
5 In the file browser, scroll through the list of targets to find the new target,

my_ert_target.tlc. (This step assumes that your MATLAB path contains c:/
work/my_ert_target/my_ert_target, as previously set in “Creating Target
Folders” on page 71-51.)

6 Select My ERT-based Target and click OK.

7 The Code Generation pane now shows that the model is configured for the
my_ert_target.tlc target. The System target file, Language, Toolchain, and
Build configuration fields should appear:

71-55

71 Custom Target Development in Simulink Coder

8 Select the My Target Options pane. The target displays the three check box
options defined in the rtwoptions structure.

71-56

 Customize System Target Files

9 Select the Code Generation pane and reopen the System Target File Browser.
10 Select the Embedded Coder target (ert.tlc). The target displays the standard ERT

options.
11 Close the model. You do not need to save it.

The STF for the skeletal target is complete. If you are using the toolchain approach, you
are ready to invoke the build process for your target.

If you prefer to use the template makefile approach, the reference to a TMF,
my_ert_target_lcc.tmf, in the STF header comments prevents you from invoking

71-57

71 Custom Target Development in Simulink Coder

the build process for your target until the TMF file is in place. First, you must create a
my_ert_target_lcc.tmf file.

Create ERT-Based TMF

If you are using the toolchain makefile approach with a toolchain compliant custom
target, omit the steps that apply to the template makefile approach. (Skip this section.)

If you are using the templated makefile approach, follow the steps applying to TMF and
omit calling the function enabling toolchain-compliance from your STF file, which is
described in “Create ERT-Based, Toolchain Compliant STF” on page 71-52.

Create a TMF for your target by copying and modifying the standard ERT TMF for the
LCC compiler:

1 Make sure that your working folder is still set to the target file folder you created
previously in “Creating Target Folders” on page 71-51.
c:/work/my_ert_target/my_ert_target

2 Place a copy of matlabroot/rtw/c/ert/ert_lcc.tmf in c:/work/
my_ert_target/my_ert_target and rename it my_ert_target_lcc.tmf.
The file ert_lcc.tmf is the ERT compiler-specific template makefile for the LCC
compiler.

3 Open my_ert_target_lcc.tmf in a text editor.
4 Change the SYS_TARGET_FILE parameter so that the file reference for your .tlc

file is generated in the make file. Change the line
SYS_TARGET_FILE = any

to
SYS_TARGET_FILE = my_ert_target.tlc

5 Save changes to my_ert_target_lcc.tmf and close the file.

Your target can now generate code and build a host-based executable. In the next
sections, you create a test model and test the build process using my_ert_target.

Create Test Model and S-Function

In this section, you build a simple test model for later use in code generation:

1 Set your working folder to c:/work/my_targetmodel.

71-58

 Customize System Target Files

cd c:/work/my_targetmodel

For the remainder of this tutorial, my_targetmodel is assumed to be the working
folder. Your target writes the output files of the code generation process into a build
folder within the working folder. When inlined code is generated for the timestwo
S-function, the build process looks for the TLC implementation of the S-function in
the working folder.

2 Copy the following C and TLC files for the timestwo S-function to your working
folder:

• matlabroot/toolbox/simulink/simdemos/simfeatures/src/

timestwo.c

• matlabroot/toolbox/simulink/simdemos/simfeatures/tlc_c/

timestwo.tlc

3 Build the timestwo MEX-file in c:/work/my_targetmodel.

mex timestwo.c

4 Create the following model, using an S-Function block from the Simulink User-
Defined Functions library. Save the model in your working folder as targetmodel.

5 Double-click the S-Function block to open the Block Parameters dialog box. Enter
the S-function name timestwo. Click OK. The block is now bound to the timestwo
MEX-file.

6 Open Model Explorer or the Configuration Parameters dialog box and select the
Solver pane.

7 Set the solver Type to fixed-step and click Apply.
8 Save the model.
9 Open the scope and run a simulation. Verify that the timestwo S-function

multiplies its input by 2.0.

Keep the targetmodel model open for use in the next section, in which you generate
code using the test model.

71-59

71 Custom Target Development in Simulink Coder

Verify Target Operation

In this section you configure targetmodel for the my_ert_target custom target, and
use the target to generate code and build an executable:

1 Open the Configuration Parameters dialog box and select the Code Generation
pane.

2 Click Browse to open the System Target File Browser.
3 In the Browser, select My ERT-based Target and click OK.
4 The Configuration Parameters dialog box now displays the Code Generation pane

for my_ert_target.
5 Select the Code Generation > Report pane and select the Create code

generation report option.
6 Click Apply and save the model. The model is configured for my_ert_target.
7 Build the model. If the build succeeds, the MATLAB Command Window displays the

message below.
Created executable: ../targetmodel.exe

Successful completion of build procedure for model:

targetmodel

Your working folder contains the targetmodel.exe file and the build folder,
targetmodel_my_ert_target_rtw, which contains generated code and other
files. The working folder also contains an slprj folder, used internally by the build
process.

The code generator also creates and displays a code generation report.
8 To view the generated model code, go to the code generation report window. In the

Contents pane, click the targetmodel.c link.
9 In targetmodel.c, locate the model step function, targetmodel_step. Observe

the following code.
/* S-Function Block: <Root>/S-Function */

/* Multiply input by two */

targetmodel_B.SFunction = targetmodel_B.SineWave * 2.0;

The presence of this code confirms that the my_ert_target custom target has
generated an inlined output computation for the S-Function block in the model.

More About
• “About Embedded Target Development” (Simulink Coder)

71-60

 Customize System Target Files

• “Support Toolchain Approach with Custom Target” (Simulink Coder)
• “Support Model Referencing” (Simulink Coder)
• “Support Compiler Optimization Level Control” (Simulink Coder)
• “Support C Function Prototype Control” (Simulink Coder)
• “Support C++ Class Interface Control” (Simulink Coder)
• “Support Concurrent Execution of Multiple Tasks” (Simulink Coder)

71-61

71 Custom Target Development in Simulink Coder

Customize Template Makefiles

To configure or customize a template makefile (TMF), you should be familiar with how
the make command works and how it processes makefiles. You should also understand
makefile build rules. For information on these topics, refer to the documentation provided
with the make utility you use.

In this section...

“Template Makefiles and Tokens” on page 71-62
“Invoke the make Utility” on page 71-68
“Structure of the Template Makefile” on page 71-69
“Customize and Create Template Makefiles” on page 71-73

Template Makefiles and Tokens

TMFs are made up of statements containing tokens. The build process expands tokens
and creates a makefile, model.mk. TMFs are designed to generate makefiles for specific
compilers on specific platforms. The generated model.mk file is tailored to compile and
link code generated from your model, using commands specific to your development
system.

Creation of model.mk

Template Makefile Tokens

The make_rtw command (or a different command provided with some targets) directs the
process of generating model.mk. The make_rtw command processes the TMF specified
on the Code Generation pane of the Configuration Parameters dialog box. make_rtw
copies the TMF, line by line, expanding each token encountered. Template Makefile
Tokens Expanded by make_rtw lists the tokens and their expansions.

71-62

 Customize Template Makefiles

These tokens are used in several ways by the expanded makefile:

• To control the conditional behavior in the makefile. The conditionals are used to
control the source file lists, library names, target to be built, and other build-related
information.

• To provide the macro definitions for compiling the files, for example, -
DINTEGER_CODE=1.

Template Makefile Tokens Expanded by make_rtw

Token Expansion

General purpose
|>ADDITIONAL_LDFLAGS<| Linker flags automatically added by blocks.
|>ALT_MATLAB_BIN<| Alternate full pathname for the MATLAB executable;

value is different than value for MATLAB_BIN token
when the full pathname contains spaces.

|>ALT_MATLAB_ROOT<| Alternate full pathname for the MATLAB installation;
value is different than value for MATLAB_ROOT token
when the full pathname contains spaces.

|>BUILDARGS<| Options passed to make_rtw. This token is provided
so that the contents of your model.mk file changes
when you change the build arguments, thus forcing an
update of modules when your build options change.

|>COMBINE_OUTPUT_UPDATE_FCNS<| True (1) when Single output/update function
is selected, otherwise False (0). Used for the macro
definition -DONESTEPFCN=1.

|>COMPUTER<| Computer type. See the MATLAB computer
command.

|>EXPAND_LIBRARY_LOCATION<| Location of precompiled library file. The
TargetPreCompLibLocation configuration
parameter can override this setting. For examples, see
“Control Library Location and Naming During Build”
(Simulink Coder).

|>EXPAND_LIBRARY_NAME<| Library name. For examples, see “Control Library
Location and Naming During Build” (Simulink Coder)
and “Modify the Template Makefile for rtwmakecfg”
(Simulink Coder).

71-63

71 Custom Target Development in Simulink Coder

Token Expansion

|>EXPAND_LIBRARY_SUFFIX<| Library suffix. The TargetLibSuffix configuration
parameter can override this setting. For examples, see
“Control Library Location and Naming During Build”
(Simulink Coder).

|>EXT_MODE<| True (1) to enable generation of external mode support
code, otherwise False (0).

|>EXTMODE_TRANSPORT<| Index of transport mechanism (for example, tcpip,
serial) for external mode.

|>EXTMODE_STATIC<| True (1) if static memory allocation is selected for
external mode. False (0) if dynamic memory allocation
is selected.

|>EXTMODE_STATIC_SIZE<| Size of static memory allocation buffer (if any) for
external mode.

|>GENERATE_ERT_S_FUNCTION<| True (1) when Create SIL block is selected,
otherwise False (0). Used for control of the makefile
target of the build.

|>INCLUDE_MDL_TERMINATE_FCN<| True (1) when Terminate function required is
selected, otherwise False (0). Used for the macro
definition -DTERMFCN==1.

|>INTEGER_CODE<| True (1) when Support floating-point numbers is
not selected, otherwise False (0). INTEGER_CODE is a
required macro definition when compiling the source
code and is used when selecting precompiled libraries
to link against.

|>MAKEFILE_NAME<| model.mk — The name of the makefile that was
created from the TMF.

|>MAT_FILE<| True (1) when MAT-file logging is selected,
otherwise False (0). MAT_FILE is a required macro
definition when compiling the source code and also is
used to include logging code in the build process.

|>MATLAB_BIN<| Location of the MATLAB executable.
|>MATLAB_ROOT<| Path to where MATLAB is installed.

71-64

 Customize Template Makefiles

Token Expansion

|>MEM_ALLOC<| Either RT_MALLOC or RT_STATIC. Indicates how
memory is to be allocated.

|>MEXEXT<| MEX-file extension. See the MATLAB mexext
command.

|>MODEL_MODULES<| Additional generated source modules. For example,
you can split a large model into two files, model.c
and model1.c. In this case, this token expands to
model1.c.

|>MODEL_MODULES_OBJ<| Object filenames (.obj) corresponding to additional
generated source modules.

|>MODEL_NAME<| Name of the Simulink block diagram currently being
built.

|>MULTITASKING<| True (1) if solver mode is multitasking, otherwise
False (0).

|>NCSTATES<| Number of continuous states.
|>NUMST<| Number of sample times in the model.
|>PORTABLE_WORDSIZES<| True (1) when Enable portable word sizes is

selected, otherwise False (0).
|>RELEASE_VERSION<| The MATLAB release version.
|>S_FUNCTIONS<| List of noninlined S-function sources.
|>S_FUNCTIONS_LIB<| List of S-function libraries available for linking.
|>S_FUNCTIONS_OBJ<| Object (.obj) file list corresponding to noninlined

S-function sources.
|>SOLVER<| Solver source filename, for example, ode3.c.
|>SOLVER_OBJ<| Solver object (.obj) filename, for example, ode3.obj.
|>TARGET_LANG_EXT<| c when the Language selection is C, cpp when the

Language selection is C++. Used in the makefile to
control the extension on generated source files.

|>TGT_FCN_LIB<| Specifies compiler command line options. The line in
the makefile is TGT_FCN_LIB = |>TGT_FCN_LIB<|.
Use this token in a makefile conditional statement to

71-65

71 Custom Target Development in Simulink Coder

Token Expansion

specify a standard math library as a compiler option.
Possible |>TGT_FCN_LIB<| token values are:

Value Generates Calls To

Name of custom CRL ISO®/IEC 9899:1990 C
(ANSI_C) standard math
library

ISO_C ISO/IEC 9899:1999 C
standard math library

ISO_C++ ISO/IEC 14882:2003 C++
standard math library

GNU GNU extensions to the
ISO/IEC 9899:1999 C
standard math library

|>TID01EQ<| True (1) if sampling rates of the continuous task and
the first discrete task are equal, otherwise False (0).

S-function and build information support

Note: For examples of the tokens in this section, see “Modify the Template Makefile for
rtwmakecfg” (Simulink Coder).
|>START_EXPAND_INCLUDES<|

|>EXPAND_DIR_NAME<|

|>END_EXPAND_INCLUDES<|

List of folder names to add to the include path.
Additionally, the ADD_INCLUDES macro must be added
to the INCLUDES line.

|>START_EXPAND_LIBRARIES<|

|>EXPAND_LIBRARY_NAME<|

|>END_EXPAND_LIBRARIES<|

List of library names.

|>START_EXPAND_MODULES<|

|>EXPAND_MODULE_NAME<|

|>END_EXPAND_MODULES<|

Library module names within |
>START_EXPAND_LIBRARIES<| and |
>START_PRECOMP_LIBRARIES<| library lists.

|>START_EXPAND_RULES<|

|>EXPAND_DIR_NAME<|

|>END_EXPAND_RULES<|

Makefile rules.

|>START_PRECOMP_LIBRARIES<| List of precompiled library names.

71-66

 Customize Template Makefiles

Token Expansion

|>EXPAND_LIBRARY_NAME<|

|>END_PRECOMP_LIBRARIES<|

Model reference support

Note: For examples of the tokens in this section, see “Providing Model Referencing Support in the
TMF” on page 71-85.
|>MASTER_ANCHOR_DIR<| For parallel builds, current work folder (pwd) at the

time the build started.
|>MODELLIB<| Name of the library file generated for the current

model.
|>MODELREFS<| List of models referenced by the top model.
|>MODELREF_LINK_LIBS<| List of referenced model libraries against which the

top model links.
|>MODELREF_LINK_RSPFILE_NAME<| Name of a response file against which the top model

links. This token is valid only for build environments
that support linker response files. For an example of
its use, see matlabroot/rtw/c/grt/grt_vc.tmf.

|>MODELREF_TARGET_TYPE<| Type of target being built. Possible values are

• NONE: Standalone model or top model referencing
other models

• RTW: Model reference target build
• SIM: Model reference simulation target build

|>RELATIVE_PATH_TO_ANCHOR<| Relative path, from the location of the generated
makefile, to the MATLAB working folder.

|>START_DIR<| Current work folder (pwd) at the time the build
started. This token is required for parallel builds.

|

>START_MDLREFINC_EXPAND_INCLUDES<|

|>MODELREF_INC_PATH<|

|>END_MDLREFINC_EXPAND_INCLUDES<|

List of include paths for models referenced by the top
model.

|>SHARED_BIN_DIR<| Folder for the library file built from the shared source
files.

71-67

71 Custom Target Development in Simulink Coder

Token Expansion

|>SHARED_LIB<| Library file built from the shared source files,
including the path to the library folder.

|>SHARED_SRC<| Shared source files specification, including the path to
the shared utilities folder.

|>SHARED_SRC_DIR<| Folder for shared source files.

These tokens are expanded by substitution of parameter values known to the build
process. For example, if the source model contains blocks with two different sample
times, the TMF statement

NUMST = |>NUMST<|

expands to the following in model.mk.

NUMST = 2

In addition to the above, make_rtw expands tokens from other sources:

• Target-specific tokens defined in the target options of the Configuration Parameters
dialog box

• Structures in the rtwoptions section of the system target file. Structures in the
rtwoptions structure array that contain the field makevariable are expanded.

The following example is extracted from matlabroot/rtw/c/grt/grt.tlc. The
section starting with BEGIN_RTW_OPTIONS contains MATLAB code that sets up
rtwoptions. The following directive causes the |>EXT_MODE<| token to be expanded to
1 (on) or 0 (off), depending on how you set the external mode options.

rtwoptions(2).makevariable = 'EXT_MODE'

Invoke the make Utility

• “make Command” on page 71-68
• “make Utility Versions” on page 71-69

make Command

After creating model.mk from your TMF, the build process invokes a make command. To
invoke make, the build process issues this command.

makecommand -f model.mk

71-68

 Customize Template Makefiles

makecommand is defined by the MAKECMD macro in your target's TMF (see “Structure of
the Template Makefile” on page 71-69). You can specify additional options to make
in the Make command field of the Code Generation pane. (See the sections “Specify
a Make Command” (Simulink Coder) and “Template Makefiles and Make Options”
(Simulink Coder).)

For example, specifying OPT_OPTS=-O2 in the Make command field causes make_rtw
to generate the following make command.

makecommand -f model.mk OPT_OPTS=-O2

A comment at the top of the TMF specifies the available make command options. If these
options do not provide you with enough flexibility, you can configure your own TMF.

make Utility Versions

The make utility lets you control nearly every aspect of building your real-time program.
There are several different versions of make available. The code generator provides the
Free Software Foundation GNU make for both UNIX11 and PC platforms in platform-
specific subfolders under

matlabroot/bin

It is possible to use other versions of make with the code generator, although GNU Make
is recommended. To be compatible with the code generator, verify that your version of
make supports the following command format.

makecommand -f model.mk

Structure of the Template Makefile

A TMF has multiple sections, including the following:

• Abstract — Describes what the makefile targets. Here is a representative abstract
from the GRT TMFs in matlabroot/rtw/c/grt (open):
File : grt_lcc.tmf

#

Abstract:

Template makefile for building a PC-based stand-alone generic real-time

version of Simulink model using generated C code and LCC compiler

Version 2.4.

#

11. UNIX is a registered trademark of The Open Group in the United States and other countries.

71-69

71 Custom Target Development in Simulink Coder

This makefile attempts to conform to the guidelines specified in the

IEEE Std 1003.2-1992 (POSIX) standard. It is designed to be used

with GNU Make (gmake) which is located in matlabroot/bin/win32.

#

Note that this template is automatically customized by the build

procedure to create "<model>.mk"

#

The following defines can be used to modify the behavior of the

build:

OPT_OPTS - Optimization options. Default is none. To enable

debugging specify as OPT_OPTS=-g4.

OPTS - User specific compile options.

USER_SRCS - Additional user sources, such as files needed by

S-functions.

USER_INCLUDES - Additional include paths

(i.e. USER_INCLUDES="-Iwhere-ever -Iwhere-ever2")

(For Lcc, have a '/'as file seperator before the

file name instead of a '\' .

i.e., d:\work\proj1/myfile.c - reqd for 'gmake')

#

This template makefile is designed to be used with a system target

file that contains 'rtwgensettings.BuildDirSuffix'. See grt.tlc.

• Macros read by make_rtw section — Defines macros that tell make_rtw how to
process the TMF. Here is a representative Macros read by make_rtw section from
the GRT TMFs in matlabroot/rtw/c/grt (open):

#------------------------ Macros read by make_rtw ------------------------------

#

The following macros are read by the build procedure:

#

MAKECMD - The command that invokes the make utility

HOST - The platform (for example, PC) for which this TMF is written

SHELL - An operating system shell command (for example, cmd) for the platform

BUILD - The flag that indicates whether to invoke make from the build procedure

SYS_TARGET_FILE - Name of system target file.

MAKECMD = "%MATLAB%\bin\win32\gmake"

HOST = PC

SHELL = cmd

BUILD = yes

SYS_TARGET_FILE = grt.tlc

BUILD_SUCCESS = *** Created

COMPILER_TOOL_CHAIN = lcc

MAKEFILE_FILESEP = /

The macros in this section might include:

• MAKECMD — Specifies the command used to invoke the make utility. For example,
if MAKECMD = mymake, then the make command invoked is

mymake -f model.mk

71-70

 Customize Template Makefiles

• HOST — Specifies the platform targeted by this TMF. This can be PC, UNIX,
computer_name (see the MATLAB computer command), or ANY.

• SHELL — Specifies an operating system shell command for the platform. For
Windows, this can be cmd.

• BUILD — Instructs make_rtw whether or not it should invoke make from the build
procedure. Specify yes or no.

• SYS_TARGET_FILE — Specifies the name of the system target file or the value
any. This is used for consistency checking by make_rtw to verify the system target
file specified in the Target selection panel of the Code Generation pane of the
Configuration Parameters dialog box. If you specify any, you can use the TMF
with any system target file.

• BUILD_SUCCESS — Optional macro that specifies the build success message to be
displayed for make completion on the PC. For example,

BUILD_SUCCESS = ### Successful creation of

The BUILD_SUCCESS macro, if used, replaces the standard build success message
found in the TMFs distributed with the bundled code generator targets (such as
GRT):

 @echo ### Created executable $(MODEL).exe

Your TMF must include either the standard build success message, or use the
BUILD_SUCCESS macro. For an example of the use of BUILD_SUCCESS, see
matlabroot/rtw/c/grt/grt_lcc.tmf or the code example above this list of
macros.

• BUILD_ERROR — Optional macro that specifies the build error message to be
displayed when an error is encountered during the make procedure. For example,

BUILD_ERROR = ['Error while building ', modelName]

• VERBOSE_BUILD_OFF_TREATMENT = PRINT_OUTPUT_ALWAYS — Optional macro
to include if you want the makefile output to be displayed regardless of the setting
of the Verbose build option in the Code Generation > Debug pane.

• COMPILER_TOOL_CHAIN — For builds on Windows systems, specifies which
compiler setup file — located in matlabroot/toolbox/rtw/rtw (open) — to use:

• lcc selects setup_for_lcc.m
• vc selects setup_for_visual.m

71-71

71 Custom Target Development in Simulink Coder

• vcx64 selects setup_for_visual_x64.m
• default selects setup_for_default.m

For builds on UNIX systems, specify unix. Other values are flagged as unknown
and make_rtw uses setup_for_default.m.

Note: Do not omit COMPILER_TOOL_CHAIN or leave it unspecified in your TMF.
If your compiler is not the host compiler, specify COMPILER_TOOL_CHAIN =
default.

• DOWNLOAD — An optional macro that you can specify as yes or no. If specified
as yes (and BUILD=yes), then make is invoked a second time with the download
target.

make -f model.mk download

• DOWNLOAD_SUCCESS — An optional macro that you can use to specify the
download success message to be used when looking for a completed download. For
example,

DOWNLOAD_SUCCESS = ### Downloaded

• DOWNLOAD_ERROR — An optional macro that you can use to specify the download
error message to be displayed when an error is encountered during the download.
For example,

DOWNLOAD_ERROR = ['Error while downloading ', modelName]

• Tokens expanded by make_rtw section — Defines the tokens that make_rtw
expands. Here is a brief excerpt from a representative Tokens expanded by
make_rtw section from the GRT TMFs in matlabroot/rtw/c/grt (open):

#---------------------- Tokens expanded by make_rtw ----------------------------

#

The following tokens, when wrapped with "|>" and "<|" are expanded by the

build procedure.

#

MODEL_NAME - Name of the Simulink block diagram

MODEL_MODULES - Any additional generated source modules

MAKEFILE_NAME - Name of makefile created from template makefile <model>.mk

MATLAB_ROOT - Path to where MATLAB is installed.

...

MODEL = |>MODEL_NAME<|

MODULES = |>MODEL_MODULES<|

MAKEFILE = |>MAKEFILE_NAME<|

71-72

 Customize Template Makefiles

MATLAB_ROOT = |>MATLAB_ROOT<|

...

For more information about TMF tokens, see Template Makefile Tokens Expanded by
make_rtw.

• Subsequent sections vary based on compiler, host, and target. Some common sections
include Model and reference models, External mode, Tool Specifications
or Tool Definitions, Include Path, C Flags, Additional Libraries, and
Source Files.

• Rules section — Contains the make rules used in building an executable from the
generated source code. The build rules are typically specific to your version of make.
The Rules section might be followed by related sections such as Dependencies.

Customize and Create Template Makefiles

• “Introduction” on page 71-73
• “Setting Up a Template Makefile” on page 71-73
• “Using Macros and Pattern Matching Expressions in a Template Makefile” on page

71-74
• “Customizing Generated Makefiles with rtwmakecfg” on page 71-76
• “Supporting Continuous Time in Custom Targets” on page 71-76
• “Model Reference Considerations” on page 71-77

Introduction

This section describes the mechanics of setting up a custom template makefile (TMF) and
incorporating it into the build process. It also discusses techniques for modifying a TMF
and MATLAB file mechanisms associated with the TMF.

Before creating a custom TMF, you should read “Folder and File Naming Conventions”
on page 71-11 to understand the folder structure and MATLAB path requirements for
custom targets.

Setting Up a Template Makefile

To customize or create a new TMF, you should copy an existing GRT or ERT TMF from
one of the following locations:

matlabroot/rtw/c/grt (open)

matlabroot/rtw/c/ert (open)

71-73

71 Custom Target Development in Simulink Coder

Place the copy in the same folder as the associated system target file (STF). Usually, this
is the mytarget/mytarget folder within the target folder structure. Then, rename your
TMF (for example, mytarget.tmf) and modify it.

To allow the build process to locate and select your TMF, you must provide information
in the STF file header (see “System Target File Structure” on page 71-30). For a target
that implements a single TMF, the standard way to specify the TMF to be used in the
build process is to use the TMF directive of the STF file header.

TMF: mytarget.tmf

Using Macros and Pattern Matching Expressions in a Template Makefile

This section shows, through an example, how to use macros and file-pattern-matching
expressions in a TMF to generate commands in the model.mk file.

The make utility processes the model.mk makefile and generates a set of commands
based upon dependency rules defined in model.mk. After make generates the set of
commands for building or rebuilding test, make executes them.

For example, to build a program called test, make must link the object files. However,
if the object files don't exist or are out of date, make must compile the source code. Thus
there is a dependency between source and object files.

Each version of make differs slightly in its features and how rules are defined. For
example, consider a program called test that gets created from two sources, file1.c
and file2.c. Using most versions of make, the dependency rules would be

test: file1.o file2.o

 cc -o test file1.o file2.o

file1.o: file1.c

 cc -c file1.c

file2.o: file2.c

 cc -c file2.c

In this example, a UNIX12 environment is assumed. In a PC environment the file
extensions and compile and link commands are different.

In processing the first rule

12. UNIX is a registered trademark of The Open Group in the United States and other countries.

71-74

 Customize Template Makefiles

test: file1.o file2.o

make sees that to build test, it needs to build file1.o and file2.o. To build
file1.o, make processes the rule

file1.o: file1.c

If file1.o doesn't exist, or if file1.o is older than file1.c, make compiles file1.c.

The format of TMFs follows the above example. Our TMFs use additional features of
make such as macros and file-pattern-matching expressions. In most versions of make, a
macro is defined with

MACRO_NAME = value

References to macros are made with $(MACRO_NAME). When make sees this form of
expression, it substitutes value for $(MACRO_NAME).

You can use pattern matching expressions to make the dependency rules more general.
For example, using GNU13 Make, you could replace the two “file1.o: file1.c” and
“file2.o: file2.c” rules with the single rule

%.o : %.c

 cc -c $<

Note that $< in the previous example is a special macro that equates to the dependency
file (that is, file1.c or file2.c). Thus, using macros and the "%" pattern matching
character, the previous example can be reduced to

SRCS = file1.c file2.c

OBJS = $(SRCS:.c=.o)

test: $(OBJS)

 cc -o $@ $(OBJS)

%.o : %.c

 cc -c $<

Note that the $@ macro above is another special macro that equates to the name of the
current dependency target, in this case test.

This example generates the list of objects (OBJS) from the list of sources (SRCS) by using
the text substitution feature for macro expansion. It replaces the source file extension

13. GNU is a registered trademark of the Free Software Foundation.

71-75

71 Custom Target Development in Simulink Coder

(for example, .c) with the object file extension (.o). This example also generalized the
build rule for the program, test, to use the special "$@" macro.

Customizing Generated Makefiles with rtwmakecfg

TMFs provide tokens that let you add the following items to generated makefiles:

• Source folders
• Include folders
• Run-time library names
• Run-time module objects

S-functions can add this information to the makefile by using an rtwmakecfg.m file
function. This function is particularly useful when building a model that contains one or
more of your S-Function blocks, such as device driver blocks.

To add information pertaining to an S-function to the makefile,

1 Create the function rtwmakecfg in file rtwmakecfg.m. The code generator
associates this file with your S-function based on its folder location.

2 Modify your target's TMF such that it supports macro expansion for the information
returned by rtwmakecfg functions.

After the TLC phase of the build process, when generating a makefile from the TMF,
the build process searches for an rtwmakecfg.m file in the folder that contains the
S-function component. If it finds the file, the build process calls the rtwmakecfg
function. For more information, see “Use rtwmakecfg.m API to Customize Generated
Makefiles” (Simulink Coder).

Supporting Continuous Time in Custom Targets

If you want your custom ERT-based target to support continuous time, you must update
your template makefile (TMF) and the static main program module (for example,
mytarget_main.c) for your target.

Template Makefile Modifications

Add the NCSTATES token expansion after the NUMST token expansion, as follows:

NUMST = |>NUMST<|

NCSTATES = |>NCSTATES<|

71-76

 Customize Template Makefiles

In addition, add NCSTATES to the CPP_REQ_DEFINES macro, as in the following example:
CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DNUMST=$(NUMST) -DNCSTATES=$(NCSTATES) \

-DMAT_FILE=$(MAT_FILE)

-DINTEGER_CODE=$(INTEGER_CODE) \

-DONESTEPFCN=$(ONESTEPFCN) -DTERMFCN=$(TERMFCN) \

-DHAVESTDIO

-DMULTI_INSTANCE_CODE=$(MULTI_INSTANCE_CODE) \

Modifications to Main Program Module

The main program module defines a static main function that manages task scheduling
for the supported tasking modes of single- and multiple-rate models. NUMST (the number
of sample times in the model) determines whether the main function calls multirate or
single-rate code. However, when a model uses continuous time, do not rely on NUMST
directly.

When the model has continuous time and the flag TID01EQ is true, both continuous
time and the fastest discrete time are treated as one rate in generated code. The code
associated with the fastest discrete rate is guarded by a major time step check. When the
model has only two rates, and TID01EQ is true, the generated code has a single-rate call
interface.

To support models that have continuous time, update the static main module to take
TID01EQ into account, as follows:

1 Before NUMST is referenced in the file, add the following code:

#if defined(TID01EQ) && TID01EQ == 1 && NCSTATES == 0

#define DISC_NUMST (NUMST - 1)

#else

#define DISC_NUMST NUMST

#endif

2 Replace instances of NUMST in the file by DISC_NUMST.

Model Reference Considerations

See “Support Model Referencing” on page 71-83 for important information on TMF
modifications you may need to make to support the code generator model referencing
features.

Note: If you are using a TMF without the variables SHARED_SRC or MODELREFS, the file
might have been used with a previous release of Simulink software. If you want your

71-77

71 Custom Target Development in Simulink Coder

TMF to support model referencing, add either variable SHARED_SRC or MODELREFS to the
make file.

More About
• “About Embedded Target Development” (Simulink Coder)
• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)
• “Custom Target Optional Features” (Simulink Coder)
• “Support Toolchain Approach with Custom Target” (Simulink Coder)

71-78

 Custom Target Optional Features

Custom Target Optional Features

This section describes how to configure a custom embedded target to support these
optional features.

To ... Use Target Configuration
Parameters ...

For more information, see ...

Indicate a custom target is
toolchain-compliant

UseToolchainInfoCompliant

GenerateMakefile

“Support Toolchain Approach
with Custom Target”
(Simulink Coder)

Build a model that
includes referenced
models and uses a custom
target

ModelReferenceCompliant

ParMdlRefBuildCompliant

(parallel build support)

“Support Model Referencing”
(Simulink Coder)

Control the compiler
optimization level building
generated code for a
custom target

CompOptLevelCompliant “Support Compiler
Optimization Level Control”
(Simulink Coder)

Control C function
prototypes of initialize and
step functions that are
generated for a model that
uses a custom target

ModelStepFunctionPrototypeControl-

Compliant (ERT only)
“Support C Function
Prototype Control” (Simulink
Coder)

Control C++ class
interfaces that are
generated for a model that
uses a custom target

CPPClassGenCompliant

(ERT only)
“Support C++ Class Interface
Control” (Simulink Coder)

Enable concurrent
execution of multiple
tasks on a multicore
platform for a model that
uses a custom target

ConcurrentExecutionCompliant“Support Concurrent
Execution of Multiple Tasks”
(Simulink Coder)

The required configuration changes are modifications to your system target file (STF),
and in some cases also modifications to your template makefile (TMF) or your custom
static main program.

71-79

71 Custom Target Development in Simulink Coder

The API for STF callbacks provides a function SelectCallback for use in STFs.
SelectCallback is associated with the target rather than with its individual options.
If you implement a SelectCallback function for a target, it is triggered whenever the
user selects the target in the System Target File Browser.

The API provides the functions slConfigUIGetVal, slConfigUISetEnabled, and
slConfigUISetVal for controlling custom target configuration options from a user-
written SelectCallback function. (For function descriptions and examples, see the
function reference pages.)

The general requirements for supporting one of the optional features include:

• To support model referencing or compiler optimization level control, the target must
be derived from the GRT or the ERT target. To support C function prototype control
or C++ class interface control, the target must be derived from the ERT target.

• The system target file (STF) must declare feature compliance by including one of the
target configuration parameters listed above in a SelectCallback function call.

• Additional changes such as TMF modifications or static main program modifications
may be required, depending on the feature. See the detailed steps in the subsections
for individual features.

For an example that shows how to configure custom target optional features, see
“Customize System Target Files” (Simulink Coder).

More About
• “About Embedded Target Development” (Simulink Coder)
• “Sample Custom Targets” (Simulink Coder)
• “Support Toolchain Approach with Custom Target” (Simulink Coder)
• “Support Model Referencing” (Simulink Coder)
• “Support Compiler Optimization Level Control” (Simulink Coder)
• “Support C Function Prototype Control” (Simulink Coder)
• “Support C++ Class Interface Control” (Simulink Coder)
• “Support Concurrent Execution of Multiple Tasks” (Simulink Coder)

71-80

 Support Toolchain Approach with Custom Target

Support Toolchain Approach with Custom Target

This section describes how to configure a custom system target file to support builds with
the toolchain approach.

In the Configuration Parameters dialog box, on the Code Generation pane of, you can
present either the build controls for the toolchain approach or the template makefile
approach. The model parameters that contribute to determining which build controls
appear include these parameters.

Model Parameter Value Notes

UseToolchainInfoCompliant on For toolchain approach, set this
parameter to 'on'. For TMF
approach, set this parameter to
'off'.

GenerateMakefile on For toolchain approach, set this
parameter to 'on'.

When the dialog box detects that the selected target has these properties, the dialog
box recognizes the target as toolchain-compliant and displays the build controls for the
toolchain approach.

Because the custom target file cannot set these properties directly, use a
SelectCallback function in the custom target file to set the properties. The
SelectCallback function call in the RTW_OPTION section of the TLC file can take the
form:
rtwgensettings.SelectCallback = 'enableToolchainCompliant(hSrc, hDlg)';

A corresponding callback function can contain:
function enableToolchainCompliant(hSrc, hDlg)

 hCS = hSrc.getConfigSet();

 % The following parameters enable toolchain compliance.

 slConfigUISetVal(hDlg, hSrc, 'UseToolchainInfoCompliant', 'on');

 hCS.setProp('GenerateMakefile','on');

 % The following parameters are not required for toolchain compliance.

 % But, it is recommended practice to set these default values and

 % disable the parameters (as shown).

 hCS.setProp('RTWCompilerOptimization','off');

 hCS.setProp('MakeCommand','make_rtw');

 hCS.setPropEnabled('RTWCompilerOptimization',false);

71-81

71 Custom Target Development in Simulink Coder

 hCS.setPropEnabled('MakeCommand',false);

end

When you select your custom target, the configuration parameters dialog box displays
the toolchain approach build controls. For an example, see “Create a Custom Target
Configuration” on page 71-48.

For an example that shows how to configure custom target optional features, see
“Customize System Target Files” (Simulink Coder).

More About
• “Customize System Target Files” (Simulink Coder)
• “Support Model Referencing” (Simulink Coder)
• “Support Compiler Optimization Level Control” (Simulink Coder)
• “Support C Function Prototype Control” (Simulink Coder)
• “Support C++ Class Interface Control” (Simulink Coder)
• “Support Concurrent Execution of Multiple Tasks” (Simulink Coder)

71-82

 Support Model Referencing

Support Model Referencing

This section describes how to configure a custom embedded target to support model
referencing. Without the described modifications, you will not be able to use the custom
target when building a model that includes referenced models. If you do not intend to use
referenced models with your target, you can skip this section. If you later find that you
need to use referenced models, you can upgrade your target then.

In this section...

“About Model Referencing with a Custom Target” on page 71-83
“Declaring Model Referencing Compliance” on page 71-84
“Providing Model Referencing Support in the TMF” on page 71-85
“Controlling Configuration Option Value Agreement” on page 71-88
“Supporting the Shared Utilities Folder” on page 71-88
“Verifying Worker Configuration for Parallel Builds of Model Reference Hierarchies
(Optional)” on page 71-92
“Preventing Resource Conflicts (Optional)” on page 71-94

About Model Referencing with a Custom Target

The requirements for supporting model referencing are as follows:

• The target must be derived from the GRT target or the ERT target.
• The system target file (STF) must declare model reference compliance, as described in

“Declaring Model Referencing Compliance” on page 71-84.
• The template makefile (TMF) must define some entities that support model

referencing, as described in “Providing Model Referencing Support in the TMF” on
page 71-85.

• The TMF must support using the Shared Utilities folder, as described in “Supporting
the Shared Utilities Folder” on page 71-88.

Optionally, you can provide additional capabilities that support model referencing:

• You can configure a target to support parallel builds for large model reference
hierarchies (see “Reduce Build Time for Referenced Models” (Simulink Coder)). To do

71-83

71 Custom Target Development in Simulink Coder

this, you must modify the STF and TMF for parallel builds as described in “Declaring
Model Referencing Compliance” on page 71-84 and “Providing Model Referencing
Support in the TMF” on page 71-85.

• If your target supports parallel builds for large model reference hierarchies, you can
additionally set up automatic verification of MATLAB Distributed Computing Server
workers, as described in “Verifying Worker Configuration for Parallel Builds of Model
Reference Hierarchies (Optional)” on page 71-92.

• You can modify hook files to handle referenced models differently than top models to
prevent resource conflicts, as described in “Preventing Resource Conflicts (Optional)”
on page 71-94.

See “Overview of Model Referencing” (Simulink) for information about model referencing
in Simulink models, and “Generate Code for Referenced Models” (Simulink Coder) for
information about model referencing in generated code.

For an example that shows how to configure custom target optional features, see
“Customize System Target Files” (Simulink Coder).

Declaring Model Referencing Compliance

To declare model reference compliance for your target, you must implement a callback
function that sets the ModelReferenceCompliant flag, and then install the callback
function in the SelectCallback field of the rtwgensettings structure in your STF.
The callback function is triggered whenever the user selects the target in the System
Target File Browser. For example, the following STF code installs a SelectCallback
function named custom_select_callback_handler:
rtwgensettings.SelectCallback = 'custom_select_callback_handler(hDlg,hSrc)';

The arguments to the SelectCallback function (hDlg, hSrc) are handles to private
data used by the callback API functions. These handles are restricted to use in STF
callback functions. They should be passed in without alteration.

Your callback function should set the ModelReferenceCompliant flag as follows:
slConfigUISetVal(hDlg,hSrc,'ModelReferenceCompliant','on');

slConfigUISetEnabled(hDlg,hSrc,'ModelReferenceCompliant',false);

If you might use the target to build models containing large model reference hierarchies,
consider configuring the target to support parallel builds, as discussed in “Reduce Build
Time for Referenced Models” (Simulink Coder).

71-84

 Support Model Referencing

To configure a target for parallel builds, your callback function must also set the
ParMdlRefBuildCompliant flag as follows:
slConfigUISetVal(hDlg,hSrc,'ParMdlRefBuildCompliant','on’);

slConfigUISetEnabled(hDlg,hSrc,'ParMdlRefBuildCompliant',false);

For more information about the STF callback API, see the slConfigUIGetVal,
slConfigUISetEnabled, and slConfigUISetVal function reference pages.

Providing Model Referencing Support in the TMF

Do the following to configure the template makefile (TMF) to support model referencing:

1 Add the following make variables and tokens to be expanded when the makefile is
generated:
MODELREFS = |>MODELREFS<|

MODELLIB = |>MODELLIB<|

MODELREF_LINK_LIBS = |>MODELREF_LINK_LIBS<|

MODELREF_LINK_RSPFILE = |>MODELREF_LINK_RSPFILE_NAME<|

MODELREF_INC_PATH = |>START_MDLREFINC_EXPAND_INCLUDES<|\

 -I|>MODELREF_INC_PATH<| |>END_MDLREFINC_EXPAND_INCLUDES<|

RELATIVE_PATH_TO_ANCHOR = |>RELATIVE_PATH_TO_ANCHOR<|

MODELREF_TARGET_TYPE = |>MODELREF_TARGET_TYPE<|

The following code excerpt shows how makefile tokens are expanded for a referenced
model.
MODELREFS =

MODELLIB = engine3200cc_rtwlib.a

MODELREF_LINK_LIBS =

MODELREF_LINK_RSPFILE =

MODELREF_INC_PATH =

RELATIVE_PATH_TO_ANCHOR = ../../..

MODELREF_TARGET_TYPE = RTW

The following code excerpt shows how makefile tokens are expanded for the top
model that references the referenced model.
MODELREFS = engine3200cc transmission

MODELLIB = archlib.a

MODELREF_LINK_LIBS = engine3200cc_rtwlib.a transmission_rtwlib.a

MODELREF_LINK_RSPFILE =

MODELREF_INC_PATH = -I../slprj/ert/engine3200cc -I../slprj/ert/transmission

RELATIVE_PATH_TO_ANCHOR = ..

MODELREF_TARGET_TYPE = NONE

Token Expands to

MODELREFS for the top model List of referenced model names.

71-85

71 Custom Target Development in Simulink Coder

Token Expands to

MODELLIB Name of the library generated for the model.
MODELREF_LINK_LIBS token for the
top model

List of referenced model libraries that the top
model links against.

MODELREF_LINK_RSPFILE token for
the top model

Name of a response file that the top model
links against. This token is valid only for
build environments that support linker
response files. For an example of its use, see
matlabroot/rtw/c/grt/grt_vc.tmf.

MODELREF_INC_PATH token for the
top model

Include path to the referenced models.

RELATIVE_PATH_TO_ANCHOR Relative path, from the location of the
generated makefile, to the MATLAB working
folder.

MODELREF_TARGET_TYPE Signifies the type of target being built.
Possible values are

• NONE: Standalone model or top model
referencing other models

• RTW: Model reference target build
• SIM: Model reference simulation target

build

If you are configuring your target to support parallel builds, as discussed in “Reduce
Build Time for Referenced Models” (Simulink Coder), you must also add the
following token definitions to your TMF:

START_DIR = |>START_DIR<|

MASTER_ANCHOR_DIR = |>MASTER_ANCHOR_DIR<|

Token Expands to

START_DIR Current work folder (pwd) at the time the
build started.

MASTER_ANCHOR_DIR Current work folder (pwd) at the time the
build started.

71-86

 Support Model Referencing

2 Add RELATIVE_PATH_TO_ANCHOR and MODELREF_INC_PATH include paths to the
overall INCLUDES variable.
INCLUDES = -I. -I$(RELATIVE_PATH_TO_ANCHOR) $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

 $(USER_INCLUDES) $(MODELREF_INC_PATH) $(SHARED_INCLUDES)

3 Change the SRCS variable in your TMF so that it initially lists only common
modules. Additional modules are then appended conditionally, as described in the
next step. For example, change
SRCS = $(MODEL).c $(MODULES) ert_main.c $(ADD_SRCS) $(EXT_SRC)

to

SRCS = $(MODULES) $(S_FUNCTIONS)

4 Create variables to define the final target of the makefile. You can remove variables
that may have existed for defining the final target. For example, remove

PROGRAM = ../$(MODEL)

and replace it with
ifeq ($(MODELREF_TARGET_TYPE), NONE)

 # Top model for RTW

 PRODUCT = $(RELATIVE_PATH_TO_ANCHOR)/$(MODEL)

 BIN_SETTING = $(LD) $(LDFLAGS) -o $(PRODUCT) $(SYSLIBS)

 BUILD_PRODUCT_TYPE = "executable"

 # ERT based targets

 SRCS += $(MODEL).c ert_main.c $(EXT_SRC)

 # GRT based targets

 # SRCS += $(MODEL).c grt_main.c rt_sim.c $(EXT_SRC) $(SOLVER)

else

 # sub-model for RTW

 PRODUCT = $(MODELLIB)

 BUILD_PRODUCT_TYPE = "library"

endif

5 Create rules for the final target of the makefile (replace existing final target rules).
For example:
ifeq ($(MODELREF_TARGET_TYPE),NONE)

 # Top model for RTW

 $(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS) $(MODELREF_LINK_LIBS)

 $(BIN_SETTING) $(LINK_OBJS) $(MODELREF_LINK_LIBS)

 $(SHARED_LIB) $(LIBS)

 @echo "### Created $(BUILD_PRODUCT_TYPE): $@"

else

 # sub-model for RTW

 $(PRODUCT) : $(OBJS) $(SHARED_LIB) $(LIBS)

 @rm -f $(MODELLIB)

 $(ar) ruvs $(MODELLIB) $(LINK_OBJS)

71-87

71 Custom Target Development in Simulink Coder

 @echo "### Created $(MODELLIB)"

 @echo "### Created $(BUILD_PRODUCT_TYPE): $@"

endif

6 Create a rule to allow referenced models to compile files that reside in the MATLAB
working folder (pwd).

%.o : $(RELATIVE_PATH_TO_ANCHOR)/%.c

 $(CC) -c $(CFLAGS) $<

Note: If you are using a TMF without the variables SHARED_SRC or MODELREFS, the file
might have been used with a previous release of Simulink software. If you want your
TMF to support model referencing, add either variable SHARED_SRC or MODELREFS to the
make file.

Controlling Configuration Option Value Agreement

By default, the value of a configuration option defined in the system target file for a TLC-
based custom target must be the same in any referenced model and its parent model.
To relax this requirement, include the modelReferenceParameterCheck field in the
rtwoptions structure element that defines the configuration option, and set the value of
the field to 'off'. For example:

rtwoptions(2).prompt = 'My Custom Parameter';

rtwoptions(2).type = 'Checkbox';

rtwoptions(2).default = 'on';

rtwoptions(2).modelReferenceParameterCheck = 'on';

rtwoptions(2).tlcvariable = 'mytlcvariable';

...

The configuration option My Custom Parameter can differ in a referenced model and
its parent model. See “Customize System Target Files” on page 71-29 for information
about TLC-based system target files, and rtwoptions Structure Fields Summary for a list
of rtwoptions fields.

Supporting the Shared Utilities Folder

• “Overview” on page 71-89
• “Implementing Shared Utilities Folder Support” on page 71-90

71-88

 Support Model Referencing

Overview

The makefile used by the build process must support compiling and creating libraries,
and so on, from the locations in which the code is generated. Therefore, you need to
update your makefile and the model reference build process to support the shared
utilities location. The Shared code placement options have the following requirements:

• Auto

• Standalone model build — Build files go to the build folder; makefile is not
updated.

• Referenced model or top model build — Use shared utilities folder; makefile
requires full model reference support.

• Shared location

• Standalone model build — Use shared utilities folder; makefile requires shared
location support.

• Referenced model or top model build — Use shared utilities folder; makefile
requires full model reference support.

The shared utilities folder (slprj/target/_sharedutils) typically stores generated
utility code that is common between a top model and the models it references. You can
also force the build process to use a shared utilities folder for a standalone model. See
“Manage Build Process Folders” (Simulink Coder) for details.

If you want your target to support compilation of code generated in the shared utilities
folder, several updates to your template makefile (TMF) are required. Support for Model
Reference builds requires the shared utilities folder. See the preceding sections to learn
about additional updates for supporting Model Reference builds.

The exact syntax of the changes can vary due to differences in the make utility and
compiler/archiver tools used by your target. The examples below are based on the GNU14

make utility. You can find the following updated TMF examples for GNU and Microsoft
Visual C++ make utilities in the GRT and ERT target folders:

• GRT: matlabroot/rtw/c/grt (open)

• grt_lcc.tmf

• grt_vc.tmf

14. GNU is a registered trademark of the Free Software Foundation.

71-89

71 Custom Target Development in Simulink Coder

• grt_unix.tmf

• ERT: matlabroot/rtw/c/ert (open)

• ert_lcc.tmf

• ert_vc.tmf

• ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of the changes
and additions described below.

Note The ERT-based TMFs contain extra code to handle generation of ERT S-functions
and Model Reference simulation targets. Your target does not need to handle these cases.

Implementing Shared Utilities Folder Support

Make the following changes to your TMF to support the shared utilities folder:

1 Add the following make variables and tokens to be expanded when the makefile is
generated:

SHARED_SRC = |>SHARED_SRC<|

SHARED_SRC_DIR = |>SHARED_SRC_DIR<|

SHARED_BIN_DIR = |>SHARED_BIN_DIR<|

SHARED_LIB = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities folder location and the source files in it. A
typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as in the
following expansion.

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate folders for
shared source files and the library compiled from the source files. In the current
release, the TMFs use the same path, as in the following expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils

71-90

 Support Model Referencing

SHARED_BIN_DIR = ../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities are in use.
Then append it to the overall INCLUDES variable.

SHARED_INCLUDES =

ifneq ($(SHARED_SRC_DIR),)

SHARED_INCLUDES = -I$(SHARED_SRC_DIR)

endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

 $(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o : $(SHARED_SRC_DIR)/%.c

 $(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

7 Provide a rule to create a library of the shared utilities. The following example is
based on UNIX15.

$(SHARED_LIB) : $(SHARED_OBJS)

 @echo "### Creating $@ "

 ar r $@ $(SHARED_OBJS)

 @echo "### Created $@ "

Note: Depending on your make utility, you may be able to combine Steps 6 and 7
into one rule. For example, gmake (used with ert_unix.tmf) uses:
$(SHARED_LIB) : $(SHARED_SRC)

 @echo "### Creating $@ "

 cd $(SHARED_BIN_DIR); $(CC) -c $(CFLAGS) $(GCC_WALL_FLAG_MAX) $(notdir $?)

 ar ruvs $@ $(SHARED_OBJS)

 @echo "### $@ Created "

15. UNIX is a registered trademark of The Open Group in the United States and other countries.

71-91

71 Custom Target Development in Simulink Coder

See this and other examples in the files ert_vc.tmf, ert_lcc.tmf, and
ert_unix.tmf located at matlabroot/rtw/c/ert (open).

8 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)

 $(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS)

$(SHARED_LIB) $(SYSLIBS)

 @echo "### Created executable: $(MODEL)"

9 Remove explicit references to rt_nonfinite.c from your TMF. For example,
change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

Note If your target interfaces to a development environment that is not makefile
based, you must make equivalent changes to provide information to your target
compilation environment.

Verifying Worker Configuration for Parallel Builds of Model Reference
Hierarchies (Optional)

If your target supports parallel builds for large model reference hierarchies, you can
additionally set up automatic verification of MATLAB Distributed Computing Server
workers. This addresses the possibility that parallel workers might have different
configurations, some of which might not be compatible with a specific target build. For
example, the required compiler might not be installed on a worker system.

The code generator provides a programming interface that you can use to automatically
check the configuration of parallel workers. If parallel workers are not set up as expected,
take action, such as reverting to sequential builds or throwing an error.

To set up automatic verification of workers, you must define a parallel configuration
check function named STF_par_cfg_chk, where STF designates your system target
file name. For example, the parallel configuration check function for ert.tlc is
ert_par_cfg_chk.

71-92

 Support Model Referencing

The general syntax for the function is:

function varargout = STF_par_cfg_chk(action,varargin)

The number of output and input arguments vary according to the action specified,
and according to the types of information you choose to coordinate between the client
and the workers. The function should support the following general sequence of parallel
configuration setup calls, differentiated by the first argument passed in:

Call Syntax Called on: Action

cfg = STF_par_cfg_chk

('getPreferredCfg');

Client Return a structure representing the preferred
configuration for MATLAB Distributed Computing
Server workers.

[tf, cfg] =

STF_par_cfg_chk

('getWorkerCfg', cfg);

Workers Each worker is passed the MATLAB Distributed
Computing Server client’s preferred configuration.
Return true if the worker can support the preferred
configuration; otherwise return false along with a
structure representing a configuration the worker can
support. Information returned by each worker is added
to a cell array of configurations.

[tf, cfg] =

STF_par_cfg_chk

('getCommonCfg', cfgs);

Client The client is passed the cell array of worker
configurations. If a usable common configuration
exists, return true, and return the common
configuration to set for all systems. If a common
configuration cannot be established, return false or
take some action, such as reverting to sequential
builds or throwing an error.

tf = STF_par_cfg_chk

('setCommonCfg', cfg);

Workers
and client

Each system is passed the common configuration
to use. Set up the common configuration and, if
successful, return true. If errors or issues occur,
return false or take some action, such as reverting to
sequential builds or throwing an error.

STF_par_cfg_chk

('clearCfg');

Workers
and client

Clean up after completion of the parallel build.

The parallel configuration check functions for MathWorks provided
targets are implemented as wrapper functions that call a function named
parallelMdlRefHostConfigCheckFcn. For example, see the ERT parallel
configuration check function in the file matlabroot/toolbox/rtw/rtw/

71-93

71 Custom Target Development in Simulink Coder

ert_par_cfg_chk.m, and the function it calls in the file matlabroot/toolbox/
simulink/simulink/+Simulink/parallelMdlRefHostConfigCheckFcn.m. The
parallelMdlRefHostConfigCheckFcn function tries to establish a common compiler
across the MATLAB Distributed Computing Server client and workers.

For more information about parallel builds, see “Reduce Build Time for Referenced
Models” (Simulink Coder).

Preventing Resource Conflicts (Optional)

Hook files are optional TLC and MATLAB program files that are invoked at well-
defined stages of the build process. Hook files let you customize the build process and
communicate information between various phases of the process.

If you are adapting your custom target for code generation compatibility with model
reference features, consider adding checks to your hook files for handling referenced
models differently than top models to prevent resource conflicts.

For example, consider adding the following check to your STF_make_rtw_hook.m file:
% Check if this is a referenced model

mdlRefTargetType = get_param(codeGenModelName,`ModelReferenceTargetType');

isNotModelRefTarget = strcmp(mdlRefTargetType, `NONE'); % NONE, SIM, or RTW

if isNotModelRefTarget

 % code that is specific to the top model

else

 % code that is specific to the referenced model

end

You may need to do a similar check in your TLC code.

%if !IsModelReferenceTarget()

 %% code that is specific to the top model

%else

 %% code that is specific to the referenced model

%endif

More About
• “About Embedded Target Development” (Simulink Coder)
• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)

71-94

 Support Compiler Optimization Level Control

Support Compiler Optimization Level Control

This section describes how to configure a custom embedded target to support compiler
optimization level control. Without the described modifications, you will not be able
to use the Compiler optimization level parameter on the All Parameters tab of
the Configuration Parameters dialog box to control the compiler optimization level for
building generated code. (For more information about compiler optimization level control,
see “Compiler optimization level” (Simulink Coder).)

In this section...

“About Compiler Optimization Level Control and Custom Targets” on page 71-95
“Declaring Compiler Optimization Level Control Compliance” on page 71-95
“Providing Compiler Optimization Level Control Support in the Target Makefile” on
page 71-96

About Compiler Optimization Level Control and Custom Targets

The requirements for supporting compiler optimization level control are as follows:

• The target must be derived from the GRT target or the ERT target.
• The system target file (STF) must declare compiler optimization level control

compliance, as described in “Declaring Compiler Optimization Level Control
Compliance” on page 71-95.

• The target makefile must honor the setting for Compiler optimization level, as
described in “Providing Compiler Optimization Level Control Support in the Target
Makefile” on page 71-96.

For an example that shows how to configure custom target optional features, see
“Customize System Target Files” (Simulink Coder).

Declaring Compiler Optimization Level Control Compliance

To declare compiler optimization level control compliance for your target, you must
implement a callback function that sets the CompOptLevelCompliant flag, and then
install the callback function in the SelectCallback field of the rtwgensettings
structure in your STF. The callback function is triggered whenever the user selects the
target in the System Target File Browser. For example, the following STF code installs a
SelectCallback function named custom_select_callback_handler:

71-95

71 Custom Target Development in Simulink Coder

rtwgensettings.SelectCallback = 'custom_select_callback_handler(hDlg,hSrc)';

The arguments to the SelectCallback function (hDlg, hSrc) are handles to private
data used by the callback API functions. These handles are restricted to use in STF
callback functions. They should be passed in without alteration.

Your callback function should set the CompOptLevelCompliant flag as follows:
slConfigUISetVal(hDlg,hSrc,'CompOptLevelCompliant','on');

slConfigUISetEnabled(hDlg,hSrc,'CompOptLevelCompliant',false);

For more information about the STF callback API, see the slConfigUIGetVal,
slConfigUISetEnabled, and slConfigUISetVal function reference pages.

When the CompOptLevelCompliant target configuration parameter is set to on, the
Compiler optimization level parameter is displayed in the Code Generation pane of
the Configuration Parameters dialog box for your model.

Providing Compiler Optimization Level Control Support in the Target
Makefile

As part of supporting compiler optimization level control for your target, you must modify
the target makefile to honor the setting for Compiler optimization level. Use a GRT or
ERT target provided by MathWorks as a model for making the modifications.

More About
• “About Embedded Target Development” (Simulink Coder)
• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)

71-96

 Support C Function Prototype Control

Support C Function Prototype Control

This section describes how to configure a custom embedded target to support C function
prototype control. Without the described modifications, you will not be able to use the
Configure Model Functions button on the Interface pane of the Configuration
Parameters dialog box to control the function prototypes of initialize and step functions
that are generated for your model. For more information about C function prototype
control, see “Control Generation of Function Prototypes” on page 26-2.

In this section...

“About C Function Prototype Control and Custom Targets” on page 71-97
“Declaring C Function Prototype Control Compliance” on page 71-97
“Providing C Function Prototype Control Support in the Custom Static Main Program”
on page 71-98

About C Function Prototype Control and Custom Targets

The requirements for supporting C function prototype control are as follows:

• The target must be derived from the ERT target.
• The system target file (STF) must declare C function prototype control compliance, as

described in “Declaring C Function Prototype Control Compliance” on page 71-97.
• If your target uses a custom static main program, and if a nondefault function

prototype control configuration is associated with a model, the static main program
must call the function prototype controlled initialize and step functions, as described
in “Providing C Function Prototype Control Support in the Custom Static Main
Program” on page 71-98.

For an example that shows how to configure custom target optional features, see
“Customize System Target Files” (Simulink Coder).

Declaring C Function Prototype Control Compliance

To declare C function prototype control compliance for your target, you must implement
a callback function that sets the ModelStepFunctionPrototypeControlCompliant
flag, and then install the callback function in the SelectCallback field of the
rtwgensettings structure in your STF. The callback function is triggered

71-97

71 Custom Target Development in Simulink Coder

whenever the user selects the target in the System Target File Browser. For
example, the following STF code installs a SelectCallback function named
custom_select_callback_handler:
rtwgensettings.SelectCallback = 'custom_select_callback_handler(hDlg,hSrc)';

The arguments to the SelectCallback function (hDlg, hSrc) are handles to private
data used by the callback API functions. These handles are restricted to use in STF
callback functions. They should be passed in without alteration.

Your callback function should set the
ModelStepFunctionPrototypeControlCompliant flag as follows:
slConfigUISetVal(hDlg,hSrc,'ModelStepFunctionPrototypeControlCompliant','on');

slConfigUISetEnabled(hDlg,hSrc,'ModelStepFunctionPrototypeControlCompliant',false);

For more information about the STF callback API, see the slConfigUIGetVal,
slConfigUISetEnabled, and slConfigUISetVal function reference pages.

When the ModelStepFunctionPrototypeControlCompliant target configuration
parameter is set to on, you can use the Configure Model Functions button on the
Interface pane of the Configuration Parameters dialog box to control the function
prototypes of initialize and step functions that are generated for your model.

Providing C Function Prototype Control Support in the Custom Static Main
Program

If your target uses a custom static main program, and if a nondefault function prototype
control configuration is associated with a model, you must update the static main
program to call the function prototype controlled initialize and step functions. You can do
this in either of the following ways:

1 Manually adapt your static main program to declare model data and call the function
prototype controlled initialize and step functions.

2 Generate your main program using Generate an example main program on the
Templates pane of the Configuration Parameters dialog box. The generated main
program declares model data and calls the function prototype controlled initialize
and step function.

More About
• “About Embedded Target Development” (Simulink Coder)

71-98

 Support C Function Prototype Control

• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)

71-99

71 Custom Target Development in Simulink Coder

Support C++ Class Interface Control
This section describes how to configure a custom embedded target to support C++ class
interface control. Without the described modifications, you will not be able to use C++
class code interface packaging and the Configure C++ Class Interface button on the
Interface pane of the Configuration Parameters dialog box to generate and configure C+
+ class interfaces to model code. For more information about C++ class interface control,
see “Control Generation of C++ Class Interfaces” on page 26-23.

In this section...

“About C++ Class Interface Control and Custom Targets” on page 71-100
“Declaring C++ Class Interface Control Compliance” on page 71-100
“Providing C++ Class Interface Control Support in the Custom Static Main Program” on
page 71-101

About C++ Class Interface Control and Custom Targets

The requirements for supporting C++ class interface control are as follows:

• The target must be derived from the ERT target.
• The system target file (STF) must declare C++ class interface control compliance, as

described in “Declaring C++ Class Interface Control Compliance” on page 71-100.

For an example that shows how to configure custom target optional features, see
“Customize System Target Files” (Simulink Coder).

Declaring C++ Class Interface Control Compliance

To declare C++ class interface control compliance for your target, you must implement
a callback function that sets the CPPClassGenCompliant flag, and then install the
callback function in the SelectCallback field of the rtwgensettings structure
in your STF. The callback function is triggered whenever the user selects the target
in the System Target File Browser. For example, the following STF code installs a
SelectCallback function named custom_select_callback_handler:
rtwgensettings.SelectCallback = 'custom_select_callback_handler(hDlg,hSrc)';

The arguments to the SelectCallback function (hDlg, hSrc) are handles to private
data used by the callback API functions. These handles are restricted to use in STF
callback functions. They should be passed in without alteration.

71-100

 Support C++ Class Interface Control

Your callback function should set the CPPClassGenCompliant flag as follows:
slConfigUISetVal(hDlg,hSrc,'CPPClassGenCompliant','on');

slConfigUISetEnabled(hDlg,hSrc,'CPPClassGenCompliant',false);

For more information about the STF callback API, see the slConfigUIGetVal,
slConfigUISetEnabled, and slConfigUISetVal function reference pages.

When the CPPClassGenCompliant target configuration parameter is set to on, you can
use the C++ class code interface packaging and the Configure C++ Class Interface
button on the Interface pane of the Configuration Parameters dialog box to generate
and configure C++ class interfaces to model code.

Providing C++ Class Interface Control Support in the Custom Static Main
Program

Selecting C++ class code interface packaging for your model turns on the model option
Generate an example main program. With this option on, code generation generates
an example main program, ert_main.cpp. The generated example main program
declares model data and calls the C++ class interface configured model step method, and
illustrates how the generated code can be deployed.

To customize the build process and disable generation and inclusion of an example
main program, see the setTargetProvidesMain function. Disabling example main
generation permits including a custom main program.

More About
• “About Embedded Target Development” (Simulink Coder)
• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)

71-101

71 Custom Target Development in Simulink Coder

Support Concurrent Execution of Multiple Tasks

If a custom embedded target must support concurrent execution of multiple tasks on a
multicore platform, the target must declare support for concurrent execution by setting
the target configuration option ConcurrentExecutionCompliant. Otherwise, you will
not be able to configure a multicore target model for concurrent execution.

If ConcurrentExecutionCompliant is not already configured for your custom target,
you can set the option in the following ways:

• Include the following code directly in your system target file (mytarget.tlc):
rtwgensettings.SelectCallback = 'slConfigUISetVal(hDlg,hSrc,...

''ConcurrentExecutionCompliant'',''on'');';

rtwgensettings.ActivateCallback = 'slConfigUISetVal(hDlg,hSrc,...

''ConcurrentExecutionCompliant'',''on'');';

• Implement a callback function that sets the ConcurrentExecutionCompliant
option, and then install the callback function in the SelectCallback field of
the rtwgensettings structure in your STF. The callback function is triggered
whenever the user selects the target in the System Target File Browser. For
example, the following STF code installs a SelectCallback function named
custom_select_callback_handler:
rtwgensettings.SelectCallback = 'custom_select_callback_handler(hDlg,hSrc)';

The arguments to the SelectCallback function (hDlg, hSrc) are handles to private
data used by the callback API functions. These handles are restricted to use in STF
callback functions. They should be passed in without alteration.

Your callback function should set the ConcurrentExecutionCompliant option as
follows:
slConfigUISetVal(hDlg,hSrc,'ConcurrentExecutionCompliant','on');

slConfigUISetEnabled(hDlg,hSrc,'ConcurrentExecutionCompliant',false);

For more information about the STF callback API, see the slConfigUIGetVal,
slConfigUISetEnabled, and slConfigUISetVal function reference pages.

When the ConcurrentExecutionCompliant target configuration option is set to
'on', you can select the custom target and configure your multicore target model for
concurrent execution.

For an example that shows how to configure custom target optional features, see
“Customize System Target Files” (Simulink Coder).

71-102

 Support Concurrent Execution of Multiple Tasks

More About
• “About Embedded Target Development” (Simulink Coder)
• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)

71-103

71 Custom Target Development in Simulink Coder

Interface to Development Tools

Unless you are developing a target purely for code generation purposes, you will want
your embedded target to support a complete build process. A full post-code generation
build process includes

• Compilation of generated code
• Linking of compiled code and runtime libraries into an executable program module (or

some intermediate representation of the executable code, such as S-Rec format)
• Downloading the executable to target hardware with a debugger or other utility
• Initiating execution of the downloaded program

Supporting a complete build process is inherently a complex task, because it involves
interfacing to cross-development tools and utilities that are external to the code
generator.

If your development tools can be controlled with traditional makefiles and a make utility
such as gmake, it may be relatively simple for you to adapt existing target files (such
as the ert.tlc and ert.tmf files provided by the Embedded Coder software) to your
requirements. This approach is discussed in “Template Makefile Approach” on page
71-105.

In this section...

“About Interfacing to Development Tools” on page 71-104
“Template Makefile Approach” on page 71-105
“Interface to an Integrated Development Environment” on page 71-105

About Interfacing to Development Tools

Automating your build process through a modern integrated development environment
(IDE) presents a different set of challenges. Each IDE has its own way of representing
the set of source files and libraries for a project and for specifying build arguments.
Interfacing to an IDE may require generation of specialized file formats required by the
IDE (for example, project files) and, and also may require the use of inter-application
communication (IAC) techniques to run the IDE. One such approach to build automation
is discussed in “Interface to an Integrated Development Environment” on page 71-105.

71-104

 Interface to Development Tools

Template Makefile Approach

A template makefile provides information about your model and your development
system. The build process uses this information to create a makefile (.mk file) to build
an executable program. The code generator provides a number of template makefiles
suitable for development computer compilers, such as LCC (ert_lcc.tmf) and Microsoft
Visual C++ (ert_vc.tmf).

Adapting one of the existing template makefiles to your cross-compiler's make utility
may require little more than copying and renaming the template makefile in accordance
with the conventions of your project.

If you need to make more extensive modifications, you need to understand template
makefiles in detail. For a detailed description of the structure of template makefiles and
of the tokens used in template makefiles, see “Customize Template Makefiles” on page
71-62.

The following topics supplement the basic template makefile information:

• “Supporting Multiple Development Environments” on page 71-48
• “Supplying Development Environment Information to Your Template Makefile” on

page 71-26

Interface to an Integrated Development Environment

This section describes techniques that have been used to integrate embedded targets
with integrated development environment (IDEs), including

• How to generate a header file containing directives to define variables (and their
values) required by a non-makefile based build.

• Some problems and solutions specific to interfacing embedded targets with the
Freescale Semiconductor CodeWarrior IDE. The examples provided should help you to
deal with similar interfacing problems with your particular IDE.

• “Generating a CPP_REQ_DEFINES Header File” on page 71-105
• “Interfacing to the Freescale CodeWarrior IDE” on page 71-107

Generating a CPP_REQ_DEFINES Header File

In template makefiles, the token CPP_REQ_DEFINES is expanded and replaced with a
list of parameter settings entered with various dialog boxes. This variable often contains

71-105

71 Custom Target Development in Simulink Coder

information such as MODEL (name of generating model), NUMST (number of sample times
in the model), MT (model is multitasking or not), and numerous other parameters (see
“Template Makefiles and Tokens” on page 71-62).

The makefile mechanism handles the CPP_REQ_DEFINES token automatically. If your
target requires use of a project file, rather than the traditional makefile approach, you
can generate a header file containing directives to define these variables and provide
their values.

The following TLC file, gen_rtw_req_defines.tlc, provides an example. The code
generates a C header file, cpp_req_defines.h. The information required to generate
each #define directive is derived either from information in the model.rtw file (e.g.,
CompiledModel.NumSynchronousSampleTimes), or from make variables from the
rtwoptions structure (for example, PurelyIntegerCode).

%% File: gen_rtw_req_defines_h.tlc

%openfile CPP_DEFINES = "cpp_req_defines.h"

#ifndef _CPP_REQ_DEFINES_

#define _CPP_REQ_DEFINES_

#define MODEL %<CompiledModel.Name>

#define ERT 1

#define NUMST %<CompiledModel.NumSynchronousSampleTimes>

#define TID01EQ %<CompiledModel.FixedStepOpts.TID01EQ>

%%

%if CompiledModel.FixedStepOpts.SolverMode == "MultiTasking"

#define MT 1

#define MULTITASKING 1

%else

#define MT 0

#define MULTITASKING 0

%endif

%%

#define MAT_FILE 0

#define INTEGER_CODE %<PurelyIntegerCode>

#define ONESTEPFCN %<CombineOutputUpdateFcns>

#define TERMFCN %<IncludeMdlTerminateFcn>

%%

#define MULTI_INSTANCE_CODE 0

#define HAVESTDIO 0

#endif

%closefile CPP_DEFINES

71-106

 Interface to Development Tools

Interfacing to the Freescale CodeWarrior IDE

Interfacing an embedded target's build process to the CodeWarrior IDE requires that two
problems must be dealt with:

• The build process must generate a CodeWarrior compatible project file. This problem,
and a solution, is discussed in “XML Project Import” on page 71-107. The solution
described is applicable to ASCII project file formats.

• During code generation, the target must automate a CodeWarrior session that opens
a project file and builds an executable. This task is described in “Build Process
Automation” on page 71-112. The solution described is applicable to IDEs that can
be controlled with Microsoft Component Object Model (COM) automation.

XML Project Import

This section illustrates how to use the Target Language Compiler (TLC) to generate an
eXtensible Markup Language (XML) file, suitable for import into the CodeWarrior IDE,
that contains information about the source code generated by an embedded target.

The choice of XML format is dictated by the fact that the CodeWarrior IDE supports
project export and import with XML files. As of this writing, native CodeWarrior project
files are in a proprietary binary format.

Note that if your target needs to support some other compiler's project file format, you
can apply the techniques shown here to other ASCII file formats (see “Generating a
CPP_REQ_DEFINES Header File” on page 71-105).

To illustrate the basic concept, consider a hypothetical XML file exported from a
CodeWarrior stationery project. The following is a partial listing:

<target>

 <settings>

 ...

 <\settings>

 <file><name>foo.c<\name>

 <\file>

 ...

 <file><name>foobar.c<\name>

 <\file>

 <fileref><name>foo.c<\name>

 <\fileref>

 ...

 <fileref><name>foobar.c<\name>

71-107

71 Custom Target Development in Simulink Coder

 <\fileref>

<\target>

71-108

 Interface to Development Tools

Insert this XML code into an %openfile/%closefile block within a TLC file,
test.tlc, as shown below.

%% test.tlc

%% This code will generate a file model_project.xml,

%% where model is the generating model name specified in

%% the CompiledModel.Name field of the model.rtw file.

%openfile XMLFileContents = %<CompiledModel.Name>_project.xml

<target>

 <settings>

 ...

 <\settings>

 <file><name>%<CompiledModel.Name>.c<\name>

 <\file>

 ...

 <file><name>foobar.c<\name>

 <\file>

 <fileref><name>%<CompiledModel.Name>.c<\name>

 <\fileref>

 ...

 <fileref><name>foobar.c<\name>

 <\fileref>

<\target>

%closefile XMLFileContents

%selectfile NULL_FILE

Note the use of the TLC token CompiledModel.Name. The token is resolved and the
resulting filename is included in the output stream. You can specify other information,
such as paths and libraries, in the output stream by specifying other tokens defined in
model.rtw. For example, System.Name may be defined as <Root>/Subsystem1.

Now suppose that test.tlc is invoked during a target's build process, where the
generating model is mymodel. This should be done after the codegenentry statement.
For example, test.tlc could be included directly in the system target file:

%include "codegenentry.tlc"

%include "test.tlc"

Alternatively, the %include "test.tlc" directive could be inserted into the
mytarget_genfiles.tlc hook file, if present.

TLC tokens such as

<file><name>%<CompiledModel.Name>.c<\name>

71-109

71 Custom Target Development in Simulink Coder

are expanded, with the CompiledModel record in the mymodel.rtw file, as in

<file><name>mymodel.c<\name>

test.tlc generates an XML file, file model_project.xml, from a model.
model_project.xml contains references to generated code files. model_project.xml
can be imported into the CodeWarrior IDE as a project.

The following flowchart summarizes this process.

71-110

 Interface to Development Tools

proj.mcp: CodeWarrior
project binary stationery file

Code Warrior (manual): Export to XML.

proj.xml: XML project file

proj_gen.tlc:TLC file for
generating XML file

model_project.xml:
Generated XML project file
with generated file references
and target-specific
information

model_project.mcp:
CodeWarrior project binary
file

Text editor (manual): Add TLC tokens to
generate references to model files, MATLAB
and other paths, and other settings. Embed
the XML code marked with tokens in
openfile/closefile block. Save as
proj_gen.tlc.

TLC: During code generation, expand TLC
tokens and generate XML project file,
model_project.xml.

Code Warrior (manual or with script):
Import from XML.

Code Warrior (manual or with script):
Build project as indicated in "Build
Process Automation".

Note This process has drawbacks. First, manually editing an XML file exported from a
CodeWarrior stationery project can be a laborious task, involving modification of a few

71-111

71 Custom Target Development in Simulink Coder

dozen lines embedded within several thousand lines of XML code. Second, if you make
changes to the CodeWarrior project after importing the generated XML file, the XML file
must be exported and manually edited once again.

Build Process Automation

An application that supports COM automation can control other applications that
include a COM interface. Using MATLAB COM automation functions, a MATLAB file
can command a COM-compatible development system to execute tasks required by the
build process.

The MATLAB COM automation functions described in this section are documented in
“Call COM Objects” (MATLAB).

For information about automation commands supported by the CodeWarrior IDE, see
your CodeWarrior documentation.

COM automation is used by some embedded targets to automate the CodeWarrior IDE to
execute tasks such as:

• Opening a new CodeWarrior session
• Configure a project
• Loading a CodeWarrior project file
• Removing object code from the project
• Building or rebuilding the project
• Debug an application

COM technology automates certain repetitive tasks and allows the user to interact
directly with the external application. For example, when the end user of the embedded
targets capability initiates a build, the target quickly invokes CodeWarrior actions and
leaves a project built and ready to run with the IDE.

Example COM Automation Functions

The functions below use the MATLAB actxserver command to invoke COM functions
for controlling the CodeWarrior IDE from a MATLAB file:

• CreateCWComObject: Create a COM connection to the CodeWarrior IDE.
• OpenCW: Open the CodeWarrior IDE without opening a project.

71-112

 Interface to Development Tools

• OpenMCP: Open the CodeWarrior project file (.mcp file) specified by the input
argument.

• BuildCW: Open the specified .mcp file, remove object code, and build project.

These functions are examples; they do not constitute a full implementation of a COM
automation interface. If your target creates the project file during code generation,
the top-level BuildCW function should be called after the code generation process
is completed. Normally BuildCW would be called from the exit method of your
STF_make_rtw_hook.m file (see “STF_make_rtw_hook.m” on page 71-21).

In the code examples, the variable in_qualifiedMCP is assumed to store a fully
qualified path to a CodeWarrior project file (for example, path, filename, and extension).
For example:

in_qualifiedMCP = 'd:\work\myproject.mcp';

In actual practice, your code is responsible for determining the conventions used for the
project filename and location. One simple convention would be to default to a project file
model.mcp, located in your target's build folder.
%==

% Function: CreateCWComObject

% Abstract: Creates the COM connection to CodeWarrior

%

function ICodeWarriorApp = CreateCWComObject

 vprint([mfilename ': creating CW com object']);

 try

 ICodeWarriorApp = actxserver('CodeWarrior.CodeWarriorApp');

 catch

 error(['Error creating COM connection to ' ComObj ...

 '. Verify that CodeWarrior is installed. Verify COM access to

CodeWarrior outside of MATLAB.']);

 end

 return;

%==

% Function: OpenCW

% Abstract: Opens CodeWarrior without opening a project. Returns the

% handle ICodeWarriorApp.

%

function ICodeWarriorApp = OpenCW()

 ICodeWarriorApp = CreateCWComObject;

 CloseAll;

 OpenMCP(in_qualifiedMCP);

%===

% Function: OpenMCP

71-113

71 Custom Target Development in Simulink Coder

% Abstract: open an MCP project file

%

function OpenMCP(in_qualifiedMCP)

 % Argument checking. This method requires valid project file.

 if ~exist(in_qualifiedMCP)

 error([mfilename ': Missing or empty project file argument']);

 end

 if isempty(in_qualifiedMCP)

 error([mfilename ': Missing or empty project file argument']);

 end

 ICodeWarriorApp = CreateCWComObject;

 vprint([mfilename ': Importing']);

 try

 ICodeWarriorProject = ...

 invoke(ICodeWarriorApp.Application,...

 'OpenProject', in_qualifiedMCP,...

 1,0,0);

 catch

 error(['Error using COM connection to import project. ' ...

 ' Verify that CodeWarrior is installed. Verify COM access to

CodeWarrior outside of MATLAB.']);

 end

%===

% Function: BuildCW

% Abstract: Opens CodeWarrior.

% Opens the specified CodeWarrior project.

% Deletes objects.

% Builds.

%

function ICodeWarriorApp = BuildCW(in_qualifiedMCP)

 % ICodeWarriorApp = BuildCW;

 ICodeWarriorApp = CreateCWComObject;

 CloseAll;

 OpenMCP(in_qualifiedMCP);

 try

 invoke(ICodeWarriorApp.DefaultProject,'RemoveObjectCode', 0, 1);

 catch

 error(['Error using COM connection to remove objects of current project. ' ...

 'Verify that CodeWarrior is installed. Verify COM access to

CodeWarrior outside of MATLAB.']);

 end

 try

 invoke(ICodeWarriorApp.DefaultProject,'BuildAndWaitToComplete');

 catch

 error(['Error using COM connection to build current project. ' ...

 'Verify that CodeWarrior is installed. Verify COM access to

CodeWarrior outside of MATLAB.']);

 end

More About
• “About Embedded Target Development” (Simulink Coder)

71-114

 Interface to Development Tools

• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)

71-115

71 Custom Target Development in Simulink Coder

Device Drivers

Device drivers that communicate with target hardware are essential to many real-time
development projects.

You can integrate existing C (or C++) device driver functions into Simulink models by
using the Legacy Code Tool. When you use the code generator to generate code from a
model, the Legacy Code Tool can insert a call to your C function into the generated code.
For details, see “Import Calls to External Code into Generated Code with Legacy Code
Tool” (Simulink Coder) and “Integrate C Functions into Simulink Models with Legacy
Code Tool” (Simulink).

More About
• “About Embedded Target Development” (Simulink Coder)
• “Sample Custom Targets” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)

71-116

72

Project and Build Configurations
for Embedded Targets in Embedded
Coder

• “Model Setup” on page 72-2
• “XMakefiles for Software Build Tool Chains” on page 72-12

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Model Setup
In this section...

“Block Selection” on page 72-2
“Configure Target Hardware Resources” on page 72-3
“Configuration Parameters” on page 72-4
“Model Reference” on page 72-11

Block Selection

You can create models for targeting the same way you create other Simulink models—by
combining standard blocks and C-MEX S-functions.

You can use blocks from the following sources:

• The Embedded Coder Support Packages.
• The Embedded Targets library (embeddedtargetslib) in the Embedded Coder

product.
• Blocks from the System Toolboxes products
• Custom blocks

Avoid using blocks that do not generate code, including the following blocks.

Block Name/Category Library Description

Scope Simulink, DSP System
Toolbox software

Provides oscilloscope view of your
output. Do not use the Save data
to workspace option on the Data
history pane in the Scope Parameters
dialog.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from your
MATLAB workspace.

Spectrum Scope DSP System Toolbox Compute and display the short-
time FFT of a signal. It has internal
buffering that can slow your process
without adding value.

72-2

 Model Setup

Block Name/Category Library Description

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your host
machine.

Triggered to Workspace DSP System Toolbox Send data to your MATLAB
workspace.

Signal To Workspace DSP System Toolbox Send a signal to your MATLAB
workspace.

Signal From Workspace DSP System Toolbox Get a signal from your MATLAB
workspace.

Triggered Signal From
Workspace

DSP System Toolbox Get a signal from your MATLAB
workspace.

To Wave device DSP System Toolbox Send data to a .wav device.
From Wave device DSP System Toolbox Get data from a .wav device.

Configure Target Hardware Resources

This topic contains the following subtopics:

• “About Supported IDEs” on page 72-3
• “Configure Parameters Under the Target Hardware Resources Tab” on page 72-3

About Supported IDEs

This “Configure Target Hardware Resources” on page 72-3 section applies to the
following IDEs:

• Analog Devices VisualDSP++®

• Wind River Diab/GCC (makefile generation only)

Configure Parameters Under the Target Hardware Resources Tab

Configure the parameters under the Target Hardware Resources tab of your Simulink
model for a specific tool chain and target hardware. Doing so updates other parameters
in the Configuration Parameters dialog to the default values for the software build tool
chain and target hardware you are using.

72-3

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Note: The Target Preferences (Removed) block has been removed from the Simulink
block libraries for the Embedded Coder and Simulink Coder products.

Parameters in the Target Preferences block have been moved to the Target Hardware
Resources tab.

To configure your Simulink model for a specific tool chain and target hardware:

1 In a Simulink model, open the model Configuration Parameters by:

• Clicking the gear icon,

• Pressing Ctrl+E on your keyboard
• Selecting the Simulation > Model Configuration Parameters menu items

2 In the Configuration Parameters dialog, click Code Generation, and then click “+”
next to Code Generation. This action displays the sub-panes under Code Generation.

3 On the Code Generation pane, change System target file to idelink_ert.tlc or
idelink_grt.tlc.

The dialog displays a Coder Target pane under the Code Generation pane.
4 Select the Coder Target pane.
5 Select the Target Hardware Resources tab.
6 Set the following parameters to match the tool chain and target hardware you are

using:

• IDE/Tool Chain
• Board
• Processor

7 Review the other parameters under the Target Hardware Resources tab.
8 Click Apply, and save the changes to your model.

Configuration Parameters

• “What are Configuration Parameters?” on page 72-5

72-4

 Model Setup

• “Setting Model Configuration Parameters” on page 72-5

What are Configuration Parameters?

To see the model Configuration Parameters, open the Configuration Parameters
dialog. You can do this in the model editor by selecting Simulation > Model
Configuration Parameters, or by pressing Ctrl+E on your keyboard.

The Configuration Parameters dialog specifies the values for a model's active
configuration set. These parameters determine the type of solver used, the import and
export settings, and other values that determine how the model runs.

Setting Model Configuration Parameters

To set the Configuration Parameters to the right values for you to generate code from
your model, see “Configure Parameters Under the Target Hardware Resources Tab” on
page 72-3. This action initializes the model Configuration Parameters to the right
default values for you to generate code. You can then use the Configuration Parameters
dialog to make further modifications to the values. You can generate buildable code using
these default values.

The following subsections provide a quick overview of the panes and parameters with
which you are most likely to interact.

Code Generation Pane

When you set System target file to idelink_ert.tlc or idelink_grt.tlc, the
dialog adds an Coder Target pane to the list of panes under Code Generation.

Leave Language set to C. The idelink_ert.tlc and idelink_grt.tlc system target
files do not support C++ code generation.

For more information, see “Model Configuration Parameters: Code Generation”
(Simulink Coder).

72-5

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Coder Target Pane Parameters

The Coder Target entry provides options in these areas:

• Run-Time — Set options for run-time operations, like the build action
• Vendor Tool Chain — Set compiler, linker, and system stack size options
• Code Generation — Configure your code generation requirements
• Link Automation — Export an IDE link handle object, such as IDE_Obj, to your

MATLAB workspace
• Diagnostics — Determine how the code generation process responds when you use

source code replacement in the Custom Code pane.

72-6

 Model Setup

For more information, see Code Generation Pane: Coder Target.

Build format

Select Project to create an IDE project, or select Makefile to create a makefile build
script.

Build action

Your selection for Build action determines what happens when you press Ctrl+B.
Your selection tells Simulink Coder software when to stop the code generation and build
process.

To run your model on the processor, select Build_and_execute. This selection is the
default build action.

The actions are cumulative—each action performs an additional step relative to the
preceding action on the list.

If you set Build format to Project, select one of the following options:

• Create_project — Directs Simulink Coder software to start the IDE and populate
a new project with the files from the build process. This option offers a convenient way
to build projects in the IDE.

• Archive_library — Directs Simulink Coder software to create an archive library
for this model. Use this option when you plan to use the model in a model reference
application. Model reference requires that you archive your the IDE projects for
models that you use in model referencing.

• Build — Builds the executable file, but does not download the file to the target
hardware.

• Build_and_execute — Directs Simulink Coder software to build, download, and
run your generated code as an executable on your target hardware.

• Create_processor_in_the_loop_project — Directs code generation process to
create PIL algorithm object code as part of the project build. This option requires an
Embedded Coder license.

If you set Build format to Makefile, select one of the following options:

• Create_makefile — Creates a makefile.
• Archive_library — Creates a makefile and the generated output will be an archive

library.

72-7

72 Project and Build Configurations for Embedded Targets in Embedded Coder

• Build — Creates a makefile and an executable.
• Build_and_execute — Creates a makefile and an executable. Then it evaluates the

execute instruction in the current configuration.

Overrun notification

To enable the overrun indicator, choose one of three ways for the target to respond to an
overrun condition in your model:

• None — Ignore overruns encountered while running the model.
• Print_message — When the target encounters an overrun condition, it prints a

message to the standard output device, stdout.
• Call_custom_function — Respond to overrun conditions by calling the custom

function you identify in Function name.

Function name

When you select Call_custom_function from the Overrun notification list, you
enable this option. Enter the name of the function the target should use to notify you
that an overrun condition occurred. The function must exist in your code on the target
hardware.
Configuration

The Configuration parameter defines sets of build options that apply to the files
generated from your model.

The Release and Debug option apply build settings that are defined by your compiler.
For more information, refer to your compiler documentation.

Custom has the same default values as Release, but:

• Leaves Compiler options string empty.

Compiler options string

To determine the degree of optimization provided by the optimizing compiler, enter the
optimization level to apply to files in your project. For details about the compiler options,
refer to your IDE documentation. When you create new projects, the code generator does
not set optimization flags.

With Texas Instruments Code Composer Studio™ 3.3 and Analog Devices VisualDSP+
+, the user interface displays Get From IDE and Reset buttons next to this parameter.

72-8

 Model Setup

If you have an active project open in the IDE, you can click Get From IDE to import the
compiler option setting from the current project in the IDE. To reset the compiler option
to the default value, click Reset.

Linker options string

To specify the options provided by the linker during link time, you enter the linker
options as text. For details about the linker options, refer to your IDE documentation.
When you create new projects, the code generator does not set linker options.

With Texas Instruments Code Composer Studio 3.3 and Analog Devices VisualDSP++,
the user interface displays Get From IDE and Reset buttons next to this parameter. If
you have an active project open in the IDE, you can click Get From IDE to import the
linker options text from the current project in the IDE. To clear the linker options, click
Reset.

System stack size (MAUs)

Enter the amount of memory that is available for allocating stack data, measured in
minimum addressable units (MAU). Block output buffers are placed on the stack until
the stack memory is fully allocated. After that, the output buffers go in global memory.
An MAU is typically 1 byte, but its size can vary by target hardware.

This parameter is used in targets to allocate the stack size for the generated application.
For example, with embedded processors that are not running an operating system, this
parameter determines the total stack space that can be used for the application. For
operating systems, this value specifies the stack space allocated per thread.

This parameter also applies to the “Maximum stack size (bytes)” (Simulink) parameter,
located in the Optimization > Signals and Parameters pane.

System heap size (MAUs)

Set the default heap size that the target hardware reserves for dynamic memory
allocation.

The target hardware uses this heap for functions like printf() and system services code.

The following IDEs use this parameter:

• Analog Devices VisualDSP++
• Wind River Diab/GCC (makefile generation only)

72-9

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Profile real-time execution

To enable the real-time execution profile capability, select Profile real-time execution.
With this selected, the build process instruments your code to provide performance
profiling at the task level or for atomic subsystems. When you run your code, the
executed code reports the profiling information in an HTML report.

Link Automation

When you build a model for a system target file , the code generator automatically
creates or uses an existing IDE link handle object (named IDE_Obj, by default) to
connect to your IDE.

Although IDE_Obj is a handle for a specific instance of the IDE, it also contains
information about the IDE instance to which it refers, such as the target the IDE
accesses. In this pane, the Export IDE link handle to base workspace option lets you
instruct the code generator to export the object to your MATLAB workspace, giving it the
name you assign in IDE link handle name.

You can also use the IDE link handle object to interact with the IDE using IDE
Automation Interface commands.

Maximum time allowed to build project (s)

Specifies how long the software waits for the IDE to build the software.

Maximum time allowed to complete IDE operation (s)

Specifies how long the software waits for IDE functions, such as read or write, to
return completion messages. If you do not specify a timeout, the default value is 10
seconds.

Export IDE link handle to base workspace

Directs the software to export the IDE_Obj object to your MATLAB workspace.

IDE link handle name

Specifies the name of the IDE_Obj object that the build process creates.

Source file replacement

Selects the diagnostic action to take if the software detects conflicts when you replace
source code with custom code. The diagnostic message responds to both source file

72-10

 Model Setup

replacement in the Configuration Parameters under Code Generation > Coder Target
parameters and under Code Generation > Custom Code.

The following settings define the messages you see and how the code generation process
responds:

• none — Does not generate warnings or errors when it finds conflicts.
• warning — Displays a warning. warn is the default value.
• error — Terminates the build process and displays an error message that identifies

which file has the problem and suggests how to resolve it.

The build operation continues if you select warning and the software detects custom
code replacement problems. You see warning messages as the build progresses.

Select error the first time you build your project after you specify custom code to use.
The error messages can help you diagnose problems with your custom code replacement
files. Use none when the replacement process works and you do not want to see multiple
messages during your build.

Model Reference

The ert.tlc system target files provide support for generating code from models that
use Model Reference. A referenced model will generate an archive library.

To enable Model Reference builds:

1 Open your referenced model.
2 Select Simulation > Model Configuration Parameters from the model menus.
3 From the list of panes under Code Generation, choose Coder Target.
4 In the right pane, under Run-Time, select Archive_library from the Build

action list.

If your top-model uses a reference model that does not have the Build action set to
Archive_library, the build process automatically changes the Build action to
Archive_library and issues a warning about the change.

Configuration Parameters in Reference Models

Use the same Coder Target pane settings in Configuration Parameters for the models in
the model hierarchy.

72-11

72 Project and Build Configurations for Embedded Targets in Embedded Coder

XMakefiles for Software Build Tool Chains

In this section...

“What is the XMakefile Feature” on page 72-12
“Using Makefiles to Generate and Build Software” on page 72-14
“Making an XMakefile Configuration Operational” on page 72-16
“Creating a New XMakefile Configuration” on page 72-16
“XMakefile User Configuration dialog” on page 72-22

What is the XMakefile Feature

• “Overview” on page 72-12
• “Available XMakefile Configurations” on page 72-12
• “Feature Support” on page 72-13

Overview

You can use makefiles instead of IDE projects during the automated software build
process. This approach is described in “Using Makefiles to Generate and Build Software”
on page 72-14.

The XMakefile feature lets you choose the configuration of a specific software build
tool chain to use during the automated build process. The configuration contains paths
and settings for your make utility, compiler, linker, archiver, pre-build, post-build, and
execute tools.

You can also create a new configuration for a new tool chain, as described in “Creating a
New XMakefile Configuration” on page 72-16.

Your requirements for specific features may determine whether you choose makefiles or
IDE projects. See “Feature Support” on page 72-13.

Available XMakefile Configurations

The following list describes the configurations in the XMakefile dialog that this product
supports:

• adivdsp_blackfin: Analog Devices VisualDSP++ & Analog Devices Blackfin®

• adivdsp_sharc: Analog Devices VisualDSP++ & Analog Devices SHARC®

72-12

 XMakefiles for Software Build Tool Chains

• adivdsp_tigersharc: Analog Devices VisualDSP++ & Analog Devices
TigerSHARC®

• gcc_target: GNU Compiler Collection & Host Operating System or Embedded
Operating System

• wrsdiab_arm9_vxworks67_rtp: Wind River Systems DIAB Compiler & ARM 9 &
VxWorks 6.7 & real-time process applications

• wrsdiab_arm9_vxworks67_rtp_so: Wind River Systems DIAB Compiler & ARM 9
& VxWorks 6.7 & real-time process applications with shared object

• wrsdiab_hostsim_vxworks67_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications

• wrsdiab_hostsim_vxworks67_rtp_so: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.7 & real-time process applications with shared
object

• wrsdiab_hostsim_vxworks68_rtp: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications

• wrsdiab_hostsim_vxworks68_rtp_so: Wind River Systems DIAB Compiler &
VxWorks Host Simulator & VxWorks 6.8 & real-time process applications with shared
object

• wrsgnu_arm9_vxworks67_rtp: Wind River Systems GNU Compiler & VxWorks
Host Simulator & VxWorks 6.7 & real-time process applications

• wrsgnu_hostsim_vxworks67_rtp: Wind River Systems GNU Compiler & VxWorks
Host Simulator & VxWorks 6.7 & real-time process applications with shared object

• wrsgnu_hostsim_vxworks68_rtp: Wind River Systems GNU Compiler & VxWorks
Host Simulator & VxWorks 6.8 & real-time process applications with shared object

• xilinx_ise_14_x: Xilinx ISE Design Suite & ARM Cortex-A9 running Linux on
Xilinx Zynq®-7000 platform

For more information about supported versions of third-party software, see

Feature Support

With makefiles, you cannot use features that rely on direct communications between
your MathWorks software and third-party IDEs.

You cannot use the following features with makefiles:

• IDE Project Generation

72-13

72 Project and Build Configurations for Embedded Targets in Embedded Coder

• IDE Automation Interface
• IDE debugger communications during Processor-in-the-loop (PIL) simulation

Using Makefiles to Generate and Build Software

Configuring Your Model to Use Makefiles

Update your model Configuration Parameters to use a makefile instead of an IDE when
you build software from the model:

1 Configure your model for your IDE, tool chain, and target hardware, as described in
“Configure Target Hardware Resources” on page 72-3.

2 In the Configuration Parameters dialog, under the Code Generation tab, select
Coder Target.

3 Set Build format to Makefile. For more information, see “Build format” on page
72-7.

4 Set Build action to Build_and_execute. For more information, see “Build action”
on page 72-7.

Choosing an XMakefile Configuration

Configure how to generate makefiles:

1 Enter xmakefilesetup on the MATLAB Command Window. The software opens an
XMakefile User Configuration dialog.

72-14

 XMakefiles for Software Build Tool Chains

2 Set the Template parameter to the option that matches the Configuration
parameter.

Note: In most cases, the only option for Template is gmake. However, if you have
installed a Support Package, Template can have multiple options.

3 For Configuration, select the option that describes your software build toolchain
and target platform. Click Apply.

Note: Changing some elements of the XMakefile dialog disables other elements until you
apply the changes. Click Apply or OK after changing:

• Template
• Configurations
• User Templates
• User Configurations
• Tool Directories

Note: With the XMakefile User Configuration dialog, if you have an Embedded Coder
license and do not have a Simulink Coder license, the Configuration list includes two
unsupported options: gcc_target or msvs_host. Disregard those two configurations.
Choose one of the other configurations.

Things to consider while setting Configuration:

• Selecting Display operational configurations only hides configurations that
contain incomplete or invalid information. For a configuration to be operational, the
vendor tool chain must be installed, and the configuration must have the valid paths
for each component of the vendor tool chain. For more information, see “Making an
XMakefile Configuration Operational” on page 72-16.

• To display the configurations, including non-operational configurations, clear Display
operational configurations only.

• The list of configurations can include non-editable configurations defined in the
software and editable configurations defined by you.

• To create a new editable configuration, use the New button.

72-15

72 Project and Build Configurations for Embedded Targets in Embedded Coder

• For more information, see “XMakefile User Configuration dialog” on page 72-22.

Building Your Model

In your model, click Build Model.

This action creates a makefile and performs the other actions you specified in Build
action.

By default, this process outputs files in the <builddir>/<buildconfiguration>
folder. For example, in model_name/CustomMW.

Making an XMakefile Configuration Operational

When the XMakefile utility starts, it checks each configuration file to verify that
the specified paths for the vendor tool chain are valid. If the paths are not valid, the
configuration is non-operational. Typically, the cause of this problem is a difference
between the path in the configuration and the actual path of the vendor toolchain.

To make a configuration operational:

1 Clear Display operational configurations only to display non-operational
configurations.

2 Select the non-operational configuration from the Configuration options.
3 When you click Apply, a new dialog prompts you for the folder path of the missing

resources the configuration requires.

Use mapped network drives instead of UNC paths to specify directory locations.
Using UNC paths with compilers that do not support them causes build errors.

Creating a New XMakefile Configuration

• “Overview” on page 72-17
• “Create a Configuration” on page 72-17

72-16

 XMakefiles for Software Build Tool Chains

• “Modify the Configuration” on page 72-18
• “Test the Configuration” on page 72-21

Overview

This example shows you how to add support for a software development toolchain to the
XMakefile utility. This example uses the Intel Compiler and an IDE.

Note: To specify directory locations, use mapped network drives instead of UNC paths.
UNC paths cause build errors with compilers that do not support them.

Create a Configuration

When you click New, the new configuration inherits values and behavior from
the current configuration. To create a configuration for the Intel Compiler, clone a
configuration from one of these configurations: montavista_arm and gcc_target.

Open the XMakefile User Configuration UI by typing xmakefilesetup at the MATLAB
prompt. This action displays the following dialog.

Select an existing configuration, such as montavista_arm or gcc_target. Click the
New button.

A pop-up dialog prompts you for the name of the new configuration. Enter
intel_compiler and click OK.

72-17

72 Project and Build Configurations for Embedded Targets in Embedded Coder

The dialog displays a new configuration called intel_compiler, based on the previous
configuration.

Modify the Configuration

Adjust the compiler, linker, and archiver settings of the newly created configuration.
This example assumes the location of the Intel compiler is C:\Program Files\Intel
\Compiler\.

Make Utility

You do not need to make changes. This configuration uses the gmake tool that ships with
MATLAB.

72-18

 XMakefiles for Software Build Tool Chains

Compiler

For Compiler, enter the location of icl.exe in the Intel installation.

Linker

For Linker, enter the location of the linker executable, xilink.exe.

For Arguments, add the /LIBPATH path to the Intel libraries.

72-19

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Archiver

For Archiver, enter the location of the archiver, xilib.exe. Confirm that File
extensions for library files includes .lib.

Other tabs

For this example, ignore the remaining tabs. In other circumstances, you can use them to
configure additional build actions. In a later step of this example, you will configure the
software to automatically build and run the generated code.

72-20

 XMakefiles for Software Build Tool Chains

Test the Configuration

Open the “sumdiff” model by entering sumdiff on the MATLAB prompt.

Configure the summdiff model for use with an IDE. Follow the steps in “Configure
Target Hardware Resources” on page 72-3, set the IDE/Tool Chain parameter, set
Board to Custom, and Processor to Intel x86/Pentium.

72-21

72 Project and Build Configurations for Embedded Targets in Embedded Coder

On the Tool Chain Automation page, set Operating System to None or select Windows.
Click OK.

Open the Configuration Parameters for the sumdiff model by pressing Ctrl+E. Set Build
format to Makefile and Build action to Build_and_execute.

Save the model to a temporary location, such as C:\Temp\IntelTest\.

Set that location as a Current Folder by typing cd C:\temp\IntelTest\ at the
MATLAB prompt.

Build the model by pressing Ctrl+B. The MATLAB Command Window displays
something like:

TLC code generation complete.

Creating HTML report file sumdiff_codegen_rpt.html

Creating project: c:\temp\IntelTest\sumdiff_idenameide\sumdiff.mk

Project creation done.

Building project...

Build done.

Downloading program: c:\temp\IntelTest\sumdiff_idenameide\sumdiff

Download done.

A command window comes up showing the running model. Terminate the generated
executable by pressing Ctrl+C.

XMakefile User Configuration dialog

• “Active” on page 72-23
• “Make Utility” on page 72-24
• “Compiler” on page 72-25
• “Linker” on page 72-26
• “Archiver” on page 72-26
• “Pre-build” on page 72-27
• “Post-build” on page 72-27
• “Execute” on page 72-28
• “Tool Directories” on page 72-28

72-22

 XMakefiles for Software Build Tool Chains

Active

Template

Set the Template parameter to the option that matches the Configuration parameter.

Note: In most cases, the only option for Template is gmake. However, if you have
installed a Support Package, Template can have multiple options.

The template defines the syntax rules for writing the contents of the makefile or
buildfile. The default template is gmake, which works with the GNU make utility.

To add templates to this parameter, save them as .mkt files to the location specified by
the User Templates parameter. For more information, see “User Templates” on page
72-24.

Configuration

Select the configuration that best describes your toolchain and target hardware.

You cannot edit or delete the configurations provided by MathWorks. You can, however,
edit and delete the configurations that you create.

Use the New button to create an editable copy of the currently selected configuration.

Use the Delete button to delete a configuration you created.

72-23

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Note: You cannot edit or delete the configurations provided by MathWorks.

Note: Use mapped network drives instead of UNC paths to specify directory locations.
Using UNC paths with compilers that do not support them causes build errors.

Display operational configurations only

When you open the XMakefile User Configuration dialog, the software verifies that each
configuration provided by MathWorks contains valid paths to the executable files it uses.
If the paths are valid, the configuration is operational. If the paths are not valid, the
configuration is not operational.

This setting only applies to configurations provided by MathWorks, not configurations
you create.

To display valid configurations, select Display operational configurations only.

To display the configurations, including non-operational configurations, clear Display
operational configurations only.

For more information, see “Making an XMakefile Configuration Operational” on page
72-16.

User Templates

Set the path of the folder to which you can add template files. Saving templates files with
the .mkt extension to this folder adds them to the Templates options.

User Configurations

Set the location of configuration files you create with the New button.

Make Utility

72-24

 XMakefiles for Software Build Tool Chains

Make utility

Set the path and filename of the make utility executable.

Arguments

Define the command-line arguments to pass to the make utility. For more information,
consult the third-party documentation for your make utility.

Optional include

Set the path and file name of an optional makefile to include.

Compiler

Compiler

Set the path and file name of the compiler executable.

Arguments

Define the command-line arguments to pass to the compiler. For more information,
consult the third-party documentation for your compiler.

Source

Define the file name extension for the source files. Use commas to separate multiple file
extensions.

Header

Define the file name extension for the header files. Use commas to separate multiple file
extensions.

Object

Define the file name extension for the object files.

72-25

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Linker

Linker

Set the path and file name of the linker executable.

Arguments

Define the command-line arguments to pass to the linker. For more information, consult
the third-party documentation for your linker.

File extensions for library files

Define the file name extension for the file library files. Use commas to separate multiple
file extensions.

Generated output file extension

Define the file name extension for the generated libraries or executables.

Archiver

Archiver

Set the path and file name of the archiver executable.

Arguments

Define the command-line arguments to pass to the archiver. For more information,
consult the third-party documentation for your archiver.

72-26

 XMakefiles for Software Build Tool Chains

Generated output file extension

Define the file name extension for the generated libraries.

Pre-build

Enable Prebuild Step

Select this check box to define a prebuild tool that runs before the compiler.
Prebuild tool

Set the path and file name of the prebuild tool executable.
Arguments

Define the command-line arguments to pass to the prebuild tool. For more information,
consult the third-party documentation for your prebuild tool.

Post-build

Enable Postbuild Step

Select this check box to define a postbuild tool that runs after the compiler or linker.
Postbuild tool

Set the path and file name of the postbuild tool executable.
Arguments

Define the command-line arguments to pass to the postbuild tool. For more information,
consult the third-party documentation for your postbuild tool.

72-27

72 Project and Build Configurations for Embedded Targets in Embedded Coder

Execute

Use Default Execute Tool

Select this check box to use the generated derivative as the execute tool when the build
process is complete. Uncheck it to specify a different tool. The default value, echo, simply
displays a message that the build process is complete.

Note: On the Linux operating system, multirate multitasking executables require root
privileges to schedule POSIX threads with real-time priority. If you are using makefiles
to build multirate multitasking executables on your Linux development system, you
cannot use Execute tool to run the executable. Instead, use the Linux command, sudo,
to run the executable.

Execute tool

Set the path and file name of the execute tool executable or built-in command.

Arguments

Define the command-line arguments to pass to the execute tool. For more information,
consult the third-party documentation for your execute tool.

Tool Directories

72-28

 XMakefiles for Software Build Tool Chains

Installation

Use the Tool Directories tab to change the toolchain path of an operational configuration.

For example, if you installed two versions of a vendor build tool in separate folders, you
can use the Installation path to change which one the configuration uses.

72-29

73

Verification and Profiling Generated
Code in Embedded Coder

• “PIL Simulation for IDE and Toolchain Targets” on page 73-2
• “Code Execution Profiling for IDE and Toolchain Targets” on page 73-13
• “Perform Execution-Time Profiling for IDE and Toolchain Targets” on page 73-16
• “Perform Stack Profiling with IDE and Toolchain Targets” on page 73-22

73 Verification and Profiling Generated Code in Embedded Coder

PIL Simulation for IDE and Toolchain Targets

In this section...

“Overview” on page 73-2
“PIL Approaches” on page 73-3
“Communications” on page 73-7
“Running Your PIL Application to Perform Simulation and Verification” on page
73-10
“Definitions” on page 73-10
“PIL Issues and Limitations” on page 73-11

Overview

Verification consists broadly of running generated code on a processor and verifying that
the code does what you intend. Embedded Coder provides processor-in-the-loop (PIL)
simulation to meet this need. PIL compares the numeric output of your model under
simulation with the numeric output of your model running as an executable on a target
hardware.

With PIL, you run your generated code on a target hardware or instruction set simulator.
To verify your generated code, you compare the output of model simulation modes,
such as Normal or Accelerator, with the output of the generated code running on the
processor. You can switch between simulation and PIL modes. This flexibility allows
you to verify the generated code by executing the model as compiled code in the target
environment. You can model and test your embedded software component in Simulink
and then reuse your regression test suites across simulation and compiled object code.
This process avoids the time-consuming process of leaving the Simulink software
environment to run tests again on object code compiled for the production hardware.

Embedded Coder supports the following PIL approaches:

• Model block PIL
• Top-model PIL
• PIL block

When you use makefiles with PIL, use the “model block PIL” approach. With makefiles,
the other two approaches, “top-model PIL” and “PIL block”, and are not supported.

73-2

 PIL Simulation for IDE and Toolchain Targets

PIL Approaches

• “Model Block PIL” on page 73-3
• “Top-Model PIL” on page 73-4
• “PIL Block” on page 73-5

Model Block PIL

Use model block PIL to:

• Verify code generated for referenced models (model reference code interface).
• Provide a test harness model (or a system model) to generate test vector or stimulus

inputs.
• Switch a model block between normal, SIL, or PIL simulation modes.

To perform a model block PIL simulation, start with a top-model that contains a model
block. The top-model serves as a test harness, providing inputs and outputs for the model
block. The model block references the model you plan to run on target hardware. During
PIL simulation, the referenced model runs on the target hardware.

For more information about using the model block, see Model, Model Variants (Simulink)
and “Model Referencing” (Simulink).

By default, your MathWorks software uses the IDE debugger for PIL communications
with the target hardware. To achieve faster communications, consider using one of the
alternatives presented in “Communications” on page 73-7.

To use model block PIL:

1 Create and share a configuration reference between the top model and the referenced
model, as described in “Share a Configuration for Multiple Models” (Simulink).

2 Right-click the Model block, and select ModelReference Parameters.
3 When the software displays the Function Block Parameters: Model dialog box,

set Simulation mode to Processor-in-the-loop (PIL) and click OK.
4 Open the model block.
5 In the referenced model (model block) Configuration Parameters (Ctrl+E), under

Code Generation > Coder Target, set Build action set to Archive_library.
This action avoids a warning when you start the simulation.

6 Save the changes to both models.

73-3

73 Verification and Profiling Generated Code in Embedded Coder

7 In the top-model menu bar, select Simulation > Run. This action builds the
referenced model in the model block, downloads it to your target hardware, and runs
the PIL simulation.

Note: In the top-model Configuration Parameters (Ctrl+E), under Code Generation >
Coder Target, leave Build action set to Build_and_execute. Do not change Build
action to Create_Processor_In_the_Loop_Project.

Top-Model PIL

Use top-model PIL to:

• Verify code generated for a top-model (standalone code interface).
• Load test vectors or stimulus inputs from the MATLAB workspace.
• Switch the entire model between normal and SIL or PIL simulation modes.

Setting Model Configuration Parameters to Generate the PIL Application

Configure your model to generate the PIL executable from your model:

1 Configure your model to run on target hardware, as described in “Configure Target
Hardware Resources” on page 72-3.

2 From the model toolstrip, select Simulation > Model Configuration Parameters.
3 In Configuration Parameters, select Code Generation.
4 Set System Target File to idelink_ert.tlc.
5 From the list of panes under Code Generation, choose Coder Target.
6 Set Build format to Project.
7 Set Build action to Create_processor_in_the_loop_project.
8 Click OK to close the Configuration Parameters dialog box.

For more information, see “Code Generation: Coder Target Pane”.

Running the Top-Model PIL Application

To create a PIL block, perform the following steps:

1 In the model toolstrip, set the Simulation mode to Processor-in-the-loop.

73-4

 PIL Simulation for IDE and Toolchain Targets

2 In the model toolstrip, click Run.

A new Simulink Editor opens with the new PIL model block in it. The third-party
IDE compiles and links the PIL executable file. Follow the progress of the build
process in the MATLAB Command Window.

PIL Block

Use the PIL block to:

• Verify code generated for a top-model (standalone code interface) or subsystem (right-
click build standalone code interface).

• Represent a component running in SIL or PIL mode. The test harness model or a
system model provides test vector or stimulus inputs.

Preparing Your Model to Generate a PIL Block

Start with a model that contains the algorithm blocks you want to verify on the processor
as compiled object code. To create a PIL application and PIL block from your algorithm
subsystem, follow these steps:

1 Identify the algorithm blocks to cosimulate.
2 Convert those blocks into an unmasked subsystem in your model.

For information about how to convert your process to a subsystem, refer to Creating
Subsystems (Simulink) in Using Simulink or in the online Help system.

3 Open the newly created subsystem.
4 Configure your subsystem to run on target hardware, as described in “Configure

Target Hardware Resources” on page 72-3.

73-5

73 Verification and Profiling Generated Code in Embedded Coder

Setting Model Configuration Parameters to Generate the PIL Application

After you create your subsystem, set the Configuration Parameters for your model to
enable the model to generate a PIL block.

Configure your model to enable it to generate PIL algorithm code and a PIL block from
your subsystem:

1 From the model menu bar, select Simulation > Model Configuration
Parameters. This action opens the Configuration Parameters dialog box.

2 In the Configuration Parameters dialog box, select Code Generation.
3 Set System Target File to idelink_ert.tlc.
4 From the list of panes under Code Generation, choose Coder Target.
5 Set Build format to Project.
6 Set Build action to Create_processor_in_the_loop_project.
7 Click OK to close the Configuration Parameters dialog box.

For more information, see “Code Generation: Coder Target Pane”.

Creating the PIL Block from a Subsystem

To create a PIL block, perform the following steps:

1 Right-click the masked subsystem in your model and select C/C++ Code > Build
This Subsystem from the context menu.

A new Simulink Editor opens and the new PIL block appears in it. The third-party
IDE compiles and links the PIL executable file.

This step builds the PIL algorithm object code and a PIL block that corresponds to
the subsystem, with the same inputs and outputs. Follow the progress of the build
process in the MATLAB Command Window.

2 Copy the new PIL block from the new model to your model. To simulate the
subsystem processes concurrently, place it parallel to your masked subsystem.
Otherwise, replace the subsystem with the PIL block.

To see a PIL block in a parallel masked subsystem, search the product help for
Getting Started with Application Development and select the example that matches
your IDE.

73-6

 PIL Simulation for IDE and Toolchain Targets

Note: Models can have multiple PIL blocks for different subsystems. They cannot have
more than one PIL block for the same subsystem. Including multiple PIL blocks for the
same subsystem causes errors and inaccurate results.

Communications

• “TCP/IP” on page 73-7
• “IDE Debugger” on page 73-9

Choose one of the following communication methods for transferring code and data
during PIL simulations:

Method Speed Comments

IDE Debugger Slow • Supports PIL communications with an
executable running an embedded target
hardware.

• Supports the largest number of targets.
• Requires a physical connection between host

and target hardware.
• Only works with builds from IDE projects.

Does not work with builds from makefiles.
TCP/IP Fast • Supports PIL communications with an

executable running on a Linux or Windows
host.

• Supports embedded targets running Linux,
TI DSP/BIOS, and Wind River VxWorks.

• Requires network connection between host
and target hardware.

• Works with builds from IDE projects and
from makefiles.

TCP/IP

You can use TCP/IP for PIL communications with target hardware running:

• Linux

73-7

73 Verification and Profiling Generated Code in Embedded Coder

• Wind River VxWorks

Using TCP/IP for PIL communications is typically faster than using a debugger,
particularly for large data sets, such as with video and audio applications.

It also works well when you build an application on a remote Linux target using the
remoteBuild function.

You can use TCP/IP with the following PIL approaches:

• Top-model PIL
• Model block PIL

TCP/IP does not work with the Subsystem PIL approach.

To enable and configure TCP/IP with PIL:

1 Set up a PIL simulation according to the PIL approach you have chosen.
2 In the MATLAB Command Window, use setpref to specify the IP address of the

PIL server (servername).

If you are running the PIL server on a remote target, specify the IP address of the
target hardware. For example:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','144.212.109.114');

If you are running PIL server locally, on your host Windows or Linux system, enter
'localhost' instead of an IP address:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','servername','localhost');

3 Specify the TCP/IP port number to use for PIL data communication. Use one of the
free ports in your system. For example:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','portnum', 17025);

4 Enable PIL communications over TCP/IP:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', true);

To disable PIL communications over TCP/IP, change the value to false. This action
automatically enables PIL communications over an IDE debugger, if an IDE is
available.

5 Open the Configuration Parameters in your model. On the Coder Target pane, set
the Operating System parameter to the operating system your target hardware is
running.

73-8

 PIL Simulation for IDE and Toolchain Targets

Note: You cannot use TCP/IP for PIL when the value of Operating System is None.
6 Regenerate the code or PIL block.

To disable PIL communications over TCP/IP, enter:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip', false);

IDE Debugger

To enable PIL communications over an IDE debugger, disable PIL communications over
TCP/IP and SCI by entering the following commands:
setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enabletcpip',false);

setpref('MathWorks_Embedded_IDE_Link_PIL_Preferences','enableserial',false);

Then regenerate the code or PIL block.

Using IDE debugger for PIL communication only works when you build your code from
IDE projects. Using IDE debugger for PIL communication does not work with builds from
makefiles.

Configuring Breakpoints

You can use the setStartApplicationPause API to set breakpoints in
the PIL application on the first PIL block simulation. If you do not use the
setStartApplicationPause API, you can configure breakpoints after the initial run.
The breakpoints remain active for subsequent runs.

You can enter the following static API method to pause after loading the application and
manually configure breakpoints:

rtw.connectivity.Launcher.setStartApplicationPause(pauseAmount)

About this method:

• This method tells the MATLAB session to pause immediately after the PIL launcher
starts the PIL application.

• pauseAmount is a pause time in seconds. To disable the pause, enter 0.

When you do not specify a pause, the software displays the following message:
To pause during PIL application start, run: >> rtw.connectivity.Launcher.

setStartApplicationPause(120)

73-9

73 Verification and Profiling Generated Code in Embedded Coder

The default pause is 120 sec. You can change this value.

When you specify a pause, a Start PIL Application Pause message box appears and
displays following message:
Pausing during PIL application start for 120s (click OK to continue).

To disable this pause, see the hyperlink in the MATLAB command window.

• The MATLAB Command Window shows the following text:

To remove the pause during PIL application start,

run: >> rtw.connectivity.Launcher. setStartApplicationPause(0)

where rtw.connectivity.Launcher. setStartApplicationPause(0) is a
hyperlink.

• The pause times out, or you can clear it early by closing the message box.
• During the pause, you cannot access MATLAB and thus cannot configure breakpoints

programmatically via the IDE Automation Interface API.
• For the PIL block, the debugger stays open between simulation runs. When you

perform an initial simulation run, you can automatically configure breakpoints via
the IDE Automation Interface API before starting the second simulation.

Running Your PIL Application to Perform Simulation and Verification

After you add PIL block to your model, add the required pause in seconds, using the
following command in the MATLAB command prompt:

rtw.connectivity.Launcher.setStartApplicationPause(120)

Then click Simulation > Run or press Ctrl+T to run the PIL simulation and view the
results.

Note The pause command is to make sure that the automatic download of PIL completes,
before the model starts executing.

Definitions

PIL Algorithm

The algorithmic code, which corresponds to a subsystem or portion of a model, to test
during the PIL simulation. The PIL algorithm is in compiled object form to enable
verification at the object level.

73-10

 PIL Simulation for IDE and Toolchain Targets

PIL Application

The executable application that runs on the processor platform. The code generator
produces code for a PIL application by augmenting your algorithmic code with the
PIL execution framework. The PIL execution framework code compiles as part of your
embedded application.

The PIL execution framework code includes the string.h header file so that the PIL
application can use the memcpy function. The PIL application uses memcpy to exchange
data between the Simulink model and the simulation processor.

PIL Block

When you build a subsystem from a model for PIL, the process creates a PIL block
optimized for PIL simulation. When you run the simulation, the PIL block acts as the
interface between the model and the PIL application running on the processor. The PIL
block inherits the signal names and shape from the source subsystem in your model.
Inheritance is convenient for copying the PIL block into the model to replace the original
subsystem for simulation.

PIL Issues and Limitations

Consider the following issues when you work with PIL blocks.

Constraints

When using PIL in your models, keep in mind the following constraints:

• Models can have multiple PIL blocks for different subsystems. They cannot have more
than one PIL block for the same subsystem. Including multiple PIL blocks for the
same subsystem causes errors and inaccurate results.

• A model can contain a single model block running PIL mode.
• A model can contain a subsystem PIL block or a model block in PIL mode, but not

both.

Generic PIL Issues

Refer to PIL Feature Support and Limitations on page 64-61 for general information
about using the PIL block with embedded link products.

73-11

73 Verification and Profiling Generated Code in Embedded Coder

Simulink Coder grt.tlc-Based Targets Not Supported

PIL does not support grt.tlc system target files.

To use PIL, set System target file in the Configuration Parameters > Code Generation
pane to idelink_ert.tlc.

73-12

 Code Execution Profiling for IDE and Toolchain Targets

Code Execution Profiling for IDE and Toolchain Targets

In this section...

“Execution-Time Profiling” on page 73-13
“Stack Profiling” on page 73-13

Execution-Time Profiling

You can measure the execution times during a standalone execution or processor-in-the-
loop (PIL) simulation. You can generate execution time profiles for synchronous tasks,
asynchronous tasks, and atomic subsystems. Use this feature to check whether your code
runs in real time on your target hardware. For details, see “Perform Execution-Time
Profiling for IDE and Toolchain Targets” on page 73-16.

You can use this profiling for generated code in the following cases:

• Code Generation > System target file is ert.tlc and Code Generation >
Target hardware is not None, for example, ARM Cortex-A9 (QEMU) or ARM
Cortex-M3 (QEMU).

• Code Generation > System target file is idelink_ert.tlc

The following table provides execution time profiling support information.

Mode Coder Target > Tool Chain Automation > Build format
parameter value

Standalone execution or PIL
simulation

Project

PIL simulation Makefile

Stack Profiling

With stack profiling, you can determine how generated code uses the processor system
stack. Using the profile method, you can initialize and test the size and usage of the
stack. See “Perform Stack Profiling with IDE and Toolchain Targets” on page 73-22.
This information can help you optimize both the size of the stack and how your code uses
the stack.

73-13

73 Verification and Profiling Generated Code in Embedded Coder

You can use this profiling for generated code in the following cases:

• Code Generation > System target file is ert.tlc and Code Generation >
Target hardware is not None, for example, ARM Cortex–A9 (QEMU) or ARM
Cortex–M3 (QEMU).

• Code Generation > System target file is idelink_ert.tlc

Note: Stack profiling is not supported on embedded targets that run an operating system
or RTOS.

To provide stack profiling, profile writes a known pattern to the addresses in the
stack. After you run your application for a while, and then stop your application,
profile examines the contents of the stack addresses. profile counts each address
that does not contain the known pattern. The total number of addresses that have been
used, compared to the total number of addresses that you allocated, becomes the stack
usage profile. This profile process does not determine how often your application changes
an address.

You can profile the stack with the manually written code in a project and the code that
you generate from a model.

When you use profile to initialize and test the stack operation, the software returns
a report that contains information about stack size, usage, addresses, and direction.
With this information, you can modify your code to use the stack efficiently. The
following program listing shows the stack usage results from running an application on a
simulator.

profile(IDE_Obj,'stack','report')

Maximum stack usage:

System Stack: 532/1024 (51.95%) MAUs used.

 name: System Stack

 startAddress: [512 0]

 endAddress: [1535 0]

 stackSize: 1024 MAUs

growthDirection: ascending

The following table describes the entries in the report.

73-14

 Code Execution Profiling for IDE and Toolchain Targets

Report Entry Units Description

System Stack Minimum Addressable Unit
(MAU)

Maximum number of MAUs
used and the total MAUs
allocated for the stack.

name Character vector for the
stack name

Lists the name assigned to
the stack.

startAddress Decimal address and page Lists the address of the stack
start and the memory page.

endAddress Decimal address and page Lists the address of the end
of the stack and the memory
page.

stackSize Addresses Reports number of address
locations, in MAUs, allocated
for the stack.

growthDirection Not applicable Reports whether the stack
grows from the lower address
to the higher address
(ascending) or from higher
to lower (descending).

Related Examples
• “Perform Execution-Time Profiling for IDE and Toolchain Targets” on page

73-16
• “Perform Stack Profiling with IDE and Toolchain Targets” on page 73-22

73-15

73 Verification and Profiling Generated Code in Embedded Coder

Perform Execution-Time Profiling for IDE and Toolchain Targets

In this section...

“Execution-Time Profiling During Standalone Execution” on page 73-16
“Execution-Time Profiling During PIL Simulation” on page 73-19

Execution-Time Profiling During Standalone Execution

During standalone execution, instrumentation in the generated code collects execution-
time samples, which are stored in target hardware memory. After halting target
hardware execution, you can use the profile function to transfer the execution data
from target hardware memory to the MATLAB workspace for viewing and analysis.

You can perform profiling by task or subsystem. A profiling sample represents a task or
subsystem execution instance. Each sample requires two memory locations, one for the
start time and one for the end time. Therefore, you must specify a buffer size that is twice
the number of required profiling samples. Sample collection begins with the start of code
execution and ends when the buffer is full.

Task Profiling

To configure a model for task execution profiling:

1 In your model, select Simulation > Model Configuration Parameters.
2 Select the Code Generation > Coder Target pane.
3 Set Build format to Project and set Build action to Build_and_execute.
4 Select Profile real-time execution.
5 In the Profile by list, select Tasks.
6 Specify Number of profiling samples to collect, the size of the buffer that stores

execution data. Enter a value that is twice the number of profiling samples you
require.

7 Click OK.

To view the execution profile for your model:

73-16

 Perform Execution-Time Profiling for IDE and Toolchain Targets

1

Click Build Model on the model toolstrip. This action builds, loads,
and runs your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use IDE_obj.halt
from the MATLAB command line. Gathering profiling data from a running program
can yield inaccurate results.

3 At the MATLAB command prompt, enter

profile(IDE_Obj,'execution','report')

to view the MATLAB software graphic of the execution report and the HTML
execution report.

For more information about other reporting options, see the product help for the
profile function.

The following profiling plot is from an application that runs with three rates — the
base rate and two slower rates. Gaps in the Sub-Rate 2 task bars indicate preempted
operations.

Subsystem Profiling

To configure a model for subsystem execution profiling:

1 Configure your model for your IDE, tool chain, and target hardware, as described in
“Configure Target Hardware Resources” on page 72-3.

73-17

73 Verification and Profiling Generated Code in Embedded Coder

2 On the Coder Target pane, set Build format to Project and set Build action to
Build_and_execute.

3 Select Profile real-time execution.
4 In the Profile by list, select Atomic subsystems.
5 Specify Number of profiling samples to collect, the size of the buffer that stores

execution data. Enter a value that is twice the number of profiling samples you
require.

6 Click OK.

To view the execution profile for your model:

1

Click Build Model on the model toolstrip. This action builds, loads,
and runs your code on the processor.

2 To stop the running program, select Debug > Halt in the IDE or use
IDE_obj.halt from the MATLAB command line. Gathering profiling data from a
running program can yield inaccurate results.

3 At the MATLAB command prompt, enter:

profile(IDE_Obj, 'execution','report')

to view the MATLAB software graphic of the execution report and the HTML
execution report.

The following profiling plot is from an application with three subsystems — For
Iterator Subsystem, For Iterator Subsystem1, and Idle Task Subsystem.

73-18

 Perform Execution-Time Profiling for IDE and Toolchain Targets

Execution-Time Profiling During PIL Simulation

During a processor-in-the-loop (PIL) simulation, you can profile execution
times of synchronous tasks. The software stores the profile data in a
coder.profile.ExecutionTime object, located in the MATLAB workspace. After
halting the PIL simulation, you can view and analyze the data.

Gathering Execution Profile Data

1 Configure a model for PIL simulation, as described in “PIL Simulation for IDE and
Toolchain Targets” on page 73-2.

2 In your model, select Simulation > Model Configuration Parameters.
3 In the Configuration Parameters dialog box, select Code Generation, and then

Verification.
4 Select the Measure task execution time check box.
5 Provide a valid MATLAB variable name in the Workspace edit box. The software

uses this name when it creates the coder.profile.ExecutionTime object.
6 Click OK to close the Configuration Parameters dialog box.

73-19

73 Verification and Profiling Generated Code in Embedded Coder

7 Run the PIL simulation, as described in “PIL Simulation for IDE and Toolchain
Targets” on page 73-2.

The software creates the coder.profile.ExecutionTime object and stores the
execution profile data in it.

8 Halt the PIL simulation.

Analyzing the Execution Profile Data

After halting the PIL simulation, you can view or analyze the data in the
coder.profile.ExecutionTime object. For more information, see:

• “View and Compare Code Execution Times” on page 58-7
• “Analyze Code Execution Data” on page 58-18

Depending on the target, the execution profile data is measured in seconds or timer ticks.

Targets Units

Analog Devices Blackfin, SHARC, and TigerSHARC processors
with VisualDSP++ IDE

Timer Ticks

ARM processors running Wind River VxWorks Timer Ticks

The coder.profile.ExecutionTime class has property TimerTicksPerSecond for
getting and setting the data units. You can use this property on the execution profile
data object after halting the PIL simulation. When the data unit is timer ticks, using the
TimerTicksPerSecond property converts the data units to seconds.

See Also
profile | TimerTicksPerSecond

Related Examples
• “Configure Target Hardware Resources” on page 72-3
• “PIL Simulation for IDE and Toolchain Targets” on page 73-2
• “View and Compare Code Execution Times” on page 58-7

73-20

 Perform Execution-Time Profiling for IDE and Toolchain Targets

• “Analyze Code Execution Data” on page 58-18

73-21

73 Verification and Profiling Generated Code in Embedded Coder

Perform Stack Profiling with IDE and Toolchain Targets

To profile the system stack operation:

1 Load an application.
2 Set up the stack to enable profiling.
3 Run your application.
4 Request the stack profile information.

Follow these steps to profile the stack as your application interacts with it. This
particular example uses Texas Instruments Code Composer Studio 3.3. However, you can
generalize from this example to another supported IDE.

1 Load the application to profile.
2 Use the profile method with the setup input keyword to initialize the stack to a

known state.

profile(IDE_Obj,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack.

3 Run your application.
4 Stop your running application. Stack use results gathered from an application that is

running may be inaccurate.
5 Use the profile method to capture and view the results of profiling the stack.

profile(IDE_Obj,'stack','report')

The following example shows how to set up and profile the stack. The IDE link handle
object, IDE_Obj, must exist in your MATLAB workspace and your application must be
loaded on your processor. This example comes from a TI C6713 simulator.
profile(IDE_Obj,'stack','setup') % Set up processor stack

%by write A5 to the stack addresses.

Maximum stack usage:

System Stack: 0/1024 (0%) MAUs used.

 name: System Stack

 startAddress: [512 0]

 endAddress: [1535 0]

 stackSize: 1024 MAUs

73-22

 Perform Stack Profiling with IDE and Toolchain Targets

growthDirection: ascending

run(IDE_Obj)

halt(IDE_Obj)

profile(IDE_Obj,'stack','report') % Request stack use report.

Maximum stack usage:

System Stack: 356/1024 (34.77%) MAUs used.

 name: System Stack

 startAddress: [512 0]

 endAddress: [1535 0]

 stackSize: 1024 MAUs

growthDirection: ascending

Related Examples
• “Code Execution Profiling for IDE and Toolchain Targets” on page 73-13

73-23

74

Processor-Specific Optimizations
for Embedded Targets in Embedded
Coder

74 Processor-Specific Optimizations for Embedded Targets in Embedded Coder

Replace Code for Embedded Targets

In this section...

“Using a Processor-Specific Code Replacement Library to Optimize Code” on page
74-2
“Process of Determining Optimization Effects Using Real-Time Profiling Capability” on
page 74-2

Using a Processor-Specific Code Replacement Library to Optimize Code

You can optimize the code the code generator produces for a specific processor by
configuring the code generator to use a code replacement library (CRL) during code
generation. If you have an Embedded Coder license, you can develop and apply custom
code replacement libraries.

For more information about replacing code, using code replacement libraries that
MathWorks provides, see “What Is Code Replacement?” on page 38-2 and “Replace Code
Generated from Simulink Models” on page 38-11. For information about developing code
replacement libraries, see “What Is Code Replacement Customization?” on page 51-3 and
“Develop a Code Replacement Library” on page 51-27.

Process of Determining Optimization Effects Using Real-Time Profiling
Capability

You can use the real-time profiling capability to examine the results of applying the
processor-specific library functions and operators to your generated code. After you
select a processor-specific code replacement library, use the real-time execution profiling
capability to examine the change in program execution time.

Use the following process to evaluate the effects of applying a processor-specific code
replacement library when you generate code:

1 Enable real-time profiling in your model. Refer to “Code Execution Profiling”.
2 Generate code for your project without specifying a code replacement library (the

default Code replacement library setting is None).
3 Profile the code, and save the report.
4 Rebuild your project using a processor-specific code replacement library.

74-2

 Replace Code for Embedded Targets

5 Profile the code, and save the second report.
6 Compare the profile report from running your application with the processor-specific

library selected to the profile results in the first report with no code replacement
library selected.

For an example of verifying the code optimization, search help for "Optimizing Embedded
Code via Code Replacement Library" and select the example that matches your IDE.

74-3

Code Generation from MATLAB Code

75

Build Configuration for Code
Generation from MATLAB Code

• “Specify Comment Style for C/C++ Code” on page 75-2
• “Specify Indent Style for C/C++ Code” on page 75-4
• “Generate Custom File and Function Banners for C/C++ Code” on page 75-6
• “Code Generation Template Files for MATLAB Code” on page 75-9
• “Customize Generated Identifiers” on page 75-20
• “Control Signed Left Shifts in Generated Code” on page 75-23
• “Control Data Type Casts in Generated Code” on page 75-25
• “Simplify Multiply Operations for Array Indexing in Loops” on page 75-28

75 Build Configuration for Code Generation from MATLAB Code

Specify Comment Style for C/C++ Code

In this section...

“Specify Comment Style Using the MATLAB Coder App” on page 75-2
“Specify Comment Style Using the Command-Line Interface” on page 75-3

If you have an Embedded Coder , you can specify the comment style for C/C++ code
generated from MATLAB code. Specify single-line style to generate single-line comments
preceded by //. Specify multiline style to generate single-line or multiline comments
delimited by /* and */. Single-line style is the default for C++ code generation. Multiline
style is the default for C code generation. For C code generation, select single-line
comment style only if your compiler supports it.

Specify Comment Style Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, select the Include comments check box if it is not

already selected. By default, the Include comments check box is selected.
5 Set Comment Style to one of the following options.

Value Description

Auto(Use standard comment style

of the target language)

For C, generate multiline comments.
For C++, generate single-line comments.
(default)

Single-line (Use C++-style

comments)

Generate single-line comments preceded
by //.

Multi-line (Use C-style

comments)

Generate single-line or multiline
comments delimited by /* and */.

75-2

 Specify Comment Style for C/C++ Code

Specify Comment Style Using the Command-Line Interface

1 Create a code configuration object for C/C++ code generation. For example, create a
configuration object for C/C++ static library generation:

cfg = coder.config('lib','ecoder',true);

2 Set the CommentStyle property to one of the following values:

Value Description

'Auto' For C, generate multiline comments. For C++, generate single-
line comments. (default)

'Single-line' Generate single-line comments preceded by //.
'Multi-line' Generate single-line or multiline comments delimited by /* and

*/.

For example, this code sets the comment style to single-line style:

cfg.CommentStyle='Single-line';

See Also
coder.EmbeddedCodeConfig

More About
• “Configure Build Settings” (MATLAB Coder)

75-3

75 Build Configuration for Code Generation from MATLAB Code

Specify Indent Style for C/C++ Code

In this section...

“Specify Indent Style Using the MATLAB Coder App” on page 75-5
“Specify Indent Style Using the Command-Line Interface” on page 75-5

If you have an Embedded Coder license, you can control the indent style and indent size
in C/C++ code generated from MATLAB code. Indent style controls the placement of
braces. Indent size controls the number of characters per indentation level.

You can specify the K&R indent style or the Allman indent style. Both styles:

• Place the function opening and closing braces on their own lines at the same
indentation level as the function header.

• Indent code within the function according to the indent size.
• For blocks within a function, place closing braces on a new line at the same

indentation level as the control statement.
• Indent code within a block according to the indent size.

The K&R style and the Allman style differ in their placement of the opening brace
for a control statement. If you want the opening brace on the same line as its control
statement, select the K&R style. Here is code that has the K&R indent style:

void addone(const double x[6], double z[6])

{

 int i0;

 for (i0 = 0; i0 < 6; i0++) {

 z[i0] = x[i0] + 1.0;

 }

}

If you want the opening brace on its own line, select the Allman style. Here is code that
has the Allman indent style:

void addone(const double x[6], double z[6])

{

 int i0;

 for (i0 = 0; i0 < 6; i0++)

 {

 z[i0] = x[i0] + 1.0;

75-4

 Specify Indent Style for C/C++ Code

 }

}

Specify Indent Style Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Indent style to K&R or Allman.
5 On the All Settings tab, under Advanced, set Indent size to an integer from 2 to

8.

Specify Indent Style Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the IndentStyle property to 'K&R' or 'Allman'. For example:

cfg.IndentStyle = 'Allman';

3 Set the IndentSize property to an integer from 2 to 8. For example:

cfg.IndentSize = 4;

See Also
coder.EmbeddedCodeConfig

More About
• “Configure Build Settings” (MATLAB Coder)

75-5

75 Build Configuration for Code Generation from MATLAB Code

Generate Custom File and Function Banners for C/C++ Code

When you generate C and C++ code from MATLAB code, you can use a code generation
template (CGT) file to specify custom:

• File banners
• Function Banners
• File trailers
• Comments before code sections

This example shows how you can create your own CGT file and customize it to generate
your own file and function banners.

1 Create a local copy of the default CGT file for MATLAB Coder and rename it. The
default CGT file is matlabcoder_default_template.cgt in the matlabroot/toolbox/
coder/matlabcoder/templates/ folder.

2 Store the copy in a folder that is outside of the MATLAB folder structure, but on
the MATLAB path. If necessary, add the folder to the MATLAB path. If you intend
to use the CGT file with a custom target, locate the CGT file in a folder under your
target root folder. If the file is not on the MATLAB path, specify a full path to the file
when adding the file to your configuration.

3 View the default template and generated output. For example, here is the default
File Banner section:
%%

%% Custom File Banner section (optional)

%% Customize File banners by using either custom tokens or the following

%% predefined tokens:

%% %<FileName>, %<MATLABCoderVersion>, %<EmbeddedCoderVersion>

%% %<SourceGeneratedOn>, %<HardwareSelection>, %<OutputType>

%%

%% You can also use "custom tokens" in all of the sections below. See the

%% documentation center for more details.

%%

<FileBanner style="classic">

File: %<FileName>

MATLAB Coder version : %<MATLABCoderVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

</FileBanner>

When you generate code using this default, the file banner looks similar to this file
banner:
/*

 * File: coderand.c

75-6

 Generate Custom File and Function Banners for C/C++ Code

 *

 * MATLAB Coder version : 2.7

 * C/C++ source code generated on : 06-Apr-2014 14:34:15

 */

4 Edit your local copy of the CGT file. You can change the default values and add
your own custom tokens. For example, here is the File Banner section with the style
changed to box and a custom token myCustomToken:
%%

%% Custom File Banner section (optional)

%% Customize File banners by using either custom tokens or the following

%% predefined tokens:

%% %<FileName>, %<MATLABCoderVersion>, %<EmbeddedCoderVersion>

%% %<SourceGeneratedOn>, %<HardwareSelection>, %<OutputType>

%%

%% You can also use "custom tokens" in all of the sections below. See the

%% documentation center for more details.

%%

<FileBanner style="box">

File: %<FileName>

My custom token : %<myCustomToken>

MATLAB Coder version : %<MATLABCoderVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

</FileBanner>

For more information, see “Code Generation Template Files for MATLAB Code” on
page 75-9.

5 Create a configuration object for generation of a C static library for an embedded
target.

% Create configuration object for an embedded target

cfgObj = coder.config('lib','ecoder',true);

6 Create a MATLABCodeTemplate object from your CGT file and add it to the
configuration object.

% Specify the custom CGT file

CGTFile = 'myCGTFile.cgt';

% Use custom template

cfgObj.CodeTemplate = coder.MATLABCodeTemplate(CGTFile);

7 Assign values for custom tokens that you added to the template. For example, assign
the value 'myValue' to the myCustomToken token that you added in a previous
step.

cfgObj.CodeTemplate.setTokenValue('myCustomToken','myValue');

8 Generate code using the configuration object that you created.

75-7

75 Build Configuration for Code Generation from MATLAB Code

codegen -config cfgObj coderand

9 View the changes to the generated file banner. For example, here is the file banner
for coderand.c using the customized CGT file:
/**/

/* File: coderand.c */

/* */

/* My custom token : myValue */

/* */

/* MATLAB Coder version : 2.7 */

/* C/C++ source code generated on : 06-Apr-2014 14:42:55 */

/**/

Changes to a CGT file do not affect the generated code unless you create a
MATLABCodeTemplate object from the modified CGT file, and then add it to the
configuration object. If you modify the CGT File, myCGTFile.cgt, used in the previous
example, you must repeat these steps:

1 Create a MATLABCodeTemplate object from myCGTFile.cgt and add it to the
configuration object.

CGTFile = 'myCGTFile.cgt';

cfgObj.CodeTemplate = coder.MATLABCodeTemplate(CGTFile);

2 Assign the value 'myValue' to the myCustomToken token.

cfgObj.CodeTemplate.setTokenValue('myCustomToken','myValue');

3 Generate code.

codegen -config cfgObj coderand

See Also
coder.MATLABCodeTemplate

More About
• “Code Generation Template Files for MATLAB Code” on page 75-9

75-8

 Code Generation Template Files for MATLAB Code

Code Generation Template Files for MATLAB Code

In this section...

“Default CGT File” on page 75-9
“CGT File Structure” on page 75-9
“Components of the CGT File Sections” on page 75-11

A code generation template (CGT) file defines the sections in generated code that you
can customize using comments and tokens. Using a code generation template (CGT) file
for the generation of C and C++ code from MATLAB code, you can specify custom file
banners and function banners for generated code. File banners are comment sections
in the header and trailer sections of a generated file. Function banners are comment
sections for each function in the generated code. You can also customize comments before
code sections. Use these banners to:

• Add a company copyright statement.
• Specify a special version symbol for your configuration management system.
• Remove time stamps.
• Add other custom information to your generated files.

For information on creating, customizing, and using a CGT file, see “Generate Custom
File and Function Banners for C/C++ Code” on page 75-6.

Default CGT File

You can base your custom template on the default CGT file,
matlabcoder_default_template.cgt, in the matlabroot/toolbox/coder/
matlabcoder/templates/ folder.

Note: If you choose not to customize banners for your generated code, the default
template is used for code generation.

CGT File Structure

A CGT file consists of 13 optional sections.

75-9

75 Build Configuration for Code Generation from MATLAB Code

File Banner Section

Contains comments and tokens for use in generating a custom file banner.

Function Banner Section

Contains comments and tokens for use in generating a custom function banner.

Shared Utility Function Banner

Contains comments and tokens for use in generating custom banners for shared utility
functions.

File Trailer Section

Contains comments for use in generating a custom trailer banner.

Include Files Banner

Contains comments for use in generating a custom banner for the include files section.

Type Definitions

Contains comments for use in generating a custom banner for the type definitions
section.

Named Constants

Contains comments for use in generating a custom banner for the named constants
section.

Variable Declarations

Contains comments for use in generating a custom banner for the variable declarations
section.

Variable Definitions

Contains comments for use in generating a custom banner for the variable definitions
section.

Function Declarations

Contains comments for use in generating a custom banner for the function declarations
section.

75-10

 Code Generation Template Files for MATLAB Code

Function Definitions

Contains comments for use in generating a custom banner for the function definitions
section.

Custom Source Code

Contains comments for use in generating a custom banner for the custom source code
section.

Custom Header Code

Contains comments for use in generating a custom banner for the custom header code
section.

Components of the CGT File Sections

Each CGT file section is defined by open and close tags.

CGT File Section Open Tag Close Tag

“File Banner” on page
75-14

<FileBanner> </FileBanner>

“Function Banner
Section” on page
75-10

<FunctionBanner> </FunctionBanner>

“Shared Utility Function
Banner” on page
75-10

<SharedUtilityBanner> </SharedUtilityBanner>

“File Trailer Section” on
page 75-10

<FileTrailer> </FileTrailer>

“Include Files Banner” on
page 75-10

<IncludeFilesBanner> </IncludeFilesBanner>

“Type Definitions” on
page 75-10

<TypeDefinitionsBanner> </TypeDefinitionsBanner>

“Named Constants” on
page 75-10

<NamedConstantsBanner> </NamedConstantsBanner>

“Variable Declarations”
on page 75-10

<VariableDeclarationsBanner></

VariableDeclarationsBanner>

75-11

75 Build Configuration for Code Generation from MATLAB Code

CGT File Section Open Tag Close Tag

“Variable Definitions” on
page 75-10

<VariableDefinitionsBanner> </

VariableDefinitionsBanner>

“Function Declarations”
on page 75-10

<FunctionDeclarationsBanner></

FunctionDeclarationsBanner>

“Function Definitions” on
page 75-11

<FunctionDefinitionsBanner> </

FunctionDefinitionsBanner>

“Custom Source Code” on
page 75-11

<CustomSourceCodeBanner> </CustomSourceCodeBanner>

“Custom Header Code” on
page 75-11

<CustomHeaderCodeBanner> </CustomHeaderCodeBanner>

You can customize your banners by including tokens and comments between the open
and close tags for each section. Tokens are replaced with values in the generated code.
The following rules apply to tokens in your CGT file:

• You can have only one token per line.
• Token values must not contain a ‘\t’ for formatting.

Note: In the contents of your banner, C comment indicators, '/*' or '*/', can introduce an
error in the generated code.

An open tag includes tag attributes. Enclose the value of the attribute in double quotes.
The attributes available for an open tag are:

• width: specifies the width of the file or function banner comments in the generated
code. The default value is 80.

• style: specifies the boundary for the file or function banner comments in the
generated code.

The open tag syntax is:

<OpenTag style = “style_value” width = “num_width”>

There are five options for the banner style. The CommentStyle and TargetLang
configuration object properties determine the use of C or C++ comment style. The built-in
style options for the style attribute are:

75-12

 Code Generation Template Files for MATLAB Code

• classic

Using C style comments

/* single line comments */

/*

 * multiple line comments

 * second line

 */

Using C++ style comments

// single line comments

//

// multiple line comments

// second line

//

• box

Using C style comments

/**/

/* banner contents */

/**/

Using C++ style comments

//

// banner contents //

//

• open_box

Using C style comments

/**

 * banner contents

 **/

Using C++ style comments

//

// banner contents

75-13

75 Build Configuration for Code Generation from MATLAB Code

//

• doxygen

Using C style comments

/** single line comments */

/**

 * multiple line comments

 * second line

 */

Using C++ style comments

///single line comments

///

/// multiple line comments

///second line

///

• doxygen_qt

Using C style comments

/*! single line comments */

/*!

 * multiple line comments

 * second line

 */

Using C++ style comments

//!single line comments

//!

//! multiple line comments

//!second line

//!

File Banner

This section contains comments and tokens for use in generating a custom file banner
that precedes the generated C and C++ code. If you omit the file banner section from the

75-14

 Code Generation Template Files for MATLAB Code

CGT file, the code generator does not generate a file banner in the generated code. The
file banner section provided in the default CGT file is:
%%

%% Custom File Banner section (optional)

%% Customize File banners by using either custom tokens or the following

%% predefined tokens:

%% %<FileName>, %<MATLABCoderVersion>, %<EmbeddedCoderVersion>

%% %<SourceGeneratedOn>, %<HardwareSelection>, %<OutputType>

%%

%% You can also use "custom tokens" in all of the sections below. See the

%% documentation center for more details.

%%

<FileBanner style="classic">

File: %<FileName>

MATLAB Coder version : %<MATLABCoderVersion>

C/C++ source code generated on : %<SourceGeneratedOn>

</FileBanner>

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example, "kalman.c")
SourceGeneratedOn Time stamp of generated file
MATLABCoderVersion Version of MATLAB Coder
EmbeddedCoderVersion Version of Embedded Coder
HardwareSelection Selected target
OutputType Type of output (for example, lib, exe, or dll)

Function Banner

This section contains comments and tokens for use in generating a custom function
banner that precedes a generated C or C++ function. If you omit the function banner
section from the CGT file, the code generator does not generate function banners. The
function banner section provided in the default CGT file is:
%%%

%% Custom function banner section (optional)

%% Customize function banners by using the following predefined tokens:

%% %<FunctionName>, %<FunctionDescription>

%% %<Arguments>, %<ReturnType>

%%

<FunctionBanner style="classic">

%<FunctionDescription>

Arguments : %<Arguments>

Return Type : %<ReturnType>

%</FunctionBanner>

75-15

75 Build Configuration for Code Generation from MATLAB Code

Summary of Tokens for Function Banner Generation

FunctionName Name of function
FunctionDescription Short abstract about the function
Arguments List of function arguments
ReturnType Return type of function

Shared Utility Banner

This section contains comments and tokens for use in generating a custom shared utility
function banner that precedes a generated C or C++ shared utility function. If you omit
the shared utility function banner section from the CGT file, the code generator does
not generate shared utility function banners. The shared utility function banner section
provided in the default CGT file is:
%%

%% Custom Shared Utility Function Banner section (optional)

%% Customize shared utility function banners by using the following

%% predefined tokens:

%% %<FunctionName>, %<FunctionDescription>

%% %<Arguments>, %<ReturnType>

%%

<SharedUtilityBanner style="classic">

Arguments : %<Arguments>

Return Type : %<ReturnType>

</SharedUtilityBanner>

Summary of Tokens for Shared Utility Function Banner Generation

FunctionName Name of function
FunctionDescription Short abstract about the function
Arguments List of function arguments
ReturnType Return type of function

File Trailer

The file trailer section contains comments for generating a custom file trailer that follows
the generated C or C++ code. If you omit the file trailer section from the CGT file, the
code generator does not generate a file trailer. The file trailer section provided in the
default CGT file is:
%%%

%% Custom file trailer section (optional)

75-16

 Code Generation Template Files for MATLAB Code

%% You can use any of the predefined tokens used for File Banner

%%

<FileTrailer style="classic">

File trailer for %<FileName>

[EOF]

</FileTrailer>

Tokens for the file banner are available for the file trailer. See Summary of Tokens for
File Banner Generation.

Include Files Banner

The include files banner section contains comments for generating a custom banner
that precedes the include files section in the generated code. If you omit the include files
banner section from the CGT file, the code generator does not generate a banner for this
section. The include files banner section provided in the default CGT file is:

<IncludeFilesBanner style="classic">

Include Files

</IncludeFilesBanner>

Type Definitions Banner

The type definitions banner section contains comments for generating a custom banner
that precedes the type definitions section in the generated code. If you omit the type
definitions banner section from the CGT file, the code generator does not generate a
banner for this section. The type definitions banner section provided in the default CGT
file is:

<TypeDefinitionsBanner style="classic">

Type Definitions

</TypeDefinitionsBanner>

Named Constants Banner

The named constants banner section contains comments for generating a custom banner
that precedes the named constants section in the generated code. If you omit the named
constants banner section from the CGT file, the code generator does not generate a
banner for this section. The named constants banner section provided in the default CGT
file is:

<NamedConstantsBanner style="classic">

Named Constants

</NamedConstantsBanner>

75-17

75 Build Configuration for Code Generation from MATLAB Code

Variable Declarations

The variable declarations banner section contains comments for generating a custom
banner that precedes the variable declarations section in the generated code. If you omit
the variable declarations banner section from the CGT file, the code generator does not
generate a banner for this section. The variable declarations banner section provided in
the default CGT file is:

<VariableDeclarationsBanner style="classic">

Variable Declarations

</VariableDeclarationsBanner>

Variable Definitions

The variable definitions banner section contains comments for generating a custom
banner that precedes the variable definitions section in the generated code. If you omit
the variable definitions banner section from the CGT file, the code generator does not
generate a banner for this section. The variable definitions banner section provided in
the default CGT file is:

<VariableDefinitionsBanner style="classic">

Variable Definitions

</VariableDefinitionsBanner>

Function Declarations

The function declarations banner section contains comments for generating a custom
banner that precedes the function declarations section in the generated code. If you omit
the function declarations banner section from the CGT file, the code generator does not
generate a banner for this section. The function declarations banner section provided in
the default CGT file is:

<functionDeclarationsBanner style="classic">

Function Declarations

</FunctionDeclarationsBanner>

Function Definitions

The function definitions banner section contains comments for generating a custom
banner that precedes the function definitions section in the generated code. If you omit
the function definitions banner section from the CGT file, the code generator does not
generate a banner for this section. The function definitions banner section provided in
the default CGT file is:

75-18

 Code Generation Template Files for MATLAB Code

<FunctionDefinitionsBanner style="classic">

Function Definitions

</FunctionDefinitionsBanner>

Custom Source Code

The custom source code banner section contains comments for generating a custom
banner that precedes the custom source code section in the generated code. If you omit
the custom source code banner section from the CGT file, the code generator does not
generate a banner for this section. The custom source code banner section provided in the
default CGT file is:

<CustomSourceCodeBanner style="classic">

Custom Source Code

</CustomSourceCodeBanner>

Custom Header Code

The custom header code banner section contains comments for generating a custom
banner that precedes the custom header code section in the generated code. If you omit
the custom header code banner section from the CGT file, the code generator does not
generate a banner for this section. The custom header code banner section provided in
the default CGT file is:

<CustomHeaderCodeBanner style="classic">

Custom Header Code

</CustomHeaderCodeBanner>

See Also
coder.MATLABCodeTemplate

More About
• “Generate Custom File and Function Banners for C/C++ Code” on page 75-6

75-19

75 Build Configuration for Code Generation from MATLAB Code

Customize Generated Identifiers

In this section...

“Customize Identifiers by Using the MATLAB Coder App” on page 75-20
“Customize Generated Identifiers by Using the Command-Line Interface” on page
75-21

If you have Embedded Coder, you can customize the identifiers in C/C++ code generated
from MATLAB code. For each kind of identifier that you want to customize, set the
appropriate identifier format parameter to a macro that specifies the format of the
generated identifiers. The macro can include:

• Valid C or C++ language identifiers (a-z, A-Z, _, 0–9).
• The tokens listed in the following table. $M is required.

Token Description

$M Code generator inserts name mangling text to avoid naming
collisions.

Required.
$N Code generator inserts the name of the object (global variable,

global type, local function, local temporary variable, or constant
macro) for which the identifier is generated.

Improves readability of generated code.
$R Code generator inserts the root project name into identifier,

replacing unsupported characters with the underscore (_)
character.

Customize Identifiers by Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library

75-20

 Customize Generated Identifiers

• Dynamic Library

• Executable

3 Click More Settings.
4 On the Code Appearance tab, under Identifier Format, for each kind of identifier

that you want to customize, enter the macro.

Parameter Default Macro

Global variables MN

Global types MN

Field name of global types MN

Local functions MN

Local temporary variables MN

Constant macros MN

EMX Array Types emxArray_MN

EMX Array Utility Functions emxMN

For example, suppose that Global variables has the value glob_MN. For a global
variable named g, when name mangling is not required, the generated identifier is
glob_g. If name mangling is required, the generated identifier includes the name
mangling text.

Customize Generated Identifiers by Using the Command-Line Interface

1 Create a code configuration object for a library or executable program. For example:

cfg = coder.config('lib','ecoder',true);

2 For each kind of identifier that you want to customize, specify the macro as a
character vector.

Parameter Description Default Macro

CustomSymbolStrGlobalVar Global variables 'MN'

CustomSymbolStrType Global types 'MN'

CustomSymbolStrField Field name of global types 'MN'

CustomSymbolStrFcn Local functions 'MN'

75-21

75 Build Configuration for Code Generation from MATLAB Code

Parameter Description Default Macro

CustomSymbolStrTmpVar Local temporary variables 'MN'

CustomSymbolStrMacro Constant macros 'MN'

CustomSymbolStrEMXArray EMX Array Types 'emxArray_MN'

CustomSymbolStrEMXArrayFcn EMX Array Utility Functions 'emxMN'

For example:

cfg.CustomSymbolStrGlobalVar = 'glob_MN';

For a global variable named g, when name mangling is not required, the generated
identifier is glob_g. If name mangling is required, the generated identifier includes the
name mangling text.

See Also
coder.EmbeddedCodeConfig

More About
• “Configure Build Settings” (MATLAB Coder)

75-22

 Control Signed Left Shifts in Generated Code

Control Signed Left Shifts in Generated Code

In this section...

“Control Signed Left Shifts Using the MATLAB Coder App” on page 75-23
“Control Signed Left Shifts Using the Command-Line Interface” on page 75-23

If you have an Embedded Coder license, you can control whether MATLAB Coder
replaces multiplications by powers of two with signed left bitwise shifts. Some coding
standards, such as MISRA, do not allow bitwise operations on signed integers.

By default, MATLAB Coder replaces multiplication by powers of two with signed
left shifts. Here is an example of generated C code that uses a signed left shift for
multiplication by eight.

i <<= 3;

To increase the likelihood of generating MISRA C:2012 compliant code, disable the
replacement of multiplication by powers of two with signed left shifts. Here is an example
of generated C code that does not use a signed left shift for multiplication by eight:

i = i * 8;

Control Signed Left Shifts Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, select or clear the Use signed shift left for fixed-

point operations and multiplication by powers of 2 check box.

Control Signed Left Shifts Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

75-23

75 Build Configuration for Code Generation from MATLAB Code

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the EnableSignedLeftShifts property to true or false. For example:

cfg.EnableSignedLeftShifts = false;

See Also
coder.EmbeddedCodeConfig

More About
• “Configure Build Settings” (MATLAB Coder)

75-24

 Control Data Type Casts in Generated Code

Control Data Type Casts in Generated Code

In this section...

“Specify Casting Mode Using the MATLAB Coder App” on page 75-26
“Specify Casting Mode Using the Command-Line Interface” on page 75-27

If you have an Embedded Coder license, you can control data type casts in C/C++ code
generated from MATLAB code. You can specify one of the following casting modes.

Casting Mode Description

Nominal Nominal casting mode is the default
casting mode. Generated C/C++ code
uses the default C compiler data type
casting. When you do not have special data
type information requirements, choose
this option. Here is an example of code
generated using nominal casting mode:

short addone(short x)

{

 int i0;

 i0 = x + 1;

 if (i0 > 32767) {

 i0 = 32767;

 }

 return (short)i0;

}

Standards Compliant Generated C/C++ code has data type
casts that conform to MISRA standards.
The MISRA data type casting eliminates
common MISRA standard violations,
including address arithmetic and
assignment. It reduces 10.1, 10.2, 10.3,
and 10.4 violations. Here is an example of
code generated using standards-compliant
casting mode:

short addone(short x)

75-25

75 Build Configuration for Code Generation from MATLAB Code

Casting Mode Description
{

 int i0;

 i0 = (int)x + (int)1;

 if (i0 > (int)32767) {

 i0 = (int)32767;

 }

 return (short)i0;

}

Explicit Generated C/C++ code has explicit data
type casts. Explicit data type casts
provide information about the amount of
memory that the variable uses and the
level of precision for calculations using
the variable. Here is an example of code
generated using explicit casting mode:

short addone(short x)

{

 int i0;

 i0 = (int)x + 1;

 if (i0 > 32767) {

 i0 = 32767;

 }

 return (short)i0;

}

Specify Casting Mode Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.

75-26

 Control Data Type Casts in Generated Code

4 On the All Settings tab, under Advanced, set Casting mode to one of the
following values:

• Nominal

• Standards Compliant

• Explicit

Specify Casting Mode Using the Command-Line Interface

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the CastingMode property to one of the following values:

• 'Nominal'

• 'Standards'

• 'Explicit'

For example:

cfg.IndentStyle = 'Standards';

See Also
coder.EmbeddedCodeConfig

More About
• “Configure Build Settings” (MATLAB Coder)

75-27

75 Build Configuration for Code Generation from MATLAB Code

Simplify Multiply Operations for Array Indexing in Loops

If you use Embedded Coder to generate C/C++ code from MATLAB code, you can enable
an optimization that simplifies array indexing in loops in the generated code. When
possible, for array indices in loops, this optimization replaces multiply operations with
add operations. Multiply operations can be expensive. This optimization, referred to as
strength reduction, is useful when the C/C++ compiler on the target platform does not
optimize the array indexing.

Here is code generated without the optimization:

for (i = 0; i < 10; i++) {

 z[5 * (1 + i) - 1] = x[5 * (1 + i)];

 }

Here is code generated with the optimization:

for (b_i = 0; b_i < 10; b_i++) {

 z[i + 4] = x[i + 5];

 i += 5;

 }

By default, the strength reduction optimization is disabled. To enable it:

• At the command line, set the configuration object parameter
EnableStrengthReduction to true.

• In the MATLAB Coder app, project build settings, on the All Settings tab, set
Simplify array indexing to Yes.

Even when the optimization replaces the multiply operations in the generated code, it is
possible that the C/C++ compiler can generate multiply instructions.

More About
• “Optimization Strategies” (MATLAB Coder)
• “Configure Build Settings” (MATLAB Coder)

75-28

76

Code Replacement for MATLAB Code

• “What Is Code Replacement?” on page 76-2
• “Choose a Code Replacement Library” on page 76-9
• “Replace Code Generated from MATLAB Code” on page 76-11

76 Code Replacement for MATLAB Code

What Is Code Replacement?

Code replacement is a technique to change the code that the code generator produces for
functions and operators to meet application code requirements. For example, you can
replace generated code to meet requirements such as:

• Optimization for a specific run-time environment, including, but not limited to,
specific target hardware.

• Integration with existing application code.
• Compliance with a standard, such as AUTOSAR.
• Modification of code behavior, such as enabling or disabling nonfinite or inline

support.
• Application- or project-specific code requirements, such as:

• Elimination of math.h.
• Elimination of system header files.
• Elimination of calls to memcpy or memset.
• Use of BLAS.
• Use of a specific BLAS.

To apply this technique, configure the code generator to apply a code replacement
library (CRL) during code generation. By default, the code generator does not apply a
code replacement library. You can choose from the following libraries that MathWorks
provides:

• GNU C99 extensions—GNU16 gcc math library, which provides C99 extensions as
defined by compiler option -std=gnu99.

• AUTOSAR 4.0—Produces code that more closely aligns with the AUTOSAR standard.
Requires an Embedded Coder license.

• Intel IPP for x86-64 (Windows)—Generates calls to the Intel Performance Primitives
(IPP) library for the x86-64 Windows platform.

• Intel IPP/SSE for x86-64 (Windows)—Generates calls to the IPP and Streaming SIMD
Extensions (SSE) libraries for the x86-64 Windows platform.

• Intel IPP for x86-64 (Windows using MinGW compiler)—Generates calls to the IPP
library for the x86-64 Windows platform and MinGW compiler.

16. GNU is a registered trademark of the Free Software Foundation.

76-2

 What Is Code Replacement?

• Intel IPP/SSE for x86-64 (Windows using MinGW compiler)—Generates calls to the
IPP and SSE libraries for the x86-64 Windows platform and MinGW compiler.

• Intel IPP for x86/Pentium (Windows)—Generates calls to the IPP library for the x86/
Pentium Windows platform.

• Intel IPP/SSE for x86/Pentium (Windows)—Generates calls to the Intel Performance
IPP and SSE libraries for the x86/Pentium Windows platform.

• Intel IPP for x86-64 (Linux)—Generates calls to the IPP library for the x86-64 Linux
platform.

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)—Generates calls to the
GNU libraries for IPP and SSE, with GNU C99 extensions, for the x86-64 Linux
platform.

Libraries that include GNU99 extensions are intended for use with the GCC compiler. If
you use one of those libraries with another compiler, generated code might not compile.

Depending on the product licenses that you have, other libraries might be available . If
you have an Embedded Coder license, you can view and choose from other libraries and
you can create custom code replacement libraries.

Code Replacement Libraries

A code replacement library consists of one or more code replacement tables that specify
application-specific implementations of functions and operators. For example, a library
for a specific embedded processor specifies function and operator replacements that
optimize generated code for that processor.

A code replacement table contains one or more code replacement entries, with each entry
representing a potential replacement for a function or operator. Each entry maps a
conceptual representation of a function or operator to an implementation representation
and priority.

76-3

76 Code Replacement for MATLAB Code

Table Entry
Component

Description

Conceptual
representation

Identifies the table entry and contains match criteria for the code
generator. Consists of:

• Function name or a key. The function name identifies most
functions. For operators and some functions, a series of
characters, called a key identifies a function or operator.
For example, function name 'cos' and operator key
'RTW_OP_ADD'.

• Conceptual arguments that observe code generator naming
('y1', 'u1', 'u2', ...), with corresponding I/O types (output or
input) and data types.

• Other attributes, such as an algorithm, fixed-point saturation,
and rounding modes, which identify matching criteria for the
function or operator.

Implementation
representation

Specifies replacement code. Consists of:

• Function name. For example, 'cos_dbl' or 'u8_add_u8_u8'.
• Implementation arguments, with corresponding I/O types

(output or input) and data types.
• Parameters that provide additional implementation details,

such as header and source file names and paths of build
resources.

76-4

 What Is Code Replacement?

Table Entry
Component

Description

Priority Defines the entry priority relative to other entries in the table. The
value can range from 0 to 100, with 0 being the highest priority. If
multiple entries have the same priority, the code generator uses the
first match with that priority.

When the code generator looks for a match in a code replacement library, it creates and
populates a call site object with the function or operator conceptual representation. If
a match exists, the code generator uses the matched code replacement entry populated
with the implementation representation and uses it to generate code.

The code generator searches the tables in a code replacement library for a match in the
order that the tables appear in the library. If the code generator finds multiple matches
within a table, the priority determines the match. The code generator uses a higher-
priority entry over a similar entry with a lower priority.

Code Replacement Terminology

Term Definition

Cache hit A code replacement entry for a function or operator,
defined in the specified code replacement library,
for which the code generator finds a match.

Cache miss A conceptual representation of a function or
operator for which the code generator does not find
a match.

Call site object Conceptual representation of a function or operator
that the code generator uses when it encounters
a call site for a function or operator. The code
generator uses the object to query the code
replacement library for a conceptual representation
match. If a match exists, the code generator returns
a code replacement object, fully populated with
the conceptual representation, implementation
representation, and priority, and uses that object to
generate replacement code.

Code replacement library One or more code replacement tables that specify
application-specific implementations of functions

76-5

76 Code Replacement for MATLAB Code

Term Definition

and operators. When configured to use a code
replacement library, the code generator uses
criteria defined in the library to search for matches.
If a match is found, the code generator replaces
code that it generates by default with application-
specific code defined in the library.

Code replacement table One or more code replacement table entries.
Provides a way to group related or shared entries
for use in different libraries.

Code replacement entry Represents a potential replacement for a function
or operator. Maps a conceptual representation
of a function or operator to an implementation
representation and priority.

Conceptual argument Represents an input or output argument for a
function or operator being replaced. Conceptual
arguments observe naming conventions ('y1',
'u1', 'u2', ...) and data types familiar to the code
generator.

Conceptual representation Represents match criteria that the code generator
uses to qualify functions and operators for
replacement. Consists of:

• Function or operator name or key
• Conceptual arguments with type, dimension,

and complexity specification for inputs and
output

•
Attributes, such as an algorithm and fixed-point
saturation and rounding modes

Implementation argument Represents an input or output argument for a C
or C++ replacement function. Implementation
arguments observe C/C++ name and data type
specifications.

76-6

 What Is Code Replacement?

Term Definition

Implementation representation Specifies C or C++ replacement function prototype.
Consists of:

• Function name (for example, 'cos_dbl' or
'u8_add_u8_u8')

• Implementation arguments specifying type,
type qualifiers, and complexity for the function
inputs and output

• Parameters that provide build information, such
as header and source file names and paths of
build resources and compile and link flags

Key Identifies a function or operator that is being
replaced. A function name or key appears in the
conceptual representation of a code replacement
entry. The key RTW_OP_ADD identifies the addition
operator.

Priority Defines the match priority for a code replacement
entry relative to other entries, which have the
same name and conceptual argument list, within
a code replacement library. The priority can
range from 0 to 100, with 0 being the highest
priority. The default is 100. If a library provides
two implementations for a function or operator, the
implementation with the higher priority shadows
the one with the lower priority.

Code Replacement Limitations

Code replacement verification — It is possible that code replacement behaves differently
than you expect. For example, data types that you observe in code generator input might
not match what the code generator uses as intermediate data types during an operation.
Verify code replacements by examining generated code.

Code replacement for matrices — Code replacement libraries do not support Dynamic
and Symbolic sized matrices.

76-7

76 Code Replacement for MATLAB Code

Related Examples
• “Replace Code Generated from MATLAB Code” on page 76-11
• “Choose a Code Replacement Library” on page 76-9

76-8

 Choose a Code Replacement Library

Choose a Code Replacement Library

In this section...

“About Choosing a Code Replacement Library” on page 76-9
“Explore Available Code Replacement Libraries” on page 76-9
“Explore Code Replacement Library Contents” on page 76-9

About Choosing a Code Replacement Library

By default, the code generator does not use a code replacement library.

If you are considering using a code replacement library:

1 Explore available libraries. Identify one that best meets your application needs.

• Consider the lists of application code replacement requirements and libraries that
MathWorks provides in “What Is Code Replacement?” on page 76-2.

• See “Explore Available Code Replacement Libraries” on page 76-9.
2 Explore the contents of the library. See “Explore Code Replacement Library

Contents” on page 37-9.

If you do not find a suitable library and you have an Embedded Coder license, you can
create a custom code replacement library.

Explore Available Code Replacement Libraries

You can select the code replacement library to use for code generation in a project, on the
Custom Code tab, by setting the Code replacement library parameter. Alternatively,
in a code configuration object, set the CodeReplacementLibrary parameter.

Explore Code Replacement Library Contents

Use the Code Replacement Viewer to explore the content of a code replacement library.

1 At the command prompt, type crviewer.
>> crviewer

76-9

76 Code Replacement for MATLAB Code

The viewer opens. To view the content of a specific library, specify the name of the
library as an argument in single quotes. For example:
>> crviewer('GNU C99 extensions')

2 In the left pane, select the name of a library. The viewer displays information about
the library in the right pane.

3 In the left pane, expand the library, explore the list of tables it contains, and select a
table from the list. In the middle pane, the viewer displays the function and operator
entries that are in that table, along with abbreviated information for each entry.

4 In the middle pane, select a function or operator. The viewer displays information
from the table entry in the right pane.

If you select an operator entry that specifies net slope fixed-point parameters
(instantiated from entry class RTW.TflCOperationEntryGenerator or
RTW.TflCOperationEntryGenerator_NetSlope), the viewer displays an
additional tab that shows fixed-point settings.

See Code Replacement Viewer for details on what the viewer displays.

Related Examples
• “What Is Code Replacement?” on page 76-2
• “Replace Code Generated from MATLAB Code” on page 76-11

76-10

 Replace Code Generated from MATLAB Code

Replace Code Generated from MATLAB Code

This example shows how to replace generated code using a code replacement library.
Code replacement is a technique for changing the code that the code generator produces
for functions and operators to meet application code requirements.

Prepare for Code Replacement

1 Make sure that you have installed required software. Required software is:

• MATLAB
• MATLAB Coder
• C compiler

Some code replacement libraries available in your development environment require
Embedded Coder.

For instructions on installing MathWorks products, see the MATLAB installation
documentation. If you have installed MATLAB and want to see which other
MathWorks products are installed, in the MATLAB Command Window, enter ver.

2 Identify an existing MATLAB function or create a new MATLAB function for which
you want the code generator to replace code.

Choose a Code Replacement Library

If you are not sure which library to use, explore available libraries.

Configure Code Generator To Use Code Replacement Library

1 Configure the code generator to apply a code replacement library during code
generation for the MATLAB function. Do one of the following:

• In a project, on the Custom Code tab, set the Code replacement library
parameter.

• In a code configuration object, set the CodeReplacementLibrary parameter.
2 Configure the code generator to produce only code. Before you build an executable,

verify your code replacements. Do one of the following:

• In a project, in the Generate dialog box, select the Generate code only check
box.

76-11

76 Code Replacement for MATLAB Code

• In a code configuration object, set the GenCodeOnly parameter.

Include Code Replacement Information In Code Generation Report

If you have an Embedded Coder license, you can configure the code generator to include a
code replacement section in the code generation report. The additional information helps
you verify code replacements.

1 Configure the code generator to generate a report.

• In a project, on the Debugging tab, set the Always create a code generation
report parameter.

• In a code configuration object, set the GenerateReport parameter.
2 Include the code replacement section in the report.

• In a project, on the Debugging tab, select the Code replacements check box.
• In a code configuration object, set the GenerateCodeReplacementReport

parameter.

Generate Replacement Code

Generate C/C++ code from the MATLAB code. If you configured the code generator to
produce a report, generate a code generation report. For example, in the MATLAB Coder
app, on the Generate Code page, click Generate. Or, at the command prompt, enter:

codegen -report myFunction -args {5} -config cfg

The code generator produces the code and displays the report.

Verify Code Replacements

Verify code replacements by examining the generated code. Code replacement can
sometimes behave differently than you expect. For example, data types that you
observe in the code generator input might not match what the code generator uses as
intermediate data types during an operation.

Related Examples
• “What Is Code Replacement?” on page 76-2
• “Choose a Code Replacement Library” on page 76-9
• “Configure Build Settings” (MATLAB Coder)

76-12

77

Storage Classes for Code Generation
from MATLAB Code

• “Storage Classes for Code Generation from MATLAB Code” on page 77-2
• “Control Declarations and Definitions of Global Variables in Code Generated from

MATLAB Code” on page 77-5

77 Storage Classes for Code Generation from MATLAB Code

Storage Classes for Code Generation from MATLAB Code

If you have an Embedded Coder license, you can use storage classes to control the
declaration and definition of a global variable in the generated C/C++ code.

In the context of code generation, a storage class is a specification that determines the
declaration and definition of a variable in the generated code. For code generation, the
term storage class is not the same as the C language term storage class specifier.

Storage classes help you to integrate generated code with external code. You can make a
generated variable visible to external code. You can also make variables declared in the
external code visible to the generated code. For code generation from MATLAB code, you
can use storage classes with global variables only. The storage class determines:

• The file placement of a global variable declaration and definition.
• Whether the global variable is imported from external code or exported for use by

external code.

To assign a storage class to a global variable, in your MATLAB code, use the
coder.storageClass function. Only when you use an Embedded Coder project or
configuration object for generation of C/C++ libraries or executables does the code
generator recognize coder.storageClass calls.

The syntax for coder.storageClass is:

coder.storageClass(global_name, storage_class)

global_name is the name of a global variable, specified as a character vector.
global_name must be a compile-time constant.

storage_class can be one of the following values.

Storage Class Description

'ExportedGlobal' • Defines the variable in the Variable
Definitions section of the C file
entry_point_name.c.

• Declares the variable as an extern
in the Variable Declarations
section of the header file
entry_point_name.h

77-2

 Storage Classes for Code Generation from MATLAB Code

Storage Class Description

• Initializes the variable in the function
entry_point_name_initialize.h.

'ExportedDefine' Declares the variable with a #define
directive in the Exported data
define section of the header file
entry_point_name.h.

'ImportedExtern' Declares the variable as an extern in the
Variable Declarations section of the
header file entry_point_name_data.h.
The external code must supply the variable
definition.

'ImportedExternPointer' Declares the variable as an
extern pointer in the Variable
Declarations section of the header
file entry_point_name_data.h. The
external code must define a valid pointer
variable.

Storage classes have these requirements and limitations:

• Assign the storage class to a global variable in a function that declares the global
variable. You do not have to assign the storage class in more than one function.

• After you assign a storage class to a global variable, you cannot assign a different
storage class to that global variable.

• You cannot assign a storage class to a constant global variable.
• A global variable with an ExportedDefine storage class must be a scalar but not a

complex or multi-word scalar. The global variable must only be read and not written
to in the code.

If you do not assign a storage class to a global variable, except for the declaration
location, the variable behaves like it has an 'ExportedGlobal' storage class.
For an 'ExportedGlobal' storage class, the global variable is declared in the file
entry_point_name.h. When the global variable does not have a storage class, the
variable is declared in the file entry_point_name_data.h.

See Also
coder.storageClass

77-3

77 Storage Classes for Code Generation from MATLAB Code

Related Examples
• “Control Declarations and Definitions of Global Variables in Code Generated from

MATLAB Code” on page 77-5
• “Generate Code for Global Data” (MATLAB Coder)

77-4

 Control Declarations and Definitions of Global Variables in Code Generated from MATLAB Code

Control Declarations and Definitions of Global Variables in Code
Generated from MATLAB Code

This example uses storage classes to control the declarations and definitions of global
variables in C/C++ code generated from MATLAB code. Using storage classes helps you
to interface generated code with external code.

This example requires an Embedded Coder license.

Write a function addglobals that adds four global variables. Declare the global
variables in the function.

function y = addglobals

% Define the global variables.

global u;

global v;

global x;

global z;

% Assign the storage classes.

coder.storageClass('u','ExportedGlobal');

coder.storageClass('v','ImportedExtern');

coder.storageClass('x','ImportedExternPointer');

coder.storageClass('z','ExportedDefine');

y = u + v + x + z;

end

Create a file c:\myfiles\myfile.c that defines and initializes the imported global
variables u and v.

#include <stdio.h>

/* Variable definitions for imported variables */

double v = 1.0;

double *x = &v;

Create a code configuration object. Configure the code generation parameters to include
myfile.c. For output type'lib', or if you generate source code only, you can generate
code without providing this file. Otherwise, you must provide this file.

77-5

77 Storage Classes for Code Generation from MATLAB Code

cfg = coder.config('dll','ecoder', true);

cfg.CustomSource = 'myfile.c';

cfg.CustomInclude = 'c:\myfiles';

Generate the code. This example uses the -globals argument to specify the types and
initial values of the global variables u, v, x, and z. Alternatively, you can define global
variables in the MATLAB global workspace. For the imported global variables v and x,
the code generator uses the initial values only to determine the type.

codegen -config cfg -globals {'u', 1, 'v', 2, 'x', 3, 'z', 4} addglobals -report

From the initial values 1, 2, 3, and 4 codegen determines that u, v, x and z have
type double. codegen defines and declares the exported global variables u and z. It
generates code that initializes u to 1.0 and z to 4.0. codegen declares the imported
global variables v and x. It does not define these variables or generate code that
initializes them. myfile.c provides the code that defines and initializes v and x.

To view the code generated for the global variables, open the report. Click the View
report link.

View the definition for the exported global z in the Exported data define section in
addglobals.h.

/* Definition for custom storage class: ExportedDefine */

#define z 4.0

View the definition and declaration for the exported global u.

• u is defined in the Variable Definitions section in addglobals.c.

/* Variable Definitions */

/* Definition for custom storage class: ExportedGlobal */

double u;

• u is declared as extern in the Variable Declarations section in addglobals.h.

/* Variable Declarations */

/* Declaration for custom storage class: ExportedGlobal */

extern double u;

• u is initialized in addglobals_initialize.c.

/* Include Files */

#include "rt_nonfinite.h"

#include "addglobals.h"

77-6

 Control Declarations and Definitions of Global Variables in Code Generated from MATLAB Code

#include "addglobals_initialize.h"

/* Named Constants */

#define b_u (1.0)

/* Function Definitions */

/*

 * Arguments : void

 * Return Type : void

 */

void addglobals_initialize(void)

{

 rt_InitInfAndNaN(8U);

 u = b_u;

}

View the definition and declaration for the imported external global v and the imported
external global pointer x.

v and x are declared as extern in the Variable Declarations section in
addglobals_data.h.

/* Variable Declarations */

/* Declaration for custom storage class: ImportedExtern */

extern double v;

/* Declaration for custom storage class: ImportedExternPointer */

extern double *x;

See Also
coder.storageClass

More About
• “Storage Classes for Code Generation from MATLAB Code” on page 77-2
• “Generate Code for Global Data” (MATLAB Coder)
• “Specify External File Locations” (MATLAB Coder)

77-7

78

Verification of Code Generated from
MATLAB Code

• “Highlight Potential Data Type Issues in a Report” on page 78-2
• “Find Potential Data Type Issues in Generated Code” on page 78-5
• “PIL Execution with ARM Cortex-A at the Command Line” on page 78-13
• “PIL Execution with ARM Cortex-A by Using the MATLAB Coder App” on page

78-15

78 Verification of Code Generated from MATLAB Code

Highlight Potential Data Type Issues in a Report

In this section...

“Enable Highlight Option Using the MATLAB Coder App” on page 78-3
“Enable Highlight Option Using the Command Line Interface” on page 78-4

If you have an Embedded Coder license, you have the option to highlight potential data
types issues in the code generation report for standalone code generated from MATLAB
code. If you enable this option, the Highlight section on the MATLAB code tab lists the
number of single-precision and double-precision operations in the generated C/C++ code.
If you have a Fixed-Point Designer license, it also lists the number of expensive fixed-
point operations.

To highlight the MATLAB code that corresponds to the potential data type issues:

1 Select the check box for the type of operation that you want to highlight.
2 Select the function that you want to highlight.

The report highlights the operations in the selected function. The following example
report highlights MATLAB code that results in double-precision operations in the
generated code.

78-2

 Highlight Potential Data Type Issues in a Report

The option to highlight potential data type issues is disabled by default.

Enable Highlight Option Using the MATLAB Coder App

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

78-3

78 Verification of Code Generated from MATLAB Code

3 Click More Settings.
4 On the Debugging tab, select the Always create a code generation report and

Highlight potential data type issues check boxes.

Enable Highlight Option Using the Command Line Interface

1 Create an embedded code configuration object for 'lib', 'dll', or 'exe':

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the GenerateReport and HighlightPotentialDataTypeIssues
configuration object properties to true:

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

Related Examples
• “Find Potential Data Type Issues in Generated Code” on page 78-5

78-4

 Find Potential Data Type Issues in Generated Code

Find Potential Data Type Issues in Generated Code

In this section...

“Data Type Issues Overview” on page 78-5
“Enable Highlighting of Potential Data Type Issues” on page 78-5
“Find and Address Cumbersome Operations” on page 78-6
“Find and Address Expensive Rounding” on page 78-8
“Find and Address Expensive Comparison Operations” on page 78-9
“Find and Address Multiword Operations” on page 78-11

Data Type Issues Overview

When you generate C code from MATLAB code, you can highlight potential data type
issues in the C code generation report. The report highlights MATLAB code that requires
single-precision, double-precision, or expensive fixed-point operations. The expensive
fixed-point operations checks require a Fixed-Point Designer license.

• The double-precision check highlights expressions that result in a double-precision
operation. When trying to achieve a strict-single or fixed-point design, manual
inspection of code can be time-consuming and error prone.

For a strict-single precision design, specify a standard math library that supports
single-precision implementations. To change the library for a project, during the
Generate Code step, in the project settings dialog box, on the Custom Code tab, set
the Standard math library to C99 (ISO).

• The single-precision check highlights expressions that result in a single operation.
• The expensive fixed-point operations check identifies optimization opportunities

for fixed-point code. It highlights expressions in the MATLAB code that require
cumbersome multiplication or division, expensive rounding, expensive comparison, or
multiword operations. For more information on optimizing generated fixed-point code,
see “Tips for Making Generated Code More Efficient” (Fixed-Point Designer).

Enable Highlighting of Potential Data Type Issues

Procedure 78.1. Enable the highlight option using the MATLAB Coder app

78-5

78 Verification of Code Generated from MATLAB Code

1 On the Generate Code page, to open the Generate dialog box, click the Generate

arrow .
2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Debugging tab, select the Always create a code generation report and

Highlight potential data type issues check boxes.

Procedure 78.2. Enable the highlight option using the command-line interface

1 Create an embedded code configuration object for 'lib', 'dll', or 'exe':

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the GenerateReport and HighlightPotentialDataTypeIssues
configuration object properties to true:

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

Find and Address Cumbersome Operations

Cumbersome operations usually occur due to an insufficient range of output. Avoid
inputs to a multiply or divide operation that have word lengths larger than the base
integer type of your processor. Software can process operations with larger word lengths,
but this approach requires more code and runs slower.

This example requires Embedded Coder and Fixed-Point Designer licenses to run. The
target word length for the processor in this example is 64.

1 Create the function myMul.

function out = myMul(in1, in2)

 out = fi(in1*in2, 1, 64, 0);

end

2 Generate code for myMul.

cfg = coder.config('lib');

78-6

 Find Potential Data Type Issues in Generated Code

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

fm = fimath('ProductMode', 'SpecifyPrecision', 'ProductWordLength', 64);

codegen -config cfg myMul -args {fi(1, 1, 64, 4, fm), fi(1, 1, 64, 4, fm)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

To resolve this issue, modify the data types of in1 and in2 so that the word length of
the product does not exceed the target word length of 64.

78-7

78 Verification of Code Generated from MATLAB Code

Find and Address Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses
"no effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method.

This example requires Embedded Coder and Fixed-Point Designer licenses to run.

1 Create the function myRounding.

function [quot] = myRounding(in1, in2)

 quot = in1 / in2;

end

2 Generate code for myRounding.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myRounding -args {fi(1, 1, 16, 2), fi(1, 1, 16, 4)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

78-8

 Find Potential Data Type Issues in Generated Code

This division operation uses the default rounding method, nearest. Changing the
rounding method to Floor provides a more efficient implementation.

Find and Address Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, before comparing an unsigned integer to a signed integer,
one of the inputs must be cast to the signedness of the other. Consider optimizing the
data types of the input arguments so that a cast is not required in the generated code.

This example requires Embedded Coder and Fixed-Point Designer licenses to run.

1 Create the function myRelop.

78-9

78 Verification of Code Generated from MATLAB Code

function out = myRelop(in1, in2)

 out = in1 > in2;

end

2 Generate code for myRelop.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myRelop -args {fi(1, 1, 14, 3, 1), fi(1, 0, 14, 3, 1)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

78-10

 Find Potential Data Type Issues in Generated Code

The first input argument, in1, is signed, while in2 is unsigned. Extra code is
generated because a cast must occur before the two inputs can be compared.

Change the signedness and scaling of one of the inputs to generate more efficient
code.

Find and Address Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or
output data type larger than the largest word size of your processor, the generated code
contains multiword operations. You can avoid multiword operations in the generated
code by specifying local fimath properties for variables. You can also manually specify
input and output word lengths of operations that generate multiword code.

This example requires Embedded Coder and Fixed-Point Designer licenses to run. The
target word length is 64 in this example.

1 Create the function myMul.

function out = myMul(in1, in2)

 out = in1 * in2;

end

2 Generate code for myMul.

cfg = coder.config('lib');

cfg.GenerateReport = true;

cfg.HighlightPotentialDataTypeIssues = true;

codegen -config cfg myMul -args {fi(1, 1, 33, 4), fi(1, 1, 32, 4)}

3 Click View report.
4 In the Code Generation Report, on the left pane, click the MATLAB code tab.
5 Expand the Highlight section and select the Expensive fixed-point operations

check box.

78-11

78 Verification of Code Generated from MATLAB Code

The in1 * in2 operation is highlighted in the HTML report. On the bottom pane,
click the Variables tab. The word length of in1 is 33 bits, and the word length of
in2 is 32 bits. Hovering over the highlighted expression reveals that the product has
a word length of 65, which is larger than the target word length of 64. Therefore, the
software detects a multiword operation.

To resolve this issue, modify the data types of in1 and in2 so the word length of
the product does not exceed the target word length, or specify the ProductMode
property of the local fimath object.

78-12

 PIL Execution with ARM Cortex-A at the Command Line

PIL Execution with ARM Cortex-A at the Command Line

This example shows how to set up a PIL execution to verify generated code at the
command line.

You can use processor-in-the-loop (PIL) executions to verify generated code that you
deploy to target hardware by using a MATLAB Coder procedure. You can profile
algorithm performance and speed for your generated code. To verify generated code with
the MATLAB Coder app, you must have an Embedded Coder license.

This PIL execution is available with these hardware support packages. To use the PIL
execution, install one of these support packages.

• Embedded Coder Support Package for BeagleBone Black Hardware
• Embedded Coder Support Package for ARM Cortex-A Processors

In the Command Window, select the hardware for PIL execution.

hw = coder.hardware('ARM Cortex-A9 (QEMU)')

hw =

 Hardware with properties:

 Name: 'ARM Cortex-A9 (QEMU)'

 CPUClockRate: 1000

When using the BeagleBone hardware, more hardware properties are supported
(Username, Password, and DeviceAddress). Set these properties based on your specific
hardware or application.

hw = coder.hardware('BeagleBone Black')

hw =

 Hardware with properties:

 Name: 'BeagleBone Black'

 CPUClockRate: 1000

 Password: 'root'

 Username: 'admin'

 DeviceAddress: '192.168.1.10'

Add the hardware to the MATLAB Coder configuration object.

78-13

78 Verification of Code Generated from MATLAB Code

cfg = coder.config('lib','ecoder',true);

cfg.VerificationMode = 'PIL';

cfg.Hardware = hw;

Generate PIL code for a function, averaging_filter.

codegen -config cfg averaging_filter -args {zeros(1,16)}

For more information on the averaging_filter function, see the “Averaging Filter”
example in “MATLAB Coder Examples” (MATLAB Coder).

For another example of PIL verification, see the "Processor-in-the-Loop Verification
of MATLAB Functions" page in the documentation of the Embedded Coder Support
Package for ARM Cortex-A Processors. To install the Embedded Coder Support Package
for ARM Cortex-A Processors, see “Supported Hardware”.

78-14

 PIL Execution with ARM Cortex-A by Using the MATLAB Coder App

PIL Execution with ARM Cortex-A by Using the MATLAB Coder App

You can use processor-in-the-loop (PIL) executions to verify generated code that you
deploy to target hardware by using a MATLAB Coder procedure. You can profile
algorithm performance and speed for your generated code. To verify generated code with
the MATLAB Coder app, you must have an Embedded Coder license.

This PIL execution is available with these hardware support packages. To use the PIL
execution, install one of these support packages.

• Embedded Coder Support Package for BeagleBone Black Hardware
• Embedded Coder Support Package for ARM Cortex-A Processors

You can set up PIL execution with the MATLAB Coder app.

To configure the build type and hardware board:

1 On the Generate Code page, in the Generate dialog box:

• Set the Build type to Static Library.
• Clear the Generate code only check box.
• Set the Hardware Board to BeagleBone Black or ARM Cortex-A9 (QEMU).

2 If necessary, modify the settings for your board. To modify the settings, click More
Settings, and then click Hardware.

3 To generate the library, click Generate.
4 Set up your PIL execution. Click Verify Code to open the Verify Code dialog box.

Because the hardware board is not MATLAB Host Computer, the Verify Code
dialog box is configured for PIL execution.

In the Verify Code dialog box:

• Enter the name of the test file to use for PIL execution.
• Select Generated code.

5 To start the PIL execution, click Run Generated Code.
6 To stop the PIL execution, click Stop.

For another example of PIL verification, see the "Processor-in-the-Loop Verification
of MATLAB Functions" page in the documentation of the Embedded Coder Support
Package for ARM Cortex-A Processors. Install the support package to view the
documentation.

78-15

